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Variable Impedance Skill Learning for
Contact-Rich Manipulation

Quantao Yang , Alexander Dürr , Member, IEEE, Elin Anna Topp , Johannes A. Stork , and Todor Stoyanov

Abstract—Contact-rich manipulation tasks remain a hard prob-
lem in robotics that requires interaction with unstructured envi-
ronments. Reinforcement Learning (RL) is one potential solution
to such problems, as it has been successfully demonstrated on com-
plex continuous control tasks. Nevertheless, current state-of-the-art
methods require policy training in simulation to prevent undesired
behavior and later domain transfer even for simple skills involving
contact. In this paper, we address the problem of learning contact-
rich manipulation policies by extending an existing skill-based RL
framework with a variable impedance action space. Our method
leverages a small set of suboptimal demonstration trajectories
and learns from both position, but also crucially impedance-space
information. We evaluate our method on a number of peg-in-hole
task variants with a Franka Panda arm and demonstrate that
learning variable impedance actions for RL in Cartesian space can
be deployed directly on the real robot, without resorting to learning
in simulation.

Index Terms—Machine learning for robot control, reinforcement
learning, variable impedance control.

I. INTRODUCTION

WHEN it comes to learning how to solve a challenging real
world task with a robot, we typically face a contact-rich

manipulation or assembly problem. Despite their widespread
relevance, tasks requiring controlling a robot in contact with the
environment still pose a challenge to autonomous manipulation.
Reinforcement Learning (RL) has been a promising framework
to automatically learn these tasks, yet contact-rich behaviors are
hard learning problems, because current state-of-the-art methods
require a vast amount of interaction experience and are generally
not safe to learn directly on a physical robot. For instance,
learning a bin-picking task can already require large-scale data
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Fig. 1. Experimental setup for three peg-in-hole tasks of different shapes:
circular, square and triangular. Variable impedance actions enable reinforcement
learning to train directly on a real Franka Panda arm without pre-training in
simulation.

collection with an array of robots to collect the necessary
dataset [1]. Moreover, contact-rich manipulation requires fine
movements to correct deviations that may not be perceivable
with a camera, and therefore solely relying on sensors integrated
into the robot arm as feedback. In previous work, this problem
setting required expert coded control, reinforcement learning in
simulation and transfer to reality [2] or methods that require a
large amount of time, resources and human feedback.

Traditional kinematic control in joint position or joint velocity
space is ill-suited for contact tasks. When a segment of the
robot is blocked due to interaction by an unforeseen obstacle, a
kinematic control scheme would try to correct this disturbance
by generating ever higher motor torques, resulting in potential
damage to the robot and environment. Impedance control is
one alternative that allows interaction with the environment
by modeling the robot as a mass-spring-damper system. As
a downside, if the stiffness of the virtual springs is too low,
the desired trajectory will not be followed accurately, while if
the stiffness is too high the robot can still end up generating
excessive interaction forces.

An RL agent attempting to solve a contact-rich task via a direct
joint position or joint torque interface would need to emulate an
impedance-like behavior. However, this is a rather difficult be-
havior to learn for a RL algorithm because of the sudden change
in dynamics. On the other hand, applying RL with a hand-tuned
fixed stiffness impedance controller can solve the contact-rich
task, but depending on the necessary softness of the contact,
this can influence the behavior during free-space motion and
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alignment. Considering a policy with a task involving multiple
steps, different stiffnesses for each step can be required.

In this paper we present a variable impedance skill learning
framework that performs well on challenging contact-rich tasks
that were previously not considered, failed on real robots [3] or
require simulation to reality transfer. We validate the successful
application of our method to tasks that contain a combination
of free-space motion, manipulation of constrained mechanisms
and contact-rich manipulation. The types of movements, manip-
ulations and contacts appear in basic everyday tasks as well as
typical industrial assembly.

The main contributions of this paper are: (1) we leverage
a framework for learning latent action spaces for RL agents
from demonstrated trajectories and integrate it with a vari-
able impedance Cartesian space controller by incorporating
variable impedance into the action space of this RL frame-
work; (2) we evaluate our method on a number of peg-in-
hole task variants with a Franka Panda arm and demonstrate
improved generalization of the learned policies. By learn-
ing skills in a variable impedance control action space our
method can be deployed directly on the real robot, without
resorting to learning in simulation and a subsequent policy
transfer.

II. RELATED WORK

A. Variable Impedance Control

Conventional robot learning action space is only concerned
with positional information in joint space or Cartesian space.
However, impedance controller has made it possible to apply RL
to contact-rich tasks [4]. Recently, variable impedance control
and learning in complex interaction scenarios has gained much
interest [5]–[7].

Variable impedance control in end-effector space (VICES),
that is, control with a time-dependent stiffness profile, has been
explored as an action space for reinforcement learning [2].
Although it is shown that VICES benefits RL policies trans-
fer across robot models in simulation or simulation-to-reality,
training policies directly on the real robot is still challenging.
In comparison, we validate that our approach is applicable on
the real robot directly. In [8] and [9], Buchli et al. achieved
variable impedance control for practical high degree-of-freedom
robotic tasks with an RL algorithm, PI2 (Policy Improvement
with Path Integrals), which requires no tuning of algorithmic
parameters besides the exploration noise. However, their method
used the joint space impedance that limited policy transferability.
Based on PI2, [10] draws parallels to human behavior, showing
for unpredictable perturbations impedance is increased and for
predictable perturbations a feed-forward policy is learned to
offset disturbances. In contrast to these approaches, we combine
variable impedance actions in Cartesian space with skill prior
RL to improve the generalization ability of the policy.

A recent work [11] proposes to learn both the variable
impedance policy and reward function using an inverse RL
method. However, the policy outputs either the impedance gain
or the feedback force and the action space does not contain posi-
tional information. In our preliminary work [12] we demonstrate

that learning variable impedance actions for RL in Cartesian
space can be safely deployed on the real robot directly, without
resorting to learning in simulation and a subsequent policy trans-
fer. In this letter we extend and validate our prior approach [12].

B. Domain Transfer

A common approach to enabling RL on physical systems is
to first train in a simulated version of the environment where
safety and sample efficiency are not of critical importance.
The learned policies can then be transferred to the real system
via domain adaptation [13] and dynamics randomization [14],
[15]. However, for domain adaptation, an amount of real world
samples are needed to update the simulation system to match
the real one, while dynamics randomization requires a vari-
ety of simulated environments with randomized properties to
train a model that can work across all of the environments.
This reduces the ability to solve tasks requiring high accu-
racy. [16] investigated the effect of domain randomization on
contact-rich, real-robot applications, but it is based on rigid
position controller. In contrast, the combination of variable
impedance actions and training skill priors learned from demon-
stration [3] allows us to learn a solution policy directly on the real
robot.

Instead of focusing on simulation to reality transfer and solv-
ing the hurdles that come with it, we focus on the possible ways
to re-use previous real experience to learn in reality directly.
Offline RL approaches [17], [18] can make use of offline data
sets but require reward annotation for future tasks which can be
challenging. To improve on this issue, we looked at transferring
skills between tasks [19] without reward annotation. The two
main options are the extraction of sub-policies that can be
invoked [20], [21], and learning an embedding for skills in a
continuous space with latent variable models [22], [23]. With
the second option, the learning can be improved by narrowing
down the latent search space by learning behavior priors [24].
We base our work on the idea of skill priors [3] — a framework
for learning a low-dimensional embedding space for generating
action sequences, along with a set of task-relevant prior distribu-
tions within that latent space. Learning prior and representation
facilitates transfer of a learned skill to another task from a
potentially large offline data set to enhance learning efficiency.

Unlike [3] which demonstrates the utility of the learned skill
priors for learning long-horizon tasks in simulation, we con-
centrate on shorter but more complex and higher-dimensional
tasks. Our approach is able to learn directly on the target physical
system and requires a fraction of the interaction samples needed
by the state-of-the-art uninformed model-free approaches.

III. APPROACH

We consider an agent that acts according to a policy πθ(a|s)
which maps states s ∈ S to a probability distribution over the
actions a ∈ A. The agent is trained based on a reward signal
r : S ×A → R and aims to maximize the expected return:

G(θ) = E
τ∼πθ

[
T∑

t=0

γtr(st, at, st+1)

]
, (1)
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where T is the episode horizon, τ is the state-action trajectory
induced by πθ and γt ∈ (0, 1] is the discount rate at time t.

A. Cartesian Impedance Control

To implement contact-rich tasks, we use a Cartesian
impedance controller [25]. In Cartesian impedance control, the
robot end-effector dynamics are modelled as a mass-spring-
damper system:

F a = K(x− xd) +D(ẋ− ẋd) +M(ẍ− ẍd), (2)

where F a is the contact wrench with the environment, x and xd

are the current Cartesian pose and the desired pose of the robot
end-effector. K ∈ R6×6, D ∈ R6×6 and M ∈ R6×6 are the
stiffness, damping and mass matrices of the system respectively.

Impedance control can be applied in Cartesian space to make
the robot end-effector interact with the environment [26]. Stan-
dard impedance control uses constant or variable stiffness to
command the system, but a pre-defined impedance behavior
needs to be realized. We combine variable impedance control
with the RL method by incorporating stiffness terms into the
RL action space as described in Section III-C.

B. Reinforcement Learning With Skill Priors

We adapt the Skill Prior RL (SPiRL) [3] framework to solve
contact-rich tasks (e.g. peg-in-hole) by learning jointly a latent
representation of skills and the prior over this latent space. We
use a modified variational autoencoder (VAE) [27] model to
learn a low-dimensional skill latent space Z from a dataset of
pre-collected contact-rich trajectories. The VAE model consists
of a skill encoder q(z|a) that outputs the latent representation z
of a skill and a decoder p(a|z) that predicts a sequence of actions
a = {at, · · · , at+H−1} that the skill embedding z represents,
where H ∈ N+ is the action horizon. As described in [3], a skill
prior model pa(z|st) is used to generate a prior distribution
over the latent space Z based on the state st. This distribution
serves as guidance for the policy to determine which skills
are worth exploring. Following [28] we maximize the evidence
lower bound (ELBO):

log p(a) ≥ Eq[log p(a|z)− β (log q(z|a)− log p(z))], (3)

whereβ is a hyperparameter used to tune the regularization term.
The skill prior RL framework is illustrated in Fig. 2. A

policy πθ(z|st) over the latent action space is trained to output
embeddings that are decoded into real action sequences by the
pre-trained decoder p(a|z). We use Soft Actor-Critic (SAC) [29]
to maximize the RL return plus the policy’s entropy term:

G(θ) = E
τ∼πθ

[
T∑

t=0

γtr(st, at, st+1) + αH(πθ(at|st))
]
, (4)

where α is the weight for the entropy term. In our case the
policy learns in the embedding variable space, producing a
latent action z ∈ Z . The entropy term is defined as the negative
Kullback-Leibler (KL) divergence between the policy πθ(zt|st)
and learned skill prior pa(zt|st):

H(πθ(zt|st)) ∝ −DKL(πθ(zt|st), pa(zt|st)). (5)

Fig. 2. Skill prior RL framework: once the skill prior and the skill decoder
blocks in the diagram are learned, a skill policy is trained using RL to generate
an embedded action z that can be decoded into a sequence of real robot action
commands.

Generally we follow the skill prior RL (SPiRL) algorithm
described in [3] that maximizes the expected return along with
the policy’s entropy term that penalizes divergence from the
action prior pa(z|st). We add a normalization operation for the
reconstructed action sequence due to the variable stiffness scale.
As we train our skill policies directly on the real robot, we keep
monitoring the contact force between the end-effector and the
environment and reset the system if any constraint is violated.
Such reset events are undesireable as they slow down learning
and are potentially dangerous to the robot. Thus, one of the goals
of our approach is to minimize the number of reset events that
occur during training.

C. Learning Variable Impedance Actions

In many tasks where the robot needs to interact physically with
the environment, impedance control enables the manipulator
to behave safely by balancing the contact stiffness and desired
position of the end-effector. The concept of variable impedance
control was firstly proposed in [30]. Considering the flexibility
and safety of variable impedance, we propose to let the RL agent
predict variable impedance actions for SPiRL (VIA-SPiRL)
when the robot performs contact-rich tasks.

To train skill prior RL on the real robot directly, the system
stiffness term K in (2) is incorporated into the agent action. Ac-
cording to [2], variable stiffness impedance control can enable
the learned RL policy to adapt to the contacting environment
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while following the predicted Cartesian position for the robot
end-effector. Therefore, we extend the policy action as the
combination of end-effector pose ξ ∈ SE(3) in Cartesian space
and variable stiffness matrix K ∈ R6×6. Stiffness matrix K
contains 6-dimensional end-effector stiffness coefficients. One
extra null-space stiffness coefficient for the redundant robot is
set as a constant value. We choose to fix the damping and inertia
as it is easier to make the real robot system more stable with
fixed damping parameters.

The VIA-SPiRL is summarized in Algorithm 1. To train
the latent model, the action sequence is mapped to a posterior
distribution q(z|a) over embedding space by the skill encoder.
Different from the work in [3], we normalize the action se-
quence before the encoder mapping and denormalized back to
the command action sequence after decoding. We apply the
action normalization because the scales of variable stiffness and
position command values in our RL action space are different,
which can lead to the stiffness component dominating the loss
function.

IV. EVALUATION

We evaluate our method on an instance of a contact-rich task
and conducted peg-in-hole insertion experiments to evaluate the
adaptation ability of our method using the Franka Panda arm as
shown in Fig. 1. We also evaluate on several variations of the
task in order to demonstrate generalization. Some are variations
in the shapes of the workpieces, and some are variations on
the pose of the workpiece relative to the manipulator base. We
validated that our VIA-SPiRL method can train the real robot
directly without training in simulation and the learned policy
can be adapted to new contact-rich skills.

In our experiments we use a Cartesian impedance controller
for a Frank Panda arm and Pytorch for RL training. The Robot
Operating System (ROS) is used for communication between the
robot controller and RL agent. Our implementation is available
at https://github.com/yquantao/learning_impedance_actions.

A. State and Action Spaces

To solve contact-rich tasks we incorporate contact force be-
tween the end-effector and the environment into the RL state st.
For a robot with k joints, the observation vector st is composed
of (a) joint positions q ∈ Rk and joint velocities q̇ ∈ Rk, (b)
end-effector position offset e ∈ R3 and rotation θz in the z
direction, and (c) the environment contact force Fext ∈ R3.

While a full Cartesian action space is possible, as for example
in [2], we note that in some cases the task may allow for a reduced
action space. In our evaluations we consider a number of sample
peg-in-hole insertion tasks wherein the end-effector is vertical
to the xy plane. Therefore, we ignore rotation around the x and
y axes of the end-effector frame and the corresponding variable
stiffness components. Our 8-dimensional action space is thus
composed of:
� end-effector translations x ∈ R3 in Cartesian space,
� rotational angle θz ∈ R around the z axis,

� the diagonal coefficients k ∈ R4 that determine the vari-
able stiffness matrix K for the corresponding four Carte-
sian components. We fix the damping coefficients to equal
2
√
k, which we find allows for stable behavior.

We simplify the end-effector rotation matrix by only con-
sidering the rotational angle θz as we found the parameter to be
particularly relevant when adapting the learned policy in some of
our evaluations. In order to improve learning stability for the skill
decoder p(a|z) it is beneficial to have a bounded and balanced
output space for the action a. While the position and orientation
components are at a similar scale, the stiffness coefficients
k could easily dominate the loss function. We alleviate this
problem by normalizing k by rescaling it with the L2 norm of
the standard deviation observed in the demonstration set. During
training of the RL algorithm the decoded actions are then scaled
back to the original space, prior to execution on the robot.

B. Experimental Setup

We implement contact-rich tasks with three different shapes
of pegs and workpieces including circular, square and triangular.
To train the skill prior in advance, we collected 200 trajectories
for each insertion task using a finite state machine (FSM) that
divides each trajectory into three phases: downward reaching,
spiral motion alignment and insertion. During executing these
motions, we record the corresponding Cartesian poses and stiff-
ness. For simplicity, we use fixed stiffness during each motion
phase in one specific trajectory. We then collect data by sampling
values for this parametrized insertion controller and executing
trajectories on the robot. We use a terminal flag value to indicate
the success or failure of each trajectory.

Insertion trajectories were collected for each peg-in-hole task
with the real robot in advance and were used to train the skill
prior and embedding space. The purpose of spiral alignment
is to search for the target hole in a large area. In our case the
Archimedean spiral motion is defined in polar coordinates (rp,
ϕ):

rp = b0 + bϕ, (6)

where b0 describes how far away from the origin the spiral
should start and b represents the distance between each turn
of the spiral. We set b0 = 0 and randomize b when collecting
training trajectories. When we collect the dataset for square and
triangular peg-in-hole tasks, we use a sin function to control the
rotation θz along the z axis during spiral motion.

For training the skill embedding variable, the encoder and
decoder of the VAE model are implemented as a long short-term
memory (LSTM) of 128 hidden units to generate sequential
robot trajectories appropriately. The latent variable z is em-
bedded as the Gaussian posterior distribution and the skill
prior is represented as a 5-layer fully-connected network. Adam
optimizer is used to optimize the neural network model. We
tuned some hyperparameters in our experiments and chose the
regularization weight β in (3) as 5e-5 and the learning rate as
1e-3. We use SPiRL [3] implementation to predict the latent
action with discount factor 0.99 and batch size 128.

https://github.com/yquantao/learning_impedance_actions
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Fig. 3. Reinforcement learning curves for all methods on peg-in-hole tasks, only VIA-SPiRL succeeds in learning the insertion policy. The plots show the average
episode reward and standard deviation over three seeds: (a) results for circular peg insertion task; (b) results for square peg insertion task; (c) results for triangular
peg insertion task.

TABLE I
COMPARISON OF DIFFERENT METHODS

We compare our method against some RL baselines. We find
that none of state-of-the-art RL methods, such as SAC [29],
can be applied directly to contact-rich manipulation tasks on a
real robot without simulation to reality transfer. Extending SAC
by learning variable impedance actions also leads to collision
or emergency stop when applied on the real robot. Therefore,
we choose several baseline methods to compare with: (1) Soft
Actor-Critic (SAC), (2) Behavioral Cloning finetuned with SAC
(BC+SAC), (3) Probabilistic Inference for Learning Control
(PILCO) [31], (4) Skill Prior RL (SPiRL) with fixed impedance,
and (5) Finite State Machine (FSM). We list all methods eval-
uated in this paper in Table I and compare them in terms of
access to demonstration data, use of variable impedance and
online learning.

C. Learning Variable Impedance for Peg-in-Hole Tasks

We collect 200 demonstrated trajectories to train the skill
prior for each peg-in-hole task and subsequently use the learned
skill prior to train SAC on the real Franka Panda arm. Each
insertion experiment is trained for 100 episodes and each episode
consists of 300 actions sent to the variable impedance Cartesian
controller at a rate of 5 Hz. Therefore, a total of 30 K online
transitions are collected on the real robot which results in about
two hours per experimental evaluation. We train 3 times for each
case and plot the learning curves of all methods on peg-in-hole
tasks in Fig. 3.

The training rewards for the experiment of inserting a circular
peg are shown in Fig. 3(a). Only VIA-SPiRL succeeds in learn-
ing the insertion policy. SPiRL with fixed stiffness (500 N/m)

TABLE II
CIRCULAR PEG-IN-HOLE SUCCESS RATE

and BC+SAC accumulate rewards occasionally, while SAC and
PILCO fail to learn the policy. We observe similar learning
results for the square and triangular peg-in-hole tasks shown
in Fig. 3(b) and 3(c) respectively, although it takes more trials
for the policy to converge on the triangular insertion task.

Fig. 4(a) demonstrates a sequence of a successful insertion in
evaluation for a circular peg-in-hole that consists of downward
reaching, spiral alignment and insertion. An example contact
wrench of three axes during a successful insertion is depicted
in Fig. 4(b). When the end-effector touches the workpiece,
the contact wrench for z axis increases to around 12.5N and
fluctuates round this value during the spiral motion until the
robot finds the target hole. The contact force in the z direction
increases again when the end-effector touches the bottom of the
hole and decreases when it moves upwards. In Fig. 4(b) number
labels indicate the wrench of touching the workpiece, inserting
and touching the board.

We evaluate the circular peg-in-hole average success rate of
using different methods. We test 100 insertion trials after training
for each position offset and the results are shown in Table II.
To test SPiRL with fixed impedance, we choose three different
stiffness values from our demonstrated dataset: the maximum
1000N/m, the minimum 100N/m and the average 500N/m.
The baseline SPiRL shows poor performance when the action is
assigned high stiffness or low stiffness. With medium value, the
policy shows better success rates, but still not comparable with
our VIA-SPiRL. Due to the poor performance of SPiRL with
high and low stiffness, we compare our method with SPiRL
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Fig. 4. An example of successful circular peg-in-hole insertion in evaluation: (a) the insertion consists of downward reaching, spiral alignment and insertion
labeled by the numbers 1, 2 and 3 respectively; (b) the wrench for x, y and z axes during inserting, number labels indicate the wrench of touching the workpiece,
inserting and touching the board.

Fig. 5. Evaluation results to test contact force for all methods. The scoring mechanism attributes higher scores to actions not exceeding the contact force threshold
30N . Evaluation scores show for different: (a) target positions in the circular peg insertion tasks; and inital angle offsets in the square (b) and tiangular (c) insertion
tasks.

using the average impedance (500N/m) in other experiments.
As expected, PILCO and SAC do not succeed in learning a
successful insertion policy. We stipulate that the main reason for
that failure is that neither of these methods has access to prior
demonstrations and must therefore explore with random actions,
which naturally have a low probability of success. In addition,
both of these methods would be affected by the inherent over-
parametrization of the variable impedance action space. That is,
multiple choices of a Cartesian pose and Cartesian impedance
map to the same joint torques on the robot, which presents a
challenge when learning the expected consequences of actions.
In contrast, the methods that utilize demonstrations initialize
in the vicinity of locally optimal variable impedance actions,
which make learning more tractable. Nevertheless, the naive
use of demonstrations (behavior cloning followed by SAC) still
does not succeed in solving the task within our training horizons,
testifying to the benefit of skill priors in guiding learning.

The skill prior RL action is extended by adding variable
impedance in end-effector Cartesian space including three trans-
lational stiffness and one rotational stiffness of θz direction. We
plot the variable stiffness for a successful insertion example in
Fig. 6. When the robot touches the workpiece at step 50 in this
trial, the policy reduces the contact stiffness values, especially
for the translational directions. During inserting, the robot ad-
justs the stiffness value according to the observed state. Before

Fig. 6. Variable stiffness and Cartesian position command in a successful
contact-rich insertion task are shown by solid and dotted lines respectively. The
black dotted lines at step 50 and 100 indicate that the end-effector touches the
workpiece and the robot moves the peg out of the hole respectively.

the RL policy was trained on the real robot, we did not do any
RL training in simulation, demonstrating that our skill prior RL
using variable impedance in Cartesian space can be applied to
contact-rich tasks without simulation to reality domain transfer.

Following [29], we tune the entropy weight α in (4) automat-
ically during training. The tuning procedure in circular, square
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TABLE III
PEG-IN-HOLE SUCCESS RATE FOR DIFFERENT POSITION OFFSETS AND INITIAL ANGLES

Fig. 7. Comparison of tuning entropy weight α during training policy for
circular, square and triangular insertion tasks. In all our VIA-SPiRL experiments
α converges to 0 smoothly.

TABLE IV
SUCCESS RATE WHEN ADAPTING POLICIES

and triangular peg-in-hole experiments is shown in Fig. 7. In all
our VIA-SPiRL experiments, the entropy weight α decreases
and converges to 0 smoothly, which means that the entropy
term accounts less for the total RL return in (4) when the policy
succeeds in learning the peg-in-hole skill.

D. Safe Learning in Contact

During evaluation tests we monitor the contact force between
the end-effector and the environment. We also assess the per-
formance of the policy according to the contact force for all
peg-in-hole insertion trials. We give a constant penalty -0.1
for each evaluation trial if the contact force in the z direction
exceeds the threshold value. We choose 30N as the threshold
value because the contact force above it might trigger the robot’s
emergency braking system. We set the starting highest score as
10 since we have 100 evaluation trials. We score the circular
insertion policy for different position offsets and the square
and triangular insertion policy for different initial angles. The
evaluation results are shown in Fig. 5. In all testing scenarios,
our VIA-SPiRL achieves better performance in terms of the
contact force. SPiRL with fixed impedance and BC+SAC show
similar performance, while SAC performs worst due to it easily
triggering the robot braking system.

In all experiments for our method, no emergency stop oc-
curred because the skill prior guides learning variable impedance
actions for the RL agent and the learned policy will adjust
the contact stiffness when the end-effector interacts with the
environment. As comparison, the baseline SPiRL using high
stiffness value easily exceed the contact force threshold and can
not finish insertion tasks. When the stiffness is too low or average
value, SPiRL also shows worse performance compared with
our VIA-SPiRL method. Meanwhile, the end-effector got stuck
and emergency stop was triggered in two triangular peg-in-hole
trials, because the system does not adjust the interaction stiffness
automatically as our method does.

E. Evaluation of Policy Generalization

We evaluate the performance of learned policies by testing
different position offsets and initial rotation angles for target
workpieces. For each evaluation case, we test 100 insertion
trials and the success rates are shown in Table III. Similar to the
results of circular peg-in-hole task, the policies using variable
impedance actions outperform SPiRL with fixed impedance and
FSM in all testing scenarios. We observe that the RL policy
performs better when inserting the peg if the offset is small, but
the success rate decreases sharply to 0.77, 0.68 and 0.60 for 5 cm
offset in circular, square and triangular insertion tasks respec-
tively. Meanwhile, for square and triangular insertion tasks, the
success rates also depend on the initial angles between the target
workpiece and the peg. The results indicate that our VIA-SPiRL
method can generalize well to different target positions and
initial angles.

In the last experiment, we adapt the learned RL policy from
one peg-in-hole task to insert into holes of two other shapes. For
this experiment, we ignore the influence of the position offsets
and rotation angles and train each policy for further 50 episodes.
We test 10 insertion trials for each adapting case after training
and the success rates are shown in Table IV. The RL policies
learned in square and triangular peg insertion experiments can
generalize well in the easier circular peg-in-hole task. As com-
parison, the learned RL policy in the circular peg experiment
shows inferior performance. We infer that it is because the
dynamics of the square and triangular insertion tasks are more
complex, while the rotational angle θz is not utilized by the
optimal policy in the circular insertion task.

V. CONCLUSION

We have presented an approach that incorporates variable
impedance in Cartesian space into the action space of a RL
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framework that learns latent embeddings from demonstrated tra-
jectories. Our approach learns prior knowledge over the specific
skill and a latent space that can be further decoded into real
robot command sequences. We evaluate our method on three
peg-in-hole insertion tasks with a Franka Panda arm and show
that our skill prior RL using variable impedance in Cartesian
space can be deployed on the real robot without simulation to
reality domain transfer and the learned policy can be adapted to
different position offsets and initial angles.

One limitation of our VIA-SPiRL method is that the learned
policy from one specific peg-in-hole task can not be applied to
another shape peg-in-hole insertion task. This might be because
the embedding space has not seen the dynamics of a new
insertion task from the demonstrated dataset. Although the skill
prior in our work has achieved promising results on the real
robot, there is still potential improvement for the reconstruction
of the RL policy action. Therefore, we plan to investigate the
RL policy adaptation in more dynamic conditions in our future
work.
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