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Fuzzy Cluster-based Group-wise Point Set
Registration with Quality Assessment

Qianfang Liao, Da Sun, Shiyu Zhang, Amy Loutfi, and Henrik Andreasson

Abstract—This article studies group-wise point set registration
and makes the following contributions: “FuzzyGReg”, which is
a new fuzzy cluster-based method to register multiple point
sets jointly, and “FuzzyQA”, which is the associated quality
assessment to check registration accuracy automatically. Given a
group of point sets, FuzzyGReg creates a model of fuzzy clusters
and equally treats all the point sets as the elements of the fuzzy
clusters. Then, the group-wise registration is turned into a fuzzy
clustering problem. To resolve this problem, FuzzyGReg applies a
fuzzy clustering algorithm to identify the parameters of the fuzzy
clusters while jointly transforming all the point sets to achieve an
alignment. Next, based on the identified fuzzy clusters, FuzzyQA
calculates the spatial properties of the transformed point sets and
then checks the alignment accuracy by comparing the similarity
degrees of the spatial properties of the point sets. When a
local misalignment is detected, a local re-alignment is performed
to improve accuracy. The proposed method is cost-efficient
and convenient to be implemented. In addition, it provides
reliable quality assessments in the absence of ground truth and
user intervention. In the experiments, different point sets are
used to test the proposed method and make comparisons with
state-of-the-art registration techniques. The experimental results
demonstrate the effectiveness of our method. The code is available
at https://gitsvn-nt.oru.se/qianfang.liao/FuzzyGRegWithQA

Index Terms—group-wise registration, registration quality as-
sessment, joint alignment, fuzzy clusters, 3D point sets.

I. INTRODUCTION

POINT set registration finds spatial transformations to
align sets of points (e.g., point clouds and range scans). It

plays a critical role in various applications, such as computer
vision, robotics, medical image analysis, etc. This article fo-
cuses on 3D rigid point set registration, where a transformation
is composed of a rotation and a translation in 3D space.

Numerous registration methods have been developed, most
of which are used for pair-wise registration aiming to align two
point sets. In a pair-wise registration, one point set is fixed as
the reference, and the other point set is moved/transformed to
align with the reference set, as shown in Fig. 1(a). Generally,
the transformation is derived by optimizing a certain met-
ric/objective function that scores the alignment degree, such as
point distance-based metrics [1]–[6] and different model-based
metrics [7]–[16]. When minimizing/maximizing a metric, a
smaller/greater value of the metric usually implies a better
registration quality. However, without ground truth and user
intervention, most registration methods cannot tell whether
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Fig. 1. Examples of point set registration using the Stanford bunny data2. (a).
A pair-wise registration, where the red point set is fixed as the reference and
the blue point set is moved for the alignment. (b). A sequential registration,
which performs two pair-wise registrations to align three point sets. (c). A
joint registration, which moves all the three point sets on an equal footing.

the point sets are correctly aligned solely based on the values
of their metrics. Recently, several approaches [6], [15], [17]
have been proposed that utilize different spatial properties of
points to assess pair-wise registration qualities in the absence
of ground truth and user intervention. These approaches further
advance registration studies toward full automation.

Compared to pair-wise registration, group-wise registration
is a more challenging problem in which multiple point sets
need to be aligned (e.g., 3D reconstruction). Early methods to
handle this problem are sequentially aligning multiple point
set pairs and combining the results [18]–[20], as the example
shown in Fig. 1(b). However, these methods generally lead to
cumulative errors. To cope with this issue, several strategies
have been developed, such as using different networks to
organize the multiple pair-wise registrations, adding various
post-processing phases to globally tune the local pair-wise
registration results, and estimating the transformations of all
the point sets jointly [21]–[36]. Note that the joint estimations
of transformations, like Fig. 1(c), usually work better in giving
unbiased results when compared to the methods based on
multiple pair-wise registrations that take one point set as
the reference at each time [30]. Despite significant contri-
butions, existing group-wise registration methods often have
inconvenient requirements, such as predefined closed loops of
point sets, true correspondences of point sets, lengthy training
phases, and expensive operations (exponentials, etc.). In addi-
tion, few of them consider registration quality assessments in
the absence of ground truth and user intervention. The recently
proposed pair-wise registration quality assessments [6], [15],
[17] can be applied to sequentially check the alignment accu-

2http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 2. An example of using the proposed method to align four bunny scans.
The first row shows the initial poses of the four scans. The second row shows
the registration process of FuzzyGReg, where each black “+” denotes a fuzzy
cluster center. For the initialization, FuzzyGReg randomly selects 300 points
from the four scans as the initial fuzzy cluster centers. Then, it iteratively
updates the fuzzy cluster centers and the scan poses to achieve an alignment.
Based on the results of FuzzyGReg, the third row shows the working principle
of FuzzyQA: For every two consecutive scans, their spatial properties with
respect to the 300 fuzzy cluster centers are calculated and compared. If the
spatial properties are similar enough, the two consecutive scans are regarded
as aligned; Otherwise, the two scans are re-aligned using FuzzyGReg.

racy of overlapping point set pairs in a group-wise registration.
Nevertheless, these pair-wise assessments are independent of
the group-wise registration methods and are based on some
conditions usually not included in the group-wise registrations,
thus requiring extra costs. Therefore, it is desirable to have an
effective group-wise registration method with a convenient and
cost-efficient registration quality assessment.

In this study, we propose a fuzzy cluster-based group-
wise registration method named “FuzzyGReg” and the associ-
ated fuzzy cluster-based registration quality assessment named
“FuzzyQA”. Given a group of point sets, FuzzyGReg creates
a model of fuzzy clusters and equally treats all the point
sets as the elements of the fuzzy clusters. Then, the group-
wise registration is turned into a fuzzy clustering problem. To
resolve this problem, FuzzyGReg applies a fuzzy clustering
algorithm to minimize a fuzzy cluster-based metric via an iter-
ative calculation. This iterative calculation alternates between
estimating the parameters of the fuzzy clusters based on the
current transformed point sets and jointly transforming all the
point sets toward a group-wise alignment based on the current
fuzzy clusters until the termination condition is met. Next,
FuzzyQA calculates the spatial property of each transformed
point set with respect to the estimated fuzzy clusters and
then checks the alignment accuracy based on the similarity
degrees of the spatial properties, where no ground truth or
user intervention is required. When a local misalignment is
detected, a local re-alignment is applied to improve accuracy.
Fig. 2 shows an example of the process. The proposed method
does not have inconvenient requirements and takes low compu-
tational costs since the number of parameters to be calculated

is small, and no expensive operations are involved. In addition,
it has a reliable registration quality assessment technique that
can be conveniently implemented based on the group-wise
registration results. In the experiments, different point sets
are used to test and compare our method with state-of-the-
art registration techniques to demonstrate its effectiveness.

II. RELATED WORK

In this section, we review some existing methods that
are related to our work. Most existing methods of point set
registration are developed for pair-wise registration, where the
Iterative Closest Point (ICP) [1] is the best-known method.
ICP aligns two point sets by iteratively minimizing the nearest-
point distances, and it has several variants, such as the trimmed
ICP [2], the sparse ICP [3], and the fast and robust ICP [4].
There are other point distance-based methods [5], [6] that
minimize the distances between true corresponding points to
realize alignments. Usually, the true correspondences of point
sets are built based on feature descriptors [37]. Apart from the
point distance-based methods, some studies represent point
sets by certain models and then optimize the model-based
metrics to attain alignments, such as the deep neural network-
based methods match point sets based on the encoded geo-
metric properties of points [7]–[11]; the probabilistic methods
align point sets by maximizing some likelihood functions or
minimizing the divergences between probability distributions
of points [12]–[14]; and the fuzzy cluster-based methods
achieve registrations via minimizing the distance losses of
points around fuzzy cluster centers [15], [16].

For group-wise registration, an intuitive way is to sequen-
tially align point set pairs and merge the results together
[18]–[20]. However, this way suffers from cumulative errors.
A number of strategies have been developed to handle this
issue. The first strategy is proposed in [21], where the point
sets are organized in a star network to perform the multiple
pair-wise registrations. Then, any two point sets are linked
by at most two edges to reduce the cumulative errors. Many
other strategies follow a two-stage pipeline: The first stage is to
collect local pair-wise registration results, and the second stage
is to apply a global refinement. In [22], [23], optimizations
are applied to remove inconsistent local matches and achieve
globally consistent results. In [29], a Bayesian framework
is proposed to align multiple point sets, where pair-wise
correspondences are regarded as missing data and inferred
through a maximum posteriori process. In [24], [25], with
the principle that the total motion of the point sets along a
cycle is zero, the pair-wise transformations are tuned based
on cycles of the point set graph to balance the global error.
Similarly, a method of Lie algebraic averaging of local motions
is given in [26], which extends ICP to simultaneously register
multiple point sets. This method is revised by [27] where the
trimmed ICP [2] replaces ICP for higher robustness against
non-overlapping outliers. Also, a weighted motion averaging
method is presented in [28], which considers that different
local motions have different contributions to the global align-
ment. A drawback of these methods is that they need to
predefine closed loops of point sets.
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In addition to the above two-stage strategies, some studies
present joint group-wise registrations [30]–[33], which treat all
the point sets on an equal footing to give unbiased results in
the transformation estimations. In [30], the Joint Registration
of Multiple Point Clouds (JRMPC) is proposed that considers
all the point sets to be drawn from a Gaussian Mixture Model
(GMM); Then, it applies an Expectation-Maximization (EM)
algorithm to estimate the parameters of GMM while jointly
transforming all the point sets to reach an alignment. The
method in [31] revises JRMPC by replacing the GMM with
a Student’s-t mixture model. The EM Perspective for Multi-
view Registration (EMPMR) is developed in [32] considering
that each point is generated from one unique GMM, where its
nearest neighbors in other point sets are treated as Gaussian
centroids with equal covariance and membership probabilities;
then, a framework of maximum likelihood estimation is built
and optimized by an EM algorithm. Generally, the probabilis-
tic methods need to calculate a relatively large number of
parameters to obtain the probability distributions and require
expensive operations like exponentials in their optimizations.
In [33], the Joint Pair-wise Registration (JPR) is described
that minimizes the pair-wise point-to-plane distances in a
joint fashion to calculate the transformations. However, this
method needs to manually select a relatively large number of
parameters. Besides, it needs to know the normals of points
and is sensitive to the noise contained in the normals.

Some true correspondence-based and deep learning-based
methods can be found, such as [34] where an optimization-
on-a-manifold method is developed to estimate the transforma-
tions of all the point sets based on their true correspondences;
and [35], [36] where a deep neural network-based system and
an end-to-end learnable algorithm are respectively proposed
to align multiple point sets. Based on true correspondences or
learned features of point sets, the registration methods usually
can better handle low overlaps of point sets. However, true
correspondences are not always easy to obtain. For example,
the correspondences built by local feature descriptors [37]
may contain a large portion of incorrect matches and may
be relatively uninformative (repeated structures, many flat
surfaces, etc.) [38]. The deep neural network-based methods
often include lengthy training phases and are restricted in
generalizing to untrained data. Although the system in [35]
does not expect generalization since its training process is
equivalent to solving the registration problem, its training takes
a long time to converge without a good initialization.

In practice, incorrect alignments may occur due to different
uncertainties (local optima, noise, etc.), and most existing
registration methods cannot perceive the incorrectness without
ground truth or user intervention. Recently, a few studies
have devoted efforts to resolving this problem. The method
called CorAl in [17] checks the pair-wise registration accuracy
based on the joint and separate entropy of point sets, where
a classifier needs to be pre-trained to detect misalignment.
In [6], a pair-wise registration method called TEASER++ is
developed that can certify the optimum of its registration met-
ric. This method relies on knowing the true correspondences
of point sets, which may not be obtainable as described above.
In [15], a fuzzy cluster-based pair-wise registration quality

assessment is proposed, which compares the average fuzzy
cluster-based distance losses of point sets to determine a coarse
alignment that poses a good initialization for refinement. This
quality assessment is limited by requiring prior knowledge
of the overlapping ratio between point sets. For group-wise
registration, an uncertainty quantification method is developed
in [33] that calculates the covariance matrices of outputs to
estimate registration errors. However, this method assumes that
the correspondence sets used in its estimation are subsets of
ground truth correspondences, making it limited in practical
applications. Therefore, it is desired to have a more effective
quality assessment for group-wise registration.

The following nomenclature lists important symbols used
in the remainder of this article.

NOMENCLATURE

P = {Pi}NP
i=1 A point set group having NP point sets.

Pi = {pij}
NPi
j=1 The ith point set having NPi

points pij .
Θ = {θi}NP

i=1 The NP transformations of P .
θi = (Ri, ti) The transformation of Pi that consists

of a rotation Ri and a translation ti.
T (pij ,θi) or Tpij The transformed point pij using θi.
T (Pi,θi) or TPi The transformed point set Pi using θi.
T (P,Θ) The transformed point sets {TPi}NP

i=1.
C = {ck}NC

k=1 The NC fuzzy cluster centers.
µck

(pij) The fuzzy membership of point pij in
the fuzzy cluster centered at ck.

C(vt) = {c(vt)k }NC

k=1 The NC virtual fuzzy cluster centers
calculated based on a point set TPi.

θ̂i = (R̂i, t̂i) The transformation aligns C(vt) to C.
NItr The predefined number of iterations.
Ci A subset of C. Each of the fuzzy clus-

ters centered at Ci contains the points
of TPi more than the average number.

Ci(i+1) The intersection set of Ci and Ci+1.
µth The fuzzy membership threshold defin-

ing the main ranges of fuzzy clusters.
T P̂i = {T p̂ij}

NP̂i
j=1 A subset of TPi, in which the fuzzy

memberships of each point in at least
one of the fuzzy clusters centered at
Ci(i+1) exceed µth.

F ik The fuzzy covariance matrix calculated
based on T P̂i with respect to ck.

di(i+1)(k) The covariance matrix distance between
F ik and F (i+1)k.

di(i+1) The average value of di(i+1)(k) of the
elements in Ci(i+1).

dub The upper bound of di(i+1) for two
aligned point sets.

III. PRELIMINARY KNOWLEDGE

Given NP point sets, P = {Pi}NP
i=1, where Pi = {pij ∈

R3}NPi
j=1 denotes the ith point set containing NPi

points (pij

is the 3D point coordinate), the group-wise registration aims
to find a transformation for each Pi, denoted by θi, such
that the NP transformed point sets, denoted as T (P,Θ) =
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{T (Pi,θi)}NP
i=1, are correctly aligned together. The parameters

are explained in the following. The transformation θi =
(Ri, ti) is composed of a rotation matrix Ri ∈ SO(3) and a
translation vector ti ∈ R3; Θ = {θi}NP

i=1 denotes the set of the
NP transformations; T (Pi,θi) = {T (pij ,θi)}

NPi
j=1 denotes the

transformed point set Pi using θi; and the transformed point
T (pij ,θi) is derived by T (pij ,θi) = Ri · pij + ti.

The proposed group-wise registration method is based on
fuzzy clusters. Fuzzy clusters are effective and robust models
that have been used in various applications [39]–[43], includ-
ing pair-wise point set registrations [15], [16]. In this study, the
proposed method is developed based on the well-known fuzzy
c-means (FCM) clustering algorithm [44] to distill natural
groupings of points and create fuzzy clusters. Given a point
set P = {pj ∈ R3}Nj=1, we suppose that it is described by
NC fuzzy clusters. Usually, NC is much smaller than N . The
fuzzy cluster centers (also called centroids or prototypes) are
denoted as C = {ck ∈ R3}NC

k=1. FCM minimizes the following
cost function to locate C and create fuzzy clusters:

min
C

J(P,C) =
N∑
j=1

NC∑
k=1

µck
(pj)

m · ∥pj − ck∥2


s.t. 0 ≤ µck
(pj) ≤ 1 and

∑NC

k=1
µck

(pj) = 1

(1)

where m > 1 governs the fuzziness degree and m = 2 is
widely used; µck

(pj) denotes the fuzzy membership grade of
point pj in the fuzzy cluster centered at ck.

FCM is an unsupervised learning algorithm. Generally, it
randomly selects NC points from the point set P as the initial
fuzzy cluster centers and then minimizes the cost function
J(P,C) in (1) via an iterative calculation. In each iteration,
first, the fuzzy memberships of the points are calculated based
on the current fuzzy cluster centers as follows:

µck
(pj) =


1, if ∥pj − ck∥ = 0

0, if ∃r ̸=k ∥pj − cr∥ = 0
1∑NC

r=1

( ∥pj−ck∥
∥pj−cr∥

) 2
m−1

, else

(2)
Note that the fuzzy memberships calculated by (2) satisfy the
constraints in (1). Then, based on the fuzzy memberships, the
fuzzy cluster centers are updated by the following:

ck =

∑N
j=1 µck

(pj)
m · pj∑N

j=1 µck
(pj)

m
, k = 1, · · · , NC (3)

By repeating (2) and (3), the fuzzy cluster centers gradually
converge to the optimal positions that minimize the cost
function J(P,C) in (1). The iterative calculation of FCM stops
when the termination condition is satisfied, such as reaching
the predefined iteration number NItr.

Similar to many existing group-wise registration methods,
the proposed method uses local optimizations to align point
sets, which means that the initial pose differences between
neighboring point sets in P should not exceed a certain
range. In addition, the proposed method needs the overlapping
regions of neighboring point sets to reach a certain level. Thus,
we apply the following assumption in this article:

Assumption 1: Every two consecutive point sets in P have
sufficient overlaps, and their initial pose differences are within
the local convergence basin of the proposed method.

Generally, when a depth sensor smoothly moves in an
environment to collect point sets (range scans), two successive
poses of the sensor to generate point sets are usually not
far away from each other. Also, when the depth sensor is
installed on a mobile robot, the robot usually has odometry
systems to record the motions that can be used to provide
good initial poses of the point sets. Therefore, Assumption
1 works in many applications. In the experiments, we will
test the sensitivities of the proposed method with respect to
overlapping ratios and initial poses of point sets.

IV. METHODOLOGY

In this section, we elaborate FuzzyGReg and FuzzyQA.
Also, a discussion about the proposed method is provided.

A. FuzzyGReg

For a group P = {Pi}NP
i=1, FuzzyGReg creates a model

composed of NC fuzzy clusters to describe the NP point
sets in P , where all the points are equally considered as
the elements of the fuzzy clusters. The target of FuzzyGReg
is to identify the NC fuzzy cluster centers, C, and the NP

transformations of the point sets, Θ, such that the transformed
point sets, T (P,Θ), are accurately aligned together to form
a consistent group that optimally fits the NC fuzzy clusters
centered at C, like the example shown in Fig. 2.

To reach this target, we need to design an appropriate metric
and the associated optimization algorithm for FuzzyGReg such
that it can obtain the desired C and Θ through optimizing the
metric. From the cost function of FCM in (1), when a bunch
of points well fit a model of fuzzy clusters, the points and the
fuzzy cluster centers achieve the minimum value of this cost
function. Inspired by (1), we let the optimization problem of
FuzzyGReg be the following:

min
C,Θ

{
J(T (P,Θ),C) =

NP∑
i=1

J(T (Pi,θi),C) =

NP∑
i=1

NPi∑
j=1

NC∑
k=1

µck
(T (pij ,θi))

m · ∥T (pij ,θi)− ck∥2


s.t. 0 ≤ µck
(T (pij ,θi)) ≤ 1,

∑NC

k=1
µck

(T (pij ,θi)) = 1,

RT
i ·Ri = I3, and det(Ri) = 1

(4)
where J(T (P,Θ),C) is the metric (total cost) of the op-
timization problem, and J(T (Pi,θi),C) is the per-point-set
cost. Since each point set is equally treated as the elements
of the fuzzy clusters, the total cost is the sum of all the per-
point-set costs. µck

(T (pij ,θi)) is the fuzzy membership of
the point T (pij ,θi) in the fuzzy cluster centered at ck and
can be calculated based on T (pij ,θi) and C using (2).

To optimize the metric J(T (P,Θ),C) in (4), we design an
iterative optimization algorithm, which is revised from FCM
and adds a step to jointly calculate the transformations of all
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the point sets in each iteration. The details of this optimization
algorithm are the following.

1. Initialization. To perform the optimization, we select the
following parameters: The number of fuzzy clusters (NC), the
number of iterations (NItr), the initial fuzzy cluster centers
C, and the initial transformations Θ of the point sets. The
selections of NC and NItr are presented in Section IV. C. For
C, we randomly choose NC points from the NP point sets as
the initial values, like the example shown in Fig. 2. For Θ,
when NP is not a large number such that the optimization can
be directly applied to align P based on Assumption 1, we let
the initial transformations Θ be zero motions, where all the
rotations are Ri = I3 and all the translations are ti = [0 0 0]T .
When NP is a large number, the method to determine the
initial Θ is discussed in Section IV. C.

2. Iterative calculation. At the beginning of each iteration,
we have the current fuzzy cluster centers C and the current
transformations Θ of the point sets. Based on these param-
eters, each iteration performs two tasks. The first task is to
estimate new transformations, Θ(new) = {θ(new)

i }NP
i=1, for the

point sets to better fit C. The second task is to estimate new
fuzzy cluster centers, C(new) = {c(new)

k }NC

k=1, based on the
new transformed point sets, T (P,Θ(new)).

For the first task, note that the new transformation of each
point set can be estimated independently. For the current
ith point set T (Pi,θi), based on the current fuzzy cluster
centers C, we use (2) to obtain the fuzzy memberships
µck

(T (pij ,θi)) of its points; Then, according to (3), we can
calculate NC virtual fuzzy cluster centers with respect to
T (Pi,θi), denoted by C(vt) = {c(vt)k }NC

k=1, as follows:

c
(vt)
k =

∑NPi
j=1 µck

(T (pij ,θi))
m · T (pij ,θi)∑NPi

j=1 µck
(T (pij ,θi))m

(5)

If T (Pi,θi) perfectly fits C, we will have C(vt) = C.
Nevertheless, this condition is usually not satisfied. Thus, we
next find a transformation, denoted by θ̂i = (R̂i, t̂i), for C(vt)

to align with C. Consequently, θ̂i can move T (Pi,θi) to better
fit C. This transformation can be derived by resolving the
following weighted least squares problem:

min
θ̂i=(R̂i,t̂i)

NC∑
k=1

wik · ∥R̂i · c(vt)k + t̂i − ck∥2

s.t. (R̂i)
T · R̂i = I3 and det(R̂i) = 1

(6)

where the weight is wik =
∑NPi

j=1 µck
(T (pij ,θi))

m. Accord-
ing to the study in [45], the weighted least squares problem
in (6) has a closed-form solution as follows:{

R̂i = U i · Si · (V i)
T

t̂i =
∑NC

k=1 wik · (ck − R̂i · c(vt)k )/
∑NC

k=1 wik

(7)

where Si = diag(1, 1,det(U i)det(V i)) ∈ R3×3; U i

and V i are the left and right matrices derived from the
singular value decomposition of the term CΛi(C

(vt))T ,
in which C = [c1 c2 · · · cNC

] ∈ R3×NC ,
C(vt) = [c

(vt)
1 c

(vt)
2 · · · c

(vt)
NC

] ∈ R3×NC , and Λi =

Algorithm 1: FuzzyGReg
Input: P .
Output: C and Θ to align P .

1 Select NC , NItr, the initial C (NC points randomly
picked from P), and the initial Θ (zero motions).

2 l← 1.
3 while l ≤ NItr do
4 Based on C, calculate θ

(new)
i of each Pi by (5)-(8)

to constitute Θ(new).
5 Based on T (P,Θ(new)), calculate C(new) by (9).
6 Let C← C(new), Θ← Θ(new), and l← l + 1.

diag(wi1, wi2, · · · , wiNC
) ∈ RNC×NC . Then, the new trans-

formation of Pi, θ
(new)
i = (R

(new)
i , t

(new)
i ), can be derived

by combining θ̂i = (R̂i, t̂i) with the current transformation
θi = (Ri, ti) as follows:{

R
(new)
i = R̂i ·Ri

t
(new)
i = R̂i · ti + t̂i

(8)

By repeating (5)-(8) for each point set Pi, Θ(new) is obtained.
The first task is complete.

For the second task, based on T (P,Θ(new)) and the fuzzy
memberships µck

(T (pij ,θi)) calculated in the first task,
C(new) can be estimated by the following revised from (3):

c
(new)
k =

∑NP

i=1

∑NPi
j=1 µck

(T (pij ,θi))
m · T (pij ,θ

(new)
i )∑NP

i=1

∑NPi
j=1 µck

(T (pij ,θi))m

(9)
The second task is complete.

After completing the above two tasks, the current param-
eters are updated by C ← C(new) and Θ ← Θ(new). Then,
the next iteration starts if the termination condition is not met.
As the example shown in Fig. 2, the iterative calculation of
FuzzyGReg gradually changes the fuzzy cluster centers and
the poses of the point sets toward a group-wise alignment.

3. Termination. When the number of performed iterations
reaches NItr, the iterative calculation stops, and the current
C and Θ are the solutions to the optimization problem (4).

The above optimization process of FuzzyGReg is summa-
rized in Algorithm 1. Based on the results of FuzzyGReg,
next, we introduce FuzzyQA, which can automatically detect
misalignment and perform re-alignment to improve accuracy.

B. FuzzyQA

FuzzyQA checks the registration quality based on the spatial
properties of the transformed point sets with respect to the
fuzzy clusters estimated by FuzzyGReg. For simplicity, in the
following, we use TPi and Tpij to denote T (Pi,θi) and
T (pij ,θi), respectively. Considering two consecutive point
sets in T (P,Θ), TPi and TPi+1 (1 ≤ i ≤ NP −1), they usu-
ally partially overlap each other, and their overlapping regions
will display the same spatial/geometric properties when they
are aligned. Thus, for each pair of TPi and TPi+1, FuzzyQA
finds out their overlapping parts and calculates the fuzzy



6

Fig. 3. Examples of selecting (main) overlapping parts of point sets, where
each black “+” denotes a fuzzy cluster center. (a.1)-(b.3) show the selection
process with NC = 100, and (c.1)-(c.3) show different selected results of the
same point sets with different NC , where µth = 1/

√
NC .

Algorithm 2: FuzzyQA
Input: P and the results of FuzzyGReg (C, Θ, and

fuzzy memberships µck
(Tpij)).

Output: Θ (updated if necessary) to align P .
1 Select µth (can be 1/

√
NC) and dub (can be 0.015) .

2 i← 1.
3 while i ≤ NP − 1 do
4 Based on the fuzzy memberships of the points of

TPi and TPi+1, select Ci(i+1) from C.
5 Based on Ci(i+1) and µth, select T P̂i and T P̂i+1.
6 Calculate F ik, F (i+1)k, and di(i+1)(k) for each ck

in Ci(i+1) using (10) and (11).
7 Calculate di(i+1) by (12).
8 if di(i+1) > dub then
9 Re-align Pi and Pi+1 by FuzzyGReg, and then

update Θ accordingly.
10 i← i+ 1.

cluster-based spatial properties of the overlapping parts; Then,
the registration quality is assessed based on the similarity
degrees of the spatial properties. If the spatial properties are
diverse, FuzzyGReg is applied to re-align Pi and Pi+1.

To derive the overlapping regions of two consecutive point
sets in T (P,Θ), we design an approach based on the fuzzy
memberships calculated in the last iteration of FuzzyGReg as
follows. For TPi, we assign each of its points to the fuzzy
cluster in which the point has the largest fuzzy membership.
Then, we know the number of points Tpij in each of the
NC fuzzy clusters and the average value of the NC numbers.
Next, we pick out the fuzzy clusters with the points Tpij more
than the average number and denote the centers of these fuzzy
clusters as Ci (Ci ⊂ C). Given two consecutive point sets
TPi and TPi+1, we have Ci(i+1) = Ci∩Ci+1. In each of the
fuzzy clusters centered at Ci(i+1), the points of both TPi and
TPi+1 are more than their associated average numbers. We set
a threshold value of fuzzy memberships, denoted as µth, to
define the main areas of the fuzzy clusters centered at Ci(i+1);

and then we select the points of TPi and TPi+1 lying in
these main areas, where the points have the fuzzy memberships
greater than µth in at least one of the fuzzy clusters centered
at Ci(i+1). The selected points, denoted as T P̂i and T P̂i+1

(T P̂i ⊂ TPi, T P̂i+1 ⊂ TPi+1), are considered as the (main)
overlapping regions of TPi and TPi+1.

The appropriate value of µth varies with different NC . Since
the sum of the NC fuzzy memberships of each point is 1, when
a point is considered to be lying in the main area of a certain
fuzzy cluster, its fuzzy membership in this fuzzy cluster should
be at least greater than 1/NC . However, if we set µth = 1/NC ,
this threshold value is not high enough to define the main
areas of fuzzy clusters since a point far away from all the
fuzzy cluster centers may have a certain fuzzy membership
slightly greater than 1/NC . Therefore, µth should be greater
than 1/NC . An empirical value is µth = 1/

√
NC . As the

examples shown in Fig. 3, using µth = 1/
√
NC provides

satisfactory results in selecting overlapping points and selects
similar overlapping regions when NC changes.

Next, we calculate the fuzzy cluster-based spatial properties
of the selected overlapping regions. For each of the fuzzy
clusters centered at Ci(i+1), based on the points T p̂ij of T P̂i

and their fuzzy memberships, µck
(T p̂ij), calculated in the

last iteration of FuzzyGReg, a fuzzy covariance matrix can
be obtained by the following function [46]:

F ik =

∑NP̂i
j=1 µck

(T p̂ij)
m · (T p̂ij − ck) · (T p̂ij − ck)

T∑NP̂i
j=1 µck

(T p̂ij)
m

(10)
where NP̂i

is the number of points in T P̂i. The fuzzy
covariance matrix F ik indicates the orientation and shape
information of the points T p̂ij around the center ck. By using
the way in (10), we can obtain another fuzzy covariance
matrix, F (i+1)k, for ck based on the points T p̂(i+1)j of
T P̂i+1. If TPi and TPi+1 are aligned, T P̂i and T P̂i+1 will
have the same or similar properties in terms of orientation
and shape around each element of Ci(i+1). Consequently,
F ik and F (i+1)k will be close to each other. We use the
following covariance matrix distance function [47] to measure
the similarity between F ik and F (i+1)k:

di(i+1)(k) = 1−
trace(F ik · F (i+1)k)

∥F ik∥f · ∥F (i+1)k∥f
(11)

where ∥ · ∥f is the Frobenius norm. di(i+1)(k) ∈ [0, 1] is zero
if F ik and F (i+1)k are equal (up to a scaling factor) and one
if the two matrices are different to a maximum extent [47].
With (10) and (11), we can obtain di(i+1)(k) of each element
ck of Ci(i+1) based on T P̂i and T P̂i+1. Then, we can have
the average value, di(i+1), by the following:

di(i+1) =

∑NCi(i+1)

k=1 di(i+1)(k)

NCi(i+1)

(12)

where NCi(i+1)
denotes the number of elements in Ci(i+1).

Based on di(i+1), we design the following method:
Registration quality assessment and local re-alignment.

Given the group-wise registration results of FuzzyGReg, for
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Fig. 4. An example of applying FuzzyQA to three scans P1 (yellow), P2

(blue), and P3 (red), where NC = 200, the fuzzy cluster centers are denoted
by black “+”, µth = 0.0707, and dub = 0.015. (a) shows the misaligned
result. (b) shows TP1, TP2, and C. (c) shows the selected overlapping parts,
including T P̂1, T P̂2, and C12, where d12 = 0.0085. (d) shows that TP1

and TP2 are regarded as aligned since d12 < dub. (e) shows TP2, TP3

and C. (f) shows the selected overlapping parts, including T P̂2, T P̂3, and
C23, where d23 = 0.0512. (g) shows that P2 and P3 are re-aligned since
d23 > dub. (h) shows the final result, where the three point sets are aligned.

any two consecutive point sets TPi and TPi+1 (1 ≤ i ≤
NP − 1), they are considered as aligned if they satisfy:

di(i+1) ≤ dub (13)

where the upper bound dub is a small positive number. If TPi

and TPi+1 do not satisfy (13), FuzzyGReg is applied to Pi

and Pi+1 to derive new θi and θi+1 for a local re-alignment,
and then Θ is updated accordingly.

The above process of FuzzyQA is summarized in Algorithm
2, and an example is illustrated in Fig. 4. If the upper bound
dub is chosen to be a relatively large value, FuzzyQA may
consider an incorrect result as a correct alignment (false
positive); and if dub is chosen to be a too small value,
FuzzyQA may treat a correct result as misalignment, and
then a re-alignment is performed. The latter case takes extra
costs due to the unnecessary re-alignment but will not affect
registration accuracy. Thus, it would be better to choose a
smaller dub. The value of dub can be set between [0.01, 0.015].
The example shown in Fig. 4 uses dub = 0.015.

C. Discussion

In this discussion, first, we describe the advantages of the
proposed method. Then, we present some implementation
strategies for our method to attain better registration perfor-
mance in terms of efficiency and practicality.

Comparisons with related methods. The proposed method
has several advantages compared to the existing group-
wise registration methods. Unlike the multiple pair-wise
registration-based methods [18]–[23], FuzzyGReg treats all
the point sets on an equal footing to give an unbiased result.
Different from the cycle graph-based and motion averaging-
based methods [24]–[28], FuzzyGReg considers all the point
sets to be generated from a model of fuzzy clusters, which
implicitly imposes a loop constraint. Thus, it does not need
to predefine closed loops of point sets. Unlike the true
correspondence-based and deep neural network-based methods

[34]–[36], FuzzyGReg is a true-correspondence-free method,
and it neither needs lengthy training phases nor suffers from
the generalization issue. Regarding the joint group-wise regis-
trations, compared with JPR [33], FuzzyGReg has much fewer
open parameters. Besides, it does not include normals of points
and thus is more robust against noises. Compared with the
joint probabilistic methods [30]–[32] where each probability
component has a series of parameters (mean, variance, mixing
proportion, etc.) needing to be calculated, FuzzyGReg is based
on fuzzy clusters that are defined by fuzzy cluster centers
only. Besides, no expensive operations, like exponentials, are
involved in the calculation of FuzzyGReg. Thus, the proposed
method has lower computational complexity.

In addition, FuzzyGReg has FuzzyQA to automatically de-
tect misalignment and improve registration accuracy. FuzzyQA
is performed based on the results of FuzzyGReg and takes
low costs in time and computation. Unlike the CorAl in
[17], FuzzyQA does not require a pre-training phase to learn
parameters. Different from the certifiable algorithm in [6],
FuzzyQA does not rely on true correspondences of point sets.
Compared with the fuzzy cluster-based pair-wise assessment in
[15] that is used to give a coarse registration result, FuzzyQA
is used to check whether the result is a precise alignment
and can work without knowing the non-overlapping ratios of
point sets. Compared with the uncertainty quantification for
group-wise registration in [33] based on the assumption of
knowing part of ground truth correspondences, FuzzyQA does
not involve impractical assumptions.

The metric of FuzzyGReg in (4) has a similar expression to
that of the fuzzy cluster-based pair-wise registration [15], but
there are essential differences between the two methods. In
the fuzzy cluster-based pair-wise registration [15], the fuzzy
cluster centers of one point set, obtained by applying FCM to
this point set, are fixed as the reference during the registration
process. Then, the pair-wise registration metric, constructed
based on these reference centers, is minimized to obtain
the transformation that moves the other point set to fit the
reference centers and achieve the alignment. When the two
point sets partially overlap each other, the pair-wise method
[15] may need to know the non-overlapping ratio such that
it can perform a trimming on the moved point set to obtain
an accurate result. In FuzzyGReg, the fuzzy cluster centers in
the metric J(T (P,Θ),C) describe all the point sets instead
of one point set, and C is iteratively updated rather than fixed
during the registration process, as shown in Fig. 2. Besides,
FuzzyGReg does not need point trimming.

Regarding the computational complexity, the fuzzy cluster-
based pair-wise method [15] is applied in a coarse-to-fine
fashion, in which the fine registration is based on all point-
to-point distances (point sets may be down-sampled in this
phase); while FuzzyGReg is based on all point-to-center
distances. Consequently, to align two point sets with NP1

and
NP2 points, respectively, the fine registration of the pair-wise
method [15] takes O(NP1 ·NP2) operations; while FuzzyGReg
using NC fuzzy clusters takes O(NC · NP1

+ NC · NP2
)

operations. To align a group of point sets P = {Pi}NP
i=1, when

the pair-wise method [15] is applied to align and combine
multiple point set pairs sequentially, like Fig. 1(b), the fine reg-
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Algorithm 3: The coarse-to-fine registration strategy
Input: P .
Output: Θ to align P .

1 Apply FuzzyGReg with a relatively small NC to P to
obtain a result Θ for a coarse alignment.

2 Apply FuzzyGReg with a relatively large NC to the
coarse result T (P,Θ) to obtain a refined Θ.

3 Apply FuzzyQA to the refined result of FuzzyGReg to
update Θ if necessary.

Algorithm 4: The local-to-global registration strategy
Input: P .
Output: Θ to align P .

1 Split P into several sequential subgroups, and every
two consecutive subgroups share a common point set.

2 Apply the coarse-to-fine strategy in Algorithm 3 to
align each subgroup and link all the aligned
subgroups together based on the transformations of
the common point sets to obtain a result Θ for P .

3 Apply FuzzyGReg with a relatively large NC to the
linked result T (P,Θ) to obtain a refined Θ.

istrations of the pair-wise method need O(
∑NP

i=2 NPi−1 ·NPi)
operations; while FuzzyGReg using NC fuzzy clusters takes
O(NC ·

∑NP

i=1 NPi
) operations. Usually, NC is much smaller

than the point number NPi
of each point set. Therefore, the

computational cost of FuzzyGReg can be significantly lower
than that of the pair-wise method [15].

Implementation strategies. There is a trade-off issue in
FuzzyGReg between accuracy and cost. When NC is a rela-
tively small number (e.g., dozens), FuzzyGReg takes low time
and computational costs but often gives a coarse alignment
only; When NC is a relatively large number (e.g., hundreds
or thousands), FuzzyGReg can achieve a precise alignment
but requires relatively high costs in time and computation.
To relieve this issue, similar to the pair-wise method in [15],
the proposed method can also be implemented in a coarse-
to-fine fashion as follows: First, FuzzyGReg is applied with a
relatively small NC to obtain a coarse result; then, FuzzyGReg
is applied again with a relatively large NC to refine the coarse
result; finally, FuzzyQA is applied to the refined result. With
this fashion, a coarse alignment can be obtained fast to pose
a good initialization for the fine registration; then, the fine
registration can converge to the precise alignment with low
costs. This coarse-to-fine strategy is described in Algorithm 3.

The selection of NC depends on the properties of the given
point sets, such as the overlapping degrees and the number
of point sets (NP ). NC can be a smaller/greater number
when the point sets have relatively high/low overlapping
degrees; and NC can increase/decrease accordingly when NP

increases/decreases. There is no explicit function to choose
NC that can guarantee an accurate alignment for a group
of point sets. Nevertheless, when FuzzyGReg is applied in
the coarse-to-fine fashion to register two point sets, like the
local re-alignment in FuzzyQA, we can specify the following:

Fig. 5. Examples of Algorithms 3 and 4. The local-to-global strategy is
applied to register a group containing seven scans, whose initial poses are
shown in the top left sub-figure. This group is split into three subgroups,
and every two consecutive subgroups share a common scan. The coarse-to-
fine strategy is applied to align each subgroup, and the process of aligning
subgroup 1 is shown in the top right sub-figures. The three aligned subgroups
are linked together based on the poses of the common scans to obtain the local
registration result. Then, FuzzyGReg with a relatively large NC is applied
to refine the local result and give the final result. The enlarged parts of the
local and final results show that the global refinement increases the alignment
accuracy.

NC can be dozens (e.g., 60) in the coarse registration and
can be a few hundred (e.g., 200) in the fine registration.
Besides, when NC is a smaller/greater number, the iteration
numbers NItr can be increased/decreased accordingly, such
as using NItr = 100 and NItr = 80 in the coarse and
fine registrations, respectively. Usually, this selection allows
FuzzyGReg to work well in the local re-alignments under
Assumption 1. Consequently, even if FuzzyGReg does not give
the optimal performance in aligning multiple point sets, we can
have a satisfactory result after applying FuzzyQA.

Given a relatively large number of scans collected by a
depth sensor moving in a relatively large environment (the
origin of the coordinate frame of each scan is the sensor),
even though the neighboring scans satisfy Assumption 1, the
non-neighboring scans collected at different places of the
environment may not have overlaps. If all these scans are
directly put in one coordinate frame with zero motions as the
initial Θ, FuzzyGReg usually cannot correctly align them. In
this case, the proposed method can be implemented in a local-
to-global fashion as follows: First, P is split into a number
of sequential subgroups, where each subgroup contains a
relatively small number of scans and every two consecutive
subgroups share a common scan (the last scan in one subgroup
is the first scan in the next subgroup). Next, in the local
phase, the coarse-to-fine strategy in Algorithm 3 is applied to
register each subgroup with zero motions as the initial Θ. In
this case, FuzzyGReg can generally achieve correct alignments
owing to the small number of scans in each subgroup. Even if
FuzzyGReg does not align some scans, FuzzyQA can detect
the local misalignment and re-align the scans. Since every two
consecutive subgroups share a common scan, we can link all
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Fig. 6. Results of Test 1, where JRMPC [30], EMPMR [32], FuzzyPair [15], and FuzzyGReg are applied to register three point set pairs selected from [48].
The angle difference of an initial pose means the angle of P2 (blue) rotated about z-axis to deviate from its alignment with P1 (yellow) for creating this
initial pose. For the aligned Pair 1, the overlapping points takes 73.8% of P1 and 68.7% of P2, where NP1

= 2440 and NP2
= 2254. For the aligned Pair

2, the overlapping points takes 52.2% of P1 and 34.4% of P2, where NP1 = 1578 and NP2 = 2635. For the aligned Pair 3, the overlapping points takes
22.8% of P1 and 45.5% of P2, where NP1

= 4237 and NP2
= 1778.

Fig. 7. Results of Test 2, where JRMPC [30], EMPMR [32], TEASER++ [6], and FuzzyGReg are applied to register two groups of point sets selected from
[48]. Each group contains three scans. In the first group (in the first row), each NPi

is about 3300 points; the overlapping ratios of the neighboring scans
are about 90%; the initial angle differences of every two consecutive scans are about 50◦. In the second group (in the second row), each NPi

is about 6200
points; the overlapping ratios of the neighboring scans are 62% and 85%, and the initial angle differences of every two consecutive scans are about 30◦.

the aligned subgroups based on the transformations of their
common scans. Consequently, all the scans can be moved
to the poses close to the ground truths without needing to
know the sensor positions collecting these scans. Finally, in
the global phase, FuzzyGReg with a relatively large NC (e.g.,
thousands) is applied to all the moved point sets for further
refinement. In this global refinement, NItr can be a relatively
small number (e.g., 30) since the point sets transformed and
linked in the local phase are generally close to being aligned.
This local-to-global strategy is described in Algorithm 4.

Some examples of the two strategies are shown in Fig. 5.

V. EXPERIMENT

In this section, we use different real-world scans to test
and compare the proposed method with several state-of-the-
art registration approaches, including JRMPC [30], EMPMR
[32], the fuzzy cluster-based pair-wise method [15] (called
“FuzzyPair” for simplicity), TEASER++ [6], and JPR [33].

For JRMPC, the number of components of its GMM will be
specified in each test, and the other parameters use the default
setting, where the iteration number is 100. For EMPMR, the
parameters are chosen as its default setting, where the iteration
number is also 100. For FuzzyPair, it is applied to sequentially
align every two consecutive point sets and combine the results.
To give fair comparisons, FuzzyPair uses local optimizations
only in its coarse-to-fine registration process, where the fuzzy
cluster number in the coarse registration is 100, and no
point down-sampling is applied in the fine registration. For
TEASER++, which is a true correspondence-based pair-wise
registration method, it is also applied in the sequential align-
and-combine fashion, where the true correspondences are built
using the FPFH features [37]. For JPR, there are a number of
parameters needing to be manually selected, such as different
weights and iteration numbers. We use its example setting for
the weights and let the iteration number be 100.

For simplicity, we name the coarse-to-fine strategy in Al-
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gorithm 3 as “FuzzyGReg+QA(C2F)” and the local-to-global
strategy in Algorithm 4 as “FuzzyGReg+QA(L2G)”. The
parameters of the proposed method are chosen as follows: NC

is specified in each test; in FuzzyGReg+QA(C2F), NItr = 100
and NItr = 80 for the coarse and fine registrations, respec-
tively; in FuzzyGReg+QA(L2G), NItr = 30 for the global
refinement; in FuzzyQA, µth = 1/

√
NC and dub = 0.015;

in the local re-alignment of FuzzyQA, FuzzyGReg is applied
in the coarse-to-fine fashion to register two consecutive point
sets, where NC = 60 and NC = 200 are used in the coarse
and fine registrations, respectively.

Given a transformation θi = (Ri, ti), the rotation and
translation errors are defined as ϵRi

= ∥Ri − R
(gt)
i ∥f and

ϵti = ∥ti − t
(gt)
i ∥, respectively, where θ

(gt)
i = (R

(gt)
i , t

(gt)
i )

denotes the ground truth of θi. For a group of point sets P ,
we express all the transformations in terms of the first point
set in P , and thus only the results of the second to the last
point sets are presented. We also use average errors to evaluate
the performance as follows: ϵR =

∑NP

i=2 ϵRi/(NP − 1) and
ϵt =

∑NP

i=2 ϵti/(NP − 1). All the tests are conducted on a
computer with the Intel Core i9-10885H CPU.

A. Tests of sensitivities to overlaps and initial poses

This subsection presents Tests 1 and 2 that evaluate the sen-
sitivities of FuzzyGReg with respect to different overlapping
ratios and initial poses of point sets. In these tests, FuzzyGReg
is performed in the coarse-to-fine fashion described in Algo-
rithm 3. Then, FuzzyQA only calculates di(i+1) of the results
of FuzzyGReg and does not re-align point sets.

Test 1 is based on point set pairs. We select three pairs of
point sets from the ETH data set [48] to evaluate and compare
FuzzyGReg with JRMPC [30], EMPMR [32], and FuzzyPair
[15]. The selected point set pairs are shown in Fig. 6 with their

Fig. 8. Results of Test 3, where JRMPC [30], EMPMR [32], JPR [33],
FuzzyPair [15], and FuzzyGReg+QA(C2F) are applied to register 10 groups
of point sets selected from [49] and [50]. Each of Groups 1-5 contains 20
point sets, and each of Groups 6-10 contains 15 point sets. The number of
points in each of these point sets ranges from 1200 to 3300.

point numbers and overlapping ratios stated in the caption.
For each pair, we manually rotate one point set about z-axis
by different angles to deviate it from its alignment with the
other set such that a series of misaligned initial poses can
be created. We then apply all the registration methods to the
point sets with these poses. In each test case, JRMPC uses
300 components; FuzzyPair uses no trimming for registering
Pair 1 and 50% trimming for registering Pairs 2 and 3; and
FuzzyGReg is performed twice with different NC as follows:
FuzzyGReg-I uses 60 and 200 fuzzy clusters in the coarse
and fine registrations, respectively; and FuzzyGReg-II uses 80
and 300 fuzzy clusters in the coarse and fine registrations,
respectively. The results of Test 1 are shown in Fig. 6.

For Pair 1 with the largest overlapping ratio, JRMPC works
when the initial angles are within [0, 15◦], which is a relatively
narrow convergence basin; EMPMR takes the lowest time
costs but also gives a narrow convergence basin where the
initial angles are within [−5◦, 5◦]; FuzzyPair without trimming
has the broadest convergence range owing to the sufficient
overlaps; FuzzyGReg provides the second broadest conver-
gence range and needs lower costs than JRMPC and FuzzyPair
do. By using more fuzzy clusters, FuzzyGReg-II gives more
accurate results while taking more time than FuzzyGReg-I
does. Besides, within the convergence basin, FuzzyGReg gives
satisfactory transformations, where d12 < dub. For Pairs 2 and
3 with small overlaps (around or below 50%), JRMPC cannot
align them at all; EMPMR only works when the initial angles
are around 0; FuzzyPair needs trimming in these cases and
gives relatively small convergence ranges. FuzzyGReg has the
broadest convergence basin, and its time costs are still lower
than that of JRMPC and FuzzyPair. Also, both accuracy and
costs of FuzzyGReg-II are higher than that of FuzzyGReg-I.
Note that FuzzyGReg does not give optimal results for Pairs
2 and 3 due to the small overlapping ratios, and d12 indicates
this fact since its values are greater than dub.

Test 2 is based on two groups of point sets still selected
from the ETH data set [48], where each group contains three
scans. We apply JRMPC [30], EMPMR [32], TEASER++ [6],
and FuzzyGReg to align the two groups. JRMPC uses 300
components; and FuzzyGReg uses 80 and 300 fuzzy clusters
in the coarse and fine registrations, respectively. The results
are shown in Fig. 7. For the first group with relatively high
overlapping ratios (about 90%) and relatively large initial
angle differences (about 50◦), JRMPC can align the point
sets while EMPMR cannot; TEASER++ requires a low time
cost but leaves a small misalignment; FuzzyGReg achieves the
highest accuracy and takes less time than JRMPC does. For the
second group with lower overlapping ratios (62% and 85%)
and smaller initial angle differences (about 30◦), JRMPC and
EMPMR cannot work; TEASER++ leaves a relatively large
translation error due to the repeated structures in the scans (as
shown in the enlarged part in Fig. 7); FuzzyGReg aligns the
point sets, and the values of di(i+1) are below dub.

From Tests 1 and 2, unlike the pair-wise methods FuzzyPair
and TEASER++, FuzzyGReg neither needs to trim point sets
nor needs to know true correspondences. Besides, FuzzyGReg
can be fast than FuzzyPair and can provide more accurate
alignments than TEASER++ does. When compared with the
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Fig. 9. Results of Groups 3, 6, and 9 in Test 3. For Groups 3 and 6 shown in the first and second rows, respectively, FuzzyGReg gives correct alignments
in the group-wise registration; while for Group 9 shown in the third row, FuzzyGReg does not well align some point sets in the group-wise registration, and
FuzzyQA detects and re-aligns the point sets to provide the correct final result. The re-alignments of FuzzyQA for Group 9 are shown in Fig. 10.

Fig. 10. Re-alignments of FuzzyQA for Group 9 in Test 3. From left to right, in each of columns 1-5, the top sub-figure shows two neighboring point
sets TPi (blue) and TPi+1 (orange) that are not well aligned by FuzzyGReg in the group-wise registration; the middle sub-figure shows the selected main
overlapping parts, including T P̂i (blue), T P̂i+1 (orange), and Ci(i+1) (black “+”), where di(i+1) > dub; the bottom sub-figure shows the re-aligned Pi

and Pi+1. In the rightmost column, the top sub-figure shows all the point sets transformed by FuzzyGReg in the group-wise registration, which are not well
aligned; and the bottom sub-figure shows the final poses of the point sets after performing FuzzyQA, which are well aligned.

group-wise methods JRMPC and EMPMR, FuzzyGReg can be
more robust against small overlapping ratios and poor initial
poses. Besides, the time costs of FuzzyGReg are lower than
that of JRMPC. The computational complexity of FuzzyGReg
can be lower than that of EMPMR since FuzzyGReg based on
fuzzy clusters needs to calculate fewer parameters compared
to EMPMR based on Gaussian distributions. The reason that
EMPMR takes low time costs is that EMPMR traps into local
optima quickly. When the number of fuzzy clusters increases,
FuzzyGReg can achieve higher accuracy but also requires
more costs in time and computation. When the initial pose
differences are large, or the overlapping ratios of point sets
are too small (e.g., below 50%), FuzzyGReg usually cannot
provide the optimal alignment or even fails, while FuzzyQA
based on (13) can detect the misaligned results.

B. Tests on relatively small groups of point sets
This subsection presents Tests 3 and 4 that are based on

relatively small groups of point sets (NP ≤ 20) to evaluate
the performance of FuzzyGReg+QA(C2F) in Algorithm 3.

Test 3 is based on 10 groups of point sets selected from
the SUN3D data set [49] and the TUM data set [50],
where each of the first 5 groups contains 20 point sets, and
each of the rest 5 groups contains 15 point sets. We apply
JRMPC [30], EMPMR [32], JPR [33], FuzzyPair [15], and
FuzzyGReg+QA(C2F) to register the 10 groups. For each
group, JRMPC uses 500 components; FuzzyPair does not use
trimming; and FuzzyGReg+QA(C2F) is performed twice with
different NC as follows: FuzzyGReg+QA(C2F)-I uses 100
and 400 fuzzy clusters in the coarse and fine registrations,
respectively; FuzzyGReg+QA(C2F)-II uses 100 and 500 fuzzy
clusters in the coarse and fine registrations, respectively. The
results of this test are presented in Fig. 8. JRMPC achieves
small errors for Group 3 while leaving relatively large errors
or erroneous results for the other 9 groups; EMPMR does
not work in all the 10 groups; JPR provides relatively small
errors in rotation for Groups 1, 2, 4, and 5 and relatively
small errors in translation for Groups 1, 2, and 3; FuzzyPair,
without trimming, works for all the 10 groups and achieves
the smallest errors in rotation or translation for some groups,
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but it requires relatively high time costs for all the groups;
FuzzyGReg+QA(C2F) provides satisfactory alignments for
all the 10 groups and attains the highest accuracy in both
rotation and translation with the lowest time cost for a large
portion of these groups. In addition, with more fuzzy clusters,
FuzzyGReg+QA(C2F)-II achieves smaller errors while taking
higher time costs than FuzzyGReg+QA(C2F)-I does.

We select Groups 3, 6, and 9 of Test 3 to present more
details. The results of all the methods for the three groups
are shown in Fig. 9. For Group 3, JRMPC, FuzzyPair, and the
proposed method (FuzzyGReg+QA(C2F)-II) align the 20 point
sets while EMPMR and JPR leave relatively large errors, and
the proposed method achieves the highest accuracy. For Group
6, FuzzyPair and the proposed method align the 15 point sets
while the others do not, and the proposed method still gives
the smallest errors. For Group 9, same as that for Group 6,
FuzzyPair and the proposed method work while the others
fail, and the errors of FuzzyPair and the proposed method
are comparable. Note that for Groups 3 and 6, FuzzyGReg
provides correct results in the group-wise registration, and
FuzzyQA does not apply any re-alignment; while for Group 9,
FuzzyGReg does not well align some point sets in the group-
wise registration, and FuzzyQA detects and corrects the local
misalignment, as shown in Fig. 10.

Test 4 is based on a group containing 10 point sets se-
lected from the TUM data set [50]. We apply FuzzyPair
without trimming and FuzzyGReg+QA(C2F) to align these
point sets, where FuzzyGReg uses 100 and 300 fuzzy clusters
in the coarse and fine registrations, respectively. The results
are shown in Fig. 11. In this group, some point sets have
relatively small overlaps. FuzzyPair leaves a misaligned part
due to the adverse effects of the non-overlapping points, while
FuzzyGReg+QA(C2F) achieves satisfactory results and takes
much lower time costs than FuzzyPair does.

From Tests 3 and 4, compared with the group-wise
methods JRMPC, EMPMR, and JPR, the proposed Fuzzy-
GReg+QA(C2F) provides more satisfactory performances. In
some cases, like Groups 3 and 6 in Test 3, FuzzyGReg can
well align all the point sets, and FuzzyQA can know the fact
and does not apply re-alignments. In some cases, like Group 9
in Test 3 and the group in Test 4, although FuzzyGReg leaves
some misaligned parts, FuzzyQA can detect and re-align these
misaligned parts. Note that JPR provides the covariance of its
output for uncertainty quantification. However, the covariance
is used under the condition that the point sets are aligned or
are close to being aligned. Besides, it is used to assist user
intervention in 3D reconstruction [33]. Thus, JPR cannot per-
ceive misalignment based on the covariance alone. In contrast,
FuzzyQA gives accurate registration quality assessments and
improves registration accuracy in the absence of ground truth
and user intervention, offering a higher level of automation.
In addition, unlike JPR, the proposed method has much fewer
parameters needing to be manually determined and thus is
more convenient to be implemented. When compared with
FuzzyPair that may not work well for partial overlapping
point sets without trimming, the proposed method is more
robust against the non-overlapping parts and can provide more
accurate results with lower time costs.

Fig. 11. Results of Test 4, where FuzzyPair [15] and FuzzyGReg+QA(C2F)
are applied to register a group of point sets with NP = 10 selected from
[50]. In this group, each NPi

is around 2700. The results of FuzzyPair (no
trimming) are ϵR = 0.1132, ϵt = 0.1680, and time = 45.53s. The green
ellipse marks the misaligned part. The results of FuzzyGReg+QA(C2F) are
ϵR = 0.0684, ϵt = 0.0856, and time = 15.72s, where FuzzyGReg takes
8.93 s and FuzzyQA takes 6.79 s.

C. Tests on relatively large groups of point sets

This subsection presents Tests 5 and 6 that are based on
relatively large groups of point sets (NP ≥ 200) to evaluate
the performance of FuzzyGReg+QA(L2G) in Algorithm 4.

Test 5 is based on a group of point sets with NP = 200
selected from the KITTI data set [51]. We apply JRMPC [30],
FuzzyPair [15], and FuzzyGReg+QA(L2G) to register these
point sets. The group is split into 50 sequential subgroups,
each of which contains 5 point sets (every two consecutive
subgroups share a common point set, and the last subgroup has
4 point sets only). In the local phase, FuzzyGReg+QA(C2F)
is applied to register each subgroup, where FuzzyGReg uses
70 and 150 fuzzy clusters in the coarse and fine registrations,
respectively; and in the global phase, FuzzyGReg uses 1500
fuzzy clusters in the refinement. For fair comparisons, JRMPC
is also performed in the local-to-global fashion that first
registers each of the subgroups, then links the subgroups, and
finally globally refines all the poses. In the local phase, JRMPC
uses 150 components to register each subgroup; and in the
global phase, JRMPC uses 1500 components in the refinement.
FuzzyPair is performed with the trimming ratios fixed as 0.2.
The results are presented in Fig. 12 and Table I.

In Test 5, JRMPC and FuzzyPair do not align the point sets.
JRMPC gives incorrect results in registering some subgroups
and thus leads to an erroneous final result. FuzzyPair using
fixed trimming ratio cannot well handle the point sets with
different overlapping ratios and suffers from cumulative error.
In addition, the quality assessment of FuzzyPair is used to
select coarse alignments rather than precise alignments and
may not give valid results when the trimming ratio is smaller
than the true value [15]. In contrast, FuzzyGReg+QA(L2G)
gives satisfactory results with the lowest values in both errors
and time costs. Note that when these NP = 200 point sets are
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Fig. 12. Results of Test 5, where JRMPC [30], FuzzyPair [15], and FuzzyGReg+QA(L2G) are applied to register a group of point sets with NP = 200
selected from [51]. In this group, each NPi

is about 2100.

Fig. 13. Results of Test 6, where FuzzyGReg+QA(L2G) is applied to register
two groups of point sets selected from [51]. The results of Group 1 are shown
in the first row, where NP = 300 and NPi

ranges from 900 to 2200. The
results of Group 2 are shown in the second row, where NP = 400 and NPi

ranges from 800 to 3100.

TABLE I
ERRORS AND TIME COSTS OF THE METHODS IN TEST 5

ϵR ϵt time
JRMPC 2.2207 163.3611 230.08 s

FuzzyPair 0.3435 19.9442 396.72 s
FuzzyGReg+QA(L2G) 0.0436 2.3170 165.20 s

aligned, they form a closed loop. From the sub-figure showing
trajectories in Fig. 12, after locally registering and linking
subgroups (FuzzyGReg+QA(local)), the end of the trajectory
(green) is about 2 meters away from the ground truth (red).
Then, after performing the global refinement to obtain the
final result of FuzzyGReg+QA(L2G), the end of the trajectory
(blue) is much closer to the ground truth (red). The reason for
this fact is that the local registration of the proposed method
has roughly drawn the closed loop, where the point sets at the
loop closure place, although not well aligned, are moved to
be close to one another. Then, based on these rough results,
the global refinement can move the point sets further toward
the exact alignment.

Test 6 is based on two groups of point sets still selected
from [51]. We apply FuzzyGReg+QA(L2G) with different NC

TABLE II
ERRORS AND TIME COSTS OF THE PROPOSED METHOD IN TEST 6

FuzzyGReg Group 1 Group 2
+QA(L2G) ϵR ϵt time ϵR ϵt time
Local phase 0.0591 3.11 91.0 s 0.0721 6.06 179.6 s
Global phase 0.0396 1.83 58.9 s 0.0633 4.25 96.7 s

to register the two groups. Group 1 with NP = 300 is split
into 60 subgroups, each of which contains 6 point sets (the
last subgroup contains 5 point sets only); in the local phase,
FuzzyGReg+QA(C2F) uses 70 and 170 fuzzy clusters in the
coarse and fine registrations, respectively; and in the global re-
finement, FuzzyGReg uses 1000 fuzzy clusters. Group 2 with
NP = 400 is split into 57 subgroups, each of which contains
8 point sets; in the local phase, FuzzyGReg+QA(C2F) uses
70 and 200 fuzzy clusters in the coarse and fine registrations,
respectively; and in the global refinement, FuzzyGReg uses
1200 fuzzy clusters. The results are given in Fig. 13 and Table
II. Note that the initial poses of these two groups are similar
to that of the group in Fig. 12. Without the prior knowledge of
the sensor positions collecting the scans in the relatively large
scenes, the proposed method can move the scans to be close
to their actual poses, and the obtained trajectories are close to
the ground truth trajectories.

From Tests 5 and 6, FuzzyGReg+QA(L2G) works well
for the groups with relatively large numbers of point sets
and provides the alignments close to the ground truths. The
refinement in the global phase can improve the alignment
accuracy but also needs relatively high time costs, because
it takes O(

∑NP

i=1 NC ·NPi
) operations with a relatively large

NC . To reduce the costs, users can down-sample the point sets
appropriately in the global refinement phase.

VI. CONCLUSION

This study develops FuzzyGReg and FuzzyQA for group-
wise point set registration. Given a group of point sets,
FuzzyGReg creates a model of fuzzy clusters and equally
considers all the points as the elements of the fuzzy clusters.
Then, it applies a fuzzy clustering algorithm to identify the
parameters of the fuzzy clusters while jointly transforming all
the point sets to achieve an alignment. Based on the identified
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fuzzy clusters, FuzzyQA calculates the spatial properties of
the overlapping parts of every two consecutive point sets
and checks whether the point sets are aligned based on the
similarity degrees of the spatial properties. When a local
misalignment is detected, a local re-alignment is applied
to improve registration accuracy. For higher efficiency and
practicality, we develop a coarse-to-fine strategy and a local-
to-global strategy to perform FuzzyGReg and FuzzyQA. Com-
pared with the existing pair-wise registration methods, the
proposed method treats all the point sets on an equal footing to
avoid biased results. Compared with the state-of-the-art group-
wise registration methods, the proposed method is simpler in
calculation and is more convenient in implementation. In ad-
dition, the proposed method has a reliable quality assessment
method to detect and correct misalignment in the absence of
ground truth and user intervention, providing a higher level of
automation. The experiments utilize different real-world scans
to test and compare the proposed method with state-of-the-art
registration techniques. The experimental results demonstrate
the effectiveness of our method.
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