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Learn to Predict Posterior Probability in Particle Filtering
for Tracking Deformable Linear Objects

Yuxuan Yang1, Johannes A. Stork1, and Todor Stoyanov1,2

Abstract— Tracking deformable linear objects (DLOs) is a
key element for applications where robots manipulate DLOs.
However, the lack of distinctive features or appearance on
the DLO and the object’s high-dimensional state space make
tracking challenging and still an open question in robotics.
In this paper, we propose a method for tracking the state
of a DLO by applying a particle filter approach, where the
posterior probability of each sample is estimated by a learned
predictor. Our method can achieve accurate tracking even
with no prerequisite segmentation which many related works
require. Due to the differentiability of the posterior probability
predictor, our method can leverage the gradients of posterior
probabilities with respect to the latent states to improve the
motion model in the particle filter. The preliminary experiments
suggest that the proposed method can provide robust tracking
results and the estimated DLO state converges quickly to the
true state if the initial state is unknown.

I. INTRODUCTION

Robotic manipulation of deformable linear objects (DLOs)
has potential for a wide range of real-world applications [1],
[2], such as surgical suturing [3] in medical robotics and
cables and hoses handling [4], [5] in industrial robotics.
However, these tasks are still challenging due to the difficul-
ties in dynamics modeling and state tracking of DLOs [1].
This paper focuses on the latter challenge.

Deformable linear objects have a high-dimension state
space. They are conventionally described as a chain of nodes
and the state is represented by the set of nodes’ positions.
This is one of the major factors that differentiate tracking
DLOs from rigid objects where many off-the-shelf tracking
methods are available. Particle filtering is a common solution
for rigid object tracking, while it cannot be directly applied to
DLO state tracking because of the large number of particles
it needs for sampling in the high-dimensional state space.
For instance, Lagneau et al. [6] represent a DLO by a few
control points of B-splines so that a particle filter is feasible
for only tracking the position of these control points. Our
previous work [7] uses a particle filter to track a DLO by
sampling in a learned low-dimensional latent state space.

Regardless of the success in previous works about DLOs
state tracking [2], the assumptions and limitations in current
tracking methods hinder the application of those methods
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Fig. 1: Overview of the posterior probability prediction in our particle
filtering tracking framework.

in real-world tasks. One major assumption is that color-
based segmentation is available for generating masks for
DLOs on RGB images [8]–[10]. Yan et al. [11] alleviate
the assumption of a known DLO and background colors but
good color contrast between the DLO and the background
is still necessary. Learning-based instance segmentation has
recently become an option for the semantic segmentation of
DLOs since a DLO dataset generation approach is presented
and a dataset is publicly available [12], otherwise annotating
a large set of images is a challenging task. Based on this
dataset, Ariadne [13] and an improved version Ariadne+ [14]
are developed for instance segmentation of DLOs. However,
they might suffer from a sim-to-real gap and they are not able
to provide a robust and complete solution in some cases [14].

In this paper, we propose a method that uses a particle filter
to track a DLO by sampling in the latent state space and
a data-driven posterior probability predictor. The overview
of the posterior probability prediction process is shown in
Fig. 1. We leverage learning-based instance segmentation and
train a neural network to predict the posterior probability
of the latent state samples given an observation instead of



color-based segmentation and handcraft posterior probability
calculation implemented in our previous work [7]. Therefore,
we make the following contributions: first, the method does
not rely on color-based segmentation; second, more particles
are allowed because the neural-network-based predictor can
compute all posterior probabilities in parallel, leading to the
potential for multiple DLOs tracking; third, by introducing
the gradients of posterior probabilities with respect to the
sampled latent states from the predictor, we improve the
motion model which accelerates the convergence of DLO
state estimation if the initial DLO state is unknown.

II. BACKGROUND

In this paper, a deformable linear object (DLO) is dis-
cretized into N nodes, X t, where X t = {xt
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and describe the DLO state at time t as a sequence of
these nodes’ positions, Xt = [xt
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N
ᵀ
]ᵀ, where

xt
i ∈ R3 is the position of the ith node at the time step t.

The DLO state is the output of the tracking algorithm given
a sequence of RGBD images I1:t. We assume a point cloud
is generated from the RGBD image. Our goal in tracking is
to minimize ‖X̂t −Xt‖2, where X̂t is the tracking result
and Xt is the ground truth state.

III. METHOD

In this section, we describe our DLO state tracking method
based on Sequential Importance Resampling (SIR) Particle
Filter with a posterior probability predictor. First, we explain
low-dimensional latent DLO state representation learning
(III-A). Then, we introduce the encoder for image latent
feature extracting (III-B). Last, we formulate the tracking
problem in a particle filtering framework and describe in de-
tail the motion model and the posterior probability predictor
(III-C).

A. DLO’s Latent Feature

We take a data-driven approach to construct a low-
dimensional embedding space, along with two mappings to
translate to and from the learned manifold. Positions of the
nodes along a DLO is highly correlated and our goal is to
find a low-dimensional latent state space that can represent
the DLO state, Xt = [xt

1
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,xt
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, ...,xt

N
ᵀ
]ᵀ, which forms

a manifold within R3N . Then it becomes practical to use
a particle filter in the low-dimensional state space instead
of the high-dimensional one. To this end, we employ an
autoencoder that consists of two parametric functions—an
encoder, φ : R3×N → Rm, and a decoder, ψ : Rm →
R3×N , where m is the dimension of the latent state. The
autoencoder is trained through unsupervised learning. With
trained parameters, for a given state, X , we have

z = φ(X) (1)
X ′ = ψ(z) (2)

where z is the latent state for the particle-filter-based tracking
and X ′ is the reconstructed state. The goal is to reconstruct
a X ′ that is as close as possible to the original X .

In this paper, we use a multi-layer perceptron to implement
the encoder and the decoder with a symmetric structure.
The dimension m of the latent state z is a customizable
parameter where a higher dimension usually leads to a lower
reconstruction error but increases the computational burden
for the particle-filter-based tracking at the same time.

B. Image’s Latent Feature

To extract the latent feature of the image, we employ the
encoder of DeepLabv3+ neural network model [15]. This
image encoder is shown in Fig. 1.

h = g(I) (3)

The DeeplabV3+ represents the state-of-the-art in semantic
segmentation and is capable to provide a binary mask of the
wires (DLOs) in Ariadne+ [12], [14]. Its encoder module can
encode multi-scale contextual information by applying atrous
spatial pyramid pooling at multiple scales. We use the trained
model parameters from Ariadne+ [14] which is trained on the
Electric Wires Image Segmentation dataset [12], a dataset of
approximate 30,000 synthetic images of wires with various
shapes and colors in different backgrounds.

C. Particle Filtering

A particle filter uses a collection of particles to represent
the posterior distribution of a stochastic process given noisy
and/or partial observations [16]. At each time step, particles
evolve according to a motion model, or transition probability
density p(zti |z

t−1
i ). Each particle is assigned a weight, ωi,

according to the posterior probabilities—i.e., the probabilities
of each proposed latent state given the current observation.
Then the particles are resampled based on the importance
weights, where particles with higher weights are more likely
to be preserved to the next time step. The filtering probability
density is estimated by a weighted sum of all particles.

Implementing a particle filter directly for DLO state track-
ing requires us to estimate a posterior distribution of a DLO
state, given the current observation — p(X̂t|It). However,
the particle filter cannot handle this high-dimensional state
space. In our previous work [7], we implemented a particle
filter based on the posterior distribution of latent DLO state
given the observation, p(zt|It). In this paper, instead of rely-
ing on color-based segmentation and a complex registration-
based approach to calculate posterior probabilities, we learn
a posterior probability predictor through data, which predicts
posterior probabilities of latent states given the image feature
from an observation, p(zt|h). The overview of the predictor
is shown in Fig. 1, and the tracking process is described in
Algorithm 1.

In this paper, we relax the assumption of knowing the
initial DLO state compared to some related works [8], [10],
[17]. If the initial state is unknown, the particle filtering starts
with randomly sample particles in the latent space. Because
the predictor is differentiable, gradients with respect to the
DLO latent space can be used to quickly push particles
to the local maximum, accelerating the convergence to a
good estimation of the posterior distribution. If the initial



Algorithm 1: Tracking DLO state by a particle filter

Input : It,zt−11:K , α, Σ
Output: zt1:K , ωt

1:K

1 ẑt1:K ← N(zt−11:K + α(zt−11:K − z
t−2
1:K ),Σ)

2 h = g(It) # Image encoder (Equation (3))
3 for i← 1 to K do
4 ωt

i = fp(z
t
i ,h);

5 end
6 ω1:K = ω̂1:K∑

ω̂1:K

7 zt1:K ← resample(zt1:K , ω
t
1:K) # Equation 4 and 5

(a) (b)

Fig. 2: (a): Changes of 6-dimension latent state when a DLO moves; (b):
The DLO state prediction (projected in x-z plane) via the motion model in
the latent state.

state is known, we pass it through the encoder and use
its latent state to initialize all particles. After initialization,
we first propagate the K particles according to the motion
model. Then, we predict the posterior probability for each
particle, p(zti |It), and update the weights, ωi. In the end,
we resample particles by systematic resampling to avoid
the degeneracy problem of the algorithm. This resampling
method is favorable due to its computational complexity
and good empirical performance [18]. Systematic resampling
generates K ordered numbers uk and uses them to select
samples zt1:K by the multinomial distribution.

uk =
(k − 1) + ũ

K
,with ũ ∼ U[0, 1) (4)

ztk = zt−1i with i s.t.uk ∈ [

i−1∑
s=1

ωs,

i∑
s=1

ωs] (5)

Next, we explain the two main components in our particle
filter—the motion model and the posterior probability.

A motion model propagates the distribution of the state
from the previous time step t− 1 to the current time step t.
Empirically we note that under nominal motion of the DLO,
the latent encoding changes smoothly, as shown in Fig. 2a.
Therefore, we use a constant velocity model to approximate
the probability distribution propagation of the latent state.

p(zti |zt−1i , zt−2i ) = N(µ,Σ) (6)

where N(µ,Σ) is the multivariate normal distribution with
mean µ = zt−1i + α(zt−1i − zt−2i ) and covariance matrix
Σ. Both Σ and α are hyperparameters. The motion model
helps approximate the transition in the latent state and an
example is shown in Fig. 2b. We assume Σ = β2In, where
In is an n-dimension identity matrix. When α = 0, the

distribution propagation is only driven by injecting isotropic
Gaussian noises with variance β2. The motion model can
be improved by the gradient information from the posterior
probability predictor, which will be introduced later.

Posterior probability, p(zti |ht), measures how likely a la-
tent state, zti , is given the image feature, ht = g(It), from an
observation. Instead of using a registration-based approach to
calculate the posterior probabilities in our previous work [7],
we directly use a learned predictor to predict p(zti |ht) given
the observation and proposed latent states, ωi = fp(zi,h

t).
The posterior probability predictor, fp, is fully-connected

layers. We concatenate the image feature and the sampled
latent state as the input of the predictor. The predictor is
trained using the supervised learning approach, where the
ground truth posterior probability is the reciprocal of the
difference between the proposed DLO state, X̂i

t
, and the

ground truth DLO state, Xt, as the following:

di = ‖X̂t
i −Xt‖2 (7)

ωi =
ω̂i∑
ω̂i
, ω̂i =

1

di
(8)

where X̂i
t

is decoded from the sampled latent state, X̂i
t
=

ψ(zt).
Revised motion model The posterior probability predic-

tor, fp, is differentiable, therefore, the gradients of a posterior
probability with respect to the latent states, ∂fp

∂zi
, are available.

We can use this gradient information to improve the simple
motion model shown in Equation (6). The mean in the
multivariate normal distribution can be modified as

µ = zt−1i + α(zt−1i − zt−2i ) + β
∂fp

∂zt−1i

(9)

where β is the step size on the gradient direction.

IV. PRELIMINARY RESULTS

Preliminary experiments in simulation show the qualitative
results of DLO state tracking and the improvement of the
convergence of posterior estimation by employing the gra-
dients of the posteriors with respect to the proposed latent
states.

We implement the posterior probability predictor as a 5-
layer fully-connected network with [1024, 512, 256, 128, 64]
units in each layer. We choose LeakyReLU as the activation
function with a 0.01 negative slope. We implement the model
fp in PyTorch [19]. Adam [20] is the optimizer with a fixed
learning rate 1 × 10−3. In the preliminary experiments, we
generate synthetic data to train the predictor. We use 500
particles in particle filtering.

Qualitative results of tracking performance using particle
filtering based on the learned posterior predictor are shown
in Fig. 3. This is a proof of concept showing our proposed
tracking method works in a simplified scenario. If the initial
state of the DLO is unknown, the particle filter can gradually
converge to an accurate estimation of the DLO state after
several time steps. With the gradient information of the
posteriors with respect to the latent state, the convergence
is faster. A qualitative comparison is shown in Fig. 4.
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Fig. 3: Qualitative results of tracking performance.
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Fig. 4: Qualitative comparison of the DLO state estimation convergency when the initial DLO state is unknown. The estimated state converge faster by
using revised motion model where the gradients of posterior with respect to the sampled DLO states are employed.

V. DISCUSSION

We propose a method that tracks a deformable linear
object (DLO) using a particle filter based on a posterior
probability predictor. The predictor we introduced to the
particle filtering framework from our previous work [7] offers
three advantages: first, it releases the color-based segmenta-
tion requirement, which is an assumption and limitation for
most related works [7], [8], [17]; second, with this neural-
network-based predictor, it is straightforward to compute
all posterior probabilities in parallel which leads to the
potential of introducing more particles for multiple DLOs
state tracking; third, by leveraging the differentiability of the
posterior probability predictor, we can improve the motion
model by using the gradients with respect to the sampled
latent state to accelerate the convergency of the DLO state
estimation if the initial state is unknown.

Our preliminary experiments suggest that the proposed
method provides robust tracking results in a simplified
scenario and the gradient information from the posterior
probability predictor improves the motion model. We will
further improve and test the method for multiple DLOs
tracking and then apply this tracking method to multiple
DLOs manipulation tasks such as using a robot to braiding
two DLOs.
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