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Context-Aware Grasp Generation in Cluttered Scenes

Dinh-Cuong Hoang1,2, Johannes A. Stork2, and Todor Stoyanov2

Abstract— Conventional methods to autonomous grasping
rely on a pre-computed database with known objects to syn-
thesize grasps, which is not possible for novel objects. On the
other hand, recently proposed deep learning-based approaches
have demonstrated the ability to generalize grasp for unknown
objects. However, grasp generation still remains a challenging
problem, especially in cluttered environments under partial
occlusion. In this work, we propose an end-to-end deep learning
approach for generating 6-DOF collision-free grasps given a 3D
scene point cloud. To build robustness to occlusion, the proposed
model generates candidates by casting votes and accumulating
evidence for feasible grasp configurations. We exploit contextual
information by encoding the dependency of objects in the scene
into features to boost the performance of grasp generation.
The contextual information enables our model to increase the
likelihood that the generated grasps are collision-free. Our
experimental results confirm that the proposed system performs
favorably in terms of predicting object grasps in cluttered
environments in comparison to the current state of the art
methods.

I. INTRODUCTION

Vision-based robotic grasping has been an active area
of research since the early days of computer vision. The
conventional model-based grasp generation approaches apply
a 6D object pose estimation algorithm [1], [2] to register
a CAD model of the object to be grasped to measured
data. A set of grasps is then selected from a database of
pre-computed grasps [3]. However, synthesizing grasps for
unknown objects is not possible, as for the model-based
approaches we assume that the 3D model of objects is
available and a grasp database is pre-defined.

An alternative approach is to generate the grasp configu-
rations directly from sensor data without assuming a known
3D model of the object or pre-computed grasps [4]. Inspired
by the success of convolutional neural networks (CNNs) in
a broad range of computer vision tasks, recent works [4],
[5], [6], [7] rely entirely or partially on deep learning. Some
methods only employ deep CNNs for finding features of a
good grasp from data [4], [5], while others employ end-
to-end learning for grasp generation [6], [7]. The reported
results from both are promising across a wide variety of ob-
jects, sensors, and robot end effectors. However, the current
state of the art CNN-based grasp generation methods utilize
2D or 2.5D input without taking the 3D geometry informa-
tion into consideration. This might lead to failure to perform
a grasp due to the lack of geometric analysis. Therefore, a
few approaches have been proposed to localize grasps from
3D point sets [8], [9], [10], [11]. Although grasp generation
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methods in point clouds have achieved remarkable results,
many problems remain unsolved. Due to measurement noise,
occlusions, and undesirable contacts with the environment,
generating feasible and reliable grasps in cluttered scenes
is difficult. Many existing methods require time-consuming
multi-stage processing for sampling grasp candidates and
evaluating the grasp quality. While several works proposed
end-to-end models for 6-DOF grasp generation and achieved
state-of-the-art results in benchmarks, most of these methods
rely only on features extracted by a backbone network such
as PointNet++ [12] to predict grasps without considering
the relationship between objects in the scenes. Grasping in
clutter requires both reasoning about object parts and po-
tential collisions with the gripper. Therefore, the contextual
information, encapsulating the geometry of the rest of the
scene, is important and should be taken into consideration to
boost the performance of collision-free grasp generation in
cluttered environments.

In this paper, we propose an end-to-end deep learning
approach for generating grasp configurations for a two-finger
parallel jaw gripper, based on 3D point cloud observations
of the scene. The core of our approach is to encode the
positional relationship between objects in the scene into
features by a context learning module. The contextual infor-
mation enables our model to increase the likelihood that the
generated grasps are collision-free. To make the developed
system robust to occlusion, we built our approach on top of a
deep Hough voting architecture [13]. The voting mechanism
allows our method to perform reliable grasp generation under
clutter and occlusion.

The main contributions of our work can be summarized as
follows: (1) A new framework for 6-DOF grasp generation
named VoteGrasp, that robustly generates grasp configura-
tions in cluttered environments under severe occlusion using
a voting mechanism. (2) A context learning module encoding
the dependency of objects in the scene into features to
boost the performance of collision-free grasp generation. (3)
Demonstration of the generalization capability of our method
to novel objects.

II. RELATED WORK
A. 3D Point Cloud Based Grasp Generation

Machine learning-based approaches have been introduced
to detect grasps from 3D point clouds [8], [9], [10], [11], with
promising results across a wide variety of objects, sensors,
and robots. ten Pas et al. [8] proposed a grasp pose detection
(GPD) algorithm in point clouds that first generates a large
set of grasp hypotheses by a sampling process and then
classifies them as good or bad grasps. Extending on the idea



of GPD, PointNetGPD [10] replaces the CNN-based grasp
quality evaluation model by a evaluation network using the
architecture of PointNet [14]. Although both methods [8],
[10] densely sample candidates, they are not able to generate
grasps on regions such as rims of mugs or plates where they
can not estimate surface normals correctly. To overcome this
limitation, [9] considers grasp detection as sampling a set
of grasps using a variational autoencoder, then assess and
refines the sampled grasps using a grasp evaluator network.
However, this approach only focuses on local features around
the grasped object. To encode global information, [11], [15]
abandon the conventional learning pipeline and takes the
whole scene point clouds as input to regress the grasp poses.
However, only relying on features extracted by a backbone
network such as PointNet++ [12], these methods lack the
consideration of the relationships between different objects,
which limits their performance in cluttered scenes. As a
result, they have not yet been demonstrated to be reliable
under occlusion, which is common in manipulation domains.
We address this challenge by leveraging a voting mechanism
and contextual information to generate grasp configurations
directly from 3D point clouds.

B. Hough Voting in Computer Vision

The Hough Transform has been widely used in computer
vision for tasks like object detection [16], [17], motion detec-
tion [18], medical imaging [19], and robot navigation [20].
It was originally introduced to detect analytically defined
shapes such as line, circle or ellipse [21], [22], [23] in 2D
images. Today, Hough Transform or Hough voting usually
refers to any detection process where evidence coming from
local elements is accumulated to form a confident detection.
Voting-based approaches [17], [13] demonstrated the ability
to perform reliable detection under clutter and occlusion.
This is due to the additive attribute of the Hough transform
makes the method robust to partial occlusions. Tombari
and Di Stefano [17] proposed a Hough Voting approach
for object recognition in 3D scenes. Each corresponding
feature can cast a vote to accumulate evidence for possible
object centers. This permits simultaneous voting of all feature
correspondences in the 3D Hough space. [24] presented a 3D
object detection and pose estimation method by combining
neural networks and a local voting-based approach. Recently,
VoteNet [13] was introduced to detect objects via point
feature grouping, sampling, and voting. VoteNet directly
votes for virtual center points of objects from point clouds
and generates a group of high-quality 3D object proposals
by aggregating vote features. The experimental results show
that the developed methods above perform well in 3D scenes
with a significant degree of occlusion and clutter. Motivated
by the success of Hough voting-based approaches in the
object detection task, especially by VoteNet, we employ the
deep Hough voting architecture in [13] to make our grasp
generation system robust to occlusion.

C. Context and Attention in 3D point clouds

Much prior work has widely explored the use of the
contextual information to improve the performance of 3D
point matching [25], point cloud semantic segmentation
[26], instance segmentation of 3D point clouds [27], and
3D scene layout prediction [28]. Motivated by the success
in natural language processing, recent works have focused
on leveraging the self-attention mechanism with contextual
dependency to achieve more accurate results in various per-
ception tasks. [29] connects the self-attention idea with shape
context to propose ShapeContextNet that can be applied
to the general point cloud classification and segmentation
problems. In [30], the authors proposed a point contextual
attention network for point cloud based retrieval. It takes
the local point features and produces an attention map that
enables the network to find more important features and
produce a more discriminative global descriptor. Paigwar
et al. [31] use a visual attention mechanism with point
clouds to achieve accurate detection of objects. The core
idea behind attention mechanisms is to pay more attention
to the related parts of input. Grasping in clutter requires both
reasoning about object parts and potential collisions with
the gripper. Therefore, we stipulate that self-attention based
context learning is well suited to our problem of interest.

III. VOTEGRASP APPROACH

We introduce our end-to-end grasp generation network
given scene point cloud inputs, which is illustrated in Fig. 1.
In this work, we address the problem of generating grasps
for any desired object in a cluttered scene from partial point
cloud observations. The input to our approach is a point
cloud of size N × 3. The network aims to predict a ranked
list of grasps, where each grasp G = (p,R,w, q) specified
by a center p = (x,y, z) ∈ R3, the gripper orientation
R ∈ SO(3), a width of the gripper w ∈ R, and a grasp
quality measure q ∈ [0, 1]. Due to the non-linearity of the
rotation space as explained by [32], directly regressing the
3D orientation is difficult. Therefore, we reformulated the
gripper orientation estimation as in [33]. We decouple orien-
tation prediction into first recovering a viewpoint anchor (a
discrete viewpoint classification task) and then estimating an
in-plane rotation as a mixture of classification and regression
formulations. In the rest of this section, we will examine each
of the main components of our proposed architecture.

Backbone Network: In order to extract geometric fea-
tures, we utilize the PointNet++ architecture with multi-scale
grouping as our backbone network. Thereby, we are able to
capture fine geometric structures from the neighborhood of
each point. The backbone network selects M interest points
(called seed points) and enriches them with high-dimensional
features {si}Mi=1 where si = [xi; fi] with xi ∈ R3 being the
seed location in 3D space and fi ∈ RF being a feature vector.

Vote and Cluster: The seed points {si}Mi=1 are then
fed into a multi-layer perceptron (MLP) to compute votes
{{vij = [yij ; gij ] ∈ R3+F }Mi=1}Jj=1, J votes per seed. The



Fig. 1: The architecture of the proposed VoteGrasp for 6-DOF grasp generation in point cloud data. Our model builds on
a deep Hough voting neural network [13] to vote grasps and is added a self-attention context learning module. Grasps are
color-coded by the predicted quality scores. Green is the highest and red is the lowest.

MLP consists of fully connected layers, ReLU and batch
normalization. Each vote vij is represented by a point yij
in 3D space with its Euclidean coordinates supervised to be
close to a grasp center, and a feature vector gij learned for
the final grasp generation task (F -dimensions). VoteGrasp
computes multiple votes per seed V = {vj} with j = 1, .., J .
This is because we aim to estimate more than one grasp
pose for each object. The next step is to cluster the votes
by uniform sampling and finding neighboring votes within a
certain Euclidean distance. Given input votes {vi = [yi; gi] ∈
R3+F }M×Ji=1 , we use iterative farthest point sampling (FPS)
based on {yi} to choose a subset of K votes {vik}Kk=1. To
find neighboring votes, ball query finds all votes that are
within a radius to the query vote vik . The output are K
groups of vote sets of size K × nk × (3 + F ), where each
group corresponds to a grasp center and nk is the number
of votes in the neighborhood of the vote vik .

(a) (b) (c)

Fig. 2: An example to illustrate the effectiveness of context
learning module on grasp generation: (a) simulated scene;
(b) result without the context module; (c) result with context
module. The red grasps are not collision-free. Here we only
visualize grasps for the target object (banana).

Context Learning: Grasping in cluttered environments
requires both reasoning about invisible object parts and

potential collisions with the manipulator. Therefore, it is
important to encode the relationship of objects in the scene
into features or exploit contextual information outside of
interest regions for detecting collision-free grasps. However,
the VoteNet architecture is designed to detect each object
individually. Indeed each cluster Ck is independently pushed
through the MLP layer to regress its object class and bound-
ing box. Context outside a cluster is crucial and could help
make more informed grasp predictions. Therefore, instead of
processing each cluster independently to predict grasps, our
network computes a new feature map from all clusters to
learn the context that considers the relationships between
all clusters. We find inspiration from self-attention based
models [34], [29], [35], [36] to add a contextual module
into our framework to capture the contextual information
in 3D points. By leveraging a self-attention mechanism,
we can combine features from other clusters to give more
information on the object relationships. More specifically,
we first aggregate features from votes in each cluster. Votes
{vi = [yi; gi] ∈ R3+F }nk

i=1 in cluster k are fed into a
MLP network before being max-pooled to a single feature
vector Ck ∈ RF ′

. At this stage, we have a feature map
C = [C1; C2; ...; CK ] ∈ RK×F ′

from K clusters summarizing
local context. In order to enable features to become aware of
their global neighborhood, we explicitly model higher-order
interactions between features in C, and it can be formulated
as the non-local operation:

Ccontext = f(θ(C)φ(C))g(C) (1)

where θ(·), φ(·), g(·) are learnable transformations on the
input feature map C, and f(·) encodes the relation between
all positions. Following [35], we use the 1 × 1 convolution
for the transformations:



θ(C) = CWθ ∈ RK×F
′

(2)

φ(C) = CWφ ∈ RK×F
′

(3)

g(C) = CWg ∈ RK×F
′

(4)

parameterized by the weight matrices Wθ,Wφ,Wg ∈
RF ′×F ′

respectively. The function f(·, ·) : RK×F ′ ×
RK×F ′ → RK×F ′

computes the affinity between all po-
sitions. f is defined as a dot-product similarity:

f(θ(C), φ(C)) = θ(C)φ(C)> (5)

As discussed in [35], the non-local operation is related to
the self-attention [34] method. The self-attention mechanism
allows the features from different clusters to interact with
each other. The output is a new feature map of the same size
Ccontext = [Cct1 ; Cct2 ; ...; CctK ] ∈ RK×F ′

. The effectiveness of
the context learning module is visualized in Fig. 2. As we
can see, when context is taken into account fewer of the
grasps generated on a target object (banana) are in collision
(shown in red) with neighboring objects.

Grasp Generation: Given a new feature map Ccontext =
[Cct1 ; Cct2 ; ...; CctK ] ∈ RK×F ′

, a multi-layer perceptron network
is applied to output a ranked list of grasps, where each grasp
G = (p,R,w, q) specified by a center p = (x,y, z) ∈ R3,
the gripper orientation R ∈ SO(3), a width of the gripper
w ∈ R, and a grasp quality measure q ∈ [0, 1]. To be specific,
each Cctk is further processed by a multi-layer perceptron
composed of 3 fully connected layers. All fully connected
layers are followed by batch normalization and ReLU except
for the last prediction layer. The prediction layer has 5 +
V +2A channels where the output consists of 3 grasp center
regression values, 1 gripper width regression value, 1 grasp
confidence regression value, V viewpoint scores, A angle
scores (in-plane rotation), and A angle residual regression
values (in-plane rotation). V and A denote the numbers of
sampled viewpoints and in-plane rotations respectively.

Loss function: We supervise the learning of modules
jointly with a multi-tasks loss:

Lvotegrasp = Lvote + Lgrasp (6)

The VoteGrasp loss Lvotegrasp includes a voting loss Lvote
and a grasp estimation loss Lgrasp. To supervise the learning
of votes {vi = [yi; gi] ∈ R3+F }M×Ji=1 , we apply an regression
loss:

Lvote =
1

Mo

∑
i

‖yi − cgi ‖H · 1(xi) (7)

where Mo is the count of the total number of seeds on the
object surface, cgi is the closest ground truth grasp center,
‖ · ‖H is the Huber norm and 1(·) is a binary function
indicating whether a seed point si belongs to an object. We
define the grasp loss function as follows:

Lgrasp = Lcenter + αLrot + βLwidth + γLscore (8)

where α, β and γ are weights that scale the losses to
similar scales. The grasp loss is composed of a grasp
center loss Lcenter (regression), a rotation loss Lrot =
Lviewpoint + Lin−plane, a gripper width loss Lwidth (re-
gression), and a grasp confidence score Lscore (regression).
The loss Lviewpoint is for viewpoint classification. Mean-
while, for the in-plane rotation estimation, we use a mixture
of classification and regression formulations Lin−plane =
0.1Langle−cls + Langle−reg as in [37]. For all regression
loss components of Lgrasp we use the robust L1-smooth loss
[38], while for classification the standard cross entropy loss
is employed.

IV. IMPLEMENTATION DETAILS

Network Architecture. In our implementation, we ran-
domly choose N=50k points from each raw point cloud and
set α=β=γ=1.0 in Eq. 8. We then apply the PointNet++ [12]
based feature learning network, which has 4 set abstraction
layers (SA) and 2 feature propagation layers (FP). The FP2
outputs M = 1024 seeds with F = 256 − dim features
and 3D coordinates that will be transformed to votes. The
voting module generates J = 10 votes per seed with an
MLP layer spec: [256, 256, 259×10]. In the context module,
we form K = 1024 clusters and output a new feature map
Ccontext ∈ K × F ′ where K = 1024, F ′ = 128. In the
last step, 1024 grasps are generated from the new feature
map. The prediction layer has 5 + V + 2A channels where
V = 120, and A = 6.

V. EVALUATION

In this section we aim to determine to what extent our
proposed aproach utilizes the available training data to gen-
erate feasible grasp candidates. We are particularly interested
to evaluate how well the learned model generalizes to novel
object categories and in what way it compares to current state
of the art. Finally, we evaluate the robustness of our approach
to clutter and explore to what extent the use of context
learning can mitigate the negative effects of occlusions.

To answer the above questions, we evaluate our method
and compare with other state of the art methods on the
public dataset GraspNet-1Billion [11]. This is a large-scale
grasp dataset collected from cluttered scenes considering
multi-object-multi-grasp setting. The objects in GraspNet-
1Billion have varying shapes, textures, sizes, materials and
under different occlusion conditions. Hence, it can be used
to evaluate robustness to occlusion and the generalization
ability of our trained model. The proposed network is trained
from scratch in an end-to-end manner. We train the entire
network with the batch size 8 and use Adam for optimization,
with a learning rate of 0.001 over 200 epochs. It takes
around 80 hours for training on one Nvidia GeForce RTX
2080 Ti 10GB GPU. For inference, the forward-pass time of
VoteGrasp for a single scene with size 50k points is 150ms.
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Fig. 3: Examples of input point clouds and predicted grasps from our proposed method; (a-c) input point clouds in GraspNet-
1Billion dataset [11]; (d-f) grasps generated by VoteGrasp. Grasps are color-coded by the confidence score. Red is the highest
and blue is the lowest.

TABLE I: The table shows the results on GraspNet-1Billion test set captured by RealSense/Kinect sensors respectively.
Ours− denotes our proposed network without context learning module.

Seen Unseen (but similar) Novel
AP AP0.8 AP0.4 AP AP0.8 AP0.4 AP AP0.8 AP0.4

GG-CNN [39] 15.5/16.9 21.8/22.5 10.3/11.2 13.3/15.1 18.4/19.8 4.6/6.2 5.5/7.4 5.9/8.8 1.9/1.3
Chu et al. [40] 16.0/17.6 23.7/24.7 10.8/12.7 15.4/17.4 20.2/21.6 7.1/8.9 7.6/8.0 8.7/9.3 2.5/1.8
GPD [8] 22.9/24.4 28.5/30.2 12.8/13.5 21.3/23.2 27.8/28.6 9.6/11.3 8.2/9.6 8.9/10.1 2.7/3.2
PointNetGPD [10] 26.0/27.6 33.0/34.2 15.4/17.8 22.7/24.4 29.2/30.8 10.8/12.8 9.2/10.7 9.9/11.2 2.7/3.2
Fang et al. [11] 27.6/29.9 33.4/36.2 17.0/19.3 26.1/27.8 34.2/33.2 14.2/16.6 10.6/11.5 11.3/12.9 4.0/3.6
Gou et al. [41] 28.0/32.1 33.5/39.5 17.8/20.9 27.2/30.4 36.3/37.9 15.6/18.7 12.3/13.1 12.5/13.8 5.6/6.0
Ours− 29.2/33.8 34.7/41.0 19.1/22.2 28.3/31.7 37.2/39.1 16.8/19.9 13.6/15.0 13.7/15.1 6.8/7.2
Ours 34.1/37.5 38.9/45.6 24.0/27.7 33.0/35.9 40.8/43.3 20.5/24.7 16.9/18.5 17.0/18.5 10.0/10.6

A. Dataset

The GraspNet-1Billion [11] consists of 97,280 RGB-D
images captured from 190 cluttered scenes. The dataset
provides over one billion grasp poses for 88 objects presented
in the scenes. An accurate 3D mesh model of each object is
available as well. Besides, they also provide camera poses,
6D object poses, object masks and bounding boxes for all
frames. The rich annotations allow us to generate ground
truth votes and grasp configurations easily. Following [11]
we split the dataset into 100 scenes for training and 90 scenes
for testing. To evaluate model generalizability, the test sets
are divided into 30 scenes with novel objects, 30 for unseen
but similar objects, and the rest for seen objects.

B. Evaluation Metric

We follow prior work [11] and evaluate our result on
the dataset using Precision@k. This metric measures the
precision of top-k ranked grasps. We first check whether a

predicted grasp (Gp) is true positive or not. It is considered
a true positive only if the grasp satisfies three conditions: (i)
there is an object inside the gripper; (ii) it is collision-free;
(iii) the grasp is antipodal under a given friction coefficient
µ. The third condition is computed based on the prior works
[8], [11]. We let APµ denote the average Precision@k
for k ranges from 1 to 50 given a friction coefficient µ.
Besides APµ, we also report the average of APµ with
µ = {0.2, 0.4, 0.6, 0.8, 1.0}, denoted as AP .

C. Results
Fig. 3 shows qualitative results of our predicted grasp

poses. Table I shows the performance of our approach com-
pared to state of the art methods. We evaluated our trained
model using the implementation of the evaluation metric
shared by the authors of [11] enabling a direct comparison
with the results of related works reported in [11], [41]. From
the results presented in the table, we found that all the
methods overall perform better in scenes with seen objects



Fig. 4: Performance of different approaches under increasing
levels of occlusion on the synthetic test set.

than scenes for novel objects. Notably, the AP score of our
method surpasses the others in all the test sets by a large
margin. Even on the scenes with novel objects, the proposed
model still has an averaged 5.0% improvement over the
best baseline [41]. This implies that our model is able to
generalize and perform well on novel objects. Moreover,
in order to evaluate the robustness of algorithms towards
occlusion, we perform grasp generation under increasing
levels of occlusion. To estimate the levels of occlusion, we
calculate the visible surface ratio of each object instance.
Fig. 4 illustrates how methods are influenced by different
levels of occlusion. As shown, VoteGrasp performs well even
when objects are heavily occluded, while the results of the
previous approaches indicate high sensitivity to occlusion.

D. Ablation Study

TABLE II: Effects of number of votes per seed to the
performance of our model. Evaluation metric is AP on
GraspNet-1Billion [11].

Seen Unseen (but similar) Novel
J=1 34.8/38.0 32.6/35.5 13.2/15.6
J=5 34.5/37.8 32.8/35.6 14.5/16.9
J=10 34.1/37.5 33.0/35.9 16.9/18.5
J=15 32.4/35.1 31.3/33.7 14.0/16.6
J=20 29.1/32.2 28.0/31.1 12.2/14.0

We modified VoteNet architecture to directly synthesize
grasps from the vote aggregated features and used it as
the baseline method (V oteNet∗ or Ours−). Our results in
Table I show that the modified VoteNet performs favorably
in terms of grasp generation in cluttered environments in
comparison to other state-of-the-art methods. This confirms
that voting mechanism is well suitable for the problem of
interest. Furthermore, we validate the effectiveness of the
self-attention contextual module of our network by compar-
ing it with the model that directly generates grasps without
context learning. According to results in Table I, we see
an improvement of 4.3%, from 31.5% to 35.8% for seen

objects (averaged AP from both cameras). We also observe
marked improvements, from 30.0% to 34.5% with unseen
(but similar) objects and from 14.3% to 17.7% for novel
objects. It confirms that our method greatly benefits from the
use of contextual information. Furthermore, we evaluate the
effects of the number of votes per seed J on the performance
of our model. Our model tends to perform better on seen
objects with a smaller value of J , but does not generalize
well for novel objects. We find that J = 10 votes per seed
achieve the best results in scenes with novel objects, as
shown in Table II.

E. Robotic Grasping Experiment

Fig. 5: Real-world grasping experiment.

The experiments were conducted with a Franka Emika
Panda robot arm with 7-DOF, equipped with a parallel-jaw
gripper as shown in Fig. 5. To capture the input point clouds,
we used either ASUS Xtion PRO LIVE sensor or Microsoft
Kinect sensor v2. The whole system is implemented using
the ROS and MoveIt! frameworks. The objects are randomly
placed within the workspace of the robot arm and the camera.
A grasp was considered a success if the robot could grasp
and lift the object within one attempt. The robot succeeds
on 70% of the grasps using our proposed approach.

VI. CONCLUSIONS

In this work we introduced VoteGrasp — an end-to-end 6-
DOF grasp generation network operating on 3D point clouds.
The main contribution of this paper is to show that by
taking advantage of the deep Hough voting mechanism and
contextual information we are able to improve the perfor-
mance of grasp generation compared to the previous state
of the art methods. Through experiments, we demonstrate
that VoteGrasp is highly robust to clutter and occlusions.
Importantly, the results confirm that our proposed model
is able to generalize and perform well on novel objects.
Interesting future work is to consider adding a reachability
predictor to the grasping network and explore the use of our
approach in task planning applications.
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