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ABSTRACT
Robots can direct human attention using their eyes. However, it
remains unclear whether it is the gaze or the low-level motion of
the head rotation that drives attention. We isolated these compo-
nents in a non-predictive gaze cueing task with a robot to explore
how limited robotic signals orient attention. In each trial, the head
of a NAO robot turned towards the left or right. To isolate the di-
rection of rotation from its gaze, NAO was presented frontally and
backward along blocks. Participants responded faster to targets on
the gazed-at site, even when the eyes of the robot were not visible
and the direction of rotation was opposed to that of the frontal
condition. Our results showed that low-level motion did not orient
attention, but the gaze direction of the robot did. These findings
suggest that the robotic gaze is perceived as a social signal, similar
to human gaze.
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1 INTRODUCTION AND BACKGROUND
Gaze is a powerful social cue that can orient the attention of others
[15, 18, 50]. This referential function of gaze is required to engage
in joint attention, which aims to ensure mutual understanding
between two or more individuals by sharing a common visual
focus on the same location [4, 16]. Robotic eye-gaze has shown
to be effective in orienting the attention of humans [2, 42, 49],
even in robots that do not move their eyes [3, 41, 43], although the
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components of this behavior that modulate the human response are
not clear. Recently, the use of cueing paradigms [47] has permitted
an exploration of the flexibility of human cognition in controlled
settings. In this paradigm, the eyes of an agent (cue) are presented
at the center of the visual field of a participant. The agent looks to
the left or right, followed by a target appearance at one of these two
sides. The reaction times (RTs) to discriminate between targets are
often faster at the gazed-at location than to targets at the opposite
location (gaze cueing effect, GCE), even when the central cue does
not predict where the upcoming target will appear [19].

The use of gaze cueing paradigms has shown that humans pro-
cess the gaze of others reflexively [13, 15, 18, 30]. This finding has
support from neuroscience, indicated by a distinct neural process-
ing of gaze as a social signal [13, 19, 45, 48]. Although the eyes seem
to be an important stimuli in orienting human attention, there are
other non-verbal social cues that can also orient it reflexively, such
as biological motion [51, 56] or head orientation [27, 28], which can
also interact with the information provided by the eyes [21, 29]. It
is not clear yet whether these findings directly apply to the process-
ing of the robotic gaze and whether this is reflexively processed as
the human gaze. Studies that have compared the effect of robotic
gaze with human gaze have shown mixed results, with reports of
no cueing effects for robotic gaze [1], smaller effects for robotic
gaze as compared to human gaze [55], or similar effects between
them [9, 36]. These differences are probably related with the wide
diversity of robots used in these studies. Moreover, it should not be
overlooked that robotic gaze cues might not be processed as social
necessarily, given the limitations of this behavior in cases where a
robot cannot move its eyes, or where its motion is not perceived
as biological. Li et al. [31] explored the effect of robotic motion as
compared to static pictures, showing similar cueing effects. Nev-
ertheless, the low-level direction of motion was aligned with the
eye direction of the robot. This is relevant, because basic motion
cues without social meaning have shown to produce cueing effects
[58]. In a similar vein, the low-level visual processing of motion
in a robot (not social or goal-oriented) could be sufficient to drive
attention, and so elicit a cueing effect by itself, especially in cases
where other cues, such as the eyes, are not available. On the other
hand, this could be contingent on the direction the robot gazed
at or its head orientation (always aligned in a robot without eye
movement), which would emphasize the importance of robotic gaze
as a social signal.

The aim of this research is to examine the effect of low-level
motion component of a gazing robot, in contrast to other social cues
that can also drive reflexive attention. To this end, we designed
a computerized gaze cueing paradigm with a moving head of a
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digital NAO robot [20] as a cue. The robot moved its head and
gazed equally likely in the direction of the appearing target letter
(congruent trial) or in the opposite direction (incongruent trial).
NAO either faced the participant or was positioned backwards so
that the participant only viewed the back of its head. In the former
condition, the eyes of the robot were visible and the direction in
which the robot looked always matched the direction of the head
rotation from the perspective of the viewer. In the latter, the eyes
were not visible, and the direction of gaze and rotation did not
correspond (See Fig. 1). This manipulation allowed us to isolate
the direction of rotation and explore its potential influence as a
non-social cue. Moreover, this also permitted us to explore the role
of head orientation of a robot when its eyes are not visible and
see if, similarly to humans, this is enough to trigger GCEs. To our
knowledge, this is the first study isolating head orientation from
low-level motion and eye visibility to explore the gaze of a robot.
Additionally, we used different stimulus onset asynchronies (SOAs)
to explore the time course of the potential GCEs. The task was
computerized to control for the potential feeling of being seen by
the robot that modulates human behavior [8] and/or the effects
of direct eye contact by a physically embodied entity [24] that
would just occur in the frontal condition. This research adds to
basic knowledge on the impact of (social) robotic cues on attention.
Moreover, it could have practical relevance for decisions on effective
robotic cues in human-robot interaction (HRI), for example in the
case of older users, as social cues might not be as effective as we
age [38, 41, 52].

Based on most research in HRI, we hypothesized the appearance
of a GCE in the frontal view. At longer SOAs the effect might be
reversed, although inhibition of return effects are rarely found
with gaze cues [37]. We contemplated two possible scenarios for
the backward condition. First, the appearance of a GCE based on
the head orientation. This may need longer SOAs, as it is possible
that participants need longer times to process this is a head when
the eyes are not available. Alternatively, the direction of motion
could drive attentional orienting when the eyes of the robot are not
shown to participants. This would be reflected by faster responses
on incongruent trials than on congruent ones, possibly at shorter
SOAs given its low-level component. No differences in the RTs
of the trials would argue against motion and head orientation as
effective cues when eyes are not seen by the viewer. This study was
registered prior to the data analysis phase [40].

(a) Frontal condition (b) Backward condition

Figure 1: Examples of the main conditions. The low-level
motion component between (a) and (b) is identical to the
viewer (right rotation). While the direction of rotation and
gaze are the same in (a), these are the opposite in (b).

2 METHODS
2.1 Participants
The sample size was calculated through a power analysis using
G*Power based on the effect size of previous research: partial [ 2 =
0.12; 1−𝛽 = 0.8. This yielded forty participants, our final sample, as
sufficient for our study. Due to data corruption, we analyzed the data
of thirty-nine (mean age = 28.2 ± 5.33; 14 female, 2 left-handed). The
experiment took place at Örebro University. Participants received a
meal voucher at a restaurant. This experiment was approved by the
Swedish Ethical Review Authority (Etikprövningsmyndigheten).

2.2 Stimuli and apparatus
Stimuli were presented on a 23-inch monitor (60 Hz; 1920x1080
pixels) through Labvanced [17]. Participants used a Cedrus response
key pad RB-540. The mapping of the targets (letters ‘T’ and ‘V’)
to the response keys was counterbalanced between participants.
The head movement to the left was a yaw movement of 70◦ and
the right movement was mirrored. Participants seated at ≈60 cm
from the screen. The central cue was 4.35◦ high and 5.5◦ wide. The
fixation cross and targets were 0.85◦ wide and high. The targets
appeared on the sides at 6.4◦ from the center of the screen.

2.3 Procedure
The task featured 10 blocks of seventy-four trials and lasted forty-
fiveminutes. The time course of a trial is in Fig. 2. The first two trials
of each block were excluded from the analysis. The remaining were
based on twenty-four unique trials (x3) for each combination of
target identity, SOA, gaze direction, and congruency. Within blocks,
the trials were presented randomly for each participant. During
half of the blocks, the robotic head faced the participant, and it was
presented backward for the remaining. The order of the blocks was
counterbalanced between participants, and half of them started
with the frontal condition. The blocks were presented in a random
order for each participant. Participants first filled out a demographic
questionnaire and a consent form. They saw a video of NAO and
were told that robotic eye gaze direction and target location co-
occurrence were independent. Afterwards, they completed twenty
practice trials, the first 10 in the frontal condition, followed by 10 in
the backward condition, to emphasize that the cue in the backward
condition was the same robot.

Figure 2: Trial time course. A) Fixation cross (1250 ms); B)
Head onset and rotation; BC) SOA (340, 500, or 1000 ms); D)
Response time (or 2700 ms); E) Inter-trial interval (680 ms).
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3 RESULTS
We pre-processed the data by searching for participants with a
high number of errors (> 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅) to exclude them from
the analysis. No participant exceeded this number. Only correct
trials were included in the analysis (98.2%). Afterward, we also
excluded the trials with extreme RTs per participant (> 𝑄3+3∗ 𝐼𝑄𝑅
or < 𝑄1 − 3 ∗ 𝐼𝑄𝑅; 1%). RT data were analyzed using Generalized
Linear Mixed effects Modelling (GLMM) [7] to account for the right-
skewed shape of the RT distribution without transforming the raw
RT data [6, 32]. The analysis was performed in R [53] using the
lme4 package [5]. After exploring the RTs, we assumed an inverse
Gaussian distribution with an identity link, effective for analyz-
ing RT data [32]. The model was built through forward selection,
starting from the simplest model, with an intercept and random
intercept for participants. All models were estimated through Max-
imum Likelihood and –2 log likelihood as goodness-of-fit method.
Chi-squared tests were used to compare the fit of the models. The
random variance-covariance matrix of the final model was unstruc-
tured.

We built the first model predicting RT with random intercept
for participants given our design (SD = 19.4). The fixed variables
of interest in our experiment were congruency, SOA, frontality,
and the interactions between them. Besides participants, we also
considered the target letters as a random factor. The final model
showed a significant variance in intercepts across target letters, SD
= 2.12, 𝜒2 (1) = 62.66, 𝑝 < .001, and a significant variance in the
slopes for congruency of robotic eye gaze and target location across
participants, i.e. there was an effect of congruency, and it differed
among participants, SD = 5.25, 𝜒2 (1) = 20, 𝑝 < .001. The slopes for
congruency and random intercepts for participants were negatively
correlated, cor = −.25. The interaction of congruency x SOA also
improved the model fit significantly when added. The results for
the fixed factors can be seen in Table 1. Neither frontality, SOA, nor
any other interaction, improved the model fit significantly when
added. Crucially, the effects of congruency and congruency x SOA
were not significantly moderated by frontality.

The congruency x SOA interaction was broken by building three
models (one per SOA, see Table 2). These revealed a significant main
effect of congruency for each SOA, although this was larger with 500
ms as compared to the other SOAs. The effects remained when cor-
recting for multiple comparisons (Holm-Bonferroni method [22]).
To facilitate comparisons with previous research, the means of the
aggregated mean RT per person and variable can be seen in Fig. 3.

4 DISCUSSION
The aim of this study was to investigate the effect of robotic gaze
and low-level motion on reflexive attention. We designed a com-
puterized non-predictive gaze cueing task with the head of a NAO
robot as a central cue, which turned towards target locations at
its left or right. The head was presented either facing the partici-
pant, or backward, with its eyes not visible to the participant, to
isolate the motion component. Our results showed that, indepen-
dent of whether the robot faced the participant or not, participants
responded faster to targets at locations that were congruent to
the robotic gaze direction than to targets at incongruent locations,
especially with a 500 ms SOA between the cue and letter onset.

These findings replicated previous research showing that the
GCE also occurs on screen-based robotic agents. In contrast to
Admoni et al. [1], who did not find GCEs in their research, we
used a classic cueing paradigm in which only two directions are
involved. Notably, we used a NAO with different head orientations
and static eyes to convey gaze direction, as for instance in Chami-
nade et al. [9]. However, previous screen-based studies using gaze
cueing paradigms have also used robots with mobility in their eyes
[1, 10, 35, 55]. Moreover, we used several pictures to create a motion
effect, as in Li et al. [31], although previous research has largely
used single pictures as cues [1, 35, 55]. We also used a higher num-
ber of experimental trials for our analysis using GLMMs. These
methodological differences and range of robots used may explain
any discrepancy in magnitude or appearance of GCEs.

Table 1: Slopes of the fixed effects for the final GLMM

𝑅𝑇 ∼ 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 +𝐶𝑜𝑛𝑔 : 𝑆𝑂𝐴 + 1|𝐿𝑒𝑡𝑡𝑒𝑟 +𝐶𝑜𝑛𝑔 |𝐼𝐷
Fixed effects b St. Error t-value p-value

Intercept 552.1 7.1 78 0
Cong.(yes) -5.78 1.92 -3 0
Cong.(no):SOA500vs.340 -6.1 1.57 -3.85 0
Cong.(yes):SOA500vs.340 -8.65 1.55 -5.6 0
Cong.(n):SOA1000vs.340 -8.25 1.58 -5.23 0
Cong.(y):SOA1000vs.340 -8.26 1.54 -5.34 0

Table 2: Slopes of the fixed effects for the GLMMs (by SOA)

SOA=340 𝑅𝑇 ∼ 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 + 1|𝐿𝑒𝑡𝑡𝑒𝑟 + 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 |𝐼𝐷
Fixed effects b St. Error t-value p-value

Intercept 551.4 17.28 32 <.001
Cong.(yes) -5.19 2.6 -1.95 .05

SOA=500 𝑅𝑇 ∼ 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 + 1|𝐿𝑒𝑡𝑡𝑒𝑟 + 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 |𝐼𝐷
Fixed effects b St. Error t-value p-value

Intercept 541.27 9.37 57.8 <.001
Cong.(yes) -9.15 3.1 -3 .003

SOA=1000 𝑅𝑇 ∼ 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 + 1|𝐿𝑒𝑡𝑡𝑒𝑟 + 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑐𝑦 |𝐼𝐷
Fixed effects b St. Error t-value p-value

Intercept 542.28 9.8 55.28 <.001
Cong.(yes) -5.47 2.29 -2.37 .018

The GCE did not depend on the motion component or whether
the robot was facing our participants or not. In the backward con-
dition, the direction of the head motion was opposite to the gaze
direction and the eyes of the robot were not visible to the partici-
pants. This result suggests that participants inferred the direction
of the gaze based on their knowledge of it being a gazing agent and
thus, its head orientation. If the direction of motion was an early
component guiding the attention towards gaze direction, one would
expect delayed reaction times to account for the cognitive load of
mentally reversing the direction of the movement to obtain the
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Figure 3: Means of the aggregated mean RT per person and variable (ms). Error bars are 95% bootstrapped confidence intervals.

gaze direction, but this was not the case. Moreover, this would be a
useless strategy in this context where the gaze direction was not
predictive. In sum, if there was a bottom-up cueing effect caused
by motion, this was completely contingent on the presentation of
NAO as a social entity with gazing capabilities. To the best of our
knowledge, this is the first demonstration of robotic gaze reflexive
orienting on attention in which the eyes and frontal face are not
shown to participants, highlighting the sensitivity of the GCE to
top-down modulation.

Human gaze direction has been studied as an interplay between
eyes, head, and body orientation [27]. It’s been suggested that head
orientation of the cue may act as the starting coordinate fromwhich
the attention of the observer would be cued. For example, when
head orientation is averted but the eyes are aligned with it, no GCEs
would be present, as this might be interpreted as information not
related to the observer [21, 33]. However, the evidence about this
is mixed [30, 44], and NAO was capable of orienting the attention
just through head movement in our experiment. It is possible that
when the head orientation and eye direction are aligned, this is not
perceived as a natural purposeful orientation in humans, but that
in the case of a robot without eye movement or other less natural
stimuli it can still be perceived as an signalling behavior, which
would highlight the flexibility of social cognition. Moreover, in the
video shown to participants, NAO clearly gives the impression of
following a target with its gaze, which could have promoted the
early adoption of the so-called “intentional stance” during our ex-
periment. Intentional stance is the position that one adopts when
explaining the behavior of agents as rational or capable of having
mental states [14]. There is evidence that contextual behaviors in
robots can induce an adoption of an intentional stance [34, 46, 54].
Manipulating participants’ beliefs about the intentionality of the
robot through instructions to minimize the adoption of the inten-
tional stance has shown to either reduce [55] or eliminate GCEs
[57]. Evidence also shows the importance of intentional stance in
settings where the gazing human cue appeared as not able to see
the target, with participants showing reduced GCE [12, 39, 44].
However, Kingstone et al. [23] questioned the role of intentional
stance. In an experiment where eyes were available as cues, but are
part of a mask placed in the back of the head of an actor, these still
produced a GCE even if the gaze direction did not correspond to
where the actor was really gazing. Crucially for this research, the

recent work of Colombatto et al. [11] demonstrated the key role of
more complex forms of human behaviors implying intentionality
and its importance in generating GCEs, even in contexts where the
eyes of the person were not visible to the participants.

Overall, our results showed the long lasting effects of the GCE
from previous literature, as they were present in all SOAs [19].
It is important to remark that we set the stimulus onset at the
first frame of the movement following previous studies involving
dynamic cues (e.g. [25, 26, 31]). If we were to compare the current
SOAs of 340 ms, 500 ms and 1000 ms respectively, with those of
studies using the onset of static images oriented towards a location
(e.g. [35, 55]), one could argue that our SOAs were shorter when
the motion component was removed, being of 0, 160, and 660 ms,
respectively (full motion clip was 340 ms). In research exploring
the influence of SOAs, it might be more desirable to capture the
whole motion as part of the cue rather than a final frame.

Our study has three main limitations. First, the lack of eye move-
ment of NAO allowed us to assume the role of robotic head orien-
tation as a attentional cue. However, this might vary with different
types of robots or virtual agents and our results might not general-
ize to them. Second, although the adoption of the intentional stance
may be suitable to explain our results, future research explicitly
exploring its role and assessing participants’ subjective perception
of the situation with the robotic agent is needed. Finally, while our
use of a screen-based robot supports the systematic study of robotic
gaze on attention, further research is needed to apply this basic
knowledge to everyday HRI with physically embodied robots.

In sum, the results of the present study suggest that the direc-
tion of robotic gaze, rather than the motion, reflexively influences
attentional orienting. This finding is thought to be contingent on
the mental attribution adopted by participants towards the robot,
even when viewed from the back, and suggests that robotic gaze
cues are effectively perceived similarly to human gaze cues.
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