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Online Model Learning for Shape Control of Deformable Linear Objects

Yuxuan Yang, Johannes A. Stork, and Todor Stoyanov

Abstract— Traditional approaches to manipulating the state
of deformable linear objects (DLOs) — i.e., cables, ropes
— rely on model-based planning. However, constructing an
accurate dynamic model of a DLO is challenging due to the
complexity of interactions and a high number of degrees of
freedom. This renders the task of achieving a desired DLO
shape particularly difficult and motivates the use of model-free
alternatives, which while maintaining generality suffer from
a high sample complexity. In this paper, we bridge the gap
between these fundamentally different approaches and propose
a framework that learns dynamic models of DLOs through
trial-and-error interaction. Akin to model-based reinforcement
learning (RL), we interleave learning and exploration to solve a
3D shape control task for a DLO. Our approach requires only
a fraction of the interaction samples of the current state-of-the-
art model-free RL alternatives to achieve superior shape control
performance. Unlike offline model learning, our approach does
not require expert knowledge for data collection, retains the
ability to explore, and automatically selects relevant experience.

I. INTRODUCTION

Deformable linear objects (DLOs), such as cables, ropes,
hoses, sutures, etc., are widely used in industry and daily
life settings. This has led to a growing interest in deformable
linear object manipulation in the field of robotics [1]–[3], like
inserting and threading a needle [4], [5], surgical suturing
[6], [7], or controlling the shape of a rope [8]. Despite these
recent studies, deformable objects still pose a significant
challenge [2] compared to the better understood problems
arising in traditional rigid object manipulation. DLOs in
particular are a category of deformable objects with complex
dynamics in 3D space due to their twisting and bending
behavior. They can move in all three directions in space
and deform by bending and twisting due to external forces.
Modeling the dynamics of DLOs is still an open question in
robotics [2]. Consequently, this leads to difficulties in apply-
ing classical model-based control methods. These methods
assume precise DLO dynamics or kinematics models based
on expert knowledge in physics [9] or topology [7]. The
performance of these methods strongly relies on the accuracy
and efficiency of the proposed DLO models.

In contrast, learning-based methods are a promising alter-
native. Instead of designing an analytical model for DLOs’
dynamics, we can learn a data-driven model directly by
observing a manipulated DLO [10]–[13]. Data-driven models
based on neural networks are differentiable by default, which
makes them a good candidate for model predictive control
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Fig. 1. Illustration of our online model learning framework with model
predictive control.

(MPC) for manipulation tasks. One limitation is that a large
quantity of annotated data is needed for training, which is
not practical in many real-world applications. Data collection
experiments also need a proper design so the collected data
contains valuable information for learning. An effective and
efficient data collection experiment can be hard to design
and requires expert knowledge. Alternatively, we can learn
a manipulation policy directly by reinforcement learning
(RL) through a trial-and-error learning process. Despite
many recent advances in RL [14], model-free RL methods
usually require millions of interactions with the environment,
which can be impractical [15]. In contrast, model-based RL
methods generally have better sample-efficiency [16], but
face challenges when generalizing to high-dimensional state
spaces such as those occurring in the DLO shape control
tasks.

Previously, we demonstrated how to learn a DLO model
offline using pre-recorded data and how to use the learned
model in a model predictive controller (MPC) to achieve the
desired shapes [13]. A large amount of required data and
the data collection process design make related real-world
applications cumbersome. To address this issue, we present
an improved framework for sample-efficient online dynamics
model learning and shape control of a DLO through trial-
and-error interactions. Our framework is similar to the idea
of model-based RL, interleaving learning and exploration
in a shape control task, as shown in Fig. 1. In particular,
we continue using a neural network structure and state
representation proposed in our previous work [13] as the
model to approximate the dynamics of a DLO.

To demonstrate the effectiveness of the proposed frame-
work, we train and evaluate our method in simulation using
AGX Dynamics1, a commercial simulation physics engine
with specialized models for DLOs [17], [18]. We compare
our framework to a model-based RL algorithm PILCO [19]
and two model-free ones, Twin Delayed Deep Deterministic

1https://www.algoryx.se/agx-dynamics/



Policy Gradient (TD3) [20] and Soft Actor-Critic (SAC) [21].
TD3 trains a deterministic policy while SAC trains a stochas-
tic policy. We demonstrate that: (1) Our approach achieves
better sample efficiency than RL algorithms on both specific
and general tasks, and (2) compared to the offline method,
our approach is more sample efficient when solving a spe-
cific shape control task without the requirement of expert
knowledge for designing the data collection process.

II. RELATED WORK

A. Models for Manipulating DLOs

Modeling deformable linear object dynamics is still an
active research topic. Traditionally, analytical physics-based
models are used to simulate DLOs. Generally, models based
on finite element methods are used when high physical
accuracy is desired. If lower accuracy is permissible, mod-
els based on spring-mass systems are both simpler and
less computationally expensive [2]. In computer graphics,
position-based dynamics are widely used because they are
efficient and visually-plausible [22], [23]. However, both the
faster methods that trade physical accuracy for tractability
and physically accurate methods with high computational
complexity are ill-suited for control tasks.

Another solution to DLO manipulation is servo control,
which only calculates a local deformation model instead of
a full dynamics model. Zhu et al. [24] formulate a velocity
control law by using an online estimated local deformation
model. Their method does not guarantee asymptotic con-
trol stability because of under-actuation. Navarro-Alarcon et
al. [25], [26] continuously update the deformation Jacobian
matrix of a deformable object in real time by visual feedback.
In contrast, Lagneau et al. [27] iteratively update a Jacobian
matrix using weighted least-squares minimization with a
sliding window to achieve DLO manipulating by an adap-
tive model-free method. These methods require a Jacobian
matrix to establish a mapping between a shape description
and control inputs, which requires scenario-depended expert
knowledge. They also tend to be stuck in local minima while,
in contrast, our approach can get out of local minima due to
the learned dynamics model and MPC.

B. Data-Driven Models for DLO dynamics

Neural networks are an alternative to model object dynam-
ics [28]. Interaction networks (INs) combine neural networks
and compositional modeling to learn complex dynamics from
observed data [10]. In the context of DLOs, INs utilize
a graph network [29] to learn pair-wise local interactions
between different segments of a DLO. An issue in deploying
INs to simulate DLOs is propagating the effects of interaction
across object segments. This is because local information
is insufficient for modeling dynamics while effects among
distant segments are important but remain challenging to
predict [11]. Different means of interaction propagation [12],
[30], [31] have been introduced to address this issue. Nev-
ertheless, most of these methods are only verified on DLOs
in 2D space in simulation.

In our previous work [13], we integrate a recurrent model
into an IN model to leverage both compositional models
of DLO dynamics from INs and learning to propagate
interaction from the recurrent model. The forward prediction
performance of the proposed model is tested on DLOs in
3D space both in simulation and in the real world. We also
implement a model predictive controller to accomplish a
DLO shape control task in simulation based on the learned
data-driven model. However, to train an effective model, a
well-designed data collection process and a large number of
labeled data are needed, which poses challenges in real-world
applications. To address this issue, in this paper, we achieve
a sample-efficient online model learning for a DLO shape
control task through trial and error.

C. Reinforcement Learning for Manipulating DLOs

Recently, deep reinforcement learning algorithms, like
temporal difference learning [32], actor-critic methods [33],
[34], and policy gradients [15] have successfully been ap-
plied to complex policy learning in high-dimensional state
spaces. However, it is difficult to use these model-free
reinforcement learning (RL) algorithms in real-world sce-
narios because of the high demand for interaction sam-
ples. Compared to model-free counterparts, model-based
RL algorithms usually have better sample efficiency [16].
Thus, model-based RL algorithms perform better in some
robot control tasks both in simulations and in real-world
scenarios [19], [35]. However, these algorithms employ
function approximators such as Gaussian processes [19] and
Gaussian mixture models [36]. PILCO [19], for instance,
is a model-based policy search method that approximates
system dynamics by a Gaussian process. These function
approximators have limitations and do not perform as well
when the state space is high-dimensional. One similar work
uses PILCO to manipulate a DLO in 2-D space [37], while in
our case, manipulating a DLO in 3D space poses additional
challenges due to higher dimensions in both state and action
space and more complex nonlinear dynamics. Attempts have
been made to improve PILCO by replacing its parameterized
policy with model predictive control (MPC) [38] and by
replacing its Gaussian process module with neural network
models which feed into an MPC scheme [39]. Both of
these approaches have demonstrated better sample efficiency,
but only in simple tasks with a relatively low-dimensional
state space such as double pendulum and quadrupedal robot
control. In this paper, we take a similar approach but use
a specialized neural network model we proposed in our
previous work [13] which has the capacity to approximate
DLOs’ dynamics.

III. BACKGROUND

Reinforcement learning (RL) learns a policy that maxi-
mizes the sum of future rewards. An RL problem is usually
formalized as a Markov Decision Process. In a deterministic
system, at a time step t, an agent takes a certain action
at ∈ A at state st ∈ S . Then it transitions to a new state
st+1 with a reward rt = r(st,at). The transition follows



bi-LSTM

Fig. 2. Neural network structure for modeling a DLO. The vertices vi,t

correspond intersections between neighbor Cosserat rod segments. ai,t

represents the action applied on the vertices. fe is the relation-centric
network and fv is the object-centric network.

a dynamics function, f : S × A → S , which is usually
unknown. The agent with optimal policy will take actions
that maximize the discounted sum of future rewards, e.g.∑∞
t′=t γ

t′−t r(st′ ,at′), where γ ∈ (0, 1] is a discount factor.
In this work, we use a simple reward function for the DLO
shape control task, see Section V-B.

Model-based RL uses a dynamics model for prediction.
The dynamics model of the system is ŝt+1 = f̂θ(st,at),
where f̂θ is a dynamics function approximator which can be
parameterized models (neural networks) and non-parametric
models (Gaussian processes). Actions in a finite-horizon
discounted Markov decision process can be optimizated by
solving

At = (at, . . . ,at+H) (1)

= argmax
at,...,at+H

t+H∑
t′=t

γt
′−t r(ŝt′ ,at′) (2)

In this paper, we use model predictive control to com-
pensate for modeling errors. Therefore, after solving this
optimization problem at a time step, only the first action
at in the sequence will be executed. In the next time step,
the optimization problem is then solved again with the latest
state.

IV. ONLINE MODEL LEARNING
FOR DLO MANIPULATION

This section presents our online model learning (RL)
approach for DLO manipulation. In Section IV-A, we briefly
introduce the data-driven model for learning DLO dynamics.
Then, in Section IV-B, we explain the model predictive con-
trol used in the paper. Last, in Section IV-C, we summarize
our online model learning framework.

A. Data-driven Model for DLO Dynamics

We describe a DLO as a series of connected segments
based on an explicitly discretized Cosserat rod [6]. We use a
neural network structure proposed in our previous work [13]
with small modifications as a function approximator f̂θ in the
online model learning framework. The function approximator
can predict the future state, ŝt+1, given current state st and
current action at, i.e. ŝt+1 = f̂θ(st,at). Here, st contains
positions and orientations of the segments in a DLO.

Our data-driven model of DLO dynamics is based on
the Interaction Network (IN) method [10]. The IN method
assumes that the overall dynamics of the particle-based
system are made up of local interactions between related
particles. Therefore, it is a generic dynamics model for
particle-based systems represented by a directed graph, G =
(V, E). As shown in Fig. 2, the graph for a DLO is a chain
with vertices representing different segments of the DLO
connected by edges. The vertices, v ∈ V , represent the
particles. The edges e ∈ E represent their relations encoded
by eij = η (vi,ai,vj ,aj). ai is the external force applied on
vertex i. A simple formulation of η is directly concatenating
vi, ai, vj , and aj . A directed edge, eij , represents a relation
where vi is the receiver and vj the sender. Therefore the
dynamics model f̂θ based on the IN method maps a state

st = ({vi,t|vi ∈ V }, {eij,t|eij ∈ E}) (3)

with particle encodings vi,t and relation encodings eij,t at
time step t to the next state st+1 with particle encodings
vi,t+1 and relation encodings eij,t+1. This mapping can be
broken down into two components fe and fv . As seen in
Eq. (4), the mapping fe maps relation encodings to latent
feature space. A vertex can exist in different relations as
receivers, therefore we aggregate the features which belong
to the same receiver. In Eq. (5), fv maps aggregated fea-
tures, ki, and particle encodings to predict future particle
encodings.

ki =
∑

eij∈E
fe(eij,t−1) (4)

v̂i,t = fv(vi,t−1,ki) (5)

The mappings fe and fv are referred to as relation-centric
network and object-centric network, respectively, in [10].

For now, only local interactions are taken into account
at each time step while longer-reaching interactions which
occur in DLOs are difficult to learn. To address this issue,
a bidirectional long short-term memory (bi-LSTM) [40]
module is introduced. LSTM perfectly matches the linear
DLO structure when used spatially. We employ an LSTM
cell recurrently along the DLO based on the assumption
that all vertices in a DLO share identical dynamics. The
LSTM learns how the effects propagate along the DLO
from data without the requirement of setting and adjusting a
hyperparameter related to iteration times as in [12], [31].
In position-based dynamics of DLOs, the implementation
of a bilateral interleaving order to update the DLO state
improve the stability [22], [23]. Similarly, we implement a
bi-directional LSTM to simultaneously propagate the effects
in both directions.

The structure of the model is shown in Fig. 2. We
propagate the aggregated features ki of each vertex to all
the other vertices using an m-layer bi-directional LSTM,
fLSTM , along with two directions.

(hl
i, c

l
i) = fLSTM (ki,h

l
i−1, c

l
i−1) (6)

(hr
i , c

r
i ) = fLSTM (ki,h

r
i+1, c

r
i+1) (7)



where (hl
0, c

l
0) = fLSTM (k0,0,0) and (hr

N , c
r
N ) =

fLSTM (kN ,0,0), hi. The ci are the hidden state vectors
and the cell state vector in the LSTM with superscripts l
and r indicate the direction of propagation.

We design propagated features by directly concatenating
the last-layer hidden state vectors hl,m

i and hr ,m
i because it

is proven to be a better option than aggregated features [11].
The features which can contain effect information from all
vertices in the chain then serve as input to fv in Eq. (5).

For a more detailed explanation of the data-driven model,
we refer to our previous work [13].

B. Model Predictive Control

Given a model of DLO dynamics as described in the
previous section, we can rollout, that is iteratively predict
the future states of a DLO, using the learned dynamics and
optimize the control inputs At by maximizing the sum of
future rewards in a time horizon.

Similar to Li et al. [30], we implement model predictive
control (MPC) with a shooting method for DLO shape
control tasks. Given a state st at time step t, a goal state,
sg , a data-driven dynamics model f̂θ, and a sequence of
control commands At = (at, ...,at+H) for a time horizon
H , we can calculate a sequence of predicted states as
Ŝ = (ŝt+1, . . . , ŝt+H) through forward simulation, ŝt+1 =
f̂θ(st,at). Then, we can backpropagate gradients with re-
spect to the control commands At from the sum of future
rewards,

∑t+H−1
t′=t r(ŝt′ , sg), therefore, control commands

can be optimized via gradient-based optimization methods.
In this paper, the reward function is the negative of

L(ŝt′ , sg). For simplicity, we base the loss function L on
the Euclidean distance between the predicted positions of
the segments in a DLO and the corresponding goal positions.
Note that the loss function directly relates to the expected
reward in (8) which we will formulate in the shape control
task. We then use stochastic gradient descent (SGD) to
optimize the control commands.

r(ŝt′ , sg) = −L(ŝt′ , sg) (8)

At = argmax
At

t+H−1∑
t′=t

r(ŝt′ , sg) (9)

s.t. ŝt′+1 = f̂θ(ŝt′ ,at′), ŝt = st (10)

This combination of a data-driven dynamics model with
MPC leads to an advantage. Compared to model-free RL
algorithms, once the model is trained, we can also accom-
plish a variety of similar tasks by simply changing the loss
function, L, without the need for task-specific retraining.

C. Online Model Learning with MPC

The overall structure of our approach for online model
learning with MPC is shown in Algorithm 1. It consists of
initialization, updating model parameters, and on-policy data
aggregation. We first collect initial training data by sampling
a starting configuration and executing random actions at
each time step during a time horizon T . Then we repeat

Algorithm 1: Online Model Learning with MPC
Input : Max iteration times K

Trajectory time steps T
Current control inputs A
The number of MPC trials per iteration N
Action noise distribution Anoise

1 Collect dataset D of random trajectories
2 Initialize f̂θ
3 for k ← 1 to K do
4 update f̂θ using dataset D
5 for n← 1 to N do
6 Sample a random starting configuration s1

for t← 1 to T do
7 acquire agent’s current state st
8 execute MPC with shooting methods

based on f̂θ to optimize action sequence
(at, ...,at+H) (Equation. 8, 9, 10)

9 With 0.2 probabability:
10 at ← at + anoise,anoise ∼ Anoise
11 execute action at
12 get new state st+1

13 add (st,at, st+1) to D
14 end
15 end
16 end

the process several times to collect data from multiple
trajectories. Training data are (st,at) as input and st+1 as
corresponding output labels. To increase the robustness of
the trained data-driven model, we also add Gaussian noise
to the input data during model learning.

In the next state, we sample several random starting
configurations for agents and control them using MPC trying
to finish an assigned task. In the meantime, we collect these
on-policy data and add them to the dataset D. The initial
dataset, which is generated randomly, is likely to be different
from the trajectories an agent will finally execute to finish a
task. Note that we add noise to the action with a probability
of 0.2, which strengthens the exploration. We mitigate this
discrepancy between the data state-action distribution and the
model-based controller’s distribution by collecting on-policy
data and interleaving learning and exploration.

The online model learning framework continues switching
between updating the data-driven dynamics model f̂θ and
collecting newly generated data by model-based control until
a predefined maximum iteration is reached.

V. EVALUATION

A. DLO Simulation

Our ultimate goal is to implement online model learning
with model predictive control (MPC) to achieve shape con-
trol of deformable linear objects (DLOs) in the real world.
However, considering practical problems like DLO state
estimation, we validate our methods in simulation. Beginning
with simulation studies also makes comparisons to baseline



Fig. 3. The DLOs (in green) are approaching a desired target shape by
operating on only one (left image) or both grippers (right image). One end
of the DLO is controlled by a gripper (red) on the left and the other end is
controlled by a gripper (blue) on the right.

model-free RL methods more practical since these generally
require a very large number of samples, which is challenging
for real-world experiments.

We build our simulation environment in Reform [41],
which is a new sandbox building on AGX Dynamics for
robot learning specializing in DLO manipulation. We opt for
Reform because, firstly, AGX Dynamics provides a Cable
module that specializes in DLOs with physically motivated
physics properties like Young’s modulus and Poisson’s ratio.
Secondly, it is because environments in Reform are based on
the interfaces of OpenAI Gym [42], which is convenient for
testing state-of-the-art RL algorithms.

The DLO used in the simulation is a lumped element
model with a length of one meter, discretized into 20
segments. Young’s modulus is set to 1×108 N/m

2 in tension
and 1 × 107 N/m

2 in bending and twisting, and Poisson’s
ratio is set to 0.33. The two ends of a DLO are attached to
two grippers which can both translate and rotate. We tested
in two scenarios, a single gripper manipulation, where one
gripper stays static and the other one moves and rotates, and
bimanual manipulation. The simulation time interval is 0.02s,
resulting in a control frequency of 50 Hz. We have access to
the positions and orientations of each segment of the DLO.
The goal of the shape control task is to deform the DLO
into a desired shape from a random starting configuration,
as shown in Fig. 3. The goal is fixed through the training
process for both the model-free RL and the online model
learning methods.

Difference in shape Lshape is measured by Euclidean
distance between segments positions pgoal of a DLO in target
shape and achieved segments positions pt.

Lshape(pt,pgoal) = ‖pt − pgoal‖2 (11)

B. Reinforcement Learning Baselines

In this paper, we test our method with PILCO [19], Twin
Delayed Deep Deterministic Policy Gradient (TD3) [20], and
Soft Actor-Critic (SAC) [21] in DLO shape control tasks for
comparison. In previous work [43], a policy gradient method,
Deep Deterministic Policy Gradient (DDPG) [33], easily
solves learning 1D shape control of elastic and elastoplastic
DLOs. We use a similar RL formulation and try to solve 3D
shape control by PILCO, TD3, and SAC.

In the DLO shape control task, the action — A ∈ R6

for single gripper manipulation, or A ∈ R12 for bimanual
manipulation — is velocity and angular velocity of the single
or both grippers. Each action is rescaled to a ∈ [−1, 1].

We rescale predicted actions from the policy into viable
velocity commands according to the predefined maximum
accelerations and velocities. The dense reward function is
defined as follows:

r(pt,at) = −Lshape(pt+1,pgoal) = −‖pt+1 − pgoal‖2 (12)

Similar to [43], we clip the reward function and r ∈ [−1.5, 0]
For our experiment, we use TD3 and SAC in Stable-

Baselines3, a set of implementations of RL algorithms in
PyTorch [44].

C. Details of Online Model Learning with MPC

In Algorithm 1, we set the maximum iteration times to
20, max_iter = 20. In each iteration, we set 50 epochs
for updating the data-driven model f̂θ and execute N = 50
trails with T = 200 time steps each. We select time horizon
H = 5 for the MPC.

For model learning, we implement the data-driven model
f̂θ in PyTorch [45] and choose Adam [46] as the optimizer
with a fixed learning rate 1 × 10−4. Regarding details in
neural network structure, the relation-centric network, fe,
and the object-centric network, fv , are implemented as 4-
layer fully connected neural networks with hidden layers of
150-unit width. ReLU activation is used except for the final
output of f̂θ. For the recurrent model, we use a 2-layer bi-
LSTM model with 150-dimensional hidden state vectors.

D. Results

We first compared our online model learning with MPC
with a model-based RL algorithm (PILCO) and two model-
free RL algorithms (SAC and TD3) concerning sample
efficiency. Fig. 4 shows the cumulative rewards in the single
gripper manipulation and Fig. 5 shows the rewards in bi-
manual manipulation. We train different RL agents for two
scenarios respectively while we also directly test the control
performance using the same DLO models trained in single
gripper manipulation in bimanual manipulation shape control
tasks. From the experiment results, it is clear that our online
model learning approach outperforms SAC and TD3 with
better sample efficiency. It also demonstrates that our online
model learning method is versatile. Due to the data-driven
model we used in online model learning, we can directly use
the trained model from single gripper manipulation tasks to
bimanual manipulation tasks. Both figures imply the model
learned online with MPC performs better (higher cumulative
reward) compared to SAC and TD3 with the same amount
of samples, while PILCO cannot find a proper model and a
suitable policy to finish the tasks.

Since two model-free reinforcement learning agents are
trained in a scenario where a DLO shape control task has
the same goal throughout the training, it is expected that the
control performance will drop if we choose random goals for
the agents, as shown in Fig. 6. However, our online model
learning with MPC can still achieve acceptable performance
despite performance drops compared to Fig. 4. This demon-
strates the proposed online model learning achieves a better
generalization with a small number of interaction samples.
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Fig. 4. The cumulative reward of trials for the DLO shape control task
by a single gripper through PILCO, SAC, TD3, and, online model learning
with MPC. The shaded areas represent the standard deviation.
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Fig. 5. Final rewards at the end of trials for DLO shape control task by
two grippers through PILCO, SAC, TD3, and online model learning with
MPC. The shaded areas represent the standard deviation.

Finally, we also compare online model learning with MPC
with offline model learning following the method from our
previous work [13]. The cumulative reward is shown in
Fig. 7. With the same amount of samples for training a data-
driven model, online model learning with MPC boosts the
control performance at the beginning with a small number of
samples. It achieves higher cumulative rewards over offline
model learning within 90 thousand samples before the re-
wards drop slowly as more data is collected. We hypothesize
that the performance degradation might result from similar
on-policy data collected in each trial overfitting the data-
driven model.

VI. CONCLUSION

We presented an online model learning framework with
model predictive control (MPC). It learns a data-driven
model for DLO shape control tasks using a small number of
samples. Compared to prior work, we address a DLO shape
control task in 3D space, while other implementations are
mostly limited to a rope in 2D space. Our proposed online
model learning method is based on a neural network model
specifically designed for DLO. Due to the learned model,
the agent can deform a DLO into the target shape from a

1 2 3 4 5 6 7 8 9 10
×105 transitions

−300

−250

−200

−150

−100

−50

0

Cu
m

ul
at

iv
e 

re
wa

rd

Online Model Learning with MPC
SAC
TD3

Fig. 6. The cumulative reward of trials for DLO shape control tasks by a
single gripper through PILCO, SAC, TD3, and online model learning with
MPC. The shaded areas represent standard deviation. Here, target shapes
are random sampled which are different from the ones used in training.
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Fig. 7. The cumulative reward of trials for DLO shape control task
by a single gripper through MPC using the models from online model
learning and offline model learning. The shaded areas represent the standard
deviation.
random starting configuration and also deform a DLO into
other shapes which are not trained during online learning.
The model learned in single gripper manipulation tasks can
be directly used for bimanual manipulation tasks. In contrast,
other model-based RL and model-free RL algorithms tested
in the paper consistently failed to reach a random goal and
need task-specific retraining for bimanual tasks.

We expect it would work for real robot applications given
a proper DLO state tracking method and safety measures.
However, we leave it as future work. Action selection solved
with stochastic gradient descent shows the advantage of dif-
ferentiable data-driven models, but this approach is slightly
computationally expensive for real systems. In future work,
we will focus on improving efficiency.
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