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Abstract: Flaviviruses are a threat to public health and can cause major disease outbreaks. Tick-

borne encephalitis (TBE) is caused by a flavivirus, and it is one of the most important causes of viral 

encephalitis in Europe and is on the rise in Sweden. As there is no antiviral treatment available, 

vaccination remains the best protective measure against TBE. Currently available TBE vaccines are 

based on formalin-inactivated virus produced in cell culture. These vaccines must be delivered by 

intramuscular injection, have a burdensome immunization schedule, and may exhibit vaccine 

failure in certain populations. This project aimed to develop an edible TBE vaccine to trigger a 

stronger immune response through oral delivery of viral antigens to mucosal surfaces. We 

demonstrated successful expression and post-translational processing of flavivirus structural 

proteins which then self-assembled to form virus-like particles in Nicotiana benthamiana. We 

performed oral toxicity tests in mice using various plant species as potential bioreactors and 

evaluated the immunogenicity of the resulting edible vaccine candidate. Mice immunized with the 

edible vaccine candidate did not survive challenge with TBE virus. Interestingly, immunization of 

female mice with a commercial TBE vaccine can protect their offspring against TBE virus infection. 

Keywords: VLP; tick-borne encephalitis virus; plant; tobacco; mice; flavivirus; vaccine; toxicity; 

protein expression; immunization 

 

1. Introduction 

Flaviviruses like yellow fever virus (YFV), dengue virus (DENV), tick-borne 

encephalitis virus (TBEV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and 

Zika virus (ZIKV) are a threat to public health and have recently caused several disease 

outbreaks [1,2]. In particular, TBE has been classified as a notifiable disease in Sweden 

since July 2004, and the number of TBE cases has increased over the years [3]. According 

to Sweden’s public health agency, a record high number of TBE cases (n = 533) were 

reported in 2021 [4]. As there is no antiviral treatment available, vaccination remains the 

best protective measure against TBE. However, current TBE vaccines have limitations as 

they must be delivered by intramuscular injection, have a burdensome immunization 

schedule, and may fail due to poor immunogenicity in certain populations [5]. 
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One promising strategy that could help improve flavivirus vaccines in general, and 

TBE vaccines in particular, is molecular farming, which is the production of 

pharmaceutically important recombinant proteins in plants. Molecular farming has 

several advantages over other eukaryotic protein production systems, including 

simplicity, speed, scalability, safety, and sustainability [6–8]. Compared to molecular 

farming, classical protein production in prokaryotic or other eukaryotic cells is expensive, 

laborious, and risks contamination with endotoxins or pathogens; furthermore, there are 

several constraints on the scaling-up process. Molecular farming has successfully been 

used for large-scale production in a short time and has been approved for production of 

several pharmaceutical proteins and vaccines [9–13]. Agroinfiltration is the commonly 

used technique in molecular farming that involves Agrobacterium tumefaciens-mediated 

transformation and production of recombinant proteins in plant cells for several days [14–

16]. This transient protein expression is accomplished when A. tumefaciens transfers a 

specific part of its Ti (tumor-inducing) plasmid for integration into the genome of infected 

plant cells [17]. The flexibility and high speed of plant-based expression systems make 

them especially suitable for vaccine development in the management of outbreaks, 

epidemics, and pandemics by offering a prompt response though rapid production of 

subunit vaccines [18]. For example, molecular farming-based vaccines against influenza 

and SARS CoV-2 viruses have been approved for human use in Canada [19–21]. 

In addition to producing purified pharmaceutical proteins, molecular farming can 

also be used to produce edible transgenic plants to potentially serve as oral, edible 

vaccines. Edible vaccines are as safe as conventional virus vaccines and they do not 

require extensive processing, expensive purification, cold-chain transport, or sterile 

delivery by trained professionals [9]. The idea behind oral vaccines is that the antigens 

will be protected from gastric acid and enzymes by the plant cell walls, and can 

subsequently be delivered to the mucosal surfaces of the gastrointestinal tract to evoke an 

efficient mucosal immune response [22]. 

Virus-like particles (VLPs) are structures formed by the self-assembly of viral 

structural proteins. The VLPs mimic virus morphology but lack infectious genomic 

material [23], and their small size and the repetitive epitope patterns on their surfaces 

trigger a strong immune response [24]. These qualities make VLPs strong candidates for 

vaccine development, and it has been shown that a plant-based quadrivalent VLP 

influenza vaccine provides better protection than egg-based vaccines in humans [25]. A 

wide range of plant-based VLPs (including hepatitis B virus, influenza virus, human- and 

bovine-papillomavirus, bluetongue virus, norovirus, and cowpea mosaic virus) have been 

shown to elicit protective immune responses in animal models, and have been evaluated 

as vaccine candidates or for novel delivery systems [26]. In addition, VLPs for several 

flaviviruses, including TBEV, have been produced by solitary expression of the structural 

proteins in various hosts and evaluated as potential vaccine candidates [27]. 

The objective of this study was to explore transient expression of TBEV structural 

proteins in plants for developing plant-based edible vaccines in which plant leaves 

expressing the TBEV VLPs would be consumed directly. In addition, we evaluated 

whether the TBEV antibodies could be vertically transmitted from immunized female 

mice to offspring and provide protection against TBEV infection. 

2. Materials and Methods 

2.1. Recombinant Binary Vectors 

A pEAQ-CME vector encoding TBEV structural proteins was constructed using 

TBEV C-prM-E sequence (accession number DQ401140.3). To increase expression, the 

TBEV genomic sequence was codon-optimized for the model plant Nicotiana tabacum (a 

close relative of one of our experimental plants), chemically synthesized, and cloned into 

a plant expression vector pEAQ-HT using NruI and XhoI restriction sites. A Kozak 

consensus sequence GCCACC was incorporated upstream of the TBEV start codon. A 
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pEAQ-GFP vector was constructed using pEAQ vector [28] and a pJL3:p19 vector with 

p19 gene of tomato bushy stunt virus (TBSV) [29] was kindly provided by Mike Boehm. 

2.2. Transformation 

The recombinant vectors were transformed into competent A. tumefaciens strain 

LBA4404 using standard procedures and one minute freezing in liquid nitrogen [30]. The 

transformants were selected on LB plates with antibiotics (kanamycin 50 µg/mL, 

rifampicin 25 µg/mL and streptomycin 50 µg/mL). Plates were incubated at 28 °C for 2–3 

days or until colonies appeared. Single colonies of A. tumefaciens transformed with a 

binary vector were separately inoculated into 3 mL LB media with antibiotics (kanamycin 

50 µg/mL, rifampicin 25 µg/mL, streptomycin 50 µg/mL) and incubated at 28 °C for 2 days 

at 220 rpm. The culture was pelleted by centrifugation and re-suspended in 100 µL 

ddH2O. The resuspension was boiled for 5 min and centrifuged at 5000× g for 1 min. The 

supernatant was used as PCR template to confirm transformants containing pEAQ-CME 

vector. Colony PCR was performed using the forward primer 5′-

TCTCTACTTCTGCTTGACGAGG-3′, the reverse primer 5′-

AAGCTTGATATCGAATTCCCGG-3′ and Phusion high-fidelity DNA polymerase (New 

England BioLabs). The resulting PCR products were analyzed by electrophoresis. 

2.3. Plant Growth 

The seeds of 5 different species were germinated and grown in a growth room with 

a 12 h light/dark cycle. Plants were agroinfiltrated at specified weeks post germination to 

maximize transient protein expression: a close relative of commercial tobacco (Nicotiana 

benthamiana), 6 weeks; New Zealand spinach (Tetragonia tetragonioides), 9 weeks; lettuce 

(Lactuca sativa), 5 weeks; Swiss chard (Beta vulgaris), 7 weeks; spinach (Spinacia oleracea), 5 

weeks. Plants were kept in sealed cultivation chambers with artificial light following 

agroinfiltration. The N. benthamiana used in this study is classified as a low or non-

converter of alkaloids [30]. 

2.4. Syringe Infiltration 

A. tumefaciens transformed with pEAQ-CME, pEAQ-GFP or pJL3:p19 were grown 

separately to an OD600 of 0.8–1.0 in LB medium supplemented with kanamycin 50 µg/mL, 

rifampicin 25 µg/mL and streptomycin 50 µg/mL at 28 °C with shaking (225 rpm). The 

bacterial cultures were mixed using 35 mL of A. tumefaciens/pEAQ-CME or A. 

tumefaciens/pEAQ-GFP and 15 mL of A. tumefaciens/pJL3:p19 and pelleted by 

centrifugation at 5000× g for 10 min. The pellet was resuspended in freshly made MMA 

solution infiltration buffer (10 mM 2-N-morpholinoethanesulfonic acid pH 5.6, 10 mM 

MgCl2, and 100 µM acetosyringone) and stir-incubated at room temperature in the dark 

for 2–4 h. Mixed cultures of A. tumefaciens were infiltrated into the abaxial surface of each 

leaf with 1 mL needleless syringe applying gentle pressure to minimize leaf damage. 

2.5. GFP Expression 

Plants were moved to a dark room and exposed to a hand-held UV lamp emitting 

366 nm long wave UV light to visualize GFP expression in leaves. Photos were taken 

without a flash to visualize green fluorescence 7 days post infiltration (dpi). 

2.6. Immunoblotting 

Plant leaves were harvested 7 dpi and ground in liquid nitrogen to a fine powder 

using a pestle and mortar. Protein extraction was performed in RIPA buffer prior to 

boiling in 1xLDS sample buffer (Invitrogen). Proteins were separated by SDS-PAGE using 

precast 4–12% Bis-Tris gels (Invitrogen) and MES running buffer (Invitrogen). The 

proteins were transferred to nitrocellulose membranes using iBlot 2 Gel Transfer Device 

(Invitrogen) for detection with an in-house rabbit anti-TBEV E polyclonal antibody (1:200) 
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and a mouse monoclonal anti-LGTV E 11H12 antibody (1:2000) (United States Army 

Medical Research, Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA). 

2.7. Transmission Electron Microscopy 

The samples were negative stained using 3l of the sample applied on glow-

discharged carbon-coated and formvar-stabilized 400 mesh copper grids (Ted Pella) and 

incubated for approximately 30s. Excess of sample was blotted off and the grid was 

washed with MilliQ water prior to negative staining using 2% uranyl acetate. TEM 

imaging was done using HT7700 (Hitachi High-technologies) transmission electron 

microscope operated at 100 kV and equipped with a 2kx2k Veleta CCD camera (Olympus 

Soft Imaging System). 

2.8. Animal Experiments 

BALB/cAnNRj 5–6 weeks old mice were housed at the Norwegian Institute of Public 

Health, Oslo, Norway. Mice were originally purchased from JANVIER LABS (Le Genest-

Saint-Isle, France) and acclimatized for one week. They were housed in plastic cages in a 

room with a 12 h light/dark cycle and controlled humidity (55 ± 5%) and temperature (20–

24 °C). All mice were fed ad libitum with a standard maintenance diet from Special Diets 

Services (Witham, UK). 

To test the oral toxicity of different plant species, a total of 70 female mice were 

housed in groups of five and fed diets supplemented with different plants for 48 h. N. 

benthamiana, L. sativa, and B. vulgaris were given as 25 g, 50 g, and 100 g supplements, 

while S. oleracea was given as 25 g and 50 g supplements, and T. tetragonioides was given 

as a 25 g supplement. The control mice were fed the standard maintenance diet. The mice 

were weighed on day 0 and on day 28 (at termination of the trial), and they were 

euthanized by cervical dislocation. All organs were examined for toxicity by gross 

pathological examination. 

To test immunization, a total of 40 female and 5 male mice were housed in groups of 

five. The mice were immunized by feeding with 25 g of N. benthamiana leaves expressing 

TBEV VLPs (n = 10) or with 0.5 mL subcutaneous injections of TicovacTM (Pfizer, New 

York, NY, USA) (n = 10) at weeks 0, 2, and 4. To control for the effect of the plant, mice (n 

= 10) were fed 25 g PBS-infiltrated N. benthamiana leaves whereas control mice (n = 15) 

were fed the standard maintenance diet. Blood samples were taken from each mouse 

before each immunization. After week 5, half the mice (n = 5) from each treatment and 

control group were challenged with 106 PFU of TBEV strain Hochosterwitz in 100 µL cell 

culture media by subcutaneous injection above the right foreleg. Control mice for TBEV 

challenge were injected with 100 µL of cell culture media. The mice were monitored for 

pathological symptoms and survival time. The remaining female mice (n=5) from each 

treatment and control group were mated with untreated males, and offspring were 

infected with the same batch of TBEV that had been used to infect the maternal mice. The 

mice were monitored and euthanized by cervical dislocation and all organs were 

examined for toxicity by gross pathological examination. 

3. Results 

3.1. Transient Protein Expression in N. benthamiana after Agroinfiltration 

To study transient protein expression by agroinfiltration in N. benthamiana (tobacco) 

and T. tetragonioides (New Zealand spinach), cultures of A. tumefaciens transformed with 

pEAQ-GFP and pJL3:p19 were mixed and infiltrated. The pJL3:p19 was co-infiltrated to 

express p19 protein, a suppressor of gene silencing, to enhance expression of GFP by 

pEAQ-GFP vector. N. benthamiana leaves emitted strong green fluorescence 7 dpi 

reflecting successful GFP expression, whereas T. tetragonioides leaves showed almost no 

fluorescence (Figure 1B,C). We repeated the syringe agroinfiltration three times, but T. 

tetragonioides failed to express GFP. In fact, the bacterial suspension could not spread 
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through T. tetragonioides in the same way that it did in N. benthamiana, and damage to the 

leaf structure was observed when we increased the infiltration pressure. 

 

Figure 1. GFP expression in N. benthamiana and T. tetragonioides after agroinfiltration. (A) Syringe-

infiltration of plant leaves with a mixture of A. tumefaciens cultures (OD600 0.8–1.0) containing pEAQ-

GFP and pJL3:p19 binary vectors. (B) N. benthamiana leaves showing strong GFP fluorescence. (C) 

T. tetragonioides leaves showing very weak GFP fluorescence. 

3.2. Successful Expression and Processing of TBEV Structural Proteins in N. benthamiana 

Successful expression of flavivirus structural proteins requires post-translational 

cleavage by virus and host proteases. To investigate if TBEV structural proteins can be 

successfully expressed in tobacco, cultures of A. tumefaciens transformed with pEAQ-CME 

and pJL3:p19 were infiltrated into N. benthamiana. A band of ~50 kDa corresponding to 

TBEV E protein was visualized by both polyclonal and monoclonal antibodies against 

flavivirus E protein (Figure 2A,B). The transmission electron microscopy of pEAQ-CME-

infiltrated N. benthamiana leaves showed circular particles of ~50 nm diameter (Figure 2C) 

which may have been formed by post-translational processing of C-prM-E polyprotein 

and self-assembled into VLPs. 

 

Figure 2. Expression and assembly of TBEV structural proteins producing virus like particles (VLP) 

in N. benthamiana. Plant leaves infiltrated with the transformed A. tumefaciens (OD600 0.8–1.0) were 

analyzed 7 days post infiltration. Protein E expression by pEAQ-CME in N. benthamiana was 

visualized by Western blotting using polyclonal (A) and monoclonal (B) antibodies against the E 
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protein (red arrow). Protein extracts from pEAQ-GFP and non-infiltrated (control) leaves were used 

as negative controls (A,B). Particles similar to TBEV VLPs, ~50 nm in diameter, (red arrows) 

localized in the endosome and other parts as visualized by transmission electron microscopy (C). 

3.3. Orally Administrated N. benthamiana Was Tolerated in Mice 

Although N. benthamiana showed high GFP expression and successful production of 

TBEV VLPs, it may have limitations as a vector for oral immunization due to the risk of 

toxicity conferred by alkaloids. To study the toxicity of the various plant species in mice, 

we fed them a diet supplemented with leaves from five different plant species (N. ben-

thamiana, T. tetragonioides, L. sativa, B. vulgaris, and S. oleracea). The edible plant species (all 

other than N. benthamiana) were used as controls to test these species for future develop-

ment of oral vaccines. All plant species were accepted by the mice and eaten in comparable 

amounts (consumption of N. benthamiana was slightly reduced for the two highest 

amounts of leaf material). No general effect of these supplements on animal weight was 

observed except for a slightly lower weight gain for the mice that were fed the diet sup-

plemented with S. oleracea or the higher doses of N. benthamiana (50 g and 100 g) (Table 1). 

The acute toxicology study was conducted according to OECD 420 guidelines. The 

animals in control group 2 gained substantially less weight than the animals in control 

group 1 and one animal was removed from calculation of the average because it did not 

show any weight gain after 28 days. Weight gain of all animals in control groups was 1.3–

3.0 g. The plant leaves were readily consumed by the mice and moisture loss in the plants 

was not taken into the calculation, since the observed loss was <0.36%. All animals ap-

peared healthy throughout the study, and they showed healthy organs in the gross patho-

logical examination by the veterinarian. 

Table 1. Weight gain of BALB/cAnNRj mice after feeding with plant-supplemented diets for 48 h. 

Plant Specie Plant/Cage (g) Plant Consumed (g) Average Weight Gain (g  SD) 

Beta vulgaris 25 23.0 2.56  0.43 

Beta vulgaris 50 44.7 2.42  0.45 

Beta vulgaris 100 74.5 2.58  0.15 

Nicotiana benthamiana 25 22.2 2.46  0.67 

Nicotiana benthamiana 50 39.5 1.58  0.63 

Nicotiana benthamiana 100 67.3 1.70  1.22 

Lactuca sativa  25 23.7 2.38  1.03 

Lactuca sativa  50 46.6 2.46  0.39 

Lactuca sativa  100 73.9 2.74  1.12 

Tetragonia tetragonioides  25 23.2 2.36  0.88 

Spinacia oleracea   25 23.7 1.54  0.56 

Spinacia oleracea   50 44.1 1.70  0.30 

Control 1   2.62  0.25 

Control 2    1.95  0.66 

3.4. Immunization with Commercial TBEV Vaccine Protected the Offspring 

We were interested in testing the immunogenicity of our edible vaccine candidate 

and comparing it to the commercial TBEV vaccine, Ticovac. We immunized the animals 

by feeding them fresh N. benthamiana leaves expressing TBEV VLPs or with Ticovac injec-

tion. After 5 weeks, 50% of the immunized and control animals were infected with TBEV. 

All animals immunized with edible vaccine candidates and in control groups died 6–8 

days after TBEV infection, while the mice that received Ticovac survived the challenge 

(Table 2). The gross pathological examination showed that the animals fed with N. ben-

thamiana leaves had comparatively smaller organs than the other animals. All the mice 
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that died after TBEV challenge showed massive bleeding in the stomach and upper part 

of the duodenum. 

We also wanted to test if the mice immunized with the developed vaccine candidate 

and/or Ticovac could transmit sufficient antibodies to offspring to protect them against 

TBEV infection. For this experiment, the remaining 50% of the immunized and control 

animals were mated with untreated males. Their offspring were challenged with TBEV on 

day 21 post-birth and monitored for pathological symptoms and survival time. The off-

spring mice that had been vertically immunized (that is, their mothers had been vac-

cinated with Ticovac) remained healthy after TBEV challenge, while offspring from the 

other groups died 6–8 days post TBEV infection (Table 2). 

Table 2. Immunization schedule followed by infection with TBEV strain Hochosterwitz in 

BALB/cAnNRj mice. Mice were housed in groups of five. Female mice (n = 40) were used for im-

munization and 5 male mice were used for breeding. Mice survived (green) or died (red) post TBEV 

infection. 

Treatment N. benthamiana+VLP N. benthamiana Ticovac Control Female Mice Control Male Mice 

First immunization 

(day 0) 
25 g 25 g 25 g 25 g 0.5 mL 0.5 mL    

Second immunization 

(day 14) 
25 g 25 g 25 g 25 g 0.5 mL 0.5 mL    

Third immunization 

(day 28) 
25 g 25 g 25 g 25 g 0.5 mL 0.5 mL    

TBEV infection of adult mice 

(day 35) 
TBEV Breeding TBEV Breeding TBEV Breeding TBEV Breeding Breeding 

TBEV infection of offspring 

(day 21 after birth) 
 TBEV  TBEV  TBEV  TBEV  

4. Discussion 

In this study, we used transient expression of TBEV C-prM-E in N. benthamiana (a 

tobacco relative) as a first step in an attempt to develop an edible TBE vaccine. We evalu-

ated the oral toxicity of various plant species and immunogenicity of the edible vaccine 

candidate in mice. Flavivirus VLPs are commonly produced by expressing a polyprotein 

comprising C-prM-E or prM-E that is post-translationally cleaved into individual proteins 

that self-assemble to produce mature VLPs [27]. In this study, we used a pEAQ-CME vec-

tor to express C, prM, and E of TBEV as a single polyprotein. The pEAQ vectors are well 

characterized for VLP production in plants [31,32]. Flavivirus prM protein stabilizes the E 

protein, and molecular interaction between prM and E is important for flavivirus VLP 

production [33]. Flavivirus E protein has an indispensable role in cellular binding and 

membrane fusion between virus and host cell [34,35]. E protein is one of the most potent 

flavivirus antigens because it contains several epitopes actively recognized by the host 

immune system and it is a primary target of neutralizing antibodies [36]. Analysis of 

pEAQ-CME-derived expression of TBEV structural proteins in N. benthamiana by im-

munoblotting showed a band of ~50 kDa when stained with flavivirus anti-E antibodies. 

This observation indicates that N. benthamiana can provide a suitable environment, similar 

to mammalian cells, for post-translational processing of the polyprotein to produce cor-

rectly cleaved E protein. Similar observations showing ER insertion and post-translational 

processing of HBsAg in plants have been reported previously [37]. In addition, atomic 

resolution cryo-electron microscopy has demonstrated that the VLPs of cowpea mosaic 

virus (CPMV) produced in N. benthamiana are identical to native virus particles [38]. 

The choice of viral vectors used to express foreign proteins depends on the plant host 

and the size of the gene to be expressed so that concomitant protein folding is not dis-

turbed. Binary vectors derived from plants viruses, such as tobacco mosaic virus (TMV), 

tobacco rattle virus (TRV), CPMV, and potato virus X (PVX) have been used to express 

recombinant foreign proteins in plants [31,39], and transient expression of vaccine anti-

gens in tobacco after Agrobacterium-mediated transformation with TMV- and CPMV-
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based viral vectors has previously been shown [40,41]. In this study, we used a CPMV-

based vector to express TBEV structural proteins in N. benthamiana by agroinfiltration. In 

addition, we used a second vector encoding the gene-silencing suppressor p19 from TBSV 

because p19 has been demonstrated to have enhanced transient expression in plants [42]. 

We used sequences of TBEV structural genes that had been codon-optimized for expres-

sion in N. tabacum to achieve higher expression levels of recombinant proteins in N. ben-

thamiana [41–43]. Indeed, we achieved high protein expressions at 7 dpi, which is con-

sistent with previous studies [29,41]. 

An ideal candidate plant for edible vaccine development would have high expression 

of recombinant proteins and non-toxic traits. In this study, we used N. benthamiana and T. 

tetragonioides (New Zealand spinach) for recombinant protein expression, and the former 

showed much stronger expression than the latter. T. tetragonioides was used as a putative 

edible transgenic plant system expressing a VLP vaccine candidate that could be con-

sumed for immunization. The two factors that might have hindered agroinfiltration and 

subsequent transient protein expression in T. tetragonioides are its leaf morphology (in 

terms of thickness, cell composition, or density) and the fact that the expression system 

was optimized for N. tabacum. The other plant we investigated, N. benthamiana, is a versa-

tile model for replication of plant viruses and expression of recombinant protein using 

virus-derived expression vectors [44]. However, this non-edible tobacco relative is not 

particularly attractive as an edible vaccine platform due to the toxic alkaloids in its leaves, 

primarily the addictive and toxic nicotine, but also smaller amounts of nornicotine (a sus-

pected carcinogen [45]), anatabine, and anabasine [46]. The N. benthamiana used in the 

present study is classified as a low or non-converter of alkaloids. In the toxicity experi-

ment, we did not observe any visible gross pathological changes in the animals except a 

slightly lower weight gain in animals that were fed with higher doses of N. benthamiana 

(50 g and 100 g). Nevertheless, we chose to proceed with low doses (25 g) in the immun-

ization experiment. The mice were fed with fresh N. benthamiana leaves because curing 

leaves is known to elevate the proportion of nornicotine to nicotine in the leaves [46]. De-

spite these measures, the immunization experiments showed that the mice fed with N. 

benthamiana had smaller organs than the other mice, and it has been previously shown 

that tobacco can cause significant reduction in body and organ weights in mice and rats 

[47,48]. 

Despite their potential advantages, edible vaccines face the problem of dose quanti-

fication and quality control in the raw plants without purification [49]. In the immuniza-

tion experiment in which mice were fed with N. benthamiana leaves expressing TBEV 

structural proteins, we did not observe any noticeable immune response. The lack of ad-

equate immune responses after oral immunization could be due to several factors, includ-

ing problems with stability in the gastrointestinal tract, dosage, protein folding or modi-

fications, a need for repeated exposure, and lack of adjuvant. It has been reported that 

feeding mice with raw plants requires an adjuvant or priming with purified VLPs to trig-

ger an optimal immune response [37]. The immunogenicity of the current vaccine may be 

improved by using an appropriate adjuvant [50], which, however, requires additional 

studies. 

Flaviviruses such as JEV, TBEV, and WNV mainly cause encephalitis [51] while other 

flaviviruses like YFV, DENV, Omsk haemorrhagic fever virus, and Kyasanur Forest dis-

ease virus can cause haemorrhage [52,53]. We observed massive bleeding in the stomachs 

and upper parts of the duodenum in all the mice that died after infection with TBEV strain 

Hochosterwitz. These rare but important observations were supported by the clinical 

findings of TBEV and JEV infections in Russia and India [54,55]. 

Maternal immunization, which induces virus-specific antibodies that are subse-

quently dispensed to the offspring through placenta or breastfeeding, remains an effective 

public health strategy against several virus infections. In this study, female mice vac-

cinated with Ticovac and their offspring showed a 100% survival rate after TBEV chal-

lenge, and none of the infected animals developed any clinical symptoms (this example 
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of maternal immunization in mice corroborates a recently published work based on an-

other live-attenuated flavivirus vaccine [56]). The observations of this study are based on 

an edible TBEV vaccine candidate and immunization in mice, and extrapolations to other 

viruses and humans should not be made at this time. 

In conclusion, we have shown that TBEV structural proteins can be expressed in N. 

benthamiana and self-assembled to form ~50 nm particles similar to TBEV virions. An oral 

toxicity experiment showed that N. benthamiana is tolerated in mice. However, immuniza-

tion with the edible vaccine candidate could not protect the mice against TBEV challenge. 

The commercially-available TBE vaccine Ticovac provided complete protection to both 

female mice and their offspring. 
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