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Abstract
Quantao Yang (2023): Robot Skill Acquisition through Prior-Conditioned Re-
inforcement Learning. Örebro Studies in Technology 101.

Advancements in robotics and artificial i ntelligence h ave p aved t he w ay for 
autonomous agents to perform complex tasks in various domains. A critical 
challenge in the field of robotics is enabling robots to acquire and refine skills 
efficiently, al lowing th em to  ad apt an d ex cel in  di verse en vironments. This 
thesis investigates the questions of how to acquire robot skills through prior-
constrained machine learning and adapt these learned skills to novel environ-
ments safely and efficiently.

The thesis leverages the synergy between Reinforcement Learning (RL) and 
prior knowledge to facilitate skill acquisition in robots. It integrates existing 
task constraints, domain knowledge and contextual information into the learn-
ing process, enabling the robot to acquire new skills efficiently. The core idea 
behind our method is to exploit structured priors derived from both expert 
demonstrations and domain-specific i nformation which guide t he RL process 
to effectively explore and exploit the state-action space.

The first c ontribution l ies i n g uaranteeing t he e xecution o f s afe actions 
and preventing constraint violations during the exploration phase of RL. By 
incorporating task-specific constraints, the r obot avoids entering i nto regions 
of the environment where potential risks or failures may occur. It allows for 
efficient ex ploration of  th e ac tion sp ace wh ile ma intaining sa fety, ma king it 
well-suited for scenarios where continuous actions need to adhere to specific 
constraints. The second contribution addresses the challenge of learning a pol-
icy on a real robot to accomplish contact-rich tasks by exploiting a set of 
pre-collected demonstrations. Specifically, a  variable i mpedance a ction space 
is leveraged to enable the system to effectively a dapt i ts i nteractions during 
contact-rich manipulation tasks. In the third contribution, the thesis explores 
the transferability of skills acquired across different tasks and domains, high-
lighting the framework’s potential for building a repository of reusable skills. 
By comparing the similarity between the target task and the prior tasks, prior 
knowledge is combined to guide the policy learning process for new tasks. In 
the fourth contribution of this thesis, we introduce a cycle generative model 
to transfer acquired skills across different r obot p latforms b y l earning from 
unstructured prior demonstrations. In summary, the thesis introduces a novel 
paradigm for advancing the field o f r obotic s kill a cquisition b y synergizing 
prior knowledge with RL.

Keywords: Reinforcement Learning, Robot Manipulation, Transfer Learning, 
Safety Constraints, Prior Knowledge Learning

Quantao Yang, School of Science and Technology
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Quantao Yang v





Acknowledgements

"Pursuing a Ph.D. degree is like the process of learning a driving license and
getting the degree shows that you know how to do research", as is the dialogue
with my principal supervisor, Todor Stoyanov, before I started my doctoral
study. I am deeply grateful to Todor for giving me the opportunity to do
research at Örebro University. Without his invaluable guidance and encour-
agement throughout this entire study journey, this research would not have
been possible.

My appreciation extends to my secondary supervisor, Johannes A. Stork,
for his insightful contributions to my research. His patient guidance and in-
spiring support have not only broadened the dimensions of this work but have
also enriched its depth and scope.

A heartfelt thank you goes to my peers and colleagues at AASS, including
Erik, Püren, Da, Cuong, Yuxuan, Jean-Paul, Marco, David, Shih-Min, Finn,
Alan, and Ahmad. Your collaborative spirit and the intellectually stimulating
environment you provided have fostered my growth as a researcher. Addition-
ally, I want to express my gratitude to my collaborators from Lund University,
Alexander and Elin, whose discussions and support have been invaluable. I
hold deep appreciation for the privilege of working alongside Prof. Yuke Zhu
and all members of the RPL lab at UT Austin during my stay as a visiting
scholar. Their insights and innovation have profoundly impacted my approach
to research.

I would also like to express my deep appreciation to the faculty members
at AASS for their dedication to academic excellence. Their guidance, mentor-
ship, and commitment to fostering an environment of learning and innovation
have been pivotal to my intellectual development. Thank Per Sporrong and
Per Lindström for experiment setup. Thank Tomas Hammar for his help of
dealing with my research visit abroad. Thank Wallenberg AI, Autonomous
Systems and Software Program for their financial support throughout my doc-
toral study.

Furthermore, I extend my thanks to all other friends—Yuxuan, Han, Farid,
Daniel, Ravi, Yiren, Jialun, Shih-Min, Yufei, Shuo, Chit, Shiyu, Eduardo,

vii



Manuel, Rishi, and others. I will certainly miss the time we spent together
in Örebro. Also I thank my old friends—Yanru, Guangfei, Shangcheng, Xiang-
peng, Hao, Yuan, Yalin—for their encouragement and help. I would express
my special gratitude to Yingying for her constant encouragement and com-
panionship.

Lastly, my family holds an irreplaceable position in my heart. Their unwa-
vering belief in my abilities has not only strengthened my determination but
also provided a cornerstone for my research. I thank my parents and sister for
their love, support and understanding.

viii Quantao Yang



Contents

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 9
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Markov Decision Process . . . . . . . . . . . . . . . . . 9
2.1.2 Policy and Value Functions . . . . . . . . . . . . . . . . 12
2.1.3 Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Policy Gradient Methods . . . . . . . . . . . . . . . . . 16
2.1.5 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Standard Autoencoder . . . . . . . . . . . . . . . . . . . 19
2.2.2 Variational Autoencoder . . . . . . . . . . . . . . . . . . 20

2.3 Deep Predictive Policy Learning . . . . . . . . . . . . . . . . . 23

3 Related Work 27
3.1 Safe Robot Learning . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Transfer Learning in Robotics . . . . . . . . . . . . . . . . . . . 29
3.3 Skill Prior Reinforcement Learning . . . . . . . . . . . . . . . . 32
3.4 Variable Impedance Robot Learning . . . . . . . . . . . . . . . 35
3.5 Imitation Learning in Robotics . . . . . . . . . . . . . . . . . . 36

4 Summary and Findings 41
4.1 Paper I — Safety Constraints for Reinforcement Learning . . . 42
4.2 Paper II — Variable Impedance Skill Learning . . . . . . . . . 44
4.3 Paper III —Prior Knowledge Transferring . . . . . . . . . . . . 46
4.4 Paper IV —Transfer Skills between Robots . . . . . . . . . . . 48

ix



5 Conclusion and Future Work 53
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Ethical Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . 54

References 57

x Quantao Yang Contents



List of Figures

1.1 Franka Emika Panda Robot . . . . . . . . . . . . . . . . . . . . 3

2.1 The agent-environment interaction in a Markov decision process. 10
2.2 Taxonomy of Reinforcement Learning algorithms . . . . . . . . 11
2.3 Comparison of Q-Learning and deep Q-Learning. . . . . . . . . 14
2.4 Structure of autoencoder . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Structure of variational autoencoder . . . . . . . . . . . . . . . 20
2.6 VAE reparameterization trick. . . . . . . . . . . . . . . . . . . . 21
2.7 The architecture of deep predictive policy . . . . . . . . . . . . 24

4.1 Illustration of two constraint phases . . . . . . . . . . . . . . . 43
4.2 Framework of variable impedance skill learning . . . . . . . . . 44
4.3 Framework of Multi-Prior Regularized RL (MPR-RL) . . . . . 47
4.4 Framework of our Learn from Robot method . . . . . . . . . . 49

xi





List of Tables

2.1 Comparison of Reinforcement Learning Algorithms . . . . . . . 12

xiii





List of publications

The work within this thesis has been published in a series of articles. For
completeness, all articles - conference and journal - are included into this list.

Papers included in this thesis

Paper I Quantao Yang, Johannes A Stork, and Todor Stoyanov. Null
Space Based Efficient Reinforcement Learning with Hierar-
chical Safety Constraints. In 2021 European Conference on
Mobile Robots (ECMR), pages 1–6. IEEE, 2021

Paper II Quantao Yang, Alexander Dürr, Elin Anna Topp, Jo-
hannes A Stork, and Todor Stoyanov. Variable Impedance
Skill Learning for Contact-Rich Manipulation. IEEE
Robotics and Automation Letters, 7(3):8391–8398, 2022

Paper III Quantao Yang, Johannes A Stork, and Todor Stoyanov.
MPR-RL: Multi-Prior Regularized Reinforcement Learning
for Knowledge Transfer. IEEE Robotics and Automation
Letters, 7(3):7652–7659, 2022

Paper IV Quantao Yang, Johannes Andreas Stork, and Todor Stoy-
anov. Learn from Robot: Transferring Skills for Diverse Ma-
nipulation via Cycle Generative Networks. In IEEE Inter-
national Conference on Automation Science and Engineering
(CASE), 2023

Author contributions
For all articles, Q. Yang contributed to the majority of the design, implemen-
tation, evaluation, analysis, writing, and presentation. Additionally, a select

xv



set of co-author contributions, that deserve extra recognition, are stated here.

Paper II A. Dürr contributed to writing the introduction and related
work.

Papers not included in this thesis
Additional publications of the author which are not part of the PhD thesis
include:

Paper V Quantao Yang, Alexander Dürr, Elin Anna Topp, Jo-
hannes Andreas Stork, and Todor Stoyanov. Learning
Impedance Actions for Safe Reinforcement Learning in
Contact-Rich Tasks. In NeurIPS 2021 Workshop on Deploy-
able Decision Making in Embodied Systems (DDM),(Online
conference), Sydney, Australia, December 6-14, 2021, 2021

Paper VI Quantao Yang, Johannes Andreas Stork, and Todor Stoy-
anov. Transferring Knowledge for Reinforcement Learning in
Contact-Rich Manipulation. In 2nd RL-CONFORM Work-
shop at IROS, 2022

Paper VII Tian Gao, Soroush Nasiriany, Huihan Liu, Quantao Yang,
and Yuke Zhu. PRIME: Scaffolding Manipulation Tasks with
Behavior Primitives for Data-Efficient Imitation Learning.
In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2024 (Under review)

xvi Quantao Yang List of papers



Chapter 1
Introduction

Conventional industrial robots have played a crucial role in revolutionizing
manufacturing and industrial processes. These robots have been widely de-
ployed to automate repetitive and physically demanding tasks. Industrial robots
are characterized by their articulated arms and the ability to move in multiple
axes, enabling them to perform operations like assembly, welding, painting,
and material handling [58, 77]. However, despite their widespread use, con-
ventional industrial robots are affected by certain limitations that can hinder
their adaptability and overall performance.

One notable limitation is the lack of flexibility. These robots are typically
programmed to perform specific tasks in a repetitive and predefined manner.
While they excel at executing the same operation repeatedly with high preci-
sion, they struggle to adapt to variations or changes in the production process.
Modifying the product design or altering manufacturing requirements often ne-
cessitates reprogramming the robot, a process that can be time-consuming, re-
quiring expert intervention and potentially resulting in production delays and
increased costs. Additionally, industrial robots often operate within dedicated
safety zones or behind physical barriers to ensure the safety of human oper-
ators. While necessary, these safety measures limit the potential for human-
robot collaboration and interaction. Implementing additional safety measures
and protocols for scenarios requiring such collaboration can introduce com-
plexity and potentially compromise efficiency. Lastly, conventional industrial
robots generally lack autonomy. They typically operate under strict supervi-
sion and require human intervention for decision-making and error correction.
Without the ability to autonomously handle unforeseen situations or adapt to
changing conditions, they may struggle to operate effectively in dynamic and
unpredictable environments where autonomous decision-making and adapta-
tion are essential.

The field of robotics has experienced a significant improvement in terms
of efficiency and adaptability in recent years due to advancements in ma-
chine learning techniques, particularly in deep learning (DL) and reinforcement
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learning (RL) [17, 50, 63]. Robotic manipulation, which involves manipulating
objects in the real world, is an essential task for many applications such as
manufacturing, healthcare, and service robotics [34]. However, it is a complex
task due to the variability of the environment, the uncertainty in perception
and control, and the difficulty in generating enough training data.

The integration of DL and RL has revolutionized the field of robotic ma-
nipulation. Deep learning enables robots to learn intricate representations of
objects and their interactions with the environment, allowing them to bet-
ter perceive and understand their surroundings. Through sophisticated neu-
ral network architectures, robots can now process vast amounts of sensory
information, discern important features, and make informed decisions in real-
time. Furthermore, reinforcement learning plays a pivotal role in enhancing
robotic manipulation capabilities. By leveraging RL algorithms, robots can
learn through trial and error, continually refining their actions based on feed-
back from the environment. Figure 1.1 shows an application where a Franka
Emika Panda collaborative robot interacts with the environment in a contact-
rich peg-in-hole task. This iterative learning process enables the robot to adapt
to changing scenarios, optimize the performance, and improve overall manip-
ulation skills over time. Reinforcement learning also enables robots to handle
the uncertainties and complexities associated with real-world environments,
making them more robust and reliable in practical applications.

Despite the large potential of robot learning approaches, there are still
some significant challenges. One of the challenges in robotic manipulation is
the scarcity of training data. Collecting labeled data for every possible manip-
ulation scenario is impractical and time-consuming. However, recent advance-
ments have addressed this issue through the use of simulation environments
and domain adaptation methods [10]. Simulations provide a cost-effective and
scalable means to generate diverse training data, allowing robots to learn and
generalize from a wide range of scenarios. Domain adaptation enables the
transfer of knowledge from simulated environments to the real world, bridg-
ing the gap between simulation and reality and enhancing the applicability of
learned models in practical settings. The ongoing progress in machine learn-
ing, coupled with the advancements in sensing and control technologies, holds
tremendous potential for the future of robotic manipulation.

Unlike traditional approaches that rely on explicit programming and pre-
defined rules, RL enables robots to learn from their own experiences and make
decisions based on real-time feedback. Through interactive exploration and
trial-and-error learning, robots can actively engage with the environment to
understand the dynamics of object manipulation. By autonomously interact-
ing with different objects, robots can observe the consequences of their actions
and learn which strategies lead to successful outcomes. This iterative learning
process allows them to adapt their behaviors and discover effective manipu-
lation techniques, even in dynamically changing scenarios. Rather than being
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Figure 1.1: The Franka Emika Panda Robot is solving contact-rich peg-in-hole
tasks.

limited to a fixed set of programmed rules, robots can continuously adapt
their behavior based on the specific context they encounter. They can dynam-
ically adjust their strategies to handle objects of varying shapes, sizes, and
properties. This flexibility is particularly valuable in environments where the
objects to be manipulated are diverse, or where there are unexpected changes
in the surroundings. By receiving feedback in the form of rewards or penalties,
robots can evaluate the quality of their actions and learn to maximize cumu-
lative rewards. This iterative optimization process allows robots to fine-tune
their manipulation skills, gradually improving their efficiency and accuracy.

By improving the robustness of robot manipulation, RL holds promise for
real-world applications. Industries such as manufacturing, logistics, healthcare,
and even household assistance can greatly benefit from robots that can au-
tonomously handle uncertainties and adapt to changing circumstances. Whether
it is picking and placing objects on a cluttered assembly line, assisting with
delicate surgical procedures, or navigating unpredictable home environments,
RL enables robots to become more versatile, efficient, and reliable in their ma-
nipulation tasks. In such environments, objects may be occluded, have varying

Chapter 1. Introduction Quantao Yang 3



states, or interact with each other. Through iterative interactions, robots can
perceive and reason about their surroundings, make informed decisions, and
manipulate objects effectively even in challenging scenarios. This capability is
crucial for successful deployment in diverse domains such as manufacturing,
healthcare, and home assistance.

Industrial robots deployed today are mostly doing repetitive tasks across
various manufacturing environments, for example moving objects along pre-
defined trajectories. Deep Reinforcement Learning (DRL) has emerged as a
powerful technique for robotic manipulation, where an agent learns to per-
form a task through trial and error interactions with the environment. DRL
has shown promising results in various robotic manipulation tasks, such as
grasping, pouring, and assembly [21, 63]. However, DRL requires a significant
amount of training data and is prone to overfitting and poor generalization
to new tasks and environments. The ability of robots to handle different or
complex tasks is limited. In this thesis, we investigate the use of DRL for
robotic manipulation tasks, with a focus on improving the learning efficiency
and generalization of the agent.

DRL is an extension of RL that uses deep neural networks to approximate
the policy or value function of the agent. DRL algorithms have revolutionized
artificial intelligent systems, allowing them to play games or control robots,
tasks that have been a grand challenge for decades [3, 47, 59]. DRL is partic-
ularly suited for robotics because it can learn from raw sensor data, handle
high-dimensional state and action spaces, and learn complex behaviors. De-
spite the success of DRL in robotic manipulation, there are still some challenges
that need to be addressed:

1. Safety: Ensuring the safety of robotic manipulation systems is critical, es-
pecially when learning in real-world environments. DRL algorithms may
fail to generalize well or make unsafe decisions under unexpected condi-
tions, leading to potentially hazardous situations. Incorporating safety
constraints and model-based approaches can help mitigate these risks
and improve the reliability of DRL-based robotic manipulation systems.
Paper I utilizes pre-defined safety constraints to restrict the robot’s
exploration to a safe state space. By integrating these constraints, the
learning agent prevents the robot from entering areas in the environment
where potential risks or failures may occur.

2. Sample Efficiency: Deep reinforcement learning methods generally re-
quire a large amount of training data to learn successful policies. In robot
manipulation tasks, collecting real-world data can be time-consuming
and costly. This challenge is further exacerbated by the fact that robots
operate in continuous action spaces, where the exploration of possible ac-
tions can be prohibitively expensive. Developing methods that can learn
from a limited number of interaction samples, exploiting large-scale of-
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fline data sets, or leveraging simulation environments for pre-training can
help alleviate this challenge. In Paper I, the introduction of constraints
results in a reduction of the robot’s exploration space, thereby enhanc-
ing sample efficiency. Paper II focuses on leveraging demonstration data
and variable impedance action to accelerate training a task-specific pol-
icy on a real robot.

3. High-Dimensional State and Action Spaces: Robot manipulation tasks
often involve high-dimensional state spaces, which include joint angles,
end-effector positions, and object configurations. Additionally, the ac-
tion space can be high-dimensional, involving joint torques or Cartesian
coordinates. Dealing with such large state and action spaces makes it
challenging to learn effective policies. In Paper II, the challenge of high
dimensionality is addressed by encoding robot commands using a com-
pact latent action space.

4. Generalization and Transfer Learning: DRL algorithms often struggle
with generalizing learned policies to new situations or environments.
In robotic manipulation, generalizing to novel object shapes, sizes, or
configurations can be particularly challenging. Transfer learning tech-
niques, such as domain adaptation, can help improve the generalization
capabilities of DRL algorithms, enabling them to adapt to new scenar-
ios more efficiently. Paper III improves policy generalization by trans-
ferring knowledge from similar tasks to a novel one. Intelligent robots
still face challenges in effectively learning new skills from other agents.
Paper IV utilizes a cycle generative model to address the problem of
transferring policies among different robot systems. Specifically, we con-
sider how to reuse and share a set of skills across robots to accelerate
skill learning on a new robot.

In this thesis, we aim to address challenges in learning safe and transfer-
able manipulation policies. We specifically focus on ensuring safe interactions,
training the policy on the robot directly, generalizing across tasks and envi-
ronments, and facilitating skill transfer among different robots. To solve these
challenges, we propose novel approaches aimed at enhancing agent learning
efficiency and generalization. Our investigation also delves into the utilization
of transfer learning to benefit the performance and adaptability of DRL agents
engaged in robotic manipulation tasks.

1.1 Problem Statement
Reinforcement learning (RL) has shown remarkable promise in learning effec-
tive policies for complex tasks, particularly in the field of robotics manipu-
lation. However, deploying RL policies on real-world robots raises significant
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safety concerns, and the sample inefficiency of RL algorithms remains a sig-
nificant obstacle to practical implementation. This thesis aims to contribute
towards addressing these challenges by investigating how background knowl-
edge can be leveraged to achieve sample-efficient learning of RL policies in a
manipulation setting, while maintaining a level of safety during learning and
deployment.

The use of background knowledge — including prior information about the
task structure, environment dynamics, and expert demonstrations — has the
potential to guide the learning process and accelerate the convergence of RL
algorithms. By incorporating this prior knowledge effectively, we can reduce
the number of interactions required between the robot and the environment,
thereby improving sample efficiency and reducing the time and cost associated
with learning policies.

One of the primary objectives of this thesis is to develop novel techniques
that integrate background knowledge into RL algorithms. This involves de-
vising methods for representing and encoding relevant prior information, de-
signing mechanisms to incorporate this knowledge during the learning process,
and developing algorithms that strike a balance between exploiting the avail-
able knowledge and exploring the environment to discover optimal policies.
Furthermore, the proposed techniques should be compatible with real-world
robotic systems, ensuring safety and reliability in deployment scenarios.

Therefore, the primary objective of this thesis is to investigate the utiliza-
tion of background knowledge to enhance the sample efficiency of learning RL
policies in manipulation settings, while ensuring safety during deployment on
real robots. Specifically, we aim to develop novel algorithms and techniques
that leverage domain-specific knowledge to guide the RL learning process, al-
lowing the agent to learn efficiently and achieve safe behavior in real-world
environments. The research will focus on developing techniques that strike a
balance between utilizing background knowledge and allowing the agent to ex-
plore and learn from its interactions with the environment. Furthermore, this
thesis will address the challenges of transferring learned policies, ensuring safe
and reliable operation in physical environments.

To accomplish this goal, we will explore the following four research ques-
tions:

RQ1: How can we utilize pre-defined constraints to improve safety and the
sample-efficiency of RL for manipulation?

RQ2: How can we use prior knowledge to accelerate policy learning for contact-
rich tasks on a real robot?

RQ3: How can we transfer prior knowledge to a new but similar robot manip-
ulation task?
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RQ4: How can we transfer a manipulation skill to a new robot platform by
using common task experiences?

By addressing these research questions, this thesis aims to contribute to the
advancement of sample-efficient learning of RL policies in manipulation set-
tings while addressing the safety concerns associated with real-world deploy-
ment. The outcomes of this research have the potential to enhance the applica-
bility and scalability of RL in practical robotics applications, enabling the de-
velopment of intelligent and reliable robotic systems capable of autonomously
manipulating objects in complex environments.

1.2 Thesis Contributions
The most important thesis contributions are listed below.

1. In Paper I, a hierarchical method is proposed that combines reinforce-
ment learning (RL) algorithms with prioritized safety constraints. This
method focuses on ensuring safe actions and avoiding constraint viola-
tions during RL exploration. It is designed to enable high-dimensional
robotic control tasks in continuous action spaces without collisions. This
contribution specifically addresses RQ1.

2. In Paper II, an RL framework is utilized to teach agents how to select
appropriate actions by learning from demonstration trajectories. The
combination of this framework with an impedance controller allows the
agents to adjust the stiffness or flexibility of their actions in Cartesian
space. By integrating these two approaches, the RL agents can adapt
their behavior based on the desired level of stiffness in their actions.
This contribution specifically addresses RQ2.

3. In Paper III, a strategy is proposed to help RL agents learn policies for
solving new problems. The strategy involves combining multiple prior
policies and dynamically adjusting their impact based on the similarity
between the target task and the prior tasks. By comparing the charac-
teristics of different tasks, the agents can effectively guide their policy
learning process. This adaptive approach contributes to answering RQ3,
which focuses on improving the agents’ ability to tackle new challenges
by leveraging knowledge from previous tasks.

4. In Paper IV, an approach is presented for transferring skills between
different robots. The method introduces a cycle generative model that
predicts the distribution of actions for the target robot. By leveraging
this model, skills learned on one robot can be effectively transferred to
another robot. The approach facilitates the reusability of learned skills
across different robot platforms and addresses RQ4.

Chapter 1. Introduction Quantao Yang 7



1.3 Thesis Outline
The remaining chapters of the thesis are structured as follows. Chapter 2
introduces background knowledge in reinforcement learning. In Chapter 3 the
articles are discussed in relation to the existing literature in the field. Chapter 4
presents a summary of the contributions and findings of the appended articles.
Chapter 5 summarizes the conclusion of this thesis and future work.

8 Quantao Yang 1.3. Thesis Outline



Chapter 2
Background

Reinforcement Learning (RL) is a branch of machine learning focused on se-
quential decision-making. In this chapter, we provide an overview of how the
RL problem is formulated, as understanding this background is important for
discussing the main contributions of this thesis. RL focuses on how an agent
can learn to make decisions or take actions in an environment to maximize
a cumulative reward that represents a proxy to some desirable behavior. It
is inspired by the concept of learning through trial-and-error, similar to how
humans and animals learn from experience.

A fundamental aspect of RL is the incremental learning of effective be-
haviors by the agent. This process involves modifying existing behaviors or
acquiring new skills gradually over time. Trial-and-error experience plays a
vital role in RL, as the agent explores different actions and their consequences
within the environment. By learning from the outcomes of these exploratory
actions, the agent can refine its decision-making and improve its overall per-
formance. Through a combination of trial-and-error and incremental learning,
RL enables the agent to acquire optimal behaviors and adapt to changing
circumstances.

2.1 Reinforcement Learning

2.1.1 Markov Decision Process
In a typical Reinforcement Learning (RL) problem, the agent learns to interact
with its environment by taking actions and receiving rewards based on those
actions. The environment provides rewards and transitions to a new state based
on the agent’s actions. Unlike explicitly teaching the agent how to perform a
task, reinforcement learning employs a system of rewards, positive or negative,
to guide the agent’s behavior.

Markov Decision Processes (MDP) provide a framework for modeling decision-
making problems in reinforcement learning. A Markov decision process is a

9



5-tuple (S,A,p, r,γ), where S is the state space, A is action space, r is the
reward and γ is the discount factor. p is the transition probability from state
s to a new state s ′, it is mathematically defined as:

p(s ′ | s,a) .
= Pr{St = s ′ | St−1 = s,At−1 = a}, (2.1)

for all s ′, s ∈ S and a ∈ A(s). Figure 2.1 shows the agent-environment inter-
action in a Markov decision process [80].

Figure 2.1: The agent-environment interaction in a Markov decision process.

An MDP is a formalization of sequential decision making, where actions
influence not only immediate rewards, but also subsequent states through fu-
ture rewards. The current state includes all the information of the past agent-
environment interaction, which is known as the Markov property. To be spe-
cific, the probability of each possible value for st and rt depends only on the
immediately preceding state and action st−1 and at−1, not at all on earlier
states and actions.

The objective of RL is for the agent to acquire an optimal or near-optimal
policy that maximizes the accumulated reward. The simplest return is defined
as the sum of all the future rewards:

Gt
.
= rt+1 + rt+2 + rt+3 + ... + rT , (2.2)

where T is the episode horizon and we seek to maximize the expected return Gt.
When we try to model a reinforcement learning task, it is necessary to firstly
define the state, the action and the reward. Reward discounting determines
the present value of future rewards: a reward received in k time steps later is
worth only γk−1 times what it would be worth if it were received immediately.
Discounting is used to take future rewards into account. For continuing tasks,
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the final time step is T = ∞ and the discounted expected return is formulated
as:

Gt =

∞∑
k=0

γkrt+k+1, (2.3)

where γk ∈ (0, 1] is the discount rate.
In episodic tasks, each episode ends in a special terminal state, followed by

a reset to standard starting state or to a sample from a standard distribution
of starting states. On the other hand, in many cases the agent-environment
interaction does not partion naturally into identifiable episodes, but goes on
continually without limit, these cases are called continuing tasks.

Figure 2.2: Taxonomy of Reinforcement Learning algorithms. Figure adapted
from [75].

Reinforcement Learning (RL) can be categorized into two main approaches:
model-free RL and model-based RL as shown in Figure 2.2. In model-free RL,
the agent directly learns the optimal policy through interactions with the en-
vironment, without explicitly modeling the environment. In contrast, model-
based RL involves creating an internal representation of the environment, al-
lowing the agent to simulate potential actions and make decisions based on
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predictions. RL algorithms can also be categorized into off-policy and on-policy
methods. Off-policy RL learns the optimal policy while collecting experiences
through a different exploratory policy, while on-policy RL updates the pol-
icy using the same policy for exploration and learning. The choice between
these approaches depends on the specific problem and available resources. An
overview of some modern DRL algorithms is listed in Table 2.1.

Table 2.1: Comparison of Reinforcement Learning Algorithms

Algorithm Model Policy Action Space State Space
DQN [60] Model-free Off-policy Discrete Continuous

DDPG [52] Model-free Off-policy Continuous Continuous
NAF [31] Model-free Off-policy Continuous Continuous

TRPO [73] Model-free On-policy Continuous Continuous
PPO [74] Model-free On-policy Continuous Continuous
A3C [61] Model-free On-policy Continuous Continuous
SAC [33] Model-free Off-policy Continuous Continuous

2.1.2 Policy and Value Functions
In reinforcement learning, a policy is a stochastic rule by which the agent
selects actions as a function of the current state st. Formally, a policy is a
mapping from states to probabilities of selecting each possible action. The
agent’s objective is to maximize the amount of reward it receives over time.
The value function Vπ(s) of a state s under a policy π is the expected return
when starting in s and following π:

Vπ(s) = Eπ[Gt|St = s] (2.4)

= Eπ

[ ∞∑
k=0

γkrt+k+1|St = s

]
, (2.5)

where E is the expectation, St is the state at time step t. Similarly, the state-
action value Qπ(s,a) of taking action a in state s under a policy π is defined
as the expected return starting from s, taking the action a, and thereafter
following policy π:

Qπ(s,a) = Eπ[Gt|St = s,At = a] (2.6)

= Eπ

[ ∞∑
k=0

γkrt+k+1|St = s,At = a

]
. (2.7)
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The value functions Vπ and Qπ can be estimated from past experience or
trajectories. This type of approach is called Monte Carlo methods because they
involve averaging over many random samples of actual returns. The Bellman
equation for Vπ expresses a relationship between the value of a state and the
values of its successor states[80]:

Vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s ′, r|s,a)[r+ γVπ(s ′)], for all s ∈ S. (2.8)

The goal of RL methods is to find an optimal policy π∗ that is defined to
be better than or equal to a policy π ′ if its expected return Gt is greater than
or equal to that of π ′ for all states. There exists at least one optimal policy and
the corresponding state-value function (or state-action value function) is called
optimal state-value function (or optimal state-action value function). There is
always at least one policy that is better than or equal to all other policies
and they share the same optimal state-value function or optimal action-value
function.

The Bellman optimality equation expresses the fact that the value of a
state under an optimal policy must equal the expected return for the best
action from that state:

V∗(s) = max
a

E[Rt+1 + γV∗(St+1) | St = s,At = a]

= max
a

∑
s′,r

p(s ′, r|s,a)[r+ γV∗(s
′)].

For each state s, there will be at least one action at which the maximum is
obtained in the Bellman optimality equation. Any policy that makes the best
action decision is regarded as an optimal policy. If we have the optimal value
function V∗, then the actions that appear best after a one-step search will be
optimal actions. Explicitly solving the Bellman optimality equation provides
one route to finding an optimal policy and thus to solving the reinforcement
learning problem. However, this kind of solution relies on some assumptions
that are rarely true in practice: we have the complete dynamics of the envi-
ronment and the Markov property. As in practice various assumptions are not
satisfied, it is hard to solve these equations easily. Due to the above limits,
one typically has to take advantage of approximate solutions. In reinforcement
learning, many sequential decision-making methods can be viewed as ways of
approximately solving the Bellman optimality equation.

Similarly, the action-value function Q for policy π tells us how good it is for
the agent to take a given action from a given state while following policy π. In
other words, it gives us the value of an action under π. Formally, the value of
action a in state s under policy π is represented as the expected return when
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initiating from state s at time t, choosing action a, and subsequently following
policy π. The Bellman equation is also used for the Action-Value function:

Qπ(s,a) =
∑
s′,r

p(s ′, r|s,a)[r+ γ
∑
a

π(a|s)Qπ(s
′,a ′)], for all s ∈ S,a ∈ A.

(2.9)

2.1.3 Q-Learning

Figure 2.3: Comparison of Q-Learning and deep Q-Learning.

Q-learning is a model-free, off-policy reinforcement learning algorithm de-
signed to determine the optimal course of action based on the current state of
the agent. Depending on the agent’s position in the environment, it will make
decisions about the next action to take. At the core of Q-learning is the idea of
learning an state-action value function, commonly denoted as Q-value Q(s,a):

Q(s,a) = r(s,a) + γmaxaQ(s ′,a), (2.10)

where r(s,a) is the immediate reward andmaxaQ(s ′,a) is the highest Q-value
given the next state s ′. This function represents the expected utility or value
of taking action a in state s. The higher the Q-value for a specific state-action
pair, the more desirable that action is in that state. The goal of Q-learning is
to find the optimal Q-function that yields the highest total expected reward
over time. After each action, the Q-value for the state-action pair is updated
using the Q-learning equation:

Q(s,a) = Q(s,a) + α[r(s,a) + γmaxaQ(s ′,a) −Q(s,a)], (2.11)

where α is the learning rate. Q-learning is a value based approach based on a
Q-Table which calculates the maximum expected future reward for each action
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at each state. Deep Q-learning or Deep Q Network (DQN) [60] extends the
Q-learning idea by using a neural network to approximate Q-values for actions,
replacing the need for a Q-table, which is depicted in Figure 2.3. The network
takes the state as input and produces Q-values for all feasible actions. The
next action is determined by selecting the highest output value among these
Q-values. Deep Q-learning allows the model to efficiently estimate Q-values
based on the given state.

When an agent interacts with an environment, it collects experiences in
the form of state-action-reward-next state tuples. These experiences are often
highly correlated in time, which can lead to problems during learning, such as
slow convergence or divergent training. In DQN all experiences are stored in
a buffer — known as the replay buffer — and are then periodically sampled
and shown to the learning agent in small batches. The replay buffer refers
to a data storage mechanism that holds past experiences encountered by an
agent during interactions with its environment. Instead of immediately using
experiences as they are collected, DQN stores them in the replay buffer and
samples mini-batches of experiences to update the Q-network during training.
This random sampling breaks the temporal correlation between consecutive
experiences and helps stabilize the learning process. By learning from a diverse
set of past experiences, DQN with a replay buffer improves convergence and
data efficiency by mitigating challenges tied to the sequential nature of data
collection in RL.

While deep Q-learning algorithm can handle training in environments with
continuous state spaces, it faces limitations when dealing with continuous ac-
tion spaces. This challenge arises due to the neural network’s output having
a length equivalent to the possible actions, resulting in an infinite number of
elements for continuous actions. Normalized Advantage Function (NAF) [31]
has been proposed to adapt deep Q-learning for environments with continuous
action spaces. NAF allows Q-learning with deep neural networks in continuous
action spaces by representing the Q-function in a manner that simplifies the
determination of the maximum action during the update process. NAF com-
putes two distinct components: a value function term, denoted as V(s), and
an advantage term, denoted as A(s,a), which is represented as a quadratic
function of nonlinear features of the states:

Q(s,a|θQ) = A(s,a|θA) + V(s|θV),

A(s,a|θA) = −
1
2
(a− µ(s|θµ))TP(s|θP)(a− µ(s|θµ)),

where P(s|θP) is a state-dependent positive-definite square matrix. By pa-
rameterizing the advantage term A(s,a) as a quadratic function of nonlinear
features, the NAF approach ensures that the optimal action that maximizes
the Q-function can be efficiently determined by the network µ(s|θµ).
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2.1.4 Policy Gradient Methods
Policy Gradient Methods are a class of RL techniques designed to help agents
learn optimal strategies, or policies, for maximizing cumulative rewards in
complex environments. Unlike traditional Q-learning approaches, policy gra-
dient methods directly optimize the agent’s policy by adjusting its parameters
through gradient ascent. This allows them to effectively handle continuous ac-
tion spaces and uncertain environments. In contrast, value-based RL focuses
on estimating the value of states to implicitly determine the optimal policy.

In policy gradient methods, the agent interacts with the environment, col-
lecting trajectories of states, actions, and rewards. It then computes the returns
for each trajectory, reflecting the discounted cumulative rewards. By calculat-
ing the gradient of expected returns with respect to policy parameters, the
agent updates its policy using optimization algorithms, gradually improving
its decision-making to achieve higher rewards over iterations. This approach
is especially useful for tasks where determining the best actions is nontrivial
and requires exploration of the action space. There are different variations and
enhancements of policy gradient methods, such as:

• REINFORCE: This is a foundational policy gradient method that uses
the Monte Carlo estimate of the gradient to update policy parameters.

• Actor-Critic Methods: These methods combine policy gradient methods
with value function estimation. An actor (policy) and a critic (value
function estimator) work together to optimize the policy.

• Trust Region Policy Optimization (TRPO): TRPO is another policy op-
timization method that enforces a constraint on the size of policy updates
to ensure stability.

• Proximal Policy Optimization (PPO): PPO is an advanced policy gra-
dient algorithm that aims to improve stability and sample efficiency. It
employs a clipped surrogate objective to prevent large policy updates.

Actor-Critic is a combination of two networks: the Actor and the Critic.
The Actor is like the decision-maker, determining which actions to take based
on the current policy. The Critic, on the other hand, provides feedback to the
Actor about how good the chosen actions were and how to improve the actions.
The Actor learns through policy gradient methods, focusing on improving its
decision-making. Meanwhile, the Critic evaluates the actions taken by the Ac-
tor by computing the value function, which estimates the expected cumulative
reward from a given state following the policy. This two-sided learning pro-
cess, where the Actor improves its policy using the guidance of the Critic’s
value estimates, makes Actor-Critic methods a powerful approach in RL. In
the next section, we will introduce a variant of Actor-Critic methods known
as Soft Actor-Critic (SAC), from which Paper II, III are derived.
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2.1.5 Soft Actor-Critic
In recent years, the field of Reinforcement Learning (RL) has witnessed the
emergence of several remarkably successful algorithms, such as Trust Region
Policy Optimization (TRPO) [65, 73], Proximal Policy Optimization (PPO) [74],
and Asynchronous Actor-Critic Agents (A3C) [61]. One of the main drawbacks
is their reliance on an on-policy learning approach. This means that after each
policy update, they require an entirely new set of samples to continue learn-
ing effectively. Sample inefficiency can hinder practical applicability of these
methods in real-world scenarios.

Soft Actor-Critic (SAC) [33] is one of the most efficient off-policy RL algo-
rithms to apply in real-world robotics, which aims at addressing the exploration-
exploitation dilemma. Exploration, the process of discovering novel and poten-
tially more rewarding actions, is a fundamental challenge in training agents.
SAC tackles this challenge by introducing an entropy term into its objective
function. In this context, entropy refers to a mathematical measure of uncer-
tainty or randomness in the agent’s policy. Entropy is a concept borrowed from
information theory and is used to quantify the amount of unpredictability in a
probability distribution [30]. In the case of SAC, which deals with continuous
action spaces, the entropy of the policy is defined based on the probability den-
sity function of continuous actions. For a continuous action space, the entropy
H is calculated as:

H(π) = Eat∼π[− logπ(at|st)]. (2.12)

The entropy term introduces a notion of uncertainty into the policy learning
process. By maximizing the expected reward while simultaneously maximizing
the policy’s entropy, SAC seeks policies that not only generate high rewards
but also maintain a certain level of randomness in their actions. This bal-
ance prevents the policy from becoming overly deterministic and encourages
the agent to explore different actions, leading to a more comprehensive under-
standing of the environment and better adaptation to various scenarios. Unlike
traditional deterministic policies that select a single action, SAC parameter-
izes the policy as a probability distribution over actions. By introducing a
stochastic policy with an entropy term in the objective function, the agent is
incentivized to explore a wider range of actions, enhancing sample efficiency
and exploration. This incorporation of entropy prevents the agent from getting
stuck in local optima, striking a balance between exploration and exploitation.
This approach encourages a more thorough environment exploration, leading
to the discovery of more rewarding strategies and potentially better long-term
performance. The total objective in SAC is to find the optimal policy that
maximizes the expected long term reward and long term entropy:

G(θ) = Eτ∼πθ
[

T∑
t=0

γtr(st,at, st+1) + αH(πθ(at|st))], (2.13)
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where H is the entropy term and α is a temperature weight. In SAC, there
are three components: state value function Vψ(st), soft Q-function Qϕ(st,at)
and policy πθ(at|st) represented by neural networks with parameters denoted
by ψ, ϕ and θ respectively:

1. State Value function
The first network in SAC is responsible for estimating the state value
function Vψ(st). This function takes the current state as input and pre-
dicts the expected cumulative reward that an agent can achieve from
that state. By learning Vψ(st), the agent gains insights into the poten-
tial long-term rewards associated with different states. The state value
function is trained to minimize the squared residual error [33]:

JV(ψ) = Est∼D[
1
2
(Vψ(st)−Eat∼πθ

[Qϕ(st,at)−logπθ(at|st)])2], (2.14)

where D is a replay buffer. Equation 2.14 describes that the learning
of the state value function Vψ(st) is done by minimising the squared
difference between the prediction of the value network and expected pre-
diction of Q-function Qϕ(st,at), taking into account the entropy of the
policy πθ.

2. Soft Q-function
Unlike traditional Q-functions used in other RL algorithms, the soft Q-
function in SAC incorporates entropy into its estimation of Q-value. En-
tropy is a measure of uncertainty or randomness in the policy’s action
selection. By including entropy in the Q-function estimation, SAC en-
courages the policy to explore a diverse set of actions, striking a balance
between exploration and exploitation. This balance is crucial in complex
environments where the optimal actions may be uncertain. Training Q-
function is done by minimizing the squared difference between predicted
Q value and reward plus the discounted expectation of state value of
next state:

JQ(ϕ) = E(st,at)∼D[
1
2
(Qϕ(st,at) − Q̂(st,at))2], (2.15)

with
Q̂(st,at) = r(st,at) + γEst+1∼p[Vψ̄(st+1)], (2.16)

where JQ is the soft Bellman residual and Vψ̄ is the target value network.

3. Policy Learning
In SAC, the policy function takes the current state as input and outputs
a probability distribution over the available actions. This distribution
represents the likelihood of taking each action in the given state. By us-
ing this probabilistic approach, SAC promotes exploration, enabling the
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agent to discover new actions and learn a more comprehensive under-
standing of the environment. The policy is optimized by the following
objective:

Jπ(θ) = Est∼D
[
KL

(
πθ(·|st) ∥

exp(Qϕ(st, ·))
Zϕ(st)

)]
. (2.17)

KL divergence, short for Kullback-Leibler divergence, is a measure of
how one probability distribution differs from a second. This objective
function aims to align the distribution of the policy function with the
distribution obtained from the exponentiation of Q-function normalized
by a partition function Zϕ.

The original SAC algorithm assumes a uniform distribution over actions
and the entropy term in equation (2.13) is therefore defined as:

H(π(at|st)) = −Eπ[logπ(at|st)] ∝ −KL(π(at|st),U(at)), (2.18)

where U(at) is a uniform action distribution. Following the work [68], we incor-
porate a key modification by replacing the entropy maximization in the reward
function with a term that penalizes divergence from the non-uniform action
distribution, which can guide the agent’s exploration. We use this strategy in
Paper II, III, IV, with a more detailed discussion on this in section 3.3.

2.2 Autoencoder

2.2.1 Standard Autoencoder

Figure 2.4: Structure of autoencoder consisting of an encoder and a decoder.

The traditional autoencoder is a neural network that uses the encoder-
decoder architecture to discover latent information representations [37, 82].
The encoder takes an input data and transforms it into a compact, low-
dimensional embedding, which serves as a latent representation. For instance,
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when dealing with MNIST dataset images of handwritten digits [18], the
learned encoder may produce a compressed representation specific to each
digit, capturing its distinctive features among various handwritten depictions.
The autoencoder structure is shown in Figure 2.4.

In contrast, the decoder is to use this low-dimensional embedding and
reconstruct the original input data. The reconstruction might not be an exact
replica of the input, as the decoder starts from the embedding; however, during
training, the objective is to generate an output as close as possible to the input,
minimizing information loss in the embedding process through a loss function.
In the MNIST example [18], the autoencoder can take a handwritten digit
input, extract the digit’s features into an embedding using the encoder, and
then recreate the original handwritten appearance of the same digit with the
decoder. This process is unsupervised, meaning it does not require labeled
data, as the output is compared directly to the input. The reconstruction loss,
e.g. the mean squared error between the encoder input and the decoder output,
is used to train the standard autoencoder:

L =∥ x− x̂ ∥2, (2.19)

where x is the ground truth and x̂ is the predicted output of the autoencoder.

2.2.2 Variational Autoencoder

Figure 2.5: Structure of variational autoencoder with the multivariate Gaussian
assumption.

A Variational Autoencoder (VAE) [49] is an extension of the traditional
autoencoder that adds probabilistic elements to the latent space. This makes
VAEs more suitable for tasks like data generation, as they allow for sampling
and interpolation in the latent space. It is a type of generative model that can
generate new data samples that are similar to the original data. Similar to the
standard autoencoder, the input is passed through a series of layers to reduce
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the dimensions, resulting in a compressed latent vector z. However, the latent
vector is not the direct output of the encoder. Instead, the encoder predicts
a latent distribution represented by the mean and the standard deviation for
each latent variable. The latent vector is then sampled from the distribution
which is then fed to the decoder to reconstruct the input. The decoder in the
VAE works similarly as the one of AE. The structure of VAE is shown in
Figure 2.5.

Figure 2.6: VAE reparameterization trick.

The VAE is trained using a maximum likelihood approach, where the goal
is to minimize the difference between the input data and the output data gen-
erated by the decoder. However, in addition to minimizing the reconstruction
error, the VAE also learns the true posterior distribution of the latent variables
given the observed variables, which are defined as p(z|x). This allows us to sam-
ple from the latent space and generate new data points that are similar to the
original data. Rather than learning the exact posterior distribution over the
latent space, which is often intractable, the VAE instead learns a variational
approximation q(z|x) to this distribution. This is achieved by introducing a
constraint on the latent space distribution during training, which encourages
it to be close to a simple distribution, such as a Gaussian. This constraint is
implemented using the Kullback-Leibler (KL) divergence, which measures the
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difference between the learned distribution and the target distribution. The
loss function of VAE is defined as the sum of the reconstruction loss and the
similarity loss:

L =∥ x− x̂ ∥2 +βKL(q(z|x) ∥ p(z|x)), (2.20)

where the similarity loss KL(q(z|x) ∥ p(z|x)) is the KL divergence between the
latent space distribution q(z|x) and standard Gaussian distribution p(z|x) ∼

N(0, I), β is the relative importance of the KL divergence term. According
to [49], minimizing the above loss equals maximizing the Evidence Lower
Bound (ELBO):

ELBO = Eq(z|x) log p(x|z) − KL(q(z|x)||p(z)), (2.21)

where the first term represents the reconstruction likelihood and the second
term ensures that our learned distribution q(z|x) is similar to the true prior
distribution p(z).

VAE aims to learn a latent representation of data by optimizing model pa-
rameters to maximize ELBO. This involves sampling from a Gaussian distribu-
tion in the latent space, which introduces a stochastic element. This process of
sampling from a distribution that is parameterized by our model is not differ-
entiable. To make the sampling process differentiable for efficient optimization,
the reparameterization trick is introduced as is shown in Figure 2.6. It uses
a new variable ϵ sampled from a unit Gaussian distribution, and the actual
latent variable is obtained by a deterministic transformation using the learned
mean µ and standard deviation σ from the probabilistic encoder. This trick
allows gradients to flow through the sampling process during backpropagation.
In reparameterization trick, the latent variable can be obtained by sampling
ϵ ∼ N(0, I) from a unit Gaussian, and then shifting the randomly sampled ϵ
by the latent distribution’s mean µ and scaling it by the latent distribution’s
variance σ:

z = µ+ σ⊙ ϵ. (2.22)

The reparameterization trick is not restricted to Gaussian distributions
and it can also be applied to other types of distributions. With this repa-
rameterization, the parameters of the distribution can be optimized while still
maintaining the ability to randomly sample from the latent Gaussian distri-
bution.

In our research, we leverage real robot demonstration data as training data.
These demonstrations capture the intricate movements and actions performed
by the robot in various scenarios. However, the raw demonstration data is
often high-dimensional and contains redundant information, making it chal-
lenging to directly extract meaningful insights. The VAE allows us to map
the original high-dimensional robot trajectories into a lower-dimensional ac-
tion space, commonly referred to as a latent space. This latent space retains
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essential characteristics and patterns from the original data while significantly
reducing its dimensionality. By doing so, the VAE facilitates the extraction of
critical features and encodes them in a more compact representation.

By encoding robot trajectories into this latent low-dimensional action space,
we obtain several desired properties. Firstly, the reduced dimensionality al-
lows for more efficient storage and computation, making it easier to work with
large-scale robot datasets. Secondly, the encoded representations enable bet-
ter generalization to unseen scenarios, enhancing the robot’s ability to adapt
and learn from new experiences. Additionally, the VAE-based representation
facilitates the exploration of the learned latent space.

2.3 Deep Predictive Policy Learning
Humans are highly proficient at performing basic physical activities like grasp-
ing objects. Our senses, including vision, touch, and proprioception, work to-
gether to provide a comprehensive understanding of the environment and ob-
jects within it. This allows us to make real-time adjustments to our movements,
adapting to changes and unexpected obstacles. Additionally, our ability to con-
trol our muscles with precision enables us to execute fine-grained movements,
achieving dexterity and accuracy in various tasks.

In contrast, most robots struggle to demonstrate skilled behaviors, espe-
cially in unstructured environments. Their sensing capabilities often lack the
flexibility and depth of human perception. While robots can incorporate cam-
eras, tactile sensors, and other modalities to gather information about the en-
vironment, their ability to interpret and process this data in real-time is still
developing. Similarly, the actuation systems of robots often lack the intricacy
and versatility of human muscles, making it challenging to achieve the fine-
grained control required for tasks involving precise manipulation or complex
coordination.

To improve robots’ skilled behaviors, deep predictive policy [27] proposes
to utilize a deep neural network policy architecture that effectively maps im-
age observations to sequences of motor activations. This overall architecture
idea has been the motivation of several recent works, including the basis for
Paper II, III. The architecture comprises three super-networks: perception,
policy, and behavior super-layers as shown in Figure 2.7. The perception and
behavior super-layers are responsible for abstracting visual and motor data,
respectively, and are trained using synthetic and simulated training samples.
The perception and behavior super-layers are learned according to two differ-
ent structures, which are based on spatial [22] and variational autoencoder [49].
On the other hand, the policy super-layer, which has fewer parameters, maps
data between these abstracted manifolds. It is trained individually for each
task using policy search reinforcement learning methods. Rather than train-
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Figure 2.7: The architecture of deep predictive policy consists of three super-
layers: perception layer, policy layer and behavior layer.

ing a policy π(st) within the high-dimensional sensorimotor space, the policy
super-layer is trained in a low-dimensional action space.

As shown in Figure 2.7, the perception super-layer fp(·) abstracts task-
related state st = fp(ot) from the observation ot; the policy super-layer π
predicts the low-dimensional action at according to the abstracted state st; the
behavior super-layer gb(·) generates a sequence of motor commands ut:t+T =
gb(at) which will be applied on the real robot. A VAE model is trained to
represent long motor trajectories using a low-dimensional action manifold.
This approach enables the learning of motor tasks by searching for a policy
within the action manifold, instead of the high-dimensional motor trajectory
space. For the behavior super-layer, an encoder fb(a|u) and decoder gb(a)
are learned with VAE loss defined in equation 2.20 and the similarity loss for
low-dimensional action is formulated as:

Ld = KL(N(a|µ,σ) ∥ N(a|0, I)), (2.23)

where the embedded action is assumed to be normal distribution.
The paper [15] follows the three super-layers design and proposes to lever-

age adversarial training to extract a set of visual features as the output of a
perception model, which generalizes well to other task related objects. In this
way it is feasible to train visuomotor policies based on RL frameworks, and
then transfer the acquired policy to other novel task domains. Two additional
networks, a discriminator and a classifier, are incorporated into the training
process [15]. The discriminator network assesses the visual features produced
by the perception model and determines whether they come from the source
domain or the target domain. The classifier network takes in the visual fea-
tures as input and generates a classification indicating the presence or absence
of a task object in a target domain input image.
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Motor trajectories can be long and is high-dimensional, which makes the
RL problems more complicated. As [27] and [15] indicate, we can simplify
this problem by using a lower-dimensional representation. A sequence of mo-
tor commands are represented with a low-dimensional action manifold. Our
Paper II and Paper III utilize the same idea of embedding a sequence of RL
actions into a latent space and the RL policy is learned in the low-dimensional
action space. The key difference is that in our methods we regularize the low-
dimensional action space with a pre-trained prior model, instead of unit Gaus-
sian distribution. In addition, variable impedance information is incorporated
into the policy in our Paper II, III to benefit solving contact-rich manipula-
tion tasks. One strategy for utilizing the prior knowledge involves acquiring
offline experience to learn a deep latent space of skills and establishing a prior
distribution for these skills [68]. We will explain how more recent work such
as [68] builds on SAC and on [27] in the next section.
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Chapter 3
Related Work

This chapter provides an overview of the relevant related work in the field of
robot skill learning using reinforcement learning (RL) and transfer learning.
Robot skill learning aims to enable robots to acquire and improve their abilities
to perform complex tasks autonomously. RL offers a promising framework for
teaching robots through trial and error, while transfer learning allows robots
to leverage knowledge gained from previously learned tasks to speed up the
learning process for new tasks. This chapter explores key research contribu-
tions, methodologies and recent advancements in this domain.

3.1 Safe Robot Learning
Safety is of vital importance for RL in robotics due to the potential risks asso-
ciated with learning in dynamic and unpredictable environments [12]. In RL,
agents interact with the environment, and their actions are determined by trial
and error, which may lead to hazardous situations. Without careful consider-
ation of safety measures, RL agents could cause damage to themselves, the
environment, or humans nearby. Ensuring safety involves extensive simulation
and testing to identify and rectify potential dangers before real world deploy-
ment. Expert demonstrations [4] and constraint-based learning [6] guide RL
agents toward safer behaviors.

Traditional RL algorithms explore all possible actions to find optimal poli-
cies, which can be harmful in real-world safety-critical systems. Due to these
risks, learning algorithms are rarely applied to such systems. Safe reinforce-
ment learning methods are emerging to address these concerns, aiming to
balance exploration with safety guarantees, making them more suitable for
critical applications [66]. In [9] an approach to reinforcement learning is pro-
posed to addresses the safety concerns associated with exploring all possible
actions in real-world systems. It introduces a learning algorithm that explicitly
considers safety through stability guarantees, allowing for the optimization of
high-performance control policies with stability verification.
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The algorithm leverages control-theoretic results on Lyapunov stability ver-
ification [48] and incorporates statistical models of the dynamics. This enables
the learning process to effectively and safely collect data, thereby improving
control performance and expanding the safe region of the state space. Addi-
tionally, the use of a Gaussian process prior [71] in the regularity assumptions
further enhances the learning process. The paper presents experimental results
where the proposed algorithm successfully optimizes a neural network policy
for a simulated inverted pendulum without the pendulum ever falling down.
This showcases the algorithm’s ability to achieve high performance while main-
taining safety in a critical system. By explicitly considering safety and incorpo-
rating stability guarantees, this approach has the potential to make reinforce-
ment learning more applicable to safety-critical real-world systems. Different
from this approach, our Paper I utilizes pre-defined safety constraints, instead
of stability guarantees, to restrict the robot’s exploration to a safe state space.
By incorporating these constraints, the robot avoids entering into regions of
the environment where potential risks or failures may occur. This ensures that
the learning process remains within safe boundaries.

While RL works well in domains with complex transition dynamics and
high-dimensional state action spaces, the need for safe and efficient exploration
is not guaranteed. Classical exploration techniques are not particularly useful
for solving dangerous tasks, where the trial and error process may result in
damage to the learning system [26]. One technique is to directly add to the
policy a safety layer that analytically solves an action correction formulation
per each state [16].

In a recent approach known as the Actor-Advisor method [69], the policy
for constraints is trained as an advisor to the actor. The advisor learns from
collected experiences in order to prevent the actor from violating the con-
straints. However, a potential issue arises when the actor and advisor tend to
induce different regions within the state space, leading to sample inefficiency.
To address this challenge, Zhu et al. proposed Dynamic Actor-Advisor Pro-
gramming (DAAP) [96]. In DAAP, the actor and advisor are intertwined in
policy updates, and the advisor is trained simultaneously without any prior
knowledge. However, one drawback of DAAP is that it requires two separate
sets of rewards—one for minimizing the cost and another for minimizing con-
straint violations.

Constraint-aware learning by demonstration [5] has proven to be effective
in robotic systems, where the task or constraint is initially learned, followed
by the separate learning of a policy. In [6], Armesto et al. propose a two-part
constraint-aware learning approach, involving the learning of the constraint
and subsequently learning an action policy within the constraint’s null space.
Their method demonstrates the ability to generalize learned null space policies
across various constraints, even those not known during training, using a re-
dundant robot. This capability opens up new possibilities for robots to handle
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diverse tasks efficiently and safely without explicit knowledge of all possible
constraints beforehand.

However, in contrast to the method proposed by Armesto et al., Paper I
uses a hierarchical control framework, where constraints are not learned sep-
arately but can be defined in advance. In our work, safety constraints are
prioritized over the RL task, ensuring the safety in real-world applications
where unexpected situations can arise. Meanwhile, this feature allows human
experts to define the robot’s behavior more precisely, ensuring that it adheres
to specific safety and operational requirements.

The work presented within this thesis builds upon prior knowledge of tasks,
which is encoded through either well-defined safety constraints or the utiliza-
tion of skill prior models. The ultimate goal of this thesis is to make the robot
learning procedure safer and more efficient. By leveraging prior knowledge, the
thesis aims to reduce the trial-and-error phase that robots often go through
when learning new tasks. This is crucial because real-world interactions can
be unpredictable, and robots need to continuously acquire new skills while
ensuring the safety of themselves and those around them.

3.2 Transfer Learning in Robotics
In the field of DRL, a common assumption underlying many algorithms is
that both the training and testing data belong to the same distribution and
space. However, real-world situations often challenge this assumption, as data
distributions may vary between the training and testing phases. When such
distribution shifts occur, traditional models may struggle to adapt and gen-
eralize effectively to new data. Robot manipulation is a highly complex task
that demands significant resources to achieve an optimal solution [42]. DRL
has shown great promise in learning policies for specific tasks, but a significant
limitation is that these policies are task-specific and cannot be readily applied
to new situations. Whenever the environment experiences even minor changes,
starting from scratch to learn a new policy becomes a necessity.

Transfer learning has emerged as a promising technique for leveraging prior
experience to enhance learning efficiency and generalization ability, as high-
lighted in works such as [46, 81, 90]. Knowledge transfer between training and
target domains can be achieved in various methods. Recently, there has been
research investigating knowledge transfer within families of Markov decision
processes (MDPs). Arnekvist et al. [8] proposed variational policy embedding
(VPE) as a method to learn a master policy that facilitates faster adaptation
to new members of the MDP family.

One approach is to learn to extract features that are shared between the
source domain and target domain [54] and share a part of the network pa-
rameters learned from the training samples with the target model [43]. This
kind of method assumes that two domains share common features in the sam-
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ples. Gupta et al. [32] proposed the use of invariant feature spaces to trans-
fer skills between agents. Their work focused on agents with different state
spaces and action spaces, where agents had prior knowledge about each other.
Our Paper III considers a family of problems, formalized as Markov Decision
Processes (MDPs) that all share the same state and action spaces. However,
each member of this family may have different transition dynamics. In sim-
pler terms, although transition probabilities may differ, they could still be
correlated or overlap in certain regions of the state space.

One important branch of transfer learning in robotics is to transfer learned
policies from simulation to reality. A common approach to enable RL on phys-
ical systems involves initial training in a simulated environment where safety
and sample efficiency are not critical concerns [93]. The learned policies can
then be transferred to the real system through techniques such as domain
adaptation [29] and dynamics randomization [3, 67]. However, both domain
adaptation and dynamics randomization have their limitations.

Domain adaptation requires a sufficient amount of real-world samples to
update the simulation system and align it with the characteristics of the real
environment. This process aims to bridge the gap between simulation and re-
ality, enabling the transfer of learned policies to the physical system. However,
acquiring a significant number of real-world samples can be challenging and
time-consuming, especially if safety constraints and costly experiments are in-
volved.

On the other hand, dynamics randomization involves training models in a
variety of simulated environments with randomized properties. By exposing the
RL agent to diverse simulated conditions, it aims to develop a robust policy
that can generalize across different environments. While dynamics random-
ization can enhance the agent’s adaptability, it requires a careful design and
selection of simulated environments with appropriately randomized properties.
This selection process may not cover all possible variations and can limit the
agent’s ability to handle tasks requiring high accuracy and fine-grained con-
trol. This approach involves training a single policy that is capable of adapting
to MDPs with different dynamics. However, it typically requires a variety of
simulated environments with randomized properties to enable the policy to
adapt effectively.

Meta-learning, as explored in works such as Finn et al.[23], Rakelly et
al.[70], and Arndt et al.[7], aims to enable the adaptation of a meta pol-
icy, initially trained on a specific task, to diverse domains. In a recent study,
Ghadirzadeh et al.[28] introduced a probabilistic gradient-based meta-learning
algorithm that effectively models the uncertainty arising from the few-shot
learning scenario. This approach specifically addresses the challenge of adapt-
ing policies to novel robotic platforms by accounting for and leveraging this
uncertainty.
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The modular architecture proposed by Devin et al. [19] enables the de-
composition of training policy networks into interchangeable modules, which
can be applied to address novel tasks involving different agents and scenar-
ios. In specific, neural network policies are decomposed into distinct modules:
task-specific and robot-specific modules. The task-specific modules are shared
across robots, while the robot-specific modules are shared across all tasks on
that robot. This modular design allows to pre-train individual policy modules
for a specific set of related tasks. Subsequently, these pre-trained modules can
be composed and combined to learn a new policy for a particular task or robot.

In Paper III we introduce a novel approach named Multi-Prior Regular-
ized RL (MPR-RL). This method utilizes prior experiences gathered from a
subset of the problems within the Markov Decision Process (MDP) family. By
leveraging this prior knowledge, MPR-RL effectively learns a policy for a new,
previously unseen problem from the same MDP family in an efficient manner.
It is assumed that these tasks share the same state and action spaces, but
crucially transition probabilities differ for all members in the MDP family.

In the field of manufacturing, there is a significant need to reuse skills
across various robots. However, transferring learned policies to different hard-
ware poses a challenge due to the diverse variations in robot body morphology,
kinematics, and dynamics. [11] proposes a foundation agent, RoboCat, which is
able to generalize to new tasks and robots. RoboCat has the ability to contin-
uously enhance its performance through iterative self-improvement. With just
100 to 1000 demonstrations on a new task, this adaptable agent can quickly
adapt and generate substantial data for that specific task. The generated tra-
jectories are subsequently incorporated into RoboCat’s training dataset for the
next iteration, enhancing its repertoire of skills and improving its overall per-
formance across various tasks and robots. Rather than train a generalist agent
which specifies tasks via visual goal-conditioning [11], our Paper IV aims to
transfer acquired specific skills via a lightweight cycle generative model.

Developing control policies from scratch for a new robot typically demands
the generation of extensive robot-specific data. To address this challenge, [41]
proposes a novel approach called the ’robot-aware control’ paradigm, which
factorizes visual dynamics into a robot and world model. The authors develop
a robot-aware model-based RL policy. This policy involves training modu-
lar dynamics models that combine a transferable robot-aware world dynamics
module with a robot-specific robot dynamics module. [94] aims to leverage
hierarchical modularity to transfer and adapt a language-conditioned mas-
ter policy across different robot manipulators. Similarly, our Paper IV also
focuses on tackling the challenge of transferring policies across diverse robot
platforms. Our approach involves acquiring a set of skills for each specific robot
and representing them within a latent space. To bridge the gap between robots
and facilitate skill sharing, we introduce a cycle generative network to transfer
embedded low-dimensional actions.
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In contrast to the methods listed in this section, this thesis aims to utilize
prior knowledge to facilitate the transfer of acquired skills, whether it’s adapt-
ing these skills to new and unexplored tasks or sharing them with different
robot platforms. In summary, Paper III aims to leverage prior knowledge to
solve novel tasks, whereas our Paper IV focuses on transferring skills across
different robots. The goal of the thesis is to enhance the adaptability and
efficiency of robotic systems by capitalizing on existing expertise.

3.3 Skill Prior Reinforcement Learning
In the traditional approach of training a policy π(st) within high-dimensional
state and action spaces, the complexity and dimensionality of the environment
can pose challenges for efficient learning. As discussed in Section 2.3, the pol-
icy can be trained in a low-dimensional action space to encode a sequence of
robot commands, often referred to as a skill. By doing so, the learning process
becomes more tractable, as the reduced action space offers a more compact
representation of the agent’s actions, without sacrificing the policy’s ability to
make informed decisions in the original high-dimensional environment. This
approach not only enhances the policy’s learning efficiency but also provides a
promising method to tackle real-world, complex tasks in a more computation-
ally feasible manner.

Prior knowledge of a task has shown potential for enhancing RL learning
performance and generalization capabilities. One approach to leveraging prior
knowledge is to learn a deep latent space of skills and a prior distribution on
those skills using offline experience, as demonstrated in Pertsch et al. [68]. This
skill prior-based RL (SPiRL) approach performs efficiently for long-horizon
tasks but still requires a substantial number of interactions to learn a new
task.

As described in [68], a skill ai is defined as a sequence of actions ait, ...,ait+H−1
with fixed horizon H. A dataset, denoted as D, contains demonstrated trajec-
tories τ in the form of (s0,a0), ..., (sT ,aT ), which correspond to a specific task.
These trajectories serve as the foundation for learning a skill prior probabil-
ity distribution p(z|s). The objective is then to learn a policy πθ(a|s) with
parameter θ that maximizes the sum of rewards G(θ) by leveraging the prior
experience contained in the dataset D.

A skill prior model pa(z|st) is used to generate a prior distribution over the
latent space Z based on the state st. This distribution serves as guidance for
the policy to determine which skills are worth exploring. Variational autoen-
coder (VAE) discussed in section 2.2.2 regularizes the low-dimensional action
space with unit Gaussian distribution, while [68] proposes to use a modified
VAE model instead. Derived from equation 3.1, [68] proposes to sample H-
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step trajectories from the training sequences and maximize the evidence lower
bound (ELBO):

log p(a) ⩾ Eq[log p(a|z) − β (logq(z|a) − log p(z))], (3.1)

where β is a hyperparameter used to tune the regularization term [36, 72]. Skill
encoder q(z|a) and skill decoder p(a|z) are used to output the parameters of
the Gaussian posterior and distributions of robot commands. As discussed in
Section 2.2.2, the prior model is set to be unit Gaussian N(0, I) for the VAE. In
contrast, a skill prior model pa(z|st) is leveraged to guide downstream learning.
Rather than training the skill prior before training the skill embedding model,
SPiRL simultaneously optimizes both models. This approach can ensure steady
convergence by preventing gradients from the skill prior objective to flow into
the skill encoder.

During skill learning procedure, a policy πθ(z|st) over the latent action
space is trained to output embeddings that are decoded into real action se-
quences by the pre-trained decoder p(a|z). Soft Actor-Critic (SAC) [33] is used
to maximize the RL return plus the policy’s entropy term:

G(θ) = Eτ∼πθ
[

T∑
t=0

γtr(st,at, st+1) + αH(πθ(at|st))], (3.2)

where α is the weight for the entropy term.
In the original SAC algorithm, the assumption was made of a uniform prior

over actions. SPiRL extends this formulation with a non-uniform action prior,
denoted as p(a|·). The main difference is the replacement of entropy maxi-
mization in the reward function with a term that penalizes deviation from the
action prior. By incorporating this penalty term, SPiRL can guide the policy
to align with the desired non-uniform action prior, promoting exploration and
learning of specific skills for the environment. The policy learns in the em-
bedding variable space, producing a latent action z ∈ Z. The entropy term is
defined as the negative Kullback-Leibler (KL) divergence between the policy
πθ(zt|st) and learned skill prior pa(zt|st):

H(πθ(zt|st)) ∝ −DKL(πθ(zt|st),pa(zt|st)). (3.3)

Our Paper II extends the framework introduced in Pertsch et al. [68] by
connecting it to a variable impedance Cartesian space controller [39], enabling
the direct learning of contact-rich tasks on real robots. Our Paper II and [68]
share the idea of learning a prior over skills and utilizing a skill library to
guide exploration in skill space, facilitating efficient downstream learning even
in large skill spaces. But Paper II utilizes trajectories from the real robot to
predict a sequence of actions consisting of both the position and impedance
information. Built on top of SPiRL, Paper III involves learning multiple skill
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priors from demonstrated trajectories for related tasks. We then use an adap-
tive strategy to combine these priors, guiding policy learning for new tasks
based on their similarity to the pre-learned ones. This enables efficient and
effective learning for complex problems.

Similarly, Singh et al. [78] propose pre-training behavioral priors from a
diverse multi-task dataset to accelerate the learning of new skills. Training
behavioral priors typically requires a wide range of previously encountered
tasks to achieve robustness. But in their work, the prior model is treated
as a mapping function to maximize the log-likelihood of actions observed in
successful trials from past tasks, without encoding robot commands by VAE.
The behavioral prior is represented by a unit Gaussian distribution, which
captures the patterns and regularities in the actions of successful past trials.
When applied to a new Markov Decision Process (MDP), the RL agent can
efficiently sample from this Gaussian distribution and use the learned mapping
to generate likely environment actions, given the current observation. This
behavioral prior essentially transforms the original MDP into a simpler one for
the RL agent, benefiting from the knowledge encoded in the learned mapping
from past experiences.

Crucially, it is assumed that the new task is related or has similar under-
lying structures to those seen before. By leveraging the behavioral prior, [78]
strikes a balance between utilizing past knowledge from similar tasks and main-
taining the agent’s ability to explore new strategies. This combination proves
particularly valuable in scenarios where environments share common underly-
ing structures and in transfer learning, where knowledge from prior tasks can
be efficiently utilized to improve learning and decision-making in new and re-
lated tasks. Our Paper II and Paper III also take advantage of pre-trained
prior models to guide learning the policy. Paper III takes advantage of prior
experience collected on a subset of the problems to efficiently learn a policy on
a new, previously unseen problem from the same MDP family. Meanwhile, our
Paper II, III, IV all integrate variable impedance information into the action
space to learn the policy on the real robot directly.

In this thesis, we take advantage of skill prior based RL to accelerate the
policy learning process in real-world robot settings. By incorporating skill pri-
ors derived from previous learning experiences, we enhance the robot’s ability
to acquire new skills more efficiently. Furthermore, we extend this method’s ap-
plicability beyond single-task learning by enabling the transfer of these learned
skills to tackle novel tasks or even different robotic platforms. This approach
not only improves the adaptability of robots in diverse scenarios but also pro-
motes the sharing and utilization of expertise across the robots.
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3.4 Variable Impedance Robot Learning
In many tasks, robots encounter different phases or stages that require varying
levels of impedance control throughout the execution. Variable impedance con-
trol allows robots to adjust their stiffness and damping properties dynamically,
enabling them to adapt to changing environmental conditions and task require-
ments. This adaptability is crucial for tasks that involve physical interactions
with the environment or objects. For example, in a peg-in-hole insertion task,
the robot may require different impedance levels for different stages. During
the initial alignment phase, the robot might employ higher stiffness to main-
tain precision while aligning the peg with the hole. However, during the actual
insertion phase, the robot may reduce its stiffness to allow more compliant
behavior, facilitating the peg’s entry into the hole.

Traditional robot learning methods mainly focus on positional information
in joint or Cartesian space. In these approaches, robots learn how to perform
tasks by optimizing their joint positions or Cartesian coordinates. However,
such methods often struggle with tasks involving physical contact or interac-
tions with the environment. Impedance control allows robots to modulate their
stiffness and damping properties, enabling them to adapt their behavior during
interactions with the environment [1]. Impedance controllers have facilitated
the application of RL to contact-rich tasks [2]. This adaptability is crucial for
contact-rich tasks, where forces and interactions play a significant role.

In Cartesian impedance control, the robot end-effector dynamics are mod-
elled as a mass-spring-damper system:

Fa = K(x− xd) +D(ẋ− ẋd) +M(ẍ− ẍd), (3.4)

where Fa is the contact wrench with the environment, x and xd are the current
Cartesian pose and the desired pose of the robot end-effector. K ∈ R6×6,
D ∈ R6×6 and M ∈ R6×6 are the stiffness, damping and mass matrices of the
system respectively.

[2] leverages Learning from Demonstrations (LfD) to acquire manipula-
tion skills, requiring adaptive stiffness levels based on both the environment
and the task’s specific demands. Their learning framework utilizes kinesthetic
teaching to gather demonstrations of the task, capturing both kinematic and
dynamic data. The key highlight of the method lies in the derivation of time-
varying stiffness estimates. Gaussian mixture model (GMM) is used to rep-
resent the distribution of both sensed forces and estimated stiffnesses, which
allows the robot to adapt its stiffness levels dynamically during task execution.
Rather than estimating full stiffness matrix, our Paper II only considers the
diagnonal elements in the matrix by encoding impedance-aware actions into a
low-dimensional multivariate Gaussian distribution with VAE.

RL algorithms enable robots to learn and improve their behavior through
trial and error, akin to how humans learn. Previous research has explored the
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use of RL algorithms. Buchli et al. [13] and [14] achieved variable impedance
control for practical high degree-of-freedom robotic tasks using the RL algo-
rithm PI2 (Policy Improvement with Path Integrals), which requires minimal
tuning of algorithmic parameters beyond exploration noise. However, their
approach was based on joint space impedance, limiting policy transferability.

Imitating human impedance behavior can be used as an initial policy point
for the RL task. Subsequently, standard RL methods or, even more effectively,
inverse RL approaches can be employed to further enhance and fine-tune the
initial policy, as demonstrated in the work by Howard et al. [40]. In a recent
work [92], the authors propose an inverse RL method to learn both the variable
impedance policy and reward function. However, their policy outputs only the
impedance gain or the feedback force, omitting positional information from
the action space.

Martín-Martín et al. [56] compare several well-known controllers used to
map policies into robot commands. The choice of controller impacts the output
of the policy. For instance, a joint torque controller’s policy outputs the desired
torque, while a Cartesian variable impedance controller’s policy outputs the de-
sired pose, velocity, damping, and stiffness. In their paper, variable impedance
control in end-effector space (VICES) has been explored to incorporate vari-
able impedance into the RL action space [56]. While VICES has demonstrated
the transferability of RL policies across from simulation to reality, training
policies directly on the real robot remains challenging. Our Paper II com-
bines variable impedance actions in Cartesian space with skill prior RL [68],
which enhances the robot’s ability to generalize its learned policies to a wider
range of tasks and scenarios.

This thesis involves the integration of variable impedance information di-
rectly into the robot action space, which benefits addressing contact-rich ma-
nipulation tasks. By combining variable impedance data with demonstrated
trajectories, we introduce a robust method that not only ensures safety during
the exploration phase of policy learning but also enables effective training of
the policy directly on a physical robot.

3.5 Imitation Learning in Robotics
Imitation learning [44, 55, 64] allows an agent to observe expert behavior and
attempt to mimic it in order to accomplish the task. This approach proves
beneficial when explicit reward signals are not available or designing reward
functions is challenging. In [99], the authors propose a model-free deep rein-
forcement learning (RL) method that leverages a small set of demonstration
data to expedite and stabilize the learning process for visuomotor policies. By
utilizing these demonstrations, the agent can learn from the expertise of others
and improve its own performance.
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Another notable technique in imitation learning is Generative Adversarial
Imitation Learning (GAIL) [38]. GAIL benefits learning policies from expert
demonstrations across a variety of domains. By framing the learning process as
a generative adversarial game between the policy network and a discriminator,
GAIL effectively learns to imitate the expert behavior. This adversarial setup
encourages the policy network to produce actions that are indistinguishable
from those of the expert, resulting in high-quality learned policies.

In [100], an approach is proposed to learn task-specific policies from a few
demonstrations. The authors introduce constrained discriminator optimiza-
tion, which refines the discriminator’s ability to distinguish between expert
and agent behavior. By optimizing the discriminator under specific constraints,
more informative rewards can be obtained, facilitating more effective policy
learning. Adversarial Skill Networks (ASN) [57] present a framework that goes
beyond relying solely on expert demonstrations. ASN utilizes multiple un-
labeled demonstrations to generate a distance measure in a skill embedding
space, serving as a reward signal for novel tasks. This approach enables the
agent to learn from a diverse set of demonstrations, allowing for more robust
and flexible skill acquisition. The authors demonstrate that ASN not only
solves tasks encountered during the training of the skill embedding but also
exhibits the capability to be transferred to novel tasks that require a compo-
sition of previously learned skills.

A recent work by Zhu et al. [98] introduces a bottom-up approach to learn-
ing a set of reusable skills from multi-task, multi-sensory demonstrations and
utilizes these skills to synthesize long-horizon robot behaviors. Another recent
work VIOLA [97] is an object-centric imitation learning approach designed
for acquiring closed-loop visuomotor policies in robot manipulation tasks. The
method leverages general object proposals from a pre-trained vision model to
construct object-centric representations. These representations are then used
in a policy, allowing VIOLA to reason and focus on task-relevant visual fac-
tors for accurate action prediction. VIOLA can reason over the object-centric
representations and selectively attend to task-relevant visual factors for ac-
curate action prediction. This attention mechanism [83] enables the system
to focus on critical details, such as the location, orientation, and appearance
of objects, while ignoring irrelevant or distracting visual cues. As a result,
VIOLA demonstrates improved performance and robustness in dealing with
variations in object shapes, sizes, and appearances, as well as environmental
perturbations. Our Paper II also leverage expert demonstrations to learn a
task-specific policy, but instead of purely training an imitating policy, we ini-
tialize the RL policy with a pre-trained skill prior model and continue training
the policy on the real robot. Building upon this work, our Paper III extends
the concept further by learning multiple skill prior models for various tasks
within a Markov Decision Process (MDP) family. By effectively combining
these prior knowledge models, we enhance our ability to adapt to new tasks.
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As a result, our approach demonstrates improvements in adaptation capabili-
ties compared to existing methods.

In the paper [62], the authors propose to use prior data from previously re-
lated tasks to facilitate the acquisition of new tasks with increased robustness
and data efficiency. The key challenge lies in the agent’s ability to internal-
ize knowledge obtained from prior data and apply it effectively to unfamiliar
tasks. To address this, a Skill-Augmented Imitation Learning with prior Re-
trieval (SAILOR), is introduced to extract temporally-extended sensorimotor
skills from the available prior data, which are utilized to develop a policy
for the target task. SAILOR focuses on learning a retrieval-based mechanism
to extract similar sub-trajectories in the prior data. By doing so, [62] aims to
bridge the gap between existing knowledge and novel task contexts, ultimately
enhancing the learning process. Similar to our Paper II, their method is also
composed of skill learning phase and policy learning phase. Our Paper II
mainly focuses on utilizing demonstration data and variable impedance action
to accelerate training the task-specific policy on the real robot. Our Paper III
aims to combine multiple skill priors to guide the policy learning on a new
problem by comparing the similarity between the target task and the prior
ones.

To enhance the agent’s ability to apply its acquired knowledge to unfa-
miliar task setups, Freymuth et al. [24] adopt an approach which combines a
diverse range of movement primitives with a distribution matching objective.
It enables to acquire a repertoire of versatile behaviors that not only replicate
the expert’s demonstrated skills but also encompass their capacity to tackle a
variety of scenarios. Behavioral descriptors are utilized to facilitate generaliza-
tion to novel contexts from already a small number of demonstrations. These
descriptors function as a bridge between the agent’s learned behaviors and the
diverse landscape of novel task configurations. Their capability to seamlessly
adapt and translate across distinct scenarios enables the agent to tackle tasks it
has never encountered before. Another recent work [76] introduces a language-
conditioned behavior-cloning agent, Perceiver-Actor, for robot manipulation
tasks. Perceiver-Actor uses a transformer [45, 83] to encode language goals
and RGB-D voxel observations, generating discretized actions by predicting
the next best voxel action. Unlike approaches that focus on 2D images, the
utilization of a voxelized 3D observation and action space facilitates a richer
understanding of spatial relationships. Different from our Paper II, their work
does behavior cloning instead of RL and aims to learn a multi-task agent condi-
tioned on language goals for several tasks. Our Paper III improves the agent’s
generalization ability by transferring knowledge acquired from demonstrations
in a MDP family.

In contrast to the methods listed in this section, the work in the thesis not
only relies on expert demonstration data for acquiring task-specific skills but
also incorporates reinforcement from trial-and-error interactions to refine the
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learned policy. Simultaneously, the knowledge obtained from the demonstra-
tion data is synthesized in a manner that enables its application to solve a
novel but similar task.
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Chapter 4
Summary and Findings

This thesis focuses on Reinforcement Learning (RL) in continuous action
spaces. This chapter mainly provides a summary of the research work discussed
in the appended papers. While the methods are presented in a general manner,
the technical details and comprehensive results are exclusively described in the
papers. The key highlights and contributions found in the appended papers
are described in the following:

• Paper I presents a method that leverages pre-defined constraints to
restrict the robot behavior during exploration. We only learn policies
within the null space of these constraints. Additionally, we construct
multiple constraint phases for various operational spaces to guide the
robot’s exploration.

• Paper II proposes an approach that extends an existing skill-based rein-
forcement learning (RL) framework [68] in order to tackle contact-rich
manipulation tasks. Specifically, we augment the framework with a vari-
able impedance action space, which enables the system to effectively
adapt its interactions during contact-rich manipulation tasks.

• Paper III presents a method that addresses the challenge of transferring
knowledge within a family of similar tasks by leveraging demonstrations.
Our proposal involves learning a prior distribution over the specific skills
needed to complete each task. We then combine these skill priors to
guide the policy learning process for new tasks, comparing the similarity
between the target task and the prior tasks.

• Paper IV presents a method that facilitates the transfer of skills between
different robot platforms. We achieve this by mapping the latent action
spaces of these platforms using a cycle generative network in a supervised
learning manner. To enable the robot to learn from the skills of another
robot, we extend the policy model that was initially learned on one robot
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by incorporating a pre-trained generative network. This approach allows
for effective skill transfer and enhances the robot’s ability to acquire new
skills from other robotic systems.

In the remainder of this section we examine in more detail the key finidings
and contributions of each of the enclosed papers.

4.1 Paper I — Safety Constraints for Reinforcement
Learning

The first research question (RQ1) concerns safe exploration problems and
asks: how can we utilize pre-defined constraints to improve safety and sample-
efficiency of RL for manipulation tasks?

Applying trial-and-error learning, such as Reinforcement Learning (RL), to
physical robotics presents several challenges. RL typically involves performing
exploratory actions, often with randomness, which can potentially lead to robot
or environment damage. Previous approaches have tackled this issue through
learning in simulation, safety exploration, imitation learning, and learning from
demonstration. However, some of these solutions lack safety guarantees, while
others struggle with the transferability from simulated to real environments.
Additionally, sampling efficiency is a significant challenge, as it is impractical
for a robot to gather millions of experience samples by interacting with its
surroundings. Consequently, it is crucial to address these challenges to enable
RL on real physical robots.

Classical approaches to safe RL focus on minimizing undesirable explo-
ration outcomes by restricting policy updates during iterations [73, 74]. How-
ever, determining the optimal update step remains challenging, and these
methods can still lead to the exploration of unsafe states over time. In con-
trast, we investigate the benefit of utilizing constraints to improve safety and
sample efficiency in RL for manipulation tasks. Incorporating task-specific
constraints into the RL algorithm helps guide the agent’s behavior towards
desirable outcomes. For example, we can define constraints that require the
agent to avoid collisions, or follow specific trajectories. By explicitly specify-
ing these constraints, we improve safety and encourage the agent to explore
efficient solutions.

We employ a hierarchical stack-of-tasks (SoT) motion control framework [79]
that ensures constraint satisfaction in a least-square sense throughout the
robot’s trial-and-error exploration. In this approach, constraints are utilized
to define safety conditions, thereby guaranteeing the robot’s adherence to
safety requirements. Our work builds upon the Safe-To-Explore State Space
(STESS) approach [53], which constrains the operational space of the robot
to be collision-free. This is achieved by decomposing a robotic skill, such as
placing a book into a cabinet, into multiple prioritized tasks. Safety tasks with
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higher rankings take precedence over RL tasks with lower rankings, ensuring
both safety and efficiency in RL within the redundant null space of higher-
ranked tasks.

Our proposed framework, which builds upon the null space concept, offers
a solution for enabling safe RL exploration in continuous action spaces with
constraints. By leveraging the null space of higher prioritized tasks (e.g., joint
limits), we effectively guide the robot around the constraints while ensuring
the robot’s actions remain within the permissible boundaries. This approach
allows for efficient exploration of the action space while maintaining safety,
making it well-suited for scenarios where continuous actions need to adhere to
specific limitations or constraints.

At times, the challenge faced by the agent lies in acquiring a skill within
a complex environment, often proving to be difficult or even infeasible when
relying solely on a single set of constraints. To address this, we introduce an
approach that allows for switching constraint phases as the robot navigates
distinct exploration spaces. The incorporation of multiple constraint phases
has the potential to expedite the learning process, particularly in scenarios
involving complicated tasks. Multiple constraint phases for different opera-
tional spaces are constructed to guide the robot exploration. An example of a
multi-step constrained task is shown in Figure 4.1.

Figure 4.1: Illustration of two constraint phases: the first constraint phase that
restricts the robot end effector inside the surrounding blue polyhedra (left); the
second constraint phase in which all four book corners should be kept inside
the corresponding green exploration polyhedra (right).

Paper I aims to address the challenge of safe exploration during trial-
and-error learning in RQ1. Paper I proposes a null space based hierarchical
method that integrates RL algorithms in the safe action space by eliminat-
ing constraint violations during RL exploration and enables collision-free high
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dimensional robotic control tasks in continuous action spaces. By incorpo-
rating prior knowledge as constraints, our Paper I guarantees safe RL ex-
ploration and RL algorithms can be learned in the null space of prioritized
constraint tasks. Simultaneously, the restricted action space and multiple con-
straint phases contribute to improved learning efficiency. The experiment re-
sults demonstrate our methodology’s effectiveness through various redundant
robotic tasks. The results highlight the capability of our null space based RL
algorithm which can explore and learn safely and efficiently.

4.2 Paper II — Variable Impedance Skill Learning
The second research question (RQ2) is about learning a policy on a real robot
to finish contact-rich tasks with pre-collected demonstrations: how can we use
prior knowledge to accelerate policy learning for a real robot?

Figure 4.2: Framework of variable impedance skill learning. Once the
impedance-aware skill prior is acquired, a skill policy is then trained through
trial-and-error learning to generate an embedded action denoted as z, which
can subsequently be decoded to a sequence of real robot commands. During
the online phase, the RL agent trains only the block labeled "skill policy",
while the remaining components are learned from demonstration data in ad-
vance.

When addressing the acquisition of skills to tackle complex real-world tasks
using robots, we frequently encounter the challenge of contact-rich manipu-
lation, which are of great importance due to their applicability across indus-
tries and scenarios. Contact-rich tasks possess broad significance, yet achieving
autonomous manipulation with direct robot-environment interaction remains
challenging. While Reinforcement Learning (RL) presents a promising avenue
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for skill acquisition, mastering contact-rich behaviors through RL proves de-
manding, with current methods necessitating substantial interaction experi-
ences, thereby creating efficiency bottlenecks. Safety concerns further inhibit
their direct application to physical robots. Previous approaches include expert-
coded control and RL within simulated environments, followed by real-world
adaptation.

An RL agent faced with a contact-rich task would require the ability to
mimic an impedance-like behavior. Utilizing RL in conjunction with a man-
ually adjusted fixed stiffness impedance controller can effectively tackle the
contact-rich task. However, the impact of this approach on free-space motion
and alignment varies depending on the desired level of contact softness. For
policies involving multiple steps, it may be necessary to use different stiffness
values for each step.

We introduce a variable impedance skill learning framework for contact-
rich tasks in our Paper II [86]. In this paper, we propose to leverage variable
impedance in Cartesian space to extend a skill prior RL method [68]. Our
approach extracts prior knowledge from a small set of suboptimal trajectories
and a latent space in which the RL policy generates skill embeddings that can
be further decoded into real robot command sequences. Our method learns
from both position, but also crucially impedance-space information.

We apply the Skill Prior RL (SPiRL) framework introduced by Pertsch
et al. [68] to address tasks involving significant physical contact, such as the
peg-in-hole task. In this adaptation, we simultaneously learn a latent repre-
sentation of skills and the underlying distribution over this latent space. To
accomplish this, we leverage a modified variational autoencoder (VAE) model
to derive a compact skill latent space Z from a dataset comprising contact-
rich trajectories. The framework for our method is illustrated in Figure. 4.2.
Our approach consists of two phases: skill learning phase and policy learning
phase. In the skill learning phase, we pre-train an impedance-aware skill prior
model with contact-rich demonstration trajectories; and in the policy learning
phase, we learn the skill policy on the real robot by incorporating the system
stiffness into the agent action. Variable impedance-aware actions enable the
robot to adapt to the contacting environment while following the commanded
Cartesian position for the robot end-effector.

As described in section 2.2.2, the modified VAE model is composed of a
skill encoder q(z|a), which produces the latent representation z correspond-
ing to a skill, and a decoder p(a|z), responsible for predicting a sequence of
actions a = at, · · · ,at+H−1 encapsulated by the skill embedding z. The pa-
rameter H ∈ N+ denotes the horizon of actions. A skill prior model pa(z|st)
generates a prior distribution over the latent space Z conditioned on the state
st. This distribution serves as a guiding influence for the policy, aiding in the
determination of which skills merit exploration.
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By pre-training the policy using the demonstrated trajectories, the robot
can quickly adapt and fine-tune its behavior through interaction with the
real world. This initialization helps the robot converge faster and reduces the
amount of exploration needed. Our research showcases the feasibility of di-
rectly deploying RL-based variable impedance actions in Cartesian space on
real robots, eliminating the need for learning in simulation followed by policy
transfer. We demonstrate that it is possible to train the robot directly in a
real-world environment by predicting impedance-aware actions.

In summary, our Paper II leverage a skill prior RL framework for learn-
ing latent action spaces for RL agents. We achieve this by utilizing contact-
rich demonstrated trajectories and integrating them with a variable impedance
Cartesian space controller. To achieve this integration, we incorporate the con-
cept of variable impedance into the action space of the RL framework. This
approach allows us to effectively combine the benefits of both latent action
space learning and variable impedance control, enabling the RL agent to learn
and execute complex tasks with adaptive impedance behavior in Cartesian
space. We show that our skill prior RL using variable impedance in Cartesian
space can be deployed on the real robot without simulation to reality domain
transfer and the learned policy can be adapted to different environment con-
ditions.

4.3 Paper III —Prior Knowledge Transferring
The third research question (RQ3) is about transferring knowledge acquired
from demonstrations to a new task: How to transfer prior knowledge to a new
but similar task from the same Markov decision process family?

Humans possess the remarkable ability to transfer learned skills efficiently
from one task to another, such as grasping an unseen object based on prior
experience. However, many state-of-the-art reinforcement learning (RL) meth-
ods struggle with this capability, often requiring the learning of each task from
scratch. Even when faced with a very similar problem, it remains challenging
to apply the learned policy effectively, as highlighted by Bousmalis et al. [10].
Consequently, achieving proficient performance across variant tasks using RL
alone may necessitate millions of new interactions in different environments,
making it impractical for real robot systems. Furthermore, the process of re-
training is both resource and time-consuming, while sample collection in a new
environment proves to be costly and repetitive.

Current state-of-the-art methods often rely on training policies in simu-
lation to mitigate undesired behavior and facilitate domain transfer, or they
employ guided policy search for single skills within a family of similar prob-
lems, as demonstrated by [67], [35], [20]. Successful deployment of simulation-
to-reality methods, as outlined in Yuan et al. [91], heavily relies on the simu-
lation closely resembling the physical system. Nevertheless, real-world robotic
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Figure 4.3: Framework of Multi-Prior Regularized RL (MPR-RL). In the MPR-
RL framework, we first pre-train skill priors for a set of similar MDPs. Once
we’ve learned these skill priors, along with the skill decoder block, we proceed
to train the skill policy. This policy is trained by combining different prior
distributions for a target task, generating an embedded action denoted as
z. This embedded action can then be decoded into a sequence of real robot
commands.

applications frequently encounter dynamics during the deployment phase that
differ significantly from those observed during training. This discrepancy be-
tween simulation and reality can lead to knowledge transfer failures and subpar
performance in real environments.

In Paper II [84], we addressed this challenge by utilizing a framework for
learning latent action spaces for RL agents from demonstrated trajectories [68].
We then integrated this framework with a variable impedance Cartesian space
controller, enabling safe and efficient learning of contact-rich tasks. However,
it is important to note that the method requires expert demonstrations or an
expert policy specifically tailored to the problem domain we are addressing.

The study in Paper III addresses the challenge of transferring knowledge
within a group of similar tasks. The main assumption is that we are presented
with a family of problems, formalized as Markov Decision Processes (MDPs)
that all share the same state and action spaces. Crucially however, members of
the MDP family exhibit different transition dynamics. Informally, our assump-
tion is that while transition probabilities are different, they may be correlated
or overlapping for parts of the state space.

We aim to capture the similarity among tasks by comparing these transi-
tion dynamics. However, transferring prior knowledge or skills from existing
tasks to a new target task is not a straightforward process. To address this
challenge, we propose a method called Multi-Prior Regularized RL (MPR-
RL) [87]. The MPR-RL framework is designed to leverage the prior knowledge
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or skills acquired from a family of related problems and facilitate the transfer
of this learned knowledge to train a policy for a new, similar problem. By reg-
ularizing the RL process with multiple priors, we can effectively incorporate
the shared information from the existing tasks into the learning process for
the target task. With the MPR-RL approach, we aim to improve the efficiency
and effectiveness of learning policies for new tasks by leveraging the acquired
knowledge from prior tasks, even when direct transfer is not easily achievable.

Using only one skill prior limits the method to policy learning in the same
task as where the skill prior was learned. For this reason, we extend this
approach from one learned skill prior to several skill priors learned in differ-
ent tasks. This is achieved by introducing regularization to the RL objective
through a weighted combination of relative entropies. This means that the pol-
icy is initially incentivized to explore according to a mixture of different skill
priors depending on the weight factors. The key idea behind our method is to
give high weight to those regularizing priors that come from similar tasks. We
assume that the tasks only differ in dynamics, therefore we predict the weights
based on the transitions.

In summary, Paper III aims to answer RQ3 by introducing a novel ap-
proach that enables the acquisition of multiple priors designed for a family
of similar Markov Decision Processes (MDPs). These priors are then com-
bined to provide guidance during the RL training of a policy within a novel
MDP setting. We showcase the adaptability of our Multi-Prior RL (MPR-RL)
approach across similar MDPs. Additionally, we extended the utility of our
MPR-RL method by incorporating variable impedance into the RL actions.
This augmentation enables us to directly deploy our method on a physical
robot, exemplifying its practical application in real-world scenarios.

4.4 Paper IV —Transfer Skills between Robots
The fourth research question (RQ4) concerns transferring acquired knowledge
for different robots: how to share learned skills to another robotic platform by
using common task experiences?

While human beings have the ability to mimic and acquire skills from other
people to tackle daily tasks, intelligent robots still face challenges in effectively
learning new skills using the experience of other agents. Recent progress in
trial-and-error learning has showcased the capability of robots to acquire new
skills autonomously [3, 51]. However, the focus has predominantly been on
learning action policies from scratch, rather than leveraging existing knowledge
and skills from other robots. Most state-of-the-art approaches focus primarily
on learning policies for individual robots, often overlooking the significance
of reusing learned skills among multiple agents. To fully exploit the potential
of multi-robot systems, it is essential to shift the focus towards developing
methods that enable efficient skill transfer among robotic agents.
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Figure 4.4: Framework of our Learn from Robot method. We utilize the com-
mon tasks between two robots (e.g. Pick-Place, Nut Assembly) to learn a
cycle generative model ϕ := G, F that is able to transfer the latent actions.
Policies for solving tasks that are unique to each agent (e.g., stack, lift) can
then be transferred and shared.

In the context of robotics, the transfer of learned policies between agents
remains a challenging task. Existing approaches often require re-training or
fine-tuning of policies, especially when slight hardware differences are encoun-
tered [10]. This limitation hinders the seamless transfer of skills among robots
and restricts the potential benefits of knowledge sharing within a robotic team.

By fostering mechanisms for skill sharing and reuse, robots can leverage
the expertise of their peers and build upon existing knowledge. This requires
designing algorithms and architectures that facilitate the seamless integration
of learned skills into the decision-making process of individual robots. Such
approaches allow robots to adapt quickly to new tasks and environments, lead-
ing to enhanced versatility, robustness, and efficiency. Furthermore, exploring
methods for effective knowledge transfer among robots not only improves task
performance but also enables collaborative learning and cooperative problem-
solving. By leveraging shared experiences and expertise, robots can collectively
tackle complex tasks and overcome challenges that may be difficult for indi-
vidual agents to solve independently.

Our approach delves into the challenge of transferring skill representations
across different robots within an embedding space. Our method is composed
of generative model learning phase and policy learning phase. Initially, we un-
dertake supervised learning to train a cycle generative model by utilizing RL
transitions from two distinct robot domains. Subsequently, during the policy
learning stage, we estimate the RL entropy in the target domain to guide
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the learning procedure. To accomplish this, we integrate the policy with the
previously trained generative model, thereby introducing a relative entropy
component based on acquired skill priors. This component acts as a regular-
ization factor for the RL objective which help to guide the policy learning.

We leverage the samples from common tasks between two robots to learn a
cycle generative model that is able to transfer the latent actions. Our Paper IV
utilizes a cycle generative model to learn a domain transfer function ϕ := {G, F}
which maps between two latent skill spaces X and Y. This allows us to transfer
the priors p(z|st), which are represented as multivariate Gaussian distribution
over embedded actions for each specific task. In the case shown in Figure 4.4,
we use demonstrations of Pick-Place, Nut-Assembly tasks to pre-train skill
prior models on each robot. We use samples from the experience of one robot
and pass the samples through the learned prior models of both robots. For
example when training the generative model G, we use the sample from task
i and pass it through the prior model for that robot to get kxi ∼ (µxi ,σ

x
i ), then

transfer it with the generator to the second robot and get k̂yi , where ki is
sample for mean and covariance in the latent action distribution. To simplify
we use the identity mapping between the state spaces for a common task on
different robots. Using that, we take the state st and pass it through the prior
model of robot y to obtain kyi , and transfer it to obtain k̂xi . The transferred
samples k̂xi and k̂yi can then be supervised with the expected values produced
directly through the prior models — kxi and kyi , respectively — using a simple
regression loss Lreg.

Inspired by CycleGAN [95], we also formulate a cycle consistency loss using
the generators G and F. We incorporate the cycle consistency loss to ensure
that we get the same sample if we transfer a sample from robot x to robot
y and then back to robot x. As we can ensure sample alignment by design,
we train domain transfer models in a regression way instead of adversarial
manner: generator G : X → Y and generator F : Y → X. The training of each
generator model is supervised by the skill priors. The generative model loss is
composed of regression loss and cycle consistency loss:

L(G, F) = Lreg(G, F,X, Y) + λLcyc(G, F) (4.1)

where λ is weighting parameters that control the importance of cycle consis-
tency loss.

In summary, our Paper IV focuses on acquiring the ability to transfer prior
knowledge across various robots, facilitating the rapid acquisition of policies
for novel manipulation tasks. These policies are represented as actions within
a latent skill space. We investigate the challenge of transferring skills across
different domains and propose a novel approach employing a cycle generative
model to predict the action distribution within the target robot domain. To
enhance the learning of new policies, we expand the concept of entropy reg-
ularization by combining the policy with a pre-trained generative model. By
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concatenating the policy model acquired from one robot with a generative
network, our method enables a robot to learn from the skill sets of another
robot. To answer RQ4, we evaluate the efficacy of our approach through sim-
ulation experiments involving various robotic tasks and the results show that
our method can be generalized to unseen tasks on different robot platforms.
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Chapter 5
Conclusion and Future Work

Reinforcement learning (RL) is a crucial field in robotics that enables robots to
acquire complex skills. However, ensuring safe exploration and efficient learning
in robot systems has been a challenge. This thesis investigates novel methods
for applying policy learning to robotic manipulation tasks. A collection of
algorithms that handles safety concerns during policy training and transfers
skills for new tasks or robot platforms are proposed through several scientific
articles. In this chapter, we conclude with the contributions and ethical impacts
of this work. Finally, some limitations and potential future work are discussed.

5.1 Contributions
The main contribution of this thesis is the development of a collection of
algorithms that handles safety concerns during policy training, improves ex-
ploration sample efficiency, and aids the transfer of skill policies to novel tasks
and robot platforms. We summarize the contributions of four articles in this
subsection.

Paper I focuses on a hierarchical control framework that decomposes robot
skills into higher-ranked tasks and lower-ranked RL tasks. By encoding prior
knowledge as constraints, Paper I enables safe RL exploration, with RL al-
gorithms learned in the null space of prioritized constraint tasks. Evaluations
on various tasks, such as both single stage and multi-stage constrained tasks,
demonstrate improved learning efficiency through restricted action space and
multiple constraint phases. This work specifically addresses RQ1.

Integrating variable impedance into RL actions is another notable method
in Paper II. This approach learns latent embeddings from demonstrated tra-
jectories, capturing prior knowledge about specific skills. It enables the gen-
eration of real robot command sequences, showcasing adaptability to different
scenarios. Importantly, this method can be directly deployed on real robots
without requiring simulation to reality domain transfer, making it practical
and efficient. This contribution specifically addresses RQ2.
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In Paper III we explore multiple prior learning for similar Markov Deci-
sion Processes (MDPs). Acquiring prior knowledge of specific skills relevant to
similar tasks significantly improves the learning process. By incorporating vari-
able impedance into RL actions, this approach can also be applied directly to
real robots, simplifying the deployment process. This approach contributes to
RQ3, which focuses on improving the agents’ ability to tackle new challenges
by leveraging knowledge from previous tasks.

Last but not least, our Paper IV proposes a method for transferring skills
across diverse robots. We introduce a cycle generative model designed to esti-
mate the action distribution for the target robot. By using this model, skills
acquired on one robot can be applied to a different robot. This approach en-
hances the transferability of acquired skills across various robot platforms and
tackles the challenge in RQ4.

5.2 Ethical Impacts
Recent advancements in RL for robot skill acquisition, including the ones pre-
sented in this thesis, have significantly improved safety, efficiency, and adapt-
ability. Hierarchical control frameworks, variable impedance integration, and
multiple prior learning strategies have demonstrated their effectiveness in sim-
ulated and real-world scenarios. By leveraging these techniques, robots can
learn complex skills efficiently and apply them to various tasks.

However, as these capabilities expand, a confluence of ethical considera-
tions becomes increasingly prominent. The autonomy of RL-trained robots
introduces concerns regarding unintended consequences stemming from their
ability to learn and generalize from diverse experiences. Furthermore, the in-
tegration of these advanced robotics capabilities has implications that stretch
beyond technological realms. Automation fueled by RL could lead to the dis-
placement of human workers from routine tasks.

Moreover, the inherent opacity of some RL processes presents challenges
in achieving transparency and explainability in robotic decision-making. Ad-
dressing this opacity to provide justifiable explanations for robot actions is
vital for user trust and regulatory compliance. These ethical issues need to be
addressed in future research in order to ensure that the benefits from automa-
tion are distributed in an equitable manner.

5.3 Limitations and Future Work
The thesis’s algorithms have been validated through extensive experiments,
yielding promising results aligned with research objectives. However, it’s im-
portant to recognize that these methods also have limitations, such as scal-
ability and sensitivity to inputs. Continued research in this field will further
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enhance the applicability, scalability, and safety of RL training in robotics,
ultimately advancing the capabilities of robots in real-world scenarios.

The constraints in Paper I are assumed to be defined in advance which
might limit the application of the method to complex manipulation tasks.
One future work is to make the agent learn the safety boundaries itself. One
common limitation of Paper II, III, IV is collecting a sufficient number of
demonstration trajectories. The potential future work is to investigate how
to use fewer demonstrations to accelerate policy learning. This process can
be effort-intensive and time-consuming, potentially impeding the efficiency of
policy learning.

Additionally, as the MPR-RL approach described in Paper III has primar-
ily been tested on a small family of MDPs, research should focus on developing
a dynamic distribution over skill priors for efficient knowledge transfer across
a broader range of MDPs. Another direction is investigating more sophisti-
cated techniques, such as Bayesian optimization, to enhance the composition
of MDP priors and improve the integration and utilization of acquired prior
knowledge.

In our Paper IV, we utilize the identity mapping of the state space for
two agents which requires that the robots share the same input dimension and
similar kinematics. A interesting future work is to investigate how to transfer
the observation space for the robots more generally and effectively.
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