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Type-2 Fuzzy Model-based Movement Primitives
for Imitation Learning

Da Sun, Qianfang Liao and Amy Loutfi

Abstract—Imitation learning is an important direction in the
area of robot skill learning. It provides a user-friendly and
straightforward solution to transfer human demonstrations to
robots. In this article, we integrate fuzzy theory into imitation
learning to develop a novel method called Type-2 Fuzzy Model-
based Movement Primitives (T2FMP). In this method, a group
of data-driven Type-2 fuzzy models are used to describe the
input-output relationships of demonstrations. Based on the fuzzy
models, T2FMP can efficiently reproduce the trajectory without
high computational costs or cumbersome parameter settings.
Besides, it can well handle the variation of the demonstrations
and is robust to noise. In addition, we develop extensions that
endow T2FMP with trajectory modulation and superposition
to achieve real-time trajectory adaptation to various scenarios.
Going beyond existing imitation learning methods, we further
extend T2FMP to regulate the trajectory to avoid collisions in
the environment that is unstructured, non-convex, and detected
with noisy outliers. Several experiments are performed to validate
the effectiveness of our method.

Index Terms—Imitation learning, Movement primitives, Type-
2 fuzzy model, Point cloud, Collision avoidance

NOMENCLATURE

T2FMP
s(k) ∈ RI The input of a Type-2 fuzzy model at

sample k.
ξ(k) ∈ R The output of a Type-2 fuzzy model.
C̃l The l-th Type-2 fuzzy set/cluster, l =

1, · · · , L.
µC̃l(s(k)) The interval fuzzy membership

of s(k) in C̃l, µC̃l(s(k)) =
[µ
C̃l

(s(k)), µC̃l(s(k))].
ãli The interval coefficient ãli = [ali, a

l
i],

i = 0, · · · , I.
D The training data set containing multiple

demonstrations
Dr The r-th subset of D with its element

dr(k), k = 1, · · · ,Ktr, r = 1, · · · ,O.
str(k) ∈ RI The input element of dr(k).
ξtrr (k) ∈ R The output element of dr(k).
C̃lr The l-th Type-2 fuzzy clusters in its set

C̃r of the r-th fuzzy model.
Clr The l-th Type-1 fuzzy clusters in its set

Cr of the r-th fuzzy model.
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clr ∈ RI+1 The cluster center of Clr.
µClr (·) ∈ R The Type-1 fuzzy membership.
Al
r ∈ R(I+1)×(I+1) The norm-inducing matrix of Clr.

F lr ∈ R(I+1)×(I+1) The fuzzy covariance matrix of Clr.
∆µClr ∈ R The varying range of fuzzy member-

ships.
µC̃lr

(·) ∈ R The interval fuzzy membership of Clr,
µC̃lr

(·) = [µ
C̃lr

(·), µC̃lr (·)]
∆ξtrr (k) ∈ R The varying range for each ξtrr (k).
alr,a

l
r ∈ RI+1 The coefficients of the r-th local model

of the l-th fuzzy rule.
ξ̃lr(k) The interval local output of the l-th

fuzzy rule, ξ̃lr(k) = [ξl
r
(k), ξ

l

r(k)].
Trajectory Modulation
{ŝ(i), ξ̂(i)}NMi=1 Via-points/end-points of the modulated

trajectory.
Vr The set of fuzzy cluster centers of the

r-th Type-2 fuzzy model.
d̂r(i) ∈ RI+1 The datapoint of the r-th subset of the

via-points/end-points.
cldr ∈ RI+1 The desired cluster center.
adir ,a

di
r ∈ RI+1 The coefficients of the local models.

Trajectory Superposition
{sn,u, ξn,u}Nn=1 The candidate trajectories with the input

and output, u = 1, · · · , U .
{šκ, ξ̌κ}

NK
κ=1 The keypoints in the candidate trajecto-

ries.
µu(ξn,u) The fuzzy membership of each ξn,u.
ξsun ∈ RO The optimized trajectory of trajectory

superposition.
Collision Avoidance
P The point cloud of the environment.
Cie The i-th fuzzy cluster of P.
ei ∈ R3 The fuzzy cluster center of P.
η2e ∈ R The average per-element distance loss

of P.
Γ(p̂) ∈ R The environment classifier.
Lr,ab The set recording the index l of the

fuzzy cluster in r-th fuzzy model.
Λc The plain with the normal β and the

term γ.
ξnew(k) ∈ R3 The derived positions of the trajectory

for collision avoidance.

I. INTRODUCTION

In robot control, trajectory generation plays a pivotal role
since an appropriate trajectory can provide the robot with
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dexterous actions to perform various tasks at the joint or
Cartesian space level. In this regard, imitation learning [1]–[4],
also known as Learning from Demonstration (LfD) where the
robot’s motion trajectory is learned from human demonstra-
tions, has attracted increasing attention owing to its natural
features and user-friendliness. Ideally, the learned trajectory
can be reproduced by the robot under the same condition as the
demonstration. However, in reality, unforeseen circumstances
often arise, such as human intervention or obstacles in an
unstructured environment, which increase the task difficulty
and hinder the robot’s performance. Thus, it is desired that
imitation learning allows the robot not only to reproduce the
trajectory but also to intelligently adapt to various scenarios,
such that the robot can dynamically regulate its trajectory to
complete the task in unexpected situations.

In the existing studies of trajectory-based imitation learning,
various methods have been investigated to describe demonstra-
tions and learn a generalized form of the skill [5]. Some time-
dependent methods analyze dynamic systems to reproduce
trajectories such as Dynamic Movement Primitives (DMP)
[6]–[9] and Probabilistic Movement Primitives (ProMP) [10].
These methods require a clear description of the trajectory
dynamics and need to pre-define a batch of open parameters
related to the basis functions and their weights. Apart from
the trajectory dynamics-based methods, recent studies put
concentrations on regression-based methods, such as Gaussian
Mixture Regression (GMR) [11]–[13], Gaussian Process (GP)
[14], [15] and Hidden Semi-Markov Model (HSMM) [16],
[17], to generate a probabilistic representation of the given
demonstrations. These methods usually can model demon-
strated motions and provide desired trajectories without need-
ing cumbersome parameter settings. Based on Gaussian Mix-
ture Model (GMM), an estimator is proposed in [18] to stably
reproduce trajectories for dynamic systems. Similar to GP, a
simple method is proposed in [19] that averages trajectories
based on only one-dimensional normal distributions. Despite
these techniques developed for LfD, currently, few methods
allow the user to refine the trajectory from the initially given
demonstrations. Among the few, [20] refines the trajectory
based on geometric objects, which, however, does not address
the via-points constraints. Going beyond [20], ProMP in
[10] solves the Gaussian conditioning problem for trajectory
modulation, and derives an analytical solution to adapt the
trajectory to new via-points. A GMR-based GP is proposed in
[14] in which the modulated trajectory can be more compliant
in regions of high variability. By utilizing radial basis kernel
functions, Kernelizd Movement Primitives (KMP) developed
in [21] offers a non-parametric solution for imitation learning.
In addition, KMP works well in trajectory modulation, where
the modulated trajectory achieves high smoothness and precise
performance of passing through via-points. Later, KMP have
been extended to deal with different issues, such as constraints
[22], uncertainty [23] and orientations [24]. Nevertheless,
required to calculate the kernel matrix, the computational
complexity of KMP is relatively high.

A more difficult problem that challenges existing imitation
learning studies is to deal with environmental collisions. In
[25], potential field and null-space adjustment are utilized by

DMP to avoid collisions between robot links and obstacles. In
[7], [26], [27], combinations between imitation learning and
reinforcement learning are established to search for collision-
free trajectories. The studies in [28], [29] use functional gradi-
ents to minimize the objective functions combining imitation
learning and obstacle avoidance costs. Besides, linear and
nonlinear hard constraints are studied in [22], [30], [31].
However, these methods have several limits, such as idealizing
the environment as simple and regular-shaped structures (e.g.,
spheres), or requiring high time costs in learning. None of
them can tackle collisions in an environment that is unstruc-
tured, non-convex, and detected with noisy outliers. To handle
complex environments, several studies, like [32], [33], utilize
the collision detector (e.g. Flexible Collision Library [34])
to provide mesh representations of the environment, which,
however, cannot be generated from local observation. Some
studies describe the environment by a point cloud collected
from depth sensors. In [35], Support Vector Regression (SVR)
is leveraged to detect collisions via the mapping from the
sample positions to their minimum distance to the point cloud.
GMM is another popular way for collision detection (e.g. [36])
that fits Gaussian mixture distributions to the point cloud.
With exponential kernels to deal with non-linearity, GMM and
SVR usually have high computational complexity. Besides,
their ability to deal with non-convexity and noise has not
been explored in depth. Therefore, imitation learning needs a
better strategy, which has a collision detector for unstructured
environments, sets environment constraints from the detector,
and quickly learns a trajectory to avoid obstacles.

The above learning methods are mainly based on radial
basis functions, Gaussian kernels, and probability calculations.
It is worth mentioning that one significant method, which
receives few attention from existing imitation learning studies,
is fuzzy theory. As a sub-field of artificial intelligence, fuzzy
theory was proposed to imitate the way of human reasoning
for making decisions based on imprecise information [37],
and can be a suitable method for imitating learning. Fuzzy
logic model is effective to describe complex nonlinear systems
because 1). it has been proven to be a universal approximator,
and can be built from input-output data without needing exact
mathematical functions of the system [38]; 2). it is a powerful
tool to deal with noise [39]. In traditional (Type-1) fuzzy
models, the parameters, e.g., fuzzy memberships and local
model’s coefficients, are crisp numbers. As an extension of the
Type-1 fuzzy model, Type-2 fuzzy model has been developed
that uses intervals as the parameters. The intervals increase
the fuzziness of the model and offer extra design degrees to
describe inexactness. Consequently, Type-2 fuzzy models are
endowed with the additional capability to handle uncertainties
of training data [40]–[43].

In this article, we develop a new imitation learning
method, called Type-2 Fuzzy Model-based Movement Primi-
tives (T2FMP), and make extensions on T2FMP to adapt to
various scenarios. The main contributions are as follows.

(i) T2FMP, a regression-based method, is developed to
learn and reproduce trajectories from demonstrations using
a group of Type-2 fuzzy models. Each Type-2 fuzzy model
is composed of a batch of linear polynomials and can be
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identified based on training data. With the fuzzy models,
T2FMP provides a non-parametric solution for imitation learn-
ing and allows to apply the mature linear algorithms to
nonlinear demonstrations for trajectory reproduction and bene-
ficial extensions. Besides, it can well handle high-dimensional
training data. In addition, T2FMP inherits the advantages of
Type-2 fuzzy models to offer efficient, accurate, and robust
performances in learning.

(ii) T2FMP is extended to handle trajectory modulation and
superposition, where the trajectory can be fast calculated to
smoothly and accurately pass through the desired points (via-
points), and adapt to the dynamic environment in real time.
Also, this extension can achieve a low divergence between the
regulated trajectory and the original trajectory.

(iii) T2FMP is extended to handle environmental collisions.
Based on the point cloud of the environment, a fuzzy cluster-
based approach is designed to classify collision and free areas,
where the environment can be unstructured, non-convex, and
detected with noisy outliers. With this approach, this extension
can effectively regulate the trajectory of T2FMP to avoid
obstacles in complex environments.

The rest of this article is organized as follows. Section
II presents the proposed T2FMP for trajectory reproduction.
Section III introduces some extensions of T2FMP, including
trajectory modulation, trajectory superposition, and collision
avoidance. Section IV conducts a series of experiments to
evaluate our method and make comparisons. Some conclusions
are drawn in Section V.

II. TYPE-2 FUZZY MODEL-BASED MOVEMENT
PRIMITIVES (T2FMP)

This section describes T2FMP, a regression-based imitation
learning method using fuzzy logic models. In a T2FMP, there
are a group of Type-2 fuzzy models. Given a data set of input-
output pairs collected from demonstrations, the Type-2 fuzzy
models can be identified based on the data to describe the
input-output relationships. With the identified fuzzy models,
when having a certain input, T2FMP can provide the corre-
sponding output. Therefore, T2FMP learns models to match
the inputs and outputs of the demonstrations and can reproduce
the trajectory to achieve an imitation. In this section, first, we
introduce the Type-2 fuzzy model; then, we present the way
to identify the Type-2 fuzzy models of T2FMP based on the
input-output data; next, we describe the trajectory reproduction
using T2FMP; and finally, a discussion is given.

Type-2 fuzzy model. A Type-2 fuzzy model is composed of
several “IF-THEN” fuzzy rules. Suppose the input and output
at sample k are s(k) = [s1(k) s2(k) · · · sI(k)]T ∈ RI and
ξ(k) ∈ R, respectively. The fuzzy rules of the Type-2 fuzzy
model describing the relationship between the input s and the
output ξ can be expressed as follows:

Rule l : IF s(k) is C̃l,

THEN ξ̃l(k) = ãl0 + ãl1s1(k) + ãl2s2(k) + · · ·+ ãlIsI(k)
(1)

where l = 1, · · · , L, L is the number of fuzzy rules. In the
antecedent (“IF” part) of the fuzzy rule, C̃l is the l-th Type-2
fuzzy set/cluster, in which the fuzzy membership of s(k) is

an interval denoted as µC̃l(s(k)) = [µ
C̃l

(s(k)), µC̃l(s(k))],
where µ

C̃l
(s(k)) and µC̃l(s(k)) are the lower and upper

bounds satisfying 0 ≤ µ
C̃l

(s(k)) ≤ µC̃l(s(k)) ≤ 1. In the
consequent (“THEN” part) of the fuzzy rule, the coefficients
of the linear local model are also intervals: ãli = [ali, a

l
i],

i = 0, · · · , I, and the output of the local model, ξ̃l(k) =

[ξl(k), ξ
l
(k)], is derived by:ξ

l(k) = al0 + al1s1(k) + al2s2(k) + · · ·+ alIsI(k)

ξ
l
(k) = al0 + al1s1(k) + al2s2(k) + · · ·+ alIsI(k)

(2)

The output of the Type-2 fuzzy model is obtained by blending
µC̃l(s(k)) and ξ̃l(k) of the L fuzzy rules as follows:

ξ(k) =

∑L
l=1 µC̃l(s(k)) · ξl(k)

2 ·
∑L
l=1 µC̃l(s(k))

+

∑L
l=1 µC̃l(s(k)) · ξl(k)

2 ·
∑L
l=1 µC̃l(s(k))

(3)
Type-2 fuzzy model identification for T2FMP. The train-

ing data set for imitation learning generally contains mul-
tiple demonstrations and can be expressed as D =
{{strn,h, ξ

tr
n,h}Nn=1}Hh=1, where H is the number of demonstra-

tions and N is the trajectory length; strn,h ∈ RI and ξtrn,h ∈ RO
are respectively the input and output of the h-th demonstration
at the n-th point of the trajectory. Note that the input and
output can have arbitrary dimensions. For example, the input
can include time, robot states, human motions, and/or sensor
signals, and the output is the trajectory information, such as
positions, velocities, and accelerations.

We divide D into O subsets Dr = {{strn,h, ξtrn,h,r}Nn=1}Hh=1,
r = 1, · · · ,O, where the output ξtrn,h,r ∈ R is the r-th
element of ξtrn,h. For convenience of notation, we also express
the subsets by Dr = {dr(k) = [str(k)T ξtrr (k)]T }Ktr

k=1,
where dr(k) ∈ RI+1, str(k) = strn,h, ξtrr (k) = ξtrn,h,r,
and Ktr = N · H . Based on each Dr, a Type-2 fuzzy
model is identified via a data-driven method to describe the
relationship between strn,h and ξtrn,h,r. The O identified Type-2
fuzzy models constitute the T2FMP for D.

The reasons for building O models based on subsets of D
are twofold. First, this way can reduce the mutual interference
among different dimensions of the output (e.g., the position
or velocity in X-axis usually should not influence those in Y-
axis), and thus it is conducive to accurate models. Second, the
dimension of each Type-2 fuzzy model in the T2FMP (i.e.,
I + 1) is relatively low compared to the whole data set D
(i.e., I + O); then, this way can reduce the complexity and
improve the efficiency of the data-driven modeling, especially
when D gives high-dimensional outputs.

The process to build the r-th Type-2 fuzzy model of the
T2FMP based on Dr is presented as follows, which consists
of the identifications of antecedents and consequents of the L
fuzzy rules with the form similar to (1).

Identification of antecedents. For the antecedents of the
fuzzy rules, we need to obtain L Type-2 fuzzy clusters,
denoted as C̃r = {C̃lr}Ll=1. To this end, first, we use Gustafson-
Kessel (G-K) fuzzy clustering [44] to divide Dr into L Type-1
fuzzy clusters, denoted as Cr = {Clr}Ll=1. Then, we calculate
the varying range of fuzzy memberships, denoted as ∆µClr ,
of each Clr to extend it to a Type-2 fuzzy cluster C̃lr.
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G-K clustering minimizes the following objective function
through an iterative calculation to derive Cr [44]:

min
Cr

J(Dr,Cr) =

Ktr∑
k=1

L∑
l=1

µClr (dr(k))m‖dr(k)− clr‖2Al
r


(4)

where m > 1 controls the fuzziness of the fuzzy clusters
that a greater m leads to a fuzzier partition, and m = 2 is a
widely used choice; clr = [(slcr)

T ξlcr]
T ∈ RI+1 is the cluster

center of Clr; µClr (dr(k)) ∈ R is the crisp (Type-1) fuzzy
membership of dr(k) in Clr satisfying 0 ≤ µClr (dr(k)) ≤ 1

and
∑L
l=1 µClr (dr(k)) = 1, and is calculated by:

µClr (dr(k)) =

1, if
∥∥dr(k)− clr

∥∥2
Al
r

= 0

0, if ∃j 6=l
∥∥dr(k)− cjr

∥∥2
Aj
r

= 0
1

L∑
j=1

 ‖dr(k)−clr‖2Alr
‖dr(k)−cjr‖2

A
j
r

 1
m−1

, else

(5)
where ‖dr(k) − clr‖2Al

r
= (dr(k) − clr)TA

l
r(dr(k) − clr), in

which Al
r ∈ R(I+1)×(I+1) is the norm-inducing matrix of Clr

and is calculated by the following:

Al
r = det(F lr)

1/(I+1) · (F lr)−1 (6)

where F lr ∈ R(I+1)×(I+1) is the fuzzy covariance matrix of
Clr and is calculated by the following:

F lr =

∑Ktr

k=1 µClr (dr(k))m · (dr(k)− clr) · (dr(k)− clr)T∑Ktr

k=1 µClr (dr(k))m

(7)
After obtaining Cr by G-K fuzzy clustering, we find ∆µClr

to extend each Clr to C̃lr. At each point of the trajectory in
Dr, there are H demonstrations: {strn,h, ξtrn,h,r}Hh=1. These
demonstrations, although different from one another to a
certain extent, are supposed to represent the same information.
Thus, the ranges of variation can be learned from them. In Clr,
for the H demonstrations at the n-th point of the trajectory,
we denote their maximum and minimum fuzzy memberships
as max{µClr,n} and min{µClr,n}, respectively. Then, we use
the following equation to derive ∆µClr :

∆µClr =
1

N
·
∑N

n=1

max{µClr,n} −min{µClr,n}
2

(8)

Note that ∆µClr can be also determined by user experience.
Then, Clr can be extended to its Type-2 version C̃lr, where

the interval fuzzy membership of dr(k), µC̃lr
(dr(k)) =

[µ
C̃lr

(dr(k)), µC̃lr
(dr(k))], is calculated by:{

µ
C̃lr

(dr(k)) = max{0, µClr (dr(k))−∆µClr}
µC̃lr

(dr(k)) = min{1, µClr (dr(k)) + ∆µClr}
(9)

Identification of consequents. For the consequents of the
fuzzy rules, we need to obtain the local models’ coefficients,
denoted as ãlri, i = 1, · · · , I, l = 1, · · · , L. To this end, we
use the covariance matrices F lr to derive the varying range of
the output in each datum for the coefficient identification. We

denote the element at row I + 1 and column I + 1 of F lr as
f lr. Then, we use the following equation to derive a varying
range ∆ξtrr (k) for each ξtrr (k), k = 1, · · · ,Ktr.

∆ξr(k) =
∑L

l=1
µClr (dr(k)) ·

√
f lr (10)

Afterward, each datum dr(k) can be turn into two as:{
dr(k) = [str(k)T ξtr

r
(k)]T

dr(k) = [str(k)T ξ
tr

r (k)]T
(11)

where ξtr
r

(k) = ξtrr (k) − ∆ξr(k) and ξ
tr

r (k) = ξtrr (k) +
∆ξr(k). Subsequently, the coefficients of the local model of
the l-th fuzzy rule, expressed by alr = [alr0 a

l
r1 · · · alrI ]T and

alr = [alr0 a
l
r1 · · · alrI ]T , are calculated using the weighted

least squares as follows:a
l
r =

(
(Sl)T ·W l

r · S
l
)−1
· (Sl)T ·W l

r · ξ
tr

r

alr =
(

(Sl)T ·W l
r · S

l
)−1
· (Sl)T ·W l

r · ξ
tr

r

(12)

where ξtr
r

= [ξtr
r

(1) ξtr
r

(2) · · · ξtr
r

(Ktr)]T ∈ RKtr

,

ξ
tr

r = [ξ
tr

r (1) ξ
tr

r (2) · · · ξtrr (Ktr)]T ∈ RKtr

, W l
r =

diag[µClr (dr(1)), · · · , µClr (dr(K
tr))] ∈ RKtr×Ktr

, and

Sl =

[
1 1 · · · 1

str(1) str(2) · · · str(Ktr)

]T
∈ RK

tr×(I+1)

Note that in practice, various constraints may exist, e.g., the
constraints on position, velocity, or acceleration. When there
are constraints, we identify the coefficients using the following
constrained weighted least squares:

alr = arg min
1

2
· ‖Sl ·W l

r · alr −W
l
r · ξ

tr

r
‖2

s.t.


Ar1 · alr ≥ Br1
Ar2 · alr ≥ Br2

...

ArM · alr ≥ BrM

(13)

alr = arg min
1

2
· ‖Sl ·W l

r · alr −W
l
r · ξ

tr

r ‖2

s.t.


Ar1 · alr ≥ Br1
Ar2 · alr ≥ Br2

...

ArM · alr ≥ BrM

(14)

where Ari and Bri, i = 1. · · · ,M , are general forms of
constraint parameters with proper dimensions. (13)-(14) can
be treated as hierarchical quadratic problems [45], and solved
by introducing Lagrange multipliers. In the next section, the
constraints in (13)-(14) will be specified to deal with the
collision issue.

Trajectory reproduction. After obtaining the O Type-2 fuzzy
models, given certain inputs, T2FMP can reproduce the tra-
jectory by calculating the corresponding outputs based on the
fuzzy models. For an input s(k) = [s1(k) s2(k) · · · sI(k)],
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the output of the r-th Type-2 fuzzy model of T2FMP, ξr(k),
is derived by the following:

i). Calculate the Type-1 fuzzy membership of s(k) in each
fuzzy cluster Clr, denoted as µClr (s(k)), l = 1, · · · , L, using
the following equation revised from (5):

µClr (s(k)) =

1, if
∥∥s(k)− slcr

∥∥2
Â
l
r

= 0

0, if ∀j 6=l
∥∥s(k)− sjcr

∥∥2
Â
j
r

= 0
1

L∑
j=1

 ‖s(k)−slcr‖2Âlr
‖s(k)−sjcr‖2

Âjr

 1
m−1

, else

(15)
where slcr is the input part of clr; Â

l

r ∈ RI×I is derived by
removing row I + 1 and column I + 1 of Al

r.
ii). Extend each µClr (s(k)) to an interval, denoted as

µC̃lr
(s(k)) = [µ

C̃lr
(s(k)), µC̃lr

(s(k))], l = 1, · · ·L, using the
following equations revised from (9):{

µ
C̃lr

(s(k)) = max{0, µClr (s(k))−∆µClr}
µC̃lr

(s(k)) = min{1, µClr (s(k)) + ∆µClr}
(16)

iii). Calculate the local output of each fuzzy rule, denoted
as ξ̃lr(k) = [ξl

r
(k), ξ

l

r(k)], l = 1, · · ·L, using he following
equation derived from (2):ξ

l

r
(k) = alr0 + alr1s1(k) + alr2s2(k) + · · ·+ alrIsI(k)

ξ
l

r(k) = alr0 + alr1s1(k) + alr2s2(k) + · · ·+ alrIsI(k)

(17)
iv). Calculate ξr(k) using the following equation derived

from (3) based on µC̃lr (s(k)) and ξ̃lr(k), l = 1, · · ·L.

ξr(k) =

L∑
l=1

µ
C̃lr

(s(k)) · ξl
r
(k)

2 ·
L∑
l=1

µ
C̃lr

(s(k))

+

L∑
l=1

µC̃lr
(s(k)) · ξlr(k)

2 ·
L∑
l=1

µC̃lr
(s(k))

(18)

Note that for the datum dr(k) = [s(k)T ξr(k)]T consisting
of the input and the calculated output, we have its fuzzy
covariance matrix by the following:

F r(dr(k)) =
∑L

l=1
µClr (s(k)) · F lr (19)

Given a group of inputs {s(k)}Kk=1, we can collect their out-
puts calculated from the O fuzzy models to form {ξ(k)}Kk=1,
where ξ(k) = [ξ1(k) ξ2(k) · · · ξO(k)]. As a result, we have
the reproduced trajectory as {s(k), ξ(k)}Kk=1. Algorithm 1
describes the work process of T2FMP.

Discussion. The proposed T2FMP has the following advan-
tages: First, T2FMP can describe high-dimensional demonstra-
tions. Second, T2FMP is composed of Type-2 fuzzy models,
each of which smoothly combines a group of linear local
models using fuzzy memberships. Thus, it can use linear
algorithms to resolve nonlinear problems. Third, T2FMP is
user-friendly since it has a very small number of param-
eters that need to be manually determined. Forth, unlike
some probabilistic approaches, such as HSMM, GMR, and
KMP, T2FMP has lower computational complexity and does

Algorithm 1: T2FMP
1. Initialization
− Collect demonstrations D = {{strn,h, ξ

tr
n,h}Nn=1}Hh=1.

− Set the number of fuzzy clusters L.
− For ξr, define the constraint parameters Ari and
Bri, i = 1, · · · ,M (if necessary).

2. Fuzzy Modeling
for each r in {1, · · · ,O} do

Identification of antecedents. According to (4)-(9),
use G-K clustering to derive L Type-1 fuzzy
clusters Clr based on Dr, and then extend each
Clr to its Type-2 version C̃lr.

Identification of consequents. According to
(10)-(14), calculate the varying range of the
output of each datum and then turn each datum
into two; afterward, use the (constrained)
weighted least squares to identify coefficients of
the local models.

3. Reproduction
Given the inputs {s(k)}Kk=1,
for each r in {1, · · · ,O} do

Calculate the outputs {ξr(k)}Kk=1 based on the r-th
Type-2 fuzzy model according to (15)-(18), .

The reproduced trajectory is {s(k), ξ(k)}Kk=1.

not involve expensive operations (exponentials, etc.). Fifth,
T2FMP possesses the advantages of Type-2 fuzzy models,
including the robustness to uncertainties. Hence, it can well
handle the noise and variability of the training data and is
reliable in practice. These advantages will be validated in the
experiments.

III. EXTENSIONS OF T2FMP
In this section, we make several extensions on T2FMP to

adapt to various scenarios, including trajectory modulation,
trajectory superposition, and collision avoidance.

A. Trajectory modulation

When the task is modified, the robot’s motion trajectory
may need to be changed. For example, an object that the robot
has learned to pick is moved to a different place. Then, new
desired positions appear which are not included in the demon-
strations. In this case, the robot needs to modulate its motion
trajectory to pass through the new positions at the desired time.
Trajectory modulation defines the strategy that regulates the
learned trajectory and allows the trajectory to pass through new
via-points/end-points. There are four requirements, 1). The
trajectory must pass through the desired via-points/end-points.
2). The time cost of trajectory modulation shall be as low as
possible. 3). The divergence between the modulated trajectory
and the original trajectory shall be small. 4). The trajectory
shall be smooth. In [21], trajectory modulation has been
studied to improve the adaptation of KMP, which, however,
does not fully consider the above requirements. In this section,
we develop the trajectory modulation of T2FMP to provide
better performance in terms of the four requirements.
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Given NM new datapoints: {ŝ(i), ξ̂(i)}NMi=1 , where the input
ŝ(i) and the output ξ̂(i) have the same dimensions as the
training data. These new datapoints are required to be the via-
points/end-points of the modulated trajectory. To let the output
of T2FMP pass through these new datapoints, we make an
extension on T2FMP by updating the Type-2 fuzzy models. We
divide the new datapoints into O subsets, denoted as {d̂r(i) =
[ŝ(i)T ξ̂r(i)]

T }NMi=1 , r = 1, · · · ,O. Based on the r-th subset,
we update the r-th fuzzy model and then calculate the outputs
to have the modulated trajectory by the following steps.

Step 1. Updating fuzzy cluster centers. Denote the fuzzy
cluster centers of the r-th Type-2 fuzzy model as Vr = {clr =
[(slcr)

T ξlcr]
T }Ll=1. For each d̂r(i), we find the fuzzy cluster

center, denoted as cldr = [(sldcr)
T ξldcr]

T , satisfying:

D(ŝ(i), sldcr) = min
{
{D(ŝ(i), slcr)}Ll=1

}
(20)

where D(·) is a selected distance measure (e.g., Euclidean
norm). If the nearest distance D(ŝ(i), sldcr) is within a pre-
defined threshold ζ, we replace the center cldr with d̂r(i);
otherwise, we insert d̂r(i) into set Vr, as follows:{

Vr ←− {Vr/cldr }
⋃
d̂r(i), if D(ŝ(i), sldcr) ≤ ζ

Vr ←− Vr
⋃
d̂r(i), if D(ŝ(i), sldcr) > ζ

(21)
This step adds new fuzzy clusters centered at the new points
to describe the modulated trajectory.

Step 2. Setting norm-inducing matrices. For the new fuzzy
clusters derived by Step 1, we need to obtain their norm-
inducing matrices (6), which indicates their dominated ranges.
To make the modulated trajectory smooth, for the new fuzzy
cluster centered at d̂r(i), we let its norm-inducing matrix be
the same as that of the cluster centered at cldr . Subsequently,
the new fuzzy cluster has the same dominated range as its
nearest fuzzy cluster in the original Vr. In this way, the
divergence between the modulated trajectory and the original
trajectory can be as small as possible.

Step 3. Calculating coefficients of local models. In the r-th
Type-2 fuzzy model, each fuzzy cluster has a corresponding
fuzzy rule. Note that if the center of a fuzzy cluster is replaced
by a new point in Step 1, the corresponding fuzzy rule in
the r-th fuzzy model is removed. For the new fuzzy clusters
generated in Steps 1 and 2, we need to add their corresponding
fuzzy rules to the r-th fuzzy model. Note that the antecedent
parameters of these new fuzzy rules have been obtained in
the previous two steps. This step calculates the consequent
parameters. For the fuzzy rule corresponding to the new
fuzzy cluster centered at d̂r(i), the local model’s coefficients,
denoted as adir and adir , are derived by: adir = arg min 1

2 · ‖S
di · adir − ξ̂r(i)‖2

adir = arg min 1
2 · ‖S

di · adir − ξ̂r(i)‖2
(22)

where Sdi = [1 ŝ(i)T ]. Note that (22) gives adir = adir , which
guarantees that the model gives the exact output ξ̂r(i) for the
input ŝ(i). Similar to (13)-(14), constraints will be applied to
solve the optimization problem in (22) if necessary.

Step 4. Calculating outputs. The r-th Type-2 fuzzy model is
updated by the previous steps. Given an input s(k), based on

Algorithm 2: Trajectory modulation of T2FMP
1. Trajectory reproduction
− Use Algorithm 1 to derive the Type-2 fuzzy models

and reproduce the trajectory.
2. Trajectory modulation
Given NM new points {ŝ(i), ξ̂(i)}NMi=1 , divide these
points into O subsets {d̂r(i) = [ŝ(i)T ξ̂r(i)]

T }NMi=1 ,
r = 1, · · · ,O.

for each r in {1, · · · ,O} do
Step 1. Updating fuzzy cluster centers. Update the
fuzzy cluster center set Vr using (20)-(21).

Step 2. Setting norm-inducing matrices. Set the
norm-inducing matrix of each new fuzzy cluster
to be the same as that of the fuzzy cluster
centered at cldr .

Step 3. Calculating coefficients of local models.
Use (22) to derive adir and adir of the local model
of each new fuzzy rule.

Step 4. Calculating outputs: Given inputs
{s(k)}Kk=1, use (15)-(18) to obtain the outputs
{ξr(k)}Kk=1 from the updated fuzzy model.

The modulated trajectory is {s(k), ξ(k)}Kk=1.

the updated fuzzy clusters, its fuzzy memberships are calcu-
lated using (15) and (16); based on the updated local models,
its local outputs are calculated using (17). The final output
ξr(k) is derived by (18). For each s(k), we can collect O
outputs as ξ(k) = [ξ1(k) ξ2(k) · · · ξO(k)]. Finally, Given K
inputs, we have the modulated trajectory as {s(k), ξ(k)}Kk=1.

Algorithm 2 summarizes the above steps. It modulates the
trajectory to smoothly pass through the given via-points/end-
points without being greatly divergent from the original
trajectory. The proposed trajectory modulation requires low
computational costs and can be implemented in real time.

B. Trajectory superposition

Another challenging issue of imitation learning is trajectory
superposition. When the robot is given several candidate
trajectories to follow, and each candidate trajectory passes
through different keypoints representing essential solutions
to execute a part of the task, it is desirable to calculate an
optimized trajectory from these candidate trajectories such that
the robot can smoothly pass through all the keypoints and
perform the entire task well. In this section, we develop the
trajectory superposition of T2FMP.

Given U candidate trajectories, each of which is described
by a T2FMP with the input and output as {sn,u, ξn,u}Nn=1,
u = 1, · · · , U . We collect the keypoints in these candidate
trajectories as a set: {šκ, ξ̌κ}

NK
κ=1. Then, we define a new

distance measure between ξn,u and {ξ̌κ}
NK
κ=1 as follows:

Dx(ξn,u, {ξ̌κ}
NK
κ=1) =

NK∏
κ=1

‖ξn,u − ξ̌κ‖ (23)

Dx(ξn,u, {ξ̌κ}
NK
κ=1) is close to zero when ξn,u reaches a

keypoint and becomes large when ξn,u is far away from all
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the keypoints. Based on Dx(ξn,u, {ξ̌κ}
NK
κ=1), u = 1, · · ·U , we

calculate a fuzzy membership of each ξn,u as follows:

µu(ξn,u) =



1, if Dx(ξn,u, {ξ̌κ}
NK
κ=1) = 0

0, if ∃υ 6=uDx(ξn,υ, {ξ̌κ}
NK
κ=1) = 0

1∑U
υ=1

(
Dx(ξn,u, {ξ̌κ}

NK
κ=1)

Dx(ξn,υ, {ξ̌κ}
NK
κ=1)

) 2
m−1

, else
(24)

The fuzzy memberships derived by (24) satisfy 0 ≤
µu(ξn,u) ≤ 1 and

∑U
u=1 µu(ξn,u) = 1. Then, the optimized

trajectory of trajectory superposition is derived from the out-
puts of the U T2FMP using the following equation:

ξsun =

U∑
u=1

µu(ξn,u) · ξn,u (25)

From (24), when the output of a T2FMP, ξn,u, is at a
keypoint, its µu(ξn,u) is 1 and the fuzzy memberships of the
outputs of the other T2FMPs are 0. As a result, the output
of the optimized trajectory ξsun calculated by (25) is at this
keypoint. Therefore, the optimized trajectory can smoothly
pass through all the keypoints of the candidate trajectories.

Unlike KMP by [21] that needs to manually set the priorities
of each candidate trajectories, the proposed trajectory super-
position uses the fuzzy memberships (24) to adaptively and
autonomously determine the priorities and thus can achieve
higher efficiency.

C. Environment classification and collision avoidance

The trajectory of a T2FMP may encounter obstacles in some
scenarios. It is desired that the trajectory can be effectively
regulated to avoid collisions in different environments. In this
section, we make an extension on T2FMP to deal with the
collision issue in an unstructured environment.

Before presenting this extension, we develop a method to
classify the collision area and free area of the environment
based on the point cloud (range scan) collected by a depth
sensor. We denote the point cloud of the environment as P =
{pj ∈ R3}NPj=1, where pj is the point coordinate and NP is
the number of points. Then, we choose the number of fuzzy
clusters for P as NE , and apply G-K clustering [44], [46] to
minimize the objective function (distance loss) in (26) and

Fig. 1. Environment classification for a 2D point cloud (T-rex shape in
yellow). (a). Examples of environment classification where the points p̂1 in
red, p̂2 in green and p̂3 in black can be classified by Γ(·) in (29) to be
at the free area, boundary and collision area; the red asterisks are the fuzzy
cluster centers E; the black line denotes the boundary with λ = 2. (b). Fuzzy
cluster-based boundaries with different values of λ.

Algorithm 3: FMPEC
1. Environment classification
− Collect the environment point cloud P.
− Classify the environmental using (26)-(29).
− Run T2FMP to create a position output ξ ∈ R3.
2. Collision avoidance
while True do

if ∃ Γ(ξ(k)) < 1 then
Step A. Trajectory points classification. From
ξ, find the points ξ(a) and ξ(b), and derive
the set Lr,ab.

Step B. Plane determination. Use the points
ξ(a), ξ(b) and po to derive the plane Λc from
(30)-(32).

Step C. Constrained optimization for T2FMP.
Based on (33)-(37), use the parameters β and
γ of the plane Λc into the constrained
optimization (33)-(34),and run T2FMP to
derive ξnew.

Step D. Keeping the original shape (if
necessary). Calculate the gain ω, regulate ξ
and update ξnew from (38)-(39).
ξ = ξnew.

Step E. Trajectory assessment:
if ∀ Γ(ξ(k)) ≥ 1 then

break

derive the NE fuzzy clusters Ce = {Cie}
NE
i=1, whose centers

are E = {ei ∈ R3}NEi=1.

min
Ce

J(P,Ce) =

NP∑
j=1

J(pj ,Ce) =

NP∑
j=1

NE∑
i=1

µCie(pj)
m · ‖pj − ei‖2Ai

e


(26)

where J(pj ,Ce) =
∑NE
i=1 µCie(pj)

m · ‖pj − ei‖2Ai
e

is the
distance loss of pj . Similar to (4), Ai

e is the norm-inducing
matrix of Cie, and µCie(pj) is the fuzzy membership of pj in
Cie, which can be calculated using the way in (5).

From (26), the per-element distance loss J(pj ,Ce) is a
weighted sum of the Mahalanobis distances between pj and all
the centers in E using µCie(pj) as the weights. From the fuzzy
membership calculation in (5), a longer/shorter ‖pj − ei‖2Ai

e

leads to a smaller/greater µCie(pj). As a result, J(pj ,Ce) can
be analogously considered as the “center of gravity” of these
point-to-center distances. This “center of gravity” indicates
a character of the point’s position with respect to the fuzzy
cluster centers. The average of the per-element distance losses
of all points in P is an index, denoted as η2e , which represents
a geometric/spatial property of P related to the dispersion and
disposition of its points around the fuzzy cluster centers. This
index can be used to estimate the range of the fuzzy clusters
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Fig. 2. Example of FMPEC. The yellow point cloud denotes the obstacle, and the black curve enclosing the obstacle is the boundary between collision and
free areas derived by (29) with λ = 2. The green curve denotes the original ξ. The purple and blue curves are the learned trajectories with and without using
Step D, respectively. The green point is po and ps, which is also the starting point of the trajectory. The red points are ξ(a) and ξ(b). The grey dotted line
represents the plane Λ1 and the black dotted line represents the plane Λc.

and classify the inliers and outliers of P [47].

η2e =
J(P,Ce)
NP

(27)

Based on η2e , we can classify the free and collision areas of
the environment. Given a position in the environment, denoted
as p̂, we can have its distance loss with respect to Ce as:

J(p̂,Ce) =
∑NE

i=1
µCie(p̂)m · ‖p̂− ei‖2Ai

e
(28)

If p̂ is in the free area of the environment, J(p̂,Ce) will be
a relatively large value since p̂ is outside the range of P or
Ce. If p̂ is in the collision area of the environment, J(p̂,Ce)
will be a relatively small value since p̂ is an inlier of P or Ce.
Thus, we define the following classification method:

Γ(p̂) =
J(p̂,Ce)
λη2e


< 1, then p̂ is in the collision area.

= 1, then p̂ is on the boundary.

> 1, then p̂ is in the free area.
(29)

where λ is the gain. Some examples of Γ(p̂) are shown in
Fig. 1. Note that using a greater λ will enlarge the collision
area by including more free space around the point cloud P.

Based on the above classification method, we design a
strategy, called Fuzzy-based Movement Primitives with En-
vironmental Constraints (FMPEC), to regulate the trajectory
to avoid obstacles in unstructured environments. The basic
idea of FMPEC is that we use (29) to detect the segment
of a trajectory that is in the collision area; then, we create
a plane Λc and use its parameters as constraints to regulate
this segment; afterward, the trajectory is iteratively regulated
and finally, all its positions are in the free area. FMPEC is
described by the following steps and an example of its work
process is shown in Fig. 2.

Step A. Trajectory points classification. Given a trajec-
tory described by a T2FMP with the inputs and outputs as
{s(k), ξ(k)}Kk=1, where each output ξ(k) ∈ R3 is a position
in the Cartesian space, based on (29), we find two points in
the collision area, ξ(a) and ξ(b), 1 ≤ a ≤ b ≤ K, where ξ(a)
is the first point of ξ satisfying Γ(ξ(a)) < 1 and ξ(b) is the
last point of ξ satisfying Γ(ξ(b)) < 1.

From Section 2, the r-th element of ξ(k) is derived by
the r-th Type-2 fuzzy model. The r-th Type-2 fuzzy model
contains L Type-2 fuzzy clusters C̃lr, each of which has a
Type-1 version Clr. For each ξr(i), a ≤ i ≤ b, there is a fuzzy

cluster Clr in which ξr(i) has the greatest fuzzy membership,
and we make a set, denoted as Lr,ab, to record the index l of
this fuzzy cluster. Note that Lr,ab ⊆ {1, 2, · · · , L}.

Step B. Plane Determination. Given a known position point
po = [po,1 po,2 po,3]T ∈ R3 in the free area, which can be
the original position of the robot, the location of the depth
sensor, or the start point of the trajectory, we build a plane Λ0

containing the three position points po, ξ(a) and ξ(b) with its
normal vector α = [α1 α2 α3]T ∈ R3. Then, we can create
another plane Λ1 with its normal vector β = [β1 β2 β3]T ∈ R3

and a constant ε satisfying:
βT ξ(a) + ε = 0

βT ξ(b) + ε = 0

βTα = 0

(30)

where (30) denotes that the plane Λ1 contains ξ(a) and ξ(b)
and is perpendicular to Λ0.

Then, from Λ1, we can derive a new plane, denoted as Λc,
whose function is βTx+ γ = 0, where x is the point on Λc.
The normal vector β makes Λc parallel to Λ1 and the constant
γ is derived by the following equation:

γ = ε+ ψχ (31)

where ψ is a small positive gain and χ is defined as:

χ =

{
−1, if |β1|po,1 + sign(β1)(β2po,2 + β3po,3 + ε) ≤ 0

1, else
(32)

The constant γ derived from (31)-(32) allows the plane Λc
to be a little closer to po (in the free area) than Λ1. The
parameters β and γ of Λc will be used by the constraints to
regulate the trajectory in the next step.

Step C. Constrained optimization for T2FMP. We re-run
Algorithm 1 to build a new T2FMP for trajectory regulation,
where (13) and (14) are specified as:

alr = arg min
1

2
· ‖Sl ·W l

r · alr −W
l
r · ξ

tr

r
‖2

s.t. grS
l · alr ≥ br

(33)

alr = arg min
1

2
· ‖Sl ·W l

r · alr −W
l
r · ξ

tr

r ‖2

s.t. grS
l · alr ≥ br

(34)
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where br = [br(1) br(2) · · · br(K)]T and gr are used to
characterize the environment constraints. The parameter gr is
defined as:

gr =

−1, if |βr|po,r + sign(βr)(
3∑

j=1(j 6=r)
βjpo,j + γ) ≤ 0

1, else
(35)

To derive br, we obtain the projection of the output
{ξtrr (k)}Kk=1 of the demonstrations on Λc, denoted as
{ξ̀trr (k)}Kk=1, using (36):

ξ̀trr (k) = ξtrr (k)− βr
∑3
r=1 βrξ

tr
r (k) + γ

βTβ
(36)

Then, we have the following:

br(k) =

{
−ξ̀trr (k), if l(ξtrr (k)) ∈ Lr,ab
−$, if l(ξtrr (k)) /∈ Lr,ab

(37)

where l(ξtrr (k)) denotes the index of the fuzzy cluster in which
ξtrr (k) has the greatest fuzzy membership, and $ is a large
positive constant.

From (37), it implies that in a Type-2 fuzzy model of the
T2FMP, the coefficients of the local models of the fuzzy rules,
whose indexes l ∈ Lr,ab, are identified using constrained least
squares because the local outputs of these fuzzy rules are in
or close to the collision area and need to be regulated. For the
other fuzzy rules whose local outputs are in the free area, their
constraints are relaxed by $ to be large positive constants. By
using the constraints derived by (33)-(37), the new T2FMP
gives a new output ξnew. Compared to the previous T2FMP,
in ξnew, the segment of the trajectory in the collision area will
be moved towards po in the free area as shown in Figs. 2A-B.

Step D. Keeping the original shape (if necessary). The new
output ξnew is regulated to avoid obstacles, so its shape is
usually different from the previous output ξ. However, in some
tasks (e.g., painting), the robot’s motion is desired to avoid
the obstacles and meanwhile keep the shape of the original
trajectory. This step addresses this issue by updating a gain ω
for trajectory regulation.

We suppose ξ and ξnew share one via-point, which is
usually the starting point and is denoted as ps. Then, we
denote pm = (ξ(a)+ξ(b))/2. In ξ and ξnew, we respectively
find the c-th datapoint ξ(c) and the d-th datapoint ξnew(d)
that are the closest to pm. Afterward, we calculate the gain ω
based on ξ(c) and ξnew(d) by:

ω = arg min ‖ω · (ξ(c)− ps)− ξnew(d) + ps‖
s.t. ω > 0

(38)

which ensures the distance between ξ(c) and ps tuned by ω
to be close to the distance between ξnew(d) and ps.

Then, we use the gain ω to update ξnew as

ξnew(k) = ω(ξ(k)− ps) + ps k = 1, · · · ,K (39)

The example trajectories regulated using this step can be found
in Figs. 2B and 2C.

Step E. Trajectory assessment. According to (29), if every
Γ(ξnew(k)) satisfies Γ(ξnew(k)) ≥ 1, ξnew is the final output.

Fig. 3. Experiment I (the first test): T2FMP is used to draw“E” learned from
different numbers (H) of demonstrations. The grey curves are demonstrations
and the red curves are the reproduced trajectory.

TABLE I
PERFORMANCE EVALUATIONS OF T2FMP IN THE FIRST TEST OF

EXPERIMENT I SHOWN IN FIG. 3

H = 1 H = 2 H = 4 H = 8 H = 10 H = 12

Tc 0.181 s 0.193 s 0.254 s 0.276 s 0.308 s 0.352 s
Et 0.298 0.842 1.077 1.172 1.201 1.265
St 0.153 0.130 0.111 0.106 0.1 0.982

Otherwise, let ξ = ξnew and repeat Step A to Step E. The
output ξnew will be updated iteratively and finally, the entire
trajectory is in the free area as shown in Fig. 2C.

The steps of FMPEC are described in Algorithm 3.

IV. EXPERIMENTS

In this section, we conduct a series of experiments to
demonstrate our method and make comparisons with state-
of-the-art methods. Sections A-B present the experiments of
trajectory reproduction, modulation, and superposition. Sec-
tion C presents the experiments of environment classification
and collision avoidance. Sections D-E present some practical
robot applications of our method using a 7-DoF Franka Emika
robot and an Asus Xtion Pro depth sensor. Model predictive
control is leveraged to drive the robot. In addition, we use
some synthetic point clouds from [48]–[50] for the tests. In
all the experiments, the methods are performed on a computer
with a CPU of Intel Core i7-7700HQ 2.80GHz.

Remark 1. In the third test of Experiment I (Fig. 5), the
inputs of demonstrations are the positions of other letters. In
the other experiments, the inputs are time.

Remark 2. All the experiments output the positions and
velocities of the trajectories. Since the performance of T2FMP
on positions is similar to that on velocities, we do not present
velocities to save pages. In Experiment VIII, T2FMP also
outputs orientations.

A. Trajectory reproduction

This section performs Experiments I and II for trajectory
reproduction. In the training data sets of this section, each
demonstration contains N = 200 datapoints, and each re-
produced trajectory contains the same number of datapoints.
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Fig. 4. Experiment I (the second test): T2FMP is used to draw “E” with
different numbers (L) of fuzzy clusters.

TABLE II
PERFORMANCE EVALUATIONS OF T2FMP IN THE SECOND TEST OF

EXPERIMENT I SHOWN IN FIG. 4

L = 2 L = 5 L = 8 L = 12 L = 20 L = 30

Tc 0.110 s 0.321 s 0.454 s 0.791 s 1.082 s 1.948 s
Et 2.54 1.287 1.2666 1.265 1.265 1.264
St 1.22 0.106 0.104 0.104 0.103 0.103

Three criteria are used to evaluate the performances: 1).
the time cost Tc for learning a trajectory; 2). the average
error Et between the output ξ of the learned trajectory and
the output ξtr of the training data set D, where Et =∑H
h=1(

∑N
n=1 ‖ξ(n) − ξtrn,h||/N)/H; and 3). the smoothness

St =
∑N−1
n=1 ||ξ(n + 1) − ξ(n)||2/N . Note that for the first

criterion, the learning time of our method T2FMP is the time
cost of the process in Algorithm 1.

In Experiment I, we conduct three tests to evaluate the

Fig. 5. Experiment I (the third test): T2FMP is used to draw“A” and “G”
using 2D, 4D and 6D inputs.

TABLE III
PERFORMANCE EVALUATIONS OF T2FMP IN THE THIRD TEST OF

EXPERIMENT I SHOWN IN FIG. 5

2D inputs 4D inputs 6D inputs
“A” “G” “A” “G” “A” “G”

Tc 0.320 s 0.428 s 0.375 s 0.496 0.331 s 0.427 s
Et 1.177 1.549 1.198 1.440 1.124 1.402
St 0.053 0.071 0.049 0.069 0.046 0.061

performance of T2FMP with different configurations. In the
first test shown in Fig. 3, T2FMP is used to draw the
handwritten letter “E” learned from different numbers (H)
of demonstrations. Table I shows the performance evaluations
using the three criteria. This test illustrates that T2FMP can
be built regardless of the number of demonstrations, and
the learning time remains low along with the demonstration
number increasing. When the demonstration number H in-
creases, Et also increases, which is caused by the variation
of the demonstrations. Besides, St shows that the reproduced
trajectory can be smoother when the T2FMP is learned from
multiple demonstrations.

In the second test of Experiment I shown in Fig. 4, T2FMP
is used to draw the letter “E” learned from H = 12 demonstra-
tions, where the number of fuzzy clusters L increases from 2
to 30. Table II shows the performance evaluations of this test.
From this table, Tc gradually increases as L increases. Et and
St decrease as L increases from 2 to 5, and do not have large
changes when L ≥ 5. This fact indicates that T2FMP does
not have strict rules to choose the number of fuzzy clusters.
According to the results of this test, choosing L to be around 8
can well handle different cases and derive good performances
in terms of Tc, Et, and St.

The fuzzy model in (1) shows that the input can be high-
dimensional. In the third test of Experiment I shown in Fig. 5,
T2FMP learns models from the demonstrations with inputs
of different dimensionality (2D, 4D, and 6D) to draw “A”
and “G”. In the demonstrations, the inputs are chosen to be
different combinations of the trajectories (2D positions) of the
letters “B”, “C” and “D”. To be more specific, the 2D inputs
are the trajectory of “B”; the 4D inputs are the trajectories of
“B” and “C”; and the 6D inputs are the trajectories of “B”,
“C”, and “D”. The performance evaluations of these tests are
presented in Table III. In this table, Tc and Et are basically
not changed, and St gradually decreases when the dimension
of the input increases. The results validate that T2FMP can
well handle high-dimensional inputs.

In Experiment II, we conduct three tests to compare the
trajectory reproductions of different regression-based imitation
learning methods, including T2FMP, the Type-1 version of
T2FMP (Type-1 for abbreviation) where crisp instead of
interval parameters are used, HSMM in [16], GMR in [13]
and KMP in [21]. We utilize H = 10 demonstrations of the
letter “A” and H = 12 demonstrations of the letter “G” as the
training data sets of these methods. The number of components
(Gaussian distributions, fuzzy clusters, etc.) in each of the
methods is chosen to be 8.

The first test of Experiment II is shown in Fig 6, and the
performance evaluations are given in Table IV. Unlike HSMM,
GMR, and KMP, the fuzzy model-based methods, T2FMP
and Type-1, do not involve exponential calculations, and thus
require lower time costs Tc. Besides, T2FMP and Type-1
achieve lower errors Et. Note that Et of T2FMP is further
smaller than that of Type-1 owning to the increased fuzziness.
In addition, T2FMP can achieve the similar smoothness St
as KMP. Regarding the distributions, the shaded area of each
method shown in Fig 6 is derived from the covariances of the
components/clusters and denotes the main range of the corre-
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Fig. 6. Experiment II (the first test): Trajectory reproductions of “A” and “G”. The grey curves in (a)-(f) are the outputs of the demonstrations; (b)-(f) show
the learned outputs of HSMM, GMR, KMP, Type-1, and T2FMP as well as their distributions (shaded areas in green).

Fig. 7. Experiment II (the second test): Trajectory reproduction of “A” and “G” with noises. (a) shows the outputs of the demonstrations; (b)-(f) show the
learned outputs of HSMM, GMR, KMP, Type-1, and T2FMP as well as their distributions (shaded areas in green).

TABLE IV
PERFORMANCE EVALUATIONS OF DIFFERENT METHODS IN THE FIRST

TEST OF EXPERIMENT II SHOWN IN FIG. 6

“A” “G”
Tc Et St Tc Et St

HSMM 4.642 s 2.591 0.088 5.037 s 2.271 0.095
GMR 1.314 s 1.282 0.081 1.753 s 1.541 0.085
KMP 2.350 s 1.335 0.060 2.739 s 1.619 0.074

Type-1 0.369 s 1.121 0.072 0.411 s 1.442 0.080
T2FMP 0.370 s 1.002 0.063 0.423 s 1.386 0.074

sponding model. To characterize the demonstrations, HSMM,
GMR, and KMP utilize probability distributions while Type-1
and T2FMP use fuzzy clusters. From Fig 6, the shaded areas
of T2FMP and Type-1 basically cover all the demonstrations
while those of the probabilistic methods do not. Thus, fuzzy
models can better describe the demonstrations.

The second test of Experiment II compares the robustness
of the methods. We add noises to the demonstrations as
shown in Fig 7(a), and then apply the methods to learn
models from the noisy demonstrations to draw “A” and “G”.

TABLE V
PERFORMANCE EVALUATIONS OF DIFFERENT METHODS IN THE FIRST

TEST OF EXPERIMENT II SHOWN IN FIG. 7

“A” “G”
Tc Et St Tc Et St

HSMM 5.155 s 3.293 0.181 6.335 s 4.616 0.684
GMR 2.003 s 1.437 0.095 2.127 s 1.954 0.093
KMP 2.774 s 1.826 0.042 3.215 s 2.256 0.037

Type-1 0.343 s 1.176 0.087 0.420 s 1.540 0.090
T2FMP 0.347 s 1.131 0.067 0.408 s 1.424 0.078

The results are shown in Fig. 7(b)-(f) and Table V. The
covariances of the trajectories generated by HSMM and GMR
are severely affected and fail to describe the demonstrations.
Thus, Et and St of HSMM and GMR are degraded. For KMP,
smooth trajectories are generated, but the accuracy indicated
by Et is largely reduced. By contrast, the performances of the
fuzzy model-based methods are not much affected. Especially,
T2FMP provides more robust results than Type-1 does.

The third test of Experiment II uses the methods to re-
produce trajectories of “A” and “G” with different numbers
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TABLE VI
TIME COSTS Tc TO REPRODUCE TRAJECTORIES WITH DIFFERENT

NUMBERS OF DATAPOINTS IN THE THIRD TEST OF EXPERIMENT II

data number (“A”) HSMM GMR KMP T2FMP
200 4.753 s 1.309 s 1.760 s 0.328 s
400 12.167 s 1.325 s 3.691 s 0.444 s

1000 70.711 s 1.349 s 27.171 s 0.364 s
2000 304.019 s 1.530 s 174.871 s 0.362 s

data number (“G”) HSMM GMR KMP T2FMP
200 5.256 s 2.170 s 2.507 s 0.409 s
400 19.912 s 2.151 s 4.698 s 0.475 s

1000 81.438 s 2.315 s 28.015 s 0.508 s
2000 360.025 s 2.291 s 203.701 s 0.544 s

Fig. 8. Experiment III (the first test): Trajectory modulations of T2FMP and
KMP. The via-points are marked by “o”; the dotted and solid curves are oξ
and mξ, respectively.

of datapoints. The time costs Tc of the methods are shown
in Table VI. Tc of GMR slightly increases with the number
of datapoints rising, while Tc of HSMM and Tc of KMP
are exponentially enlarged due to the calculations of high-
dimensional matrices. By contrast, the time costs of T2FMP
are low and stable with different numbers of datapoints.

From the tests of Experiment I and II, we can conclude the
following: 1). T2FMP can reproduce trajectories regardless of
the number of demonstrations. 2). T2FMP is not sensitive to
the selection of the number of fuzzy clusters L. Generally,
setting L around 8 gives satisfactory performances. 3). T2FMP
can be used when the demonstrations with high-dimensional
inputs. 4). T2FMP requires much lower computational costs
when compared with the probabilistic methods HSMM, GMR,
and KMP. 5). T2FMP can reproduce trajectories with lower
divergence to demonstrations than HSMM, GMR, and KMP
do. 6). In terms of smoothness, T2FMP gives comparable

TABLE VII
PERFORMANCE EVALUATIONS OF KMP AND T2FMP IN THE FIRST TEST

OF EXPERIMENT III

“B” KMP T2FMP “F” KMP T2FMP
Tm 0.794 s 1.3e-03 s Tm 0.698 s 1.1e-03 s
Em 3.600 1.969 Em 2.023 0.596
St 0.143 0.151 St 0.075 0.112

“Q” KMP T2FMP “P” KMP T2FMP
Tm 0.793 s 1.2e-03 s Tm 0.680 s 1.2e-03 s
Em 2.814 1.035 Em 2.348 0.741
St 0.009 0.010 St 0.085 0.099
“R” KMP T2FMP “T” KMP T2FMP
Tm 0.684 s 1e-03 s Tm 0.785 s 1.1e-03 s
Em 2.242 0.553 Em 10.178 1.946
St 0.100 0.119 St 0.170 0.168

Fig. 9. Experiment III (the second test): Trajectory modulation of T2FMP
and KMP using different numbers of clusters/components. The via-points are
marked by “o”; the dotted and solid curves are oξ and mξ, respectively.

performances to KMP and outperforms HSMM and GMR.
7). T2FMP is robust against noise.

B. Trajectory modulation and superposition

This section performs Experiments III and IV for trajec-
tory modulation and superposition, respectively, where each
trajectory contains 200 datapoints.

Experiment III contains two tests. In the first test, we
have six data sets of different handwritten letters, “B”, “F”,

Fig. 10. Experiment IV: Trajectory superposition of T2FMP. The keypoints
are marked by “o”; the dotted curves (in the first row) are the candidate
trajectories and the solid curves (in the second row) are the derived trajectories
that pass through all the keypoints.
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Fig. 11. Experiment V (the first test): Classifications of collision and free areas
for clean point clouds. The point clouds (yellow) represent the occupied space
in the environment; the black curves are the boundaries learned by different
approaches; the Gaussian means are marked by “×”, and the fuzzy cluster
centers are marked by “∗”.

“Q”, “P”, “R”, and “T”, where each data set contains 12
trajectories. Based on these data, we apply KMP and T2FMP
to reproduce the trajectories, where 10 components/clusters are
used in each method, and then to modulate the trajectories.
The outputs of the originally reproduced trajectory and the
modulated trajectory are denoted as oξ and mξ, respectively.
In the trajectory modulation, it is required that the positions
of the modulated trajectory must pass three via-points at the
desired via-times. Three criteria are leveraged in this test: 1).
the time cost Tm of trajectory modulation; 2). the error Em
between oξ and mξ: Em =

∑K
k=1 ‖oξ(k) − mξ(k)‖/K; and

3). the smoothness St. Note that Tm of our method is the time
cost of the trajectory modulation in Algorithm 2. The results
of this test are shown in Fig. 8 and Table VII.

From Fig. 8, both KMP and T2FMP can modulate the
trajectories to pass through the via-points at the desired via-
times. In most of the cases, the St of KMP is slightly lower
than T2FMP. However, to pursue smoothness, the trajectories
modulated by KMP always take up excessive space, like the
last row of Fig. 8 for drawing “T”. In our view, for trajectory
modulation of imitation learning, the most important thing
is not just the smoothness but that the modulated trajectory
can smoothly pass through the via-points and simultaneously
keep close to the demonstrations, meaning that the learned
trajectory “imitates” the demonstrations. Thus, we deem that
T2FMP outperforms KMP in trajectory modulation since Em
of T2FMP is lower than that of KMP. Regarding time costs,
Tm of T2FMP is in milliseconds, which is also much lower
than that of KMP.

In the second test of Experiment III, we use different num-
bers of clusters/components to test the trajectory modulation
functions of T2FMP and KMP. As shown in Fig. 9, the
trajectory mξ modulated by KMP barely changes when the
number of the components increases, and the error between
mξ and oξ is relatively large. By contrast, for T2FMP, mξ
becomes closer to oξ when more fuzzy clusters(rules) are

Fig. 12. Experiment V (the second test): Classifications of collision and free
areas for noisy point clouds. The point clouds (yellow) represent the occupied
space in the environment; the black curves are the boundaries learned by
different approaches; the Gaussian means are marked by “×”, and the fuzzy
cluster centers are marked by “∗”.

TABLE VIII
RESULTS OF EXPERIMENT V SHOWN IN FIGS. 11 AND 12

NP Tl (ours) Tl (GMM) Tl (SVR)
Bunny 10777 0.834 s 3.570 s 2.746 s
Angel 12624 0.701 s 4.128 s 2.901 s

Parasaurolophus 12073 0.918 s 6.979 s 2.794 s
Chicken 10308 0.855 s 5.726 s 2.358 s

used. The results of the two test of Experiment III shows
that T2FMP works better than KMP for trajectory modulation
in terms of computational costs and the trajectory errors. In
addition, unlike KMP, T2FMP allows the user to tune the
modulated trajectory by setting different L.

Experiment IV presents three cases of trajectory superposi-
tion using T2FMP, as shown in Fig. 10. Each case has three
candidate trajectories and each candidate has one keypoint.
T2FMP is used to derive the superposition of the three
reference trajectories and to generate a new trajectory to pass
through all the keypoints. Unlike KMP that needs to manually
set the priority of each datapoint, the advantage of T2FMP
is that it can automatically determine the priorities according
to the fuzzy memberships in (24), and thus achieves higher
efficiency. The time cost of trajectory superposition using
T2FMP is around 1 ms.

C. Environment classification and collision avoidance

This section performs Experiment V and VI for environment
classification and collision avoidance, respectively.

In Experiment V, we conduct two tests for the proposed
fuzzy cluster-based environment classification approach in
(26)-(29), and compare it with two existing approaches, GMM
in [36] and SVR in [35], where Gaussian kernels are used
in the GMM and SVR to handle non-linearity. For GMM,
the positions, whose minimum Mahalanobis distances to the
GMM means are around 3, are defined as the boundary. For
SVR, the positions, whose mapped distance is around 0.08
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Fig. 13. Experiment VI: Trajectories by FMPEC for collision avoidance. The point clouds (cyan) represent the environment, where (a) and (b) are 2D point
clouds; (c) and (d) are 3D reconstructed models; (e) and (f) are real scans derived by us using a depth sensor. The black curves in the first row are the
positions of the original trajectories; the yellow curves in the second row are derived by FMPEC without Step D and the trajectories’ shapes are not kept; the
red curves in the third row are derived by FMPEC using Step D to keep the shape.

m, are defined as the boundary. In the first and the second
tests of Experiment V, we apply the three approaches to clean
and noisy 2D point clouds, respectively, for environmental
classification. In the tests, GMM and our approach use the
same numbers of clusters: 20. In our approach, the gain λ is
set to be 2, which can provide a boundary close to the point
cloud. Fig. 11 shows the results of clean point clouds while
Fig. 12 shows the result of noisy point clouds. Table VIII
presents the point number NP of each point cloud and the
learning time Tl of each approach in the two tests.

From Fig. 11, the proposed approach better handles the non-
convexity and outperforms GMM and SVR for classifying the
collision and free areas of the clean point clouds. From Fig. 12,
for GMM, the noisy outliers change the positions of its means
such that it cannot well describe the shapes of the point cloud.
For SVR, since it is used to map the uniformly distributed
positions to the nearest elements of the point clouds, the noisy
outliers will significantly degrade its performance. By contrast,
for our approach, the fuzzy cluster centers remain in the point
clouds. The reason is that in most cases, the density of the
noisy outliers is lower than that of the real points, fuzzy cluster
centers will be placed at the “dense” area such that they are
close to as many as possible points to minimize the objective
function of fuzzy clustering as in (4). In addition, Table VIII
demonstrates that our approach needs the lowest time costs
among the three approaches. The results of Experiment V
indicate that the proposed fuzzy cluster-based approach is cost-
effective and robust to noise.

In Experiment VI, we test FMPEC (Algorithm 3) in which
the environment classification approach is used to classify
different environments. FMPEC allows the positions of the
learned trajectory to avoid obstacles in the environment that
is unstructured, non-convex, and with noisy outliers. To our
best knowledge, this collision avoidance issue has yet to be
addressed in previous imitation learning methods. Fig. 13
shows the results using different point clouds. Each trajectory

TABLE IX
PERFORMANCE EVALUATIONS OF EXPERIMENT VII

T2FMP KMP
K 200 20000 200 800
Tm 0.0013 s 0.0019 s 0.828 s 16.979 s
Em 1.97e-02 9.8e-03 2.52e-02 2.20e-02
St 2.05e-04 1.51e-04 2.85e-04 3.74e-04

contains 300 datapoints. All the trajectories learned by FMPEC
avoid the obstacles with the minimized amount of excess
space. When FMPEC is with Step D, the shape of the original
trajectory is kept. When FMPEC is without Step D, the
regulated trajectory is closer to the positions of the original
trajectory. These two kinds of trajectories can be utilized in
different robot applications in the next sections. For time costs,
each trajectory in this experiment can be learned within 1 s
as shown in Fig. 13.

D. Force-based real-time trajectory adaptation

During human-robot collaboration, it is desired to combine
trajectory modulation of the imitation learning method with
human supervision to adapt the robot’s motion to practical
situations in real time. To achieve the above, we conduct
Experiment VII, whose process is illustrated by Fig. 14. In
Fig. 14A, the robot moves along the original trajectory derived
from imitation learning, and an obstacle (black box) appears
to block this trajectory. In Fig. 14B, at the time t, the robot
moves to the position pt of the original trajectory and is about
to collide with the obstacle. At the same time, the operator
gently pushes the robot with the contact force F h, where F h
is estimated by using the force observation method of [51].
By using the contact force F h, the desired via-point pd is
derived as pd = pt + KfF h, where Kf is a constant gain.
Then, the trajectory modulation is automatically launched to
create a new trajectory, whose position passes through the via-
point pd at the time t + ∆t, where ∆t is the sampling time.
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Fig. 14. Experiment VII: Force-based real-time trajectory adaptation. An obstacle blocks the original trajectory at first. When the robot is approaching the
obstacle, the operator pushes the robot, and the trajectory adaptation is launched such that the robot avoids the obstacle.

Fig. 15. Experiment VII: Comparison between T2FMP and KMP. The blue curves are the positions of the original trajectory generated by T2FMP or KMP;
the red curves are the adaptive trajectories to avoid the obstacle after trajectory modulation; the via-points are marked by “o”; the black dotted curves are the
robot’s positions.

Afterward, the robot moves to the via-point as shown in Fig.
14C. In Fig. 14D-F, the robot avoids the obstacle and moves
along the new trajectory to complete its movement.

The experiment in Fig. 14 is performed by T2FMP and
KMP, respectively, and each method has two trials. Fig. 15
shows the experiment results and Table IX gives the datapoint
number K of each trajectory, the time cost Tm for trajectory
modulation, the error Em between the original trajectory and
the adaptive trajectory, and the smoothness St. For the first
trials of T2FMP and KMP, the generated trajectory of each
method has 200 datapoints. When the operator pushes the
robot, the robot stops for about 0.8 s to wait for the trajectory
modulation using KMP. In comparison, T2FMP just takes
about 1 ms to modulate the trajectory, and the robot smoothly
changes its motion without stopping. For the second trial, the
generated trajectory of T2FMP has 20000 datapoints while
that of KMP has 800 datapoints. Due to the calculation of

the inverse of the kernel matrix, the robot stops for around 17
s to wait for the trajectory modulation of KMP. By contrast,
T2FMP takes about 2 ms to derive the adaptive trajectory with
20000 datapoints and the robot motion is still smooth. Thus,
T2FMP can achieve real-time trajectory adaptation while KMP
cannot. Note that KMP will be unusable when the datapoint
of the trajectory is 20000 because of its low efficiency. Also,
according to Em and St in Table IX, the adaptive trajectory of
T2FMP has better performance in terms of the error and the
smoothness compared to that of KMP. This experiment shows
that our method can achieve real-time trajectory adaptation
with a large number of datapoints.

E. Depth sensor based trajectory regulation

In some cases, the operator cannot provide supervision.
Thus, the robot is desired to automatically regulate its motion
when applying the trajectory generated by imitation learning
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Fig. 16. Experiment VIII: The robot avoids obstacles to perform the grasping task. A. The robot moves along the original trajectory. B. the robot moves
along the autonomously regulated trajectory.

Fig. 17. Experiment VIII (our method): Robot position and orientation regulation and adaptation. The point cloud in blue represents the environment; the
black line denotes the original positions; the green curve is the collision boundary in a chosen cross section; the pink line is the positions regulated by FMPEC
for collision avoidance; the red curve is the final trajectory passing pA and pB ; the orientations in (d) are the training data set; the curves in (e) are the
learned orientations; the lines in (f) are the orientations passing through oA and oB ; The via-points pA, pB , oA and oB are marked by “o”.

Fig. 18. Experiment VIII (method in [24]): Robot orientation regulation and adaptation. The trajectories in the first figure are the training data set; the curves
in the second figure denote the learned orientations; the curves in the third figure denote the final orientations passing through ooA and oB ; The via-points
oA and oB are marked by “o”.

Fig. 19. Experiment IX: Drawing a letter “P”. The pink point clouds represent the environment; the green curve denotes the collision boundary in a chosen
cross section; the blue “P” is positions of the original trajectory by T2FMP; the red “P” is the trajectory regulated by FMPEC for collision avoidance.
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TABLE X
PERFORMANCE EVALUATIONS OF ORIENTATIONS OF EXPERIMENT VIII

Tc Et St

T2FMP 0.154 s 0.040 2.5e-03
Method in [24] 1.271 s 0.053 2.5e-03

to different tasks. This section performs Experiments VIII and
IX, where the robot automatically regulates its motions based
on the environmental information collected by a depth sensor.

In Experiment VIII, the robot is taught to move straight
from the position pA = [0.5, 0.3, 0.45]T to the position pB =
[0.5,−0.4, 0.4] as shown in Fig. 16A and its orientation is
required to change from the orientation oA = [1, 0, 0, 0]T to
oB = [0.7172, 0, 0.7172, 0]T in quaternion for later grasping
task. The trajectory contains 476 datapoints.

After the original trajectory is learned, the unstructured
environment is changed and an obstacle is blocking the
positions as shown in Fig. 17(a). In this situation, the fuzzy-
based environment classification approach (24)-(27) is used
to classify the collision area and free area, where 50 fuzzy
clusters are chosen and the time cost is 1.175 s. Then, FMPEC
without Step D is leveraged to regulate the positions to avoid
the obstacle as shown in Fig. 17(b), and its time cost is 0.541
s. Since the robot’s motion is required to start from pA and
end at pB , trajectory modulation in Algorithm 2 is used to
build the final trajectory as shown in Fig. 17(c), and its time
cost is around 1 ms.

Regarding the orientations, from the data set containing
four trajectories in Fig. 17(d), T2FMP reproduces a trajectory
as in Fig. 17(e), and then derive the final trajectory to pass
through oA at the starting time and oB at the final time as in
Fig. 17(f). To avoid the quaternion constraint, the quaternion-
Euclidean transformation strategy by [24] is integrated into
T2FMP, which is not discussed in this paper. For comparison,
we use the imitation learning method in [24] to calculate the
trajectory from the same training data set as shown in Fig.
18. T2FMP and the method in [24] use the same number of
components/clusters: 5. Three criteria are used to evaluate the
two methods: time cost Tc for learning, the error Et between
the learned orientations and the training data set, and the
smoothness St. From Table X, the two methods achieve similar
smoothness and accuracy according to St and Et. Regarding
Tc, our method is much faster than the method in [24]. Note
that if the number of the datapoints becomes larger, Tc of the
method in [24] will exponentially increase while Tc of our
method will not be greatly affected.

Moving along the new trajectories containing positions and
orientations, the robot can smoothly avoid the obstacles and
meanwhile reach the desired pose to perform the grasping task
as shown in Fig. 16B.

Experiment IX is the final experiment where the robot
grasping a pen moves to draw the letter “P” on the table.
T2FMP reproduces the original trajectory for the robot. When
this trajectory is used in an unstructured environment, it is
blocked by the obstacles as shown in Fig. 19A. Therefore, the
proposed environment classification approach is applied to this
scene, and its time cost is 1.521 s. We use FMPEC including

Step D to regulate the trajectory and make all the positions
outside the collision boundary while keeping the shape, and
the time cost is 0.424 s. Then, the robot moves along the new
trajectory to draw the letter “P” without colliding with the
obstacles. Next, these obstacles are moved closer to the robot,
and the robot is required to draw the letter “P” again as shown
in Fig. 19B. The depth sensor re-scan the scene and the fuzzy
cluster-based environment classification is performed again,
where the time cost is 1.438 s. Then, FMPEC using Step D
continues to regulate the trajectory and derives a new “P” to
avoid the collision, and the time cost is 0.680 s. Finally, the
robot moves along the trajectory to draw a smaller “P”.

The above practical experiments demonstrate that based
on the point cloud of the environment, the proposed method
allows the robot to autonomously regulate its positions and
orientations and adapt to the unstructured environments for
various applications.

V. CONCLUSIONS AND FUTURE WORK

In this article, we develop T2FMP to formulate the robot
movement primitives for imitation learning. T2FMP describes
the nonlinear properties of human demonstrations using a
group of Type-2 fuzzy models, each of which is composed
of a set of linear polynomials. Unlike some previous methods,
T2FMP neither suffers from cumbersome open parameter set-
tings nor requires complex exponential kernel calculations. In
addition, T2FMP achieves high performance on trajectory re-
production in terms of computational efficiency, accuracy, and
robustness. Based on T2FMP, we develop the extensions for
trajectory modulation and superposition, which can efficiently
regulate trajectories with a large number of datapoints in real
time to adapt to dynamic situations and blend different tra-
jectories smoothly. Going beyond existing imitation learning
methods, T2FMP is further extended to allow the trajectories
to avoid collisions in an environment that is unstructured,
non-convex, and detected with noisy outliers. Eventually, we
perform a series of experiments to test the proposed method
and make comparisons with state-of-the-art studies. The results
demonstrate the effectiveness of our method. Since this article
mainly focuses on trajectory reproduction and regulation from
demonstrations, the study on robot’s contact motion (e.g., [52])
is not involved. In the future, T2FMP will be further explored
to enhance the robot’s compliance under contact motion in
complex environments.
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[23] J. Silvério, Y. Huang, F. J. Abu-Dakka, L. Rozo, and D. G.
Caldwell, “Uncertainty-aware imitation learning using kernel-
ized movement primitives,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE,
2019, pp. 90–97.

[24] Y. Huang, F. J. Abu-Dakka, J. Silvério, and D. G. Cald-
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