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Abstract—Finding a balance between meeting the testing goals
and testing resources is always a challenging task. Therefore,
employing Machine Learning (ML) techniques for test optimiza-
tion purposes has received a great deal of attention. However,
utilizing ML techniques requires frequently large volumes of
data to obtain reliable results. Since the data gathering is hard
and also expensive, reducing unnecessary failure or retest in a
testing process might end up minimizing the testing resources.
Final test yield is a proper performance metric to measure
the potential risks influencing certain failure rates. Typically,
production determines the yield’s minimum threshold based on
an empirical value given by the subject matter experts. However,
those thresholds cannot monitor the yield’s fluctuations beyond
the acceptable thresholds, which might cause potential failures in
consecutive tests. Furthermore, defining the empirical thresholds
as either too tight or too loose in production is one of the main
causes of yield dropping in the testing process. In this paper, we
propose an ML-based solution that detects the divergent yield
points based on the prediction and raises a flag depending on
the yield class to the testers when a divergent point is above a
data-driven threshold. This flexibility enables engineers to have a
quantifiable tool to measure to what extend the different changes
in the production process are affecting the product performance
and execute actions before they occur. The feasibility of the
proposed solution is studied by an empirical evaluation, which
has been performed on a Telecom use-case at Ericsson in Sweden
and tested in two of the latest radio technologies, 4G and 5G.

Keywords–Software Testing; Test Optimization; Machine Learn-
ing; Regression Analysis; Imbalanced Learning

I. INTRODUCTION

Test optimization is of vital importance for the industry to
get better products in quality and also affordability. As the
Internet of Things (IoT) is becoming a reality, the demand for
faster and cheaper products is increasing. To stay competitive
in the market, Telecommunication companies apart to ensure
the coverage and the quality of the emerging technologies,
also need to optimize the form these products are being tested
by reducing waste in the manufacturing process. In 5G (fifth
generation) radio technology, the need for faster response,
communication speed, capacity, and the number of features
has increased remarkably compared to older radio generations.
As consequence, the number of tests the new products need
to comply with has increased exponentially. Therefore, those
innovations demand new optimization methods that need to

be applicable to the industry. Data-driven approaches have
been shown to be useful in order to predict future trends of
continuous data [1]. These trends can be extended to have
dynamic thresholds, which give a more realistic approach to
the behavior of future points than the currently utilized fixed
thresholds. However, fixed thresholds do not give information
of behavioral changes of the units tested nor their direction as
long as they are within the predefined limits [2]. A method to
measure the effectiveness of a production process is to measure
its production yield. The yield is one of the major factors
directly influencing the manufacturing operational costs [3]. The
traditional definition of yield states that yield is proportional to
the tested items, which comply with the test specifications or
fixed thresholds. As the yield evolves according to the products
are being tested, it follows a trend that can be modeled. This
model can be useful in fault-localization and fault-prediction
by finding the points where the yield diverges from normal
production patterns. Furthermore, this model can identify low
yield sources at a much earlier production stage compared to
current practices and execute preventive actions. Our vision
is to use a historical data approach to propose an intelligent
framework that defines data-driven thresholds based on the
yield predictions and finds abnormal points, thus optimize
the test process for future radio generations. Though, this
solution work with any kind of product can also be applied
as a quality indicator for software testing factories for the
similarities of the whole process, as test cases, test suite,
and yield. This paper compares different regression methods,
after data pre-processing, to predict the final test yield, define
dynamic thresholds, and thereby detect the divergences of the
characterized trends. Thereafter, the auto labeling process is
added to label automatically the data inputs into the following
three main labels: Pass, Warning, and Fail by using the Support
Vector Machine (SVM) in the yield classification. The new
thresholds give insightful information for the execution of
future tests and the automatic labeling might also reduce the
amount of manual effort in the yield loss analysis. These
new thresholds can also be employed to enhance the yield by
facilitating the fixed thresholds since they are often determined
based on previous experience or by defining some stricter fixed
test limits to ensure compliance with the regulators.
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TABLE I. TEST REQUIREMENTS EXAMPLE IN THE DIFFERENT STAGES OF TESTING.

Test Requirement according 3GPP Test Case Test point
6.6.2 of 3GPP TS36.141 ACLR
upper limit 44.2dBc

Test Case 1: This test case will measure the Adjacent
channel leakage power ratio (ACLR) of product A
Configuration
Procedure
Passcriteria > 45dBc

Configuration
Test point 1.1: Send the right settings to the product
Test point 1.2: Set up the carrier
Test point 1.3: Send the right settings to the instrument
to start measuring the ACLR
Procedure
Test point 1.4: Measure the ACLR
Passcriteria
Test point 1.5: Compare the results to the pass criteria

The proposed solution in this paper has a low computational
complexity because it is designed to work in an online
environment, despite the limitations of the infrastructure. In
fact, the chosen ML-based methods have low computational
cost, and the complete model is tested using an offline data
set, typical of batch production and not access to Cloud
compatibility. Moreover, the proposed solution in this study
can handle high-dimensional input parameters, therefore it
easily can be adapted and utilized in any other domain, e.g.,
sensors outputs and weather forecast. In order to make the
proposed approach more generic and also confirming that
transfer learning can be utilized, we trained the model on
the 4G data set, and later we tested it on a 5G production
data set. Furthermore, the obtained results in this study show
a good harmony between the predicted points and the ground
truth (the labeled data).

This paper is organized as follows, Section II explains all the
theoretical background necessary to understand our approach.
Section III the authors aim to compare prior results of similar
solutions in close areas of expertise. Section IV explains in a
detailed manner each step of the proposed solution to our
problem that also can be applied to other research areas.
Section V explains more about our data set, characteristics,
properties, and types of inputs. The results after applying our
solution approach to the given data set: prediction, classification,
and validation methods are illustrated in Section VI. Finally,
Section VII discusses the limitations, the assumptions, and the
great potential of our approach and Section VIII concluded
by briefly summarizing the study, results, and the direction of
future research.

II. BACKGROUND

This section provides the required academic and industrial
concepts and information for understanding the proposed
solution in this paper.

A. Testing process of Radio Base Station (RBS)

Radio Base Stations (RBSs) are radio transceivers produced
at Ericsson and contain analog and digital components.

To guarantee product quality and coverage, Ericsson fol-
lows international Telecommunication standard regulators, e.g.,
3GPP for Europe and FCC in North America. The standards
are translated into technical documents called test requirements.
Each RBS generation has its own test requirements that follow
the international regulators. The test requirements contain test
cases where each test case is divided into several test points and
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Figure 1. The 4G RBS production final yield (FY) distribution. The
FY aims to reach 1 (100%) viz. It is a negatively skewed.

all together make a test suite. The reason for distributing a test
case into several test points is the limitations of the product’s
internal components, the production infrastructures, and also
the modularity search. In order to get a better understanding
of the analogy between standards, test cases, and test points,
Table I provides a hint on how a standard is translated to small
units. As we can see in Table I the 3GPP TS36.141 standard
requires measuring the power in the adjacent channels of the
main transmitting carrier, also Adjacent Channel Leakage Ratio
(ACLR). Later, the design team has translated this requirement
into the Test Case 1 where it is divided into 5 test points
according to the infrastructure limitations (see Table I).

A test case typically tests a specific task to validate certain
principles stated in the test requirement and it usually requires
input and provides an expected output. The input describes
the settings of the products while the output must follow the
fixed thresholds given by the test requirements. On the other
hand, a test point provides execution details of the different
points, which are described in the test case. The test points
can be executed in a different sequence, therefore a test suite
(which includes several test cases and thereby test points) can
be executed in sequential or parallel mode. The sequential
execution mode can be beneficial if there is a dependency
between test cases, i.e., the success of a test point depends
on the success of the previous test points. On the contrary,
the parallel execution mode can be useful when test cases are
independent. In this paper, we assume that the test cases are
independent of each other and can be executed in any order.
The analysis of dependency between test cases is outside the
scope of this paper and is carried out in an extension paper.

Moreover, in a fixed threshold, the output of the test points
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(a) Captured data before smoothing.
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(b) Captured data after smoothing.

Figure 2. Heatmap of feature inputs before after smoothing, for a 4G radio product.

depends on compliance with those thresholds. They can be
given in form of range (low and high), greater than, equal to,
or lower than - of the fixed thresholds, for instance, the Pass
criteria > 45dBc in Table I. Furthermore, in this study, only
the test points with thresholds within a range are analyzed.
However, in any case of having only one threshold, the proposed
solution is still valid by assigning both boundaries to the same
value.

A production yield is a performance indicator of a product
over time, which measures how efficient a manufacturing
process is. It also shows how the different changes, e.g.,
hardware, software, new components -revisions, influence the
production process. Figure 1 mirrors the production yield
distribution of the data set utilized in this study. As we can see
in Figure 1, the production yield in our data set is left-skewed
and does not show the Gaussian distribution. The final test
yield (FY) is used through this paper, the final test yield is
the percentage of good products produced taking into account
the reworked products, unlike the First-Time Yield (FTY),
which does not consider them. The FY formal definition is
given in (2). The FY is chosen as an important feature in the
production process of RBS at Ericsson because it gives an
insight on how efficient the product is in a determined time
slot and can be modeled to predict future patterns based on
historical data by using regression methods.

B. Data Smoothing

Data smoothing is a statistical method for eliminating outliers
from data to make the important patterns more visible [1].
Another purpose of using smoothing algorithms is to minimize
statistical noise from the data set and assist prediction patterns.
Some of the most known methods used for data smoothing are
the Random method, simple moving average, random walk,
simple exponential, and exponential moving average. In this
paper, we focus on a single exponential moving average that
applies weights to historical data. Those weights make the
model focus on the most recent data observations. Therefore,

the exponential moving average is more sensitive to the changes
if compared to the moving average smoothing method.

Figure 2a shows the heatmap of the original input data
before smoothing and Figure 2b after applying exponential
moving average. Both figures have the same pattern, though
the smoothed version makes the pattern more noticeable.

C. Regression Analysis

In the integration testing level, each test point is a con-
tinuous and dependent variable for different independent
test configurations. Therefore, the approach to study the FY
based on the test results of test points can be considered
as a regression problem. The Regression models are being
applied for predicting different purposes, they also measure the
relationship between the input features and target data. This
relationship can be linear or non-linear. There are several kinds
of regression models, wherein this paper, linear regression,
ridge regression, polynomial regression, and XGboost are
applied and compared to each other in order to predict the
production yield of RBS.

D. Imbalanced Classification

Once the production yields are predicted (by using the
best regression model), then the predicted results need to be
classified. The obtained investigations in the domain indicate
that this classification suffers from an imbalanced dataset [1].
Therefore, the classification step of the proposed solution can
be considered as an imbalanced classification, which is a typical
problem in industrial applications. The imbalanced data set
refers to a data set that has more labels in one class than the
other classes, which makes it difficult to generalize the model.
In fact, the problem arises when the important classification
lies on the minority represented class. This issue may cause
that one class dominates the other classes and that machine
learning algorithms have poor performance on the minority
class. Furthermore, imbalanced classification has shown to be
challenging due to the severely skewed class distribution and
also misclassification [1].
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Generally, there are two main solutions for imbalanced
classification: 1−employing the classification algorithm, which
can handle imbalanced data such as IFROWANN (Imbalanced
Fuzzy-Rough Ordered Weighted Average Nearest Neighbor
Classification [1]) and 2−utilizing some data pre-processing
methods to mitigate the imbalanced data sets such as ran-
dom sampling (in forms of under and oversampling). The
random under-sampling randomly removes samples of the
over-represented class to match the minority class, while over-
sampling generates new samples of the under-represented class
to match the majority class. However, in the oversampling,
since the minority class does not add new information, instead,
new samples should be synthesized from existing samples.
SMOTE or Synthetic Minority Oversampling Technique, is an
over-sampling method that uses the k-Nearest Neighbors (k-
NN) to create a synthetic new sample [4]. In fact, the SMOTE
model uses the Euclidean distance to calculate every minor
point to get the k-nearest points. According to the imbalanced
data set Xorigin, select randomly n sample of the minority
class, which will help us to pick up the nearest samples of
X and name them Xi. Then randomly generate new samples
of the minor class based on these Xnew as represented in (1),
where i = 1, 2, ...n. The ratio to generate new samples is
1/IR − 1, where the Imbalance Ratio (IR) is defined as the
ratio of the number of minor class samples to the number of
major class samples as stated in [5].

Xnew = Xorigin + rand(0, 1) ∗ |Xorigin −Xi| (1)

In this paper, the SMOTE model is used to improve the
imbalanced data set for the classification and auto labeling
process. On the other hand, SVM is a supervised machine
learning algorithm, is used for binary classification by its
kernel function, which could transform the data and classify
different groups. This margin can be described as a line for
two-dimension data and a hyper-plane for multi-dimension
data. However, SVM can also be employed for the multi-
classification problems by building different SVM models for
every two labels. Especially, SVM works more effectively in
high dimensional spaces where the feature dimensions are
larger than the number of samples. For instance, the tool One
Vs One Classifier [6] can separate the multiple classes or labels
classification task that uses one classifier per class or label, i.e.,
it breaks down the problem into different binary classifications.
In this paper, SVM is used to classify the different levels of
acceptance and warning in the monitoring process done in
production.

E. Anomaly detection and Fault Prediction

In a complex communication system, such as the production
of RBS for 5G and 4G, the production data are collected in
form of time series data. Due to the inherent complexity of
the test production process of RBSs, the test time must be
efficiently minimized, to apply traditional fault diagnosis is
limited because it repairs after the fault occurs. In contrast,
prognostic health management [7] provides a promising ap-
plication in production where the variable time is of vital

importance. Figure 3 illustrates a block diagram of a data-
driven prognostic health management. It monitors relevant data
from the process, e.g., production yield, analyzes them, triggers
alarms or warnings, and takes actions before the fault appears.
Furthermore, by adding failure predictors, it can forecast the
fault occurrences [8] before they happened, and then preventing
actions can be executed in the monitored system. There are
also some other data-driven approaches that can contribute to
prognostic health management [2] where the faulty behavior
can only be seen when a huge amount of data is viewed in
multidimensional space.

Figure 3. Data-driven prognostic health management (see [7]).

F. Transfer Learning

Many machine learning methods perform better under the
assumption that the training and test data have the same
distribution or have the same feature space. However, if the
mentioned variables change, the algorithms might not perform
properly and the methods need to be adjusted based on the
changes and further data gathering might be required to update
the models. Transfer learning or knowledge transfer can be
considered as a potential solution to this problem. In transfer
learning, the knowledge obtained in one domain needs to
be transferred and applied in another domain. Conversely,
another application can be able to train the models using data
set from a domain where one has sufficient data and to use
the same model in another domain where the data is limited.
Transfer learning techniques have been applied to many real-
world applications, which show promising results. One of the
assumptions of transfer learning is that the source and target
domains are related, which otherwise opens the possibility to
negative transfer [9]. In this paper, transfer learning is employed
by reusing the models found using a 4G (mature product) data
set in a 5G radio product. We need to consider that, although
4G and 5G are two different radio generations, however, both
products share some similarities.

III. RELATED WORK

In many industrial applications, test cases’ limits are still
defined by the test requirements as fixed thresholds, and not
data-driven modeling of these thresholds is used to optimize
the total testing time. Furthermore, there is not enough follow-
up of the sources of yield losses. The main goals of this
paper are to design a dynamic monitoring tool that supervises
critical variables, predicts normal patterns, and sends warning
messages to the user when anomalies are observed. One
of the methods commonly used in industry is based on
sample test measurements such as Process capability index
(CPK). CPK is entirely done in offline mode and assumes
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Test records Measure Testing yield Pre-processing Regression Predictive Model Classification Alarm or Warning

Input Step 1 Step 2 Step 3 Step 4 Output

Figure 4. The required input, steps and expected output of the proposed solution in this study.

that the process is consistent over time. Though CPK has
worked well in the past in specific samples, it does not give
enough information to understand the whole process. For
instance, it may perhaps represent only one side of the process
when the data distribution is not centered within the specific
thresholds [10]. Likewise, most of the methods for anomaly
detection found in the literature are based on ruled-based
methods, statistic approaches, or a combination of both [11].
Regarding anomaly detection in linear dynamic processes
for simple inputs, Cho et al. in [12] studied the behavior
of a gas regulator using Multiple output Gaussian Process
Regression (MO-GPR) and Extreme Value Theory (EVT) to
predict the output and directions of the anomalies. The real-
time acquisition and updating of the coefficient are left as
future work. Similarly, Chang in [13] uses linear regression
to predict the anomalies in mine earthquake and update the
counts above a certain threshold in real-time because of the
importance of the application. Nevertheless, this method is
designed to work online, the author does not use the advantages
of machine learning and still uses a fixed threshold, making
this solution hard-coded to work with only this application. On
the other hand, for multiple inputs, Pang et al. [14] find the
anomalies of multiple sensors using Multiple output Gaussian
Process (MOGP) and Square Prediction Error (SPE) to find the
anomaly score in real monitoring series. In his study, MOGP
shows better results than PCA for dimension reduction giving
more flexibility and adaptability in the findings of anomalies
that otherwise need to be labeled by domain experts or by
using fixed thresholds. Those approaches assumed the data set
follows a Gaussian distribution, which is not always the case for
another kind of application such as the analysis of multi-modal
yield distributions. The production yield usually has heavy-
tailed distribution as shown in Figure 1. On the data-driven
anomaly detection, Chae [15] uses a statistical analysis-based
Anomaly-based Detection System (ADS) to set an appropriate
anomaly threshold in dynamic environments such as distributed
systems. The difficulties the authors faced are multiple due
to the inherent problem of dynamic environments and not
further comparison between their method and the existing
algorithms are explained in the paper. The same authors
in [16] find the adaptive thresholds in trust-based detection
systems where the anomalies come from known attacks and
not ’smart attackers’ showing the difficulties this model suffers
to adapt to a broader field where there are abrupt changing
conditions. Regarding anomaly prediction, Chen et al. [2] study
the prediction of system-level test (SLT) failures on system-on-
chip (SoC) products where their analog circuits provide space
to search faulty behavior by analyzing the outliers. A chip fails
when any measured parameter falls outside its specifications,

i.e., fixed threshold. However, this is not enough because they
might be data points (parameters) that are far away from the
nominal values but still comply with the specifications. This
approach is the closest we could find to our application due
to the similarity of the products, though this approach looks
promising, it can not find the root cause of failures. In our case,
the yield value of the different test points is analyzed, then
whenever we see an abrupt change that does not follow the
nominal trend, it will be easy to identify which test point is the
source of failure in the whole process. Respecting test yield
prediction using machine learning methods, many studies have
been done in the last years. Jiang et. al [3] developed a data
analysis tool for semiconductor manufacturing that predicts the
final test yield in the early stages of production, hence improve
the operational efficiency and reduce the production costs. The
framework uses Gaussian mixture models (GMM) to identify
and cluster the FY, Encoders to manage the difference on
categorical or numerical inputs and does not need knowledge of
the previous low yield root cause. Furthermore, this paper tries
to find the root cause of low yield using the Gini importance.
The problem with this approach is that their solution does not
take into account the passed values of the important features
and does not give importance to how the fixed thresholds can
affect the FY. Based on our extensive survey, there are limited
studies for FY-related problems in the production of RBS. In
general, there are two major common difficulties for RBS FY
prediction problems, which are high dimensional input data
and complex process variations. For the sake of simplicity, we
only use numerical data as inputs, and not feature reduction
was used in our solution.

IV. PROPOSED SOLUTION

This section provides our proposed solution for solving
the initial problem stated in Section I. The overall FY for
predicting and finding its dynamic thresholds flow framework
is illustrated in Figure 4. As can be seen in Figure 4, the
required inputs to the proposed solution are the test records,
such as the test results recorded after the execution of each
test point. As mentioned earlier, the main goal of this paper is
to utilize historical test records to predict the normal FY by
applying some regression models. The regression models are
able to solve the problem with the continuous data, assist the
finding of dynamic thresholds, and also the yield classification
for optimization purposes. The following paragraphs provide
more information regarding the mirrored steps in Figure 4:

• Step 1. Measure Testing Yield: the test results of each
test point can mainly be divided into Pass or Fail. For
employing the proposed solution in Figure 4, we utilize
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Figure 5. The original and smoothed versions of maximum, minimum, and target test inputs for product A.

the final test yield as (2):

FY =
Pass units

Total processed units
(2)

Moreover, Total processed units is the total number of
times that a unit has been tested, then 0 < Y ield 6 1.
The yield values closer to 1 mean that the product is
mature and around 100% of the products that have been
tested have passed. While yield values lower than 0.94
are considered as low yield in our application.

• Step 2. Pre-processing: in order to eliminate undesirable
characteristics in the data (e.g. anomalies) and use the
results values from different test points, we need to
normalize the data. Since the measurement results are
largely divergent, such as Temperature equal to +50C
or the Current equal to 10mA, normalization of all the
studied test records needs to be done before training the
data or feeding it to the machine learning models. For
instance, the minimum and maximum measurement values
of each test point can be normalized by all the test points
in a form of a matrix [17]. Furthermore, to detect the test
points’ results that are considered abnormal or do not fit
any particular pattern, noise removal needed to be applied.
Noise in this context contains the values outside the yield
range, i.e., 0 to 1 and also the outliers. In our current data
set, most test points have extremely good yields because
they belong to a mature product. In this study, we utilize
smoothing methods to remove the noise in our data set.
The smoothing process is based on (3),

yi = α · yi + (1− α) · yi−1 (3)

where α is a smoothing factor that defines the forgetting
rate of previous values. The lower α indicates the
lower weights, which are applied to the true observed
values. Moreover, yi−1 is the previous model value, and
multiplying (1−α) is a solution for the recursive function
to smooth the remaining data. We need to consider that
α is between 0 and 1, which measures how much the
true observation and previous model value influence the
stability of data. Basically, the single exponential method

here makes use of moving average in the exponential way
to decrease the weights. The recursive behavior can be
described as (4):

yj =

j∑
i=1

α(1− α)j−iyi (4)

where the hyper-parameter α is tuned by the grid search
method to find the marginal point when the Root Mean
Square Error (RMSE) starts to drop. Both, the input
features and the target needed to be tuned individually.
Therefore, the comparable best α for maximum value
input, the one for minimum value input, and for the target
all drop at α = 0.3. Figure 5 shows the smoothing result
for the test inputs (test points) and the target (final test
yield) respectively.

• Step 3. Regression Predicting Model: as we can see in
Figure 4, the output from Step 2 is a set of smoothed and
normalized data. Moreover, the minimum and maximum
measurement values from each test point execution are
employed to build an FY model using regression methods.
Our input data in Step 3 is represented as an array X .
Each element of the array X has two columns: a minimum
and a maximum of each test point. We need to consider
that, the assumption here is that all row elements in X
are independent:

X =


x(1)

x(2)

...
x(m)

 (5)

and Y is the target value that represents the FY, where
m is the number of test points.

Y =


y(1)

y(2)

...
y(m)

 (6)

Since the relationship between features and target is
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unknown, the following regression methods are applied in
this paper in order to compare their performance. 1-Linear,
2-Polynomial, 3-Ridge, and 4-XGBoost regression. The
mentioned regression methods are chosen due to their low
complexity and computational efficiency, which easily can
be adapted for solving industrial real cases. The linear
regression models a linear relationship between two de-
pendent and independent variables. It can also be modeled
using simple linear approximation under the assumption if
there is a linear relationship between variables. However,
if this assumption is not entirely true and there is under-
fitting, polynomial regression can be applied to model
the non-linear relationship between inputs and target. In
order to avoid the over-fitting problem proper of linear
and polynomial regression, the Ridge regression utilizes
regularization to punish the learning process to reduce
the complexity. Extreme Grading boosting (XGBoost) is
a type of Ensemble learning based on decision trees and
can be used in regression prediction modeling by applying
the advantages of regularization and weak learners. The
XGBoost is known to be efficient and fast for prediction
purposes. Later in this paper, the evaluation results of all
the mentioned regression methods are compared using an
industrial case study at Ericsson. The dynamic thresholds
are found based on the regression models using three
sigma and empirical approximations. This model provides
feedback, which allows to update the constants of the
formula, to avoid false anomaly detection.

• Step 4. Classification of Imbalanced Data: after per-
forming the regression model for the prediction problem
in step 3 for the FY measurement, the models are
evaluated using RMSE, MAE, through comparing the
prediction against the ground truth. In the utilized data
set in this study, the best prediction is found for the
XGboost model, which has a very low error rate and a
much better prediction trend compare to other regression
models. The results found using the XGboost model are
then used to label the original data set, i.e., 0: Pass, 1:
Warning, and 2: Stop. However, this auto-labeled data
set is highly imbalanced. For instance, the imbalanced
ratio (IR) between labels is 23.25. In order to balance
the data set the SMOTE model is applied. The new
balanced data set is used for the classification task. In
a close consultancy with Subject Matter Expert (SME)
at Ericsson, we classified all test points into three main
classes: Pass, Warning and Stop using the SVM model.
The number of classes is flexible and can be adapted
based on the different optimization applications.
Note that the model tends to find the best classification
lines using the linear kernel function. The binary classifi-
cation models can be seen as logistic regression but the
SVM model does not support multi-class classification
naturally and require meta-strategies.

Since the main goal of this study is to monitor the production
of RBS and alarm the operator or the system manager for

abnormal yield risks in advance, the outputs of the proposed
solution in Figure 4 can be considered in form of different
high-level applications. For instance, the proposed solution can
be used as an alarm signal, a pop-up window, or a flag in a
more advanced software of the testing process.

V. INDUSTRIAL CASE STUDY

In order to get a better understanding of the proposed solution
in this study, an industrial case study is designed using an
ongoing Telecom project at Ericsson AB, Sweden. The provided
industrial case study in this work is following the proposed
guidelines for conducting and reporting case study research in
software engineering by Runeson and Höst [18] and specifically,
the way guidelines are followed in [1] and [19].

The units of analysis in the case under study are test points,
extracted from an internal database at Ericsson of a 4G RBS
from now on called product A and a 5G RBS from now on
called product B. The case study is performed in several steps.

TABLE II. DETAILED INFORMATION OF PRODUCT A AND B, 4G
AND 5G RBS RESPECTIVELY, FOR THE CONDUCTED CASE STUDY

AT ERICSSON.

Product A Product B

Description Quantity Description Quantity

Test units 1581 Test units 8
Test Points (Pass) with limits 2737 Test Points (Pass) with limits 12643
Test Points (Fail) with limits 165 Test Points (Fail) with limits 408
Test Point classification 1103 Test Point Labeling/classification 286
Test Points yield (0-1) 93 - -

1) A total number of 5, 018, 925 test records are captured
from Ericsson’s database for product A and 836174 for
product B.

2) The captured test records include the following infor-
mation Test units and test points results (pass or fail)
where the quantity of them are summarized in Table II
for product A and B respectively.

3) The final yield, FY, for each test point is measured
using (2). Its noise and outliers are smoothed as shown
in Figure 5c.

VI. RESULT

The obtained prediction results in this study are presented
in Figure 6 for the linear, polynomial, Ridge, and XGBoost
regression models. The upper and lower dynamic thresholds
illustrated in Figure 6 are based on our prediction models. The
X-axis represents the different test points (sub-parts of test
cases) and the Y-axis is FY. The predictions follow the ground
truth in most cases, however, the best prediction is found using
the XGBoost. For the linear regression, the prediction suffers
from the under-fitting problem and finds one divergent point,
while in the polynomial there is an over-fitting problem for
some points. As can be seen in Figure 6, the yield prediction
goes above 1 which is not acceptable, and therefore found
three divergent points, which are false alarms. For the Ridge
regression, the prediction seems highly optimistic and slightly
under-fitting, where it does not consider the divergences proper
of the test process and consider them as real divergent points.
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(b) Polynomial
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(c) Ridge

59 74 44 56 88 77 62 53 54 39 40 31 90 27 38 55 10 2 92

TestPointNumber

0.994

0.996

0.998

1.000

1.002

Y
ie

ld
 v

al
ue

prediction
actual
upper bond / lower bond
Divergence

(d) XGBoost

Figure 6. The smoothed data utilized regression models on product A. The dashed lines are the predicted thresholds.

On the other hand, the XGBoost follows continuously the
ground truth and finds also three divergent points which could
mean anything according to the sensitivity of the application.
In this case, all three divergent points can be classified as
normal process behavior but their automatic discovery can
save a lot of time for the engineers which otherwise will need
to do this analysis manually. The classification model after
auto labeling is evaluated by Receiver Operating Characteristic
(ROC) curve from prediction scores. ROC curves represent
the performance of the classification model. In order to get
an optimum result, the iteration was done for a random state,
which is a hyperparameter in the SMOTE method of K from 1
to 100 to get the best value to balance the data distribution and
eliminate unnecessary noise then fix the random state value
to get a consistent result. The best ROC score is 0.94 with K
equal to 32. The optimized ROC curve is shown in Figure 7
for product A. The auto labeling process and the usage of the
advantages of the SMOTE show an outstanding classification
result.
A. Model Performance Evaluation

Besides the graphical results, the evaluation performance for
regression predictive modeling is done using the RMSE and
MAE, their results are displayed in Table III. The XGBoost
model outperforms the other regression models as well, showing
better results in both evaluation methods.
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Figure 7. Classification evaluation using ROC for product A.

TABLE III. A SCORES SUMMARY OF THE SMOOTHED DATA
VALIDATION.

Model Name RMSE MAE
Linear Regression 0.00099 0.067

Polynomial regression 0.0049 0.202
Ridge regression 0.0012 0.095

XGBoost 0.00073 0.00014

B. Model evaluation using unseen data

The problem of predictive modeling is to create models
that have an acceptable performance making the predictions
on new unseen data [20]. Therefore, the best model trained
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using product A data set is tested on product B to transfer
the knowledge of the mature product and see if the model is
still valid for another product with similar characteristics. The
model prediction based on the XGBoost regression works
for product B as well by detecting the yield divergences.
Since product B is not as stable as product A and it is at
the beginning of the production process, a minimum threshold
of 0.94 of acceptance is necessary to be defined. Unlike product
A, which does not have a definitive Fail, product B is labeled
as follows: label 2 for yields lower than 0.94 - Fail, label 1
for divergence detected by the regression model- Warning, and
label 0 as acceptable yield - Pass. After auto-labeling, this data
set is a three-class classification task. The data set is obviously
imbalanced. Referring to the solution of the imbalanced data
set of product A, the SMOTE is implemented in the data set for
product B by separating the data set into two classes at a time.
The first one with labels 0 and 1, the second with labels 0 and 2,
and then combining them. For the multi-label classification, the
tool OneVsRestClassifier allows to build a classifier per class.
For the unseen data set, we have three classes 0, 1 and 2. The
evaluation is based on the ROC curve which is demonstrated in
Figure 8 for each class. The Macro ROC score is based on the
average of each label’s individual Precision and Recall, unlike
the Micro ROC score which combines all three labels’ recall
and precision to do the average. The Macro score emphasizes
more the small class label and the Micro score is the opposite
because considers more the label with the larger class. Here
both scores are comparably demonstrating that our labeled data
set is well balanced and classified.
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Figure 8. Classification evaluation ROC using unseen data captured
from product B.

VII. DISCUSSION

The main goal of this study is to design, implement and
evaluate an ML-based solution that estimates the divergences
points from dynamic thresholds based on yield predictions of
two radio generations instead of using the traditional form to
analyze the test process via fixed thresholds. To this end, we
have made the following contributions:

• An ML-based approach is proposed for finding the
dynamic thresholds for the final test yield (FY) with the

purpose to develop a prognostic health management tool to
work along the production process. The proposed approach
has been implemented as a prototype in Python. It uses
the XGBoost regression model to predict the test points’
yield evolution and also the SVM model for classification
of the predicted yield and automatic labeling of the input
features.

• The evaluation of the proposed approach was performed
using the test records of a 4G product at Ericsson.
Furthermore, the risk of failure for the utilized product has
been predicted by performing several regression models.

• The prediction error of the proposed regression models
has been measured employing RMSE and MAE and for
the classification, the ROC curve has been utilized.

• The proposed solution in this paper is applied to a set of
unseen data, using test records of a 5G product. Moreover,
the validation of the SVM model for the classification
is showing good results. Considering the obtained result
opens the possibility to transfer the knowledge learned
in one product and use it in another product with similar
properties. Furthermore, this approach can be used in an
early stage of the testing process to find the largest sources
of yield drop [3].

The yield prediction based on test points is modeled using
normalized data inputs because the different kinds of testing
processes, called test points in this paper, have different
amplitude levels. For simplicity, all test points are assumed
to have normal distributions and thereof are normalized.
No further analysis is done in this paper on whether this
normalization influences the final results. According to the
reviewed stated of the art, this may differ depending on the
application [21]. On the other hand, smoothing methods were
implemented to remove the noise and the outliers in both inputs
and targets before the prediction modeling was applied using
several regression methods. Smoothing is a powerful technique
uses in data analysis. Nevertheless applying smoothing in
regression analysis to find divergences with respect to normal
patterns can be very sensitive, especially when the smoothing
process may remove important information one wishes to
discover. Studies have been done regarding false positive
reduction in networks using smoothing methods [22], the
authors highlight the advantages of using smoothing as a
method to averaging the unstructured false positives in anomaly
detection, thus improve the accuracy. In this paper, we have
also seen improvements in the prediction analysis after using
smoothing instead of statistical approaches based on quartiles
that are better applicable to variables with normal distributions.
In this study, we assumed that test points are independent
and the sequence of evaluation is not important, which is not
always the case in different real-world applications. However,
this assumption does not affect the prediction of the final
yield because it is based on each test point and its respective
evolution through time. The dependency between test points
is outside of the scope of this paper but we consider it an
important matter in the test optimization, therefore it is left
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as future work. An important variable in this study is the low
computational complexity of the different machine learning
methods because the monitor tool is planned to be used in an
online mode. Although the whole modeling was done in offline
mode due to the limitation of the data set, it is prepared to be
implemented as part of a larger test program used at Ericsson
production and can accept any kind of inputs, the normalization
and removal of outliers are done automatically. The results of
the execution of the monitoring tool in a production site are
left as future work.

VIII. CONCLUSIONS

In this paper, we have introduced a novel framework
to predict the final test yield, proposed new data-driven
thresholds based on the predictions, found divergent points,
and automatically labeled the results for two of the latest radio
generations. This framework is generic and can be applied to
any manufacturing process with continuous data sets. Besides,
it is robust, scalable, and configurable to adapt to the sensitivity
of the application. The pre-processing covers automatic noise
and outliers removal by smoothing the inputs and target,
inputs’ normalization and solve the problem of imbalanced
data sets for classification purposes. Four regression models
were used successfully to model the historical trends of final
test yield, whereof XGBoost showed better performance than
linear, polynomial, and Ridge regressions. Firstly, divergent
points were found using the prediction model and the dynamic
thresholds. Secondly, automatic labeling of the prediction
results was implemented using SVM. In our case labels: Pass,
Warning, and Stop were relevant, however, the model can
be scalable to many other cases where automatic labeling
is needed. Hence, preventive actions can be executed before
those divergences happen. These actions can be continuing
execution with close monitoring or stop the production of
one unit and continue with another one, instead of trying to
pass the unit after many trials with a risk of suffering quality
problems in the near future. Additionally, transfer learning has
been briefly studied in this paper. The results show that it is
possible to use the modeled trained in a 4G radio product and
tested with excellent results in a 5G radio product, giving this
approach some kind of generalization with a minimum amount
of tuning. One pre-requisite is that the products have some kind
of similarity to avoid a negative transfer. Future studies of this
work can use the dynamic thresholds to update the test points’
current thresholds to secure the values are in a safe region
to guarantee acceptable final test yield. Besides, research the
percentage of knowledge that is possible to transfer to future
radio generations and still keep the quality of the product,
thus reducing the amount of time consumed in the manual test
optimization (which is still used in many manufacturing areas)
will be in focus for future studies.
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