o

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 19th International Conference on
Automation Science and Engineering (IEEE CASE 2023), Cordis, Auckland, New Zealand,
August 26-30, 2023.

Citation for the original published paper:

Yang, Q., Stork, J A., Stoyanov, T. (2023)

Learn from Robot: Transferring Skills for Diverse Manipulation via Cycle Generative
Networks

In: 2023 IEEE 19th International Conference on Automation Science and Engineering
(CASE) IEEE conference proceedings

IEEE International Conference on Automation Science and Engineering
https://doi.org/10.1109/CASE56687.2023.10260484

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-108719

Learn from Robot: Transferring Skills for Diverse Manipulation via
Cycle Generative Networks

Quantao Yang, Johannes A. Stork, and Todor Stoyanov

Abstract— Reinforcement learning (RL) has shown impres-
sive results on a variety of robot tasks, but it requires a large
amount of data for learning a single RL policy. However, in
manufacturing there is a wide demand of reusing skills from
different robots and it is hard to transfer the learned policy to
different hardware due to diverse robot body morphology, kine-
matics, and dynamics. In this paper, we address the problem
of transferring policies between different robot platforms. We
learn a set of skills on each specific robot and represent them
in a latent space. We propose to transfer the skills between
different robots by mapping latent action spaces through a
cycle generative network in a supervised learning manner. We
extend the policy model learned on one robot with a pre-trained
generative network to enable the robot to learn from the skill
of another robot. We evaluate our method on several simulated
experiments and demonstrate that our Learn from Robot (LfR)
method accelerates new skill learning.

Index Terms: Reinforcement Learning, Transfer Learning,
Generative Models.

I. INTRODUCTION

Humans have the capacity to leverage both their own
prior experiences, as well as the experience of others, when
learning to perform a new task. When we transfer a skill
from another person, we typically only need to practice it
a bit. In comparison, intelligent robots still lack the ability
to learn a new skill from another agent. While recent work
has demonstrated the ability to acquire new skills through
trial-and-error learning [1], [2], the focus has largely been
on learning action policies from scratch. Where transfer
of learned policies is concerned, efforts still require re-
training or at least finetuning [3]. When a large number of
robots are deployed in an agile production scenario it would
be beneficial if robots could be rotated between assembly
stations when needed. It is not feasible to train all these
robots on all tasks from scratch, especially given that the
know-how for solving the task is already present in a subset
of the robot team.

One major bottleneck of current approaches is that learned
policies are specific to the hardware of the learned robot [4]
and are trained from scratch, requiring a large amount of
interaction data. Previous work has been applied to overcome
discrepancy due to variations in hardware by using domain
randomization for robot dynamics [5], [6]. However, learning
a policy generalizing well to all varying environments is
challenging. Some works have tried to improve the policy

*This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by the Knut and Alice
Wallenberg Foundation.

Authors are with the Center for Applied Autonomous Sensor
Systems (AASS), Orebro University, Sweden. [quantao.yang,
johannesandreas.stork, todor.stoyanov]@oru.se.

-

e
[Latent space Z;
F G

Latent space Z,

Fig. 1. Simulated tasks on two robots Franka Panda and Re-
think Sawyer: Lift, Stack, Pick-Place, Nut-Assembly. We
use the shared common tasks (e.g. Stack, Nut-Assembly) to learn a
cycle generative model that is able to transfer the latent action distributions.

adaptation ability by adding a regularization term or using
few-shot learning [7], [8], [9]. In [10], a new approach RL-
CycleGAN enables RL-aware simulation-to-real-world trans-
fer for RL policies by incorporating an RL scene consistency
loss which specifically focuses on those features that are most
critical for the current RL value function.

But can we transfer the learned policy to other robots
easily? Transfer via direct finetuning does not perform well if
morphology of the target hardware differs much. Intuitively,
the policies or knowledge acquired by other robots should
benefit the policy learning on a new robot. In this paper,
we investigate the problem of transferring policies among
different robot systems. Specifically, we involve pre-learning
from unstructured prior demonstrations by extracting skills,
that are temporal sequences of actions. We train a cycle
generative network to transfer between the latent action
domains of each robot by leveraging experience on common
tasks as supervision. This allows us to seamlessly transfer
novel skill policies across robots.

In summary, the main contributions of this paper are
threefold: (1) we study a cross-robot skill transfer problem
and propose to utilize a cycle generative model to predict
the action distribution in the target robot; (2) we extend
the concept of latent skill entropy regularization to the task
of policy transfer by concatenating the policy with the pre-
trained generative model; and (3) we evaluate our method in
simulation experiments for several robot tasks and show that

our method can be generalized to unseen tasks on a different
robot platform.

II. RELATED WORK
A. Transfer Learning in Robotics

Transfer learning has shown good performance to share
prior knowledge to improve the efficiency of training and
generalization ability in robotics and reinforcement learn-
ing [11], [12]. In [13], transferring end-to-end controllers
to the real world is accomplished by using demonstrations
of linear paths constructed via inverse kinematics (IK) in
Cartesian space, to construct a dataset that can then be
used to train a reactive neural network controller which
continuously accepts images along with joint angles, and
outputs motor velocities. [14] tries to solve the multi-
skill transfer problem and the authors propose to learn a
maximally informative feature space to transfer skills from
one agent to another. In contrast, we utilize prior knowledge
from common tasks to learn a cycle generative network to
adapt the policy learned from an agent to another one. Our
prior work [15] proposes Multi-Prior Regularized RL (MPR-
RL) that leverages prior experience collected on a subset of
the problems in an MDP family to efficiently learn a policy
on a new, previously unseen problem from the same family.
In this paper, we also utilize prior knowledge extracted from
demonstrations, however instead of transferring between
different tasks executed by the same robot, we focus on the
transferring policies between distinct robots.

B. Imitation Learning

Imitation learning [16], [17] enables the agent to observe
the behavior of an expert and mimic them in order to
accomplish the well-defined demonstrated task. In [18], the
authors propose a model-free deep RL method that leverages
a handful of demonstration data to accelerate and stabilize
the learning of visuomotor policies. Generative Adversarial
Imitation Learning (GAIL) [19] has demonstrated significant
progress in learning policies from expert demonstrations in
a variety of domains. [20] proposes to learn task-specific
policies from a few demonstrations and uses constrained
discriminator optimization to learn informative rewards. Ad-
versarial Skill Networks (ASN) [21] is a framework to
learn a distance measure in a skill embedding space from
multiple unlabeled demonstrations, which can then be used
as a reward signal for novel tasks. They show that ASN
is able to not only solve tasks seen during the training of
the embedding, but also be transferred to novel tasks that
require a composition of previously seen skills. Our method
is not limited to solve composable tasks due to the use of a
generative network for transferring skill domains.

C. Multi-Task and Multi-Robot Learning

Meta learning [22], [23], [24] aims to adapt a meta
policy trained on a specific task to different domains.
Ghadirzadeh et al. [8] propose a probabilistic gradient-
based meta-learning algorithm that models the uncertainty
arising from the few-shot setting to solve the challenge of

adapting a policy to a novel robot platform. In contrast we
learn a separate generative model to accelerate the training
of new skills. A modular architecture [25] allows for the
decomposition of training policy networks over agents and
tasks into interchangeable modules to address novel tasks.
This method involves pre-training individual policy modules
for a set of related tasks and then composing these modules
to learn a new policy for a specific task or robot. We also pre-
train prior models for tasks, but instead of combining them
for training a new policy, we propose to transfer information
among these models by generative networks which serve as
an extension of a prior knowledge model on another task or
robot.

III. PRELIMINARY

An RL agent acts according to a policy distribution
mo(als) with states s € S and actions a € A. The agent
is trained based on a reward signal 7 : S x A — R and aims
to maximize the expected return:

G)= E
T~

T
ZVtT(Sta at, St+1)]) 1
t=0

where 7 is the state-action trajectory and 4% € (0, 1] is the
discount rate at time ¢.

We consider a skill K; € IC, that is a sequence of actions,
for one robot and each task is formulated as a Markov
decision process (MDP) defined by a tuple (S, A, 7,7, p,7)
of states, actions, transition probability, reward, initial state
distribution, and discount factor. We aim to learn a set of
skill prior models on each specific robot and share these prior
models with all other robots by mapping action domains for
different robots.

We assume access to a small dataset D of demonstrated
trajectories 7 = {(so,ao), ..., (S7,ar)} as a subset of the
task/robot pairs. We learn a policy 7y (a|s) with parameter 6
that maximizes the sum of rewards by leveraging the prior
experience contained in the dataset D. Our objective is then
to learn a mapping model ¢ € ® between different robots.

IV. APPROACH

Our method investigates the problem of transferring cross-
robot skill representations in an embedded space. We firstly
learn a cycle generative model in a supervised manner by
encoding RL transitions from two robot domains. Secondly
during the policy learning phase, we estimate the RL entropy
in the target domain to guide the learning procedure. To
achieve this, we concatenate the policy with the pre-trained
generative model to incorporate a relative entropy term based
on the learned skill priors to regularize the RL objective.

A. Skill Prior Reinforcement Learning

In skill prior RL (SPiRL) [26], prior knowledge is utilized
to guide the exploration process and accelerate the learning
of a high-level policy mg(z|s). SPiRL proposes to leverage
a skill prior model p,(z|s) to generate a prior distribution
over the latent space Z of action sequences based on the

1. Learn Generative Model

Identity mapping

2. Learn Policy

Agent Policy

Lift

Prior —»| Generative

Stack

R

Model ¢

|

skill Decoder | _|
Paec(al)

—
Stack /

kil Policy Generative

Fig. 2.

n(zlse) Model ¢

'E

reward 7

The framework of our LfR method. We utilize the common tasks between two robots (e.g. Pick-Place, Nut Assembly) to learn a cycle

generative model ¢ that is able to transfer the latent action spaces. When the robot encountering a new task, we estimate latent action distributions and

transfer to the target robot domain via generative model ¢.

state s. This distribution serves as guidance for the policy to
determine which skills are worth exploring.

We adhere to the SPiRL framework and employ demon-
strated trajectories 7; to learn distributions over skill priors.
Each skill prior is parameterized as a multivariate Gaussian
distribution per state, denoted as N/ (,up7 op), within the latent
space. To represent a low-dimensional latent action space
Z, we utilize a modified variational autoencoder (VAE)
model [27]. This model consists of a skill encoder ¢(z|a),
which generates the latent skill actions z ~ N (1,0), and
a decoder pge.(alz), responsible for predicting a sequence
of low-level actions @ = {a;, -+ ,a;+ 1}, where H € NT
denotes the action horizon. Similar to the approach in [28],
[29], we train the VAE by optimizing the evidence lower
bound (ELBO) given by the equation:

logp(a) > Eqllogp(alz) — v (log ¢(z[a) —logp(2))], (2)

where ~ serves as a hyperparameter used to adjust the
regularization term. The total training loss for the prior model
is:

H

= Z(Zi—?:“i)2+OéDKL(N(Mz> o)IN(0, 1)) +BLtask,

i=1

3)
where Liosi = D (N (|pz, 02))||IN (1p, 0p)) is the task
losses and |-| indicates that gradient flowing through these
variables are frozen, « and (3 are weighting parameters [26].

ﬁprior

B. Transfer Latent Actions via Generative Networks

We take advantage of a cycle generative model to learn a
domain transfer function ¢ := {G, F'} which maps between
two latent skill spaces X and Y. This allows us to transfer
the priors p(z|s¢), which are represented as multivariate
Gaussian distribution over embedded actions for each spe-
cific task. To simplify we use the identity mapping between
the state spaces for a common task on different robots.
We incorporate cycle consistency loss, but we train domain

Algorithm 1: Train Generative Models for Domain
Transferring

1 Collect demonstrated trajectories 7] for task % on
each robot r := {z,y}

2 Train the skill prior models p}(z|s;) with trajectories

3 for each iteration=1,M do

4 Randomize common task ¢ and sample transitions
(s7,a}) from the specific robot r

5 Predict latent action distributions for robots x, y

6 pELoF ~ ()

7 pisof ~pi(sp)

8 Transfer action distributions via generative
models ¢ := {G, F'}

) il 6! ~ Guf,of) if r #

10 ﬂf7&z‘INF(szﬂO—$) ifr#y

11 Calculate generative loss in equation (4)

12 Update generative models G, F

13 end

14 return the trained generators G, F’

transfer models in a regression way instead of adversarial
manner: generator G : X — Y and generator F': Y — X.
The training of each generator model is supervised by the
skill prior shown in Fig. 2. The generative model loss is:

L(G,F) = Lreg(G, F,X,Y) + A0y (G, F) 4)

where) is weighting parameters that control the importance
of three objectives. Since we are considering multiple tasks
for one latent space for each robot, the multi-task loss is
incorporated into the total loss function:

M N
Lreg =Y NkF =k + 3 IK — By,)
1=1 =1

where k; ~ (u;,0;) is sample for mean and covariance
in the latent action distribution. In equation (4), the cycle

consistency loss Lcyo(G, F) is:

Loye(G, F) =B {|F(G(KT)) — K [l13+

E {|G(F(kY)) — k|11 (6)

We incorporate the cycle consistency loss to ensure that we
get the same sample if we transfer a sample from robot x to
robot y and then back to robot z.

The whole training algorithm for cycle generative models
is described in Algorithm 1. We make use of demonstrated
trajectories to learn skill prior models p;(z|s;). In each iter-
ation, we calculate the low-dimensional action distributions
k; ~ (pi,0;) by randomizing samples from common tasks,
which is transferred to the target action domain by generative
models G and F'. Finally we update the generative models
by the total loss in equation (4).

Algorithm 2: Skill Transfer with Cycle Generative
Model

Input : The corresponding generative model ¢
1 Initialize the policy mj(z;|s;) and replay buffer B
2 for each episode=1,M do
3 Estimate latent action distribution y;, o;
4 Transfer the action distribution to the target robot
domain fi;, 65 ~ ¢(pi, ;)
5 Select high-level action z; ~ N (ji;, 6;)

6 Decode and execute action sequence
a={a, - ,a+y—_1}, receive the reward r;
7 Store transition tuple (s;, z¢, 7¢, Ser1) in B

8 Update the extended policy to maximize the
return by SAC 7j(z;|s¢) ~ (7 (2e]se))

9 end
10 return the new policy) (2|s¢)

C. RL Entropy Term

We initialize the policy for an unseen task with the skill
prior trained from another robot and extend the policy with
the generative model to transfer low-dimensional action to
the target robot domain. The policy for a new task can be
represented as:

mo(2t]st) = S (2] se)), (7

where ¢ is the generative mapping function between two
latent domains. In skill prior RL [26], the KL divergence
term is:

H(m(ze]se)) = —Dxu(m(2e]st), pa(zelst)), ®)

where p,(z¢|s:) is skill prior that can be utilized to guide
the learning process with a learned non-uniform distribution.
We propose to incorporate the generative model’s estimation
into the KL divergence term. As a result we have the new
KL divergence between the concatenated policy and the skill
prior:

M (mh(2e]s1)) = = Dxu(b(m (2] s1)), d(pa(2tlse)))- (9

The concatenated policy network is shown in Fig. 2. We
show the detailed training procedure for the new policy
in Algorithm 2. We transfer the action distribution to the
target robot domain by generative model ¢ and sample
latent actions z;. When updating the policy, we replace
the regularization term in SPiRL [26] by using the KL
divergence between the extended skill policy and skill priors
as shown in equation (9).

V. EVALUATION

We evaluate our approach on a set of simulated
tasks Lift, Stack, Pick-Place, Nut-Assembly
on two robot platforms Franka Panda and Rethink Sawyer
respectively which are set up in the framework of Robo-
suite [30]. We validate that our method enables the robot
to learn unseen tasks by learning a cycle generative model
which transfers the skill knowledge to the target domain. To
simplify, we use the identity mapping to keep two robots
share the same state space, that consists of propriocep-
tive observation and object-centric observation, for a pair
of same tasks on two different robots. Our implementa-
tion is available at https://github.com/yquantao/
transfer_skill.

A. Experimental Setup

In our experiments we simulate four tasks: Lift, Stack,
Pick-Place, Nut-Assembly on two 7-DOF robot arms:
Franka Panda, Rethink Sawyer in Robosuite framework.
Fig. 1 shows fours manipulation tasks on two robots in
our experiments: (1) Lift. The goal is to grasp and lift a
randomly placed block; (2) Stack. The goal is to stack one
randomly placed block onto another randomly placed block;
(3) Pick-Place. The goal is to grasp an object and place
it into a bin; (4) Nut-Assembly. The goal is to grasp a nut
and assemble it to the target rod. The simulated experiment
results and ablation evaluation are shown in Section V-B and
Section V-C respectively.

In our implementation, the variational autoencoder is mod-
eled as a Long Short-Term Memory (LSTM) [31] of 128 hid-
den units per layer to learn the skill embedding actions. The
skill prior and the generative model are represented as 6-layer
and 3-layer fully-connected neural network respectively. We
concatenate the pre-trained skill prior with the generative
model to initialize the new policy for the target action do-
main. During policy training, we set RL discount factor 0.99
and batch size 64. We use Adam [32] as the optimizer, with
an initial learning rate of le-3. We compare the performance
of our method with several baseline methods: (1) Behavior
Cloning with Recurrent Neural Network (BC+RNN) which
is trained with demonstrations from another robot, (2) Adapt
the learned Policy which is finetuned on the new robot but
essentially without generative model transferring (AP), and
(3) Soft Actor-Critic (SAC) [33] which is tranied directly on
the target robot from scratch.

B. Simulated Experiments

We collect 50 demonstrations in simulation for each task
on two robots and train skill priors in advance. To test

Panda Lift Sawyer Stack

/\/v_/_; LR (ours)
20 BC+RNN
— LfR w/o generator
— sac

0.8 1.0 0.0 0.2 04 06 08 1.0
Iterations (1M)

(a) (b)
Fig. 3. Learning curves of our LfR method compared with baseline methods
and we use common tasks Pick-Place, Nut-Assembly: (a) Panda
learning Lift results; (a) Sawyer learning Stack results. We train each
experiment with 3 random seeds.

— LR (ours)

BC+RNN
—— LR w/o generator
— sAC

0.0 0.2 04 0.
Iterations (1M)

Panda Stack Sawyer Pick-Place

60

T T
2 : £ 40
& &
20
/ — LR (ours) 20 / — LR (ours)
BC+RNN BC+RNN
—— LR w/o generator /—’/ — LR wio generator
0 — s o — sac
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Iterations (1M) Iterations (1M)

(@ (®
Fig. 4. Learning curves of our LfR method compared with baseline methods
and we use common tasks Lift, Nut—-Assembly: (a) Panda learning
Stack results; (a) Sawyer learning Pick-Place results. We train each
experiment with 3 random seeds.

the ability of domain transfer, we set up two transferring
scenarios: (1) utilize two common tasks (Pick-Place,
Nut-Assembly) and learn one separate task on the robots:
Lift on Franka Panda, Stack on Rethink Sawyer; (2)
utilize two common tasks (Lift, Nut—-Assembly) and
learn one separate task on the robots: Stack on Franka
Panda, Pick—-Place on Rethink Sawyer. For each experi-
ment, we run three times with random seeds. The learning
results are shown in Fig. 3 and Fig. 4 respectively in which
shaded areas show standard deviation for three seeds. In
both scenarios, our LfR method outperforms the other three
baseline methods. For the first scenario, SAC succeeds in
learning the Lift task on Panda due to the simplicity
of the Lift task, but the learning progress is very slow
compared with our LfR method. In contrast, BC+RNN and
AP fails to learn any task in both experimental scenarios.
It shows that transfer via direct finetuning does not perform
well if morphology of the target hardware differs much. We
conclude that in our experiments it is essential to transfer
skills with cycle generative models on a new robot system.

We evaluate the performance of the trained policies by
testing 3 times and each test has 10 independent trials. We
calculate the mean accuracy and the standard deviation. The
evaluation results for two experiment scenarios are shown
in Table I and Table II respectively. For the first scenario
(Pick-Place, Nut-Assembly as common tasks), LfR
enables Panda and Sawyer to achieve L1 ft task with 98.0%
success rate and Stack tasks with 92.0% success rate
respectively. And when deploying the trained policy with
finetuning on another robot platform, we get 56.6% and

TABLE I
SUCCESS RATE FOR TRANSFERRING SCENARIO 1

Task ‘ BC+RNN AP SAC Ours

Lift 42.0+2.2 56.6+1.4 89.0+02 98.0+0.6

Stack | 36.0£1.0 58.0+0.6 405+32 92.0+0.7
TABLE I

SUCCESS RATE FOR TRANSFERRING SCENARIO 2

Task BC+RNN AP SAC Ours
Stack 428 +1.5 37.0£35 302+25 90.2+1.7
Pick-Place | 16.3+4.4 10657 00+£00 825+3.2

58.0% which means the finetuned policy achieves occasional
success for the new task. BC+RNN performs worst in both
tasks compared other methods. We also notice that SAC
achieves 89% success rate for the Lift task, but only
obtains 40.5% for the Stack in the first scenario. If we
consider Pick—-Place task in the second scenario, all
baseline methods’ performances drop substantially. We can
see that SAC fails to learn this task from scratch and cannot
accomplish a single Pick-Place trial. BC+RNN and AP
both obtain occasional success in the Stack experiments
and their performances decrease noticeably. In comparison,
our LfR shows stable accomplishment although there is a
marginal performance degradation for the Pick-Place
task.

C. Ablation Evaluation

TABLE III
ABLATION RESUTLS

Task No Generator ~ Dataset Lift ~ Dataset Nut-Assembly
Stack 50x£1.6 67.8+2.2 87.6 +1.8
Pick-Place 3.5+£1.2 424432 76.0 £2.5

To validate the efficacy of our LfR method, we compare
its performance without generative models and only using
one common task to learn the cycle generative model. In this
ablation experiment, we consider the test scenario 2 in which
Panda learns the task Stack and Sawyer learns the task
Pick-Place. We evaluate the impact of training the cycle
generative model by using different common task datasets.
The results are shown in Table III. It can be seen that without
using the generative model, both robots struggle with the new
task. On average Panda achieves 5.0% with task Stack and
Sawyer only finishes 3.5% with task Pick-Place. When
only using common task Lift to train the generative model,
we get success rates 67.8% and 42.4% respectively. While
with common task Nut-Assembly, the success rates are
87.6% and 76.0% that are marginally less favorable than
our previous results. We conclude that task Nut -Assembly

encompasses a wide range of the latent action spaces for the
new tasks.

VI. CONCLUSION AND FUTURE WORK

In this paper we learn to transfer prior knowledge between
robots, which enables us to quickly learn policies for novel
manipulation tasks. Each policy is expressed as actions in a
latent skill space. We study the cross-domain skill transfer
problem and propose to utilize a cycle generative model to
predict the action distribution in the target robot domain.
We extend entropy regularization for learning new policies
by concatenating the policy with the pre-trained generative
model. By concatenating the policy model learned on one
robot with a pre-trained generative network, our method
allows the robot to learn from the skills of another robot. We
evaluate our method in simulation experiments for several
robot tasks and show that our method can be generalized to
unseen tasks on different robot platforms.

In our work, we utilize the identity mapping of the obser-
vation space for two agents which requires that the robots
share the same input dimension and similar kinematics. A
interesting future work is to investigate how to transfer
the observation space for the robots more generally and
effectively. Moreover, in this work we evaluate our method
in simulation. It will be valuable to show the efficacy of
transferring skills using our LfR method for robots from
simulation to reality.

REFERENCES

[1] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 1334-1373, 2016.

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray et al.,
“Learning dexterous in-hand manipulation,” The International Journal
of Robotics Research, vol. 39, no. 1, pp. 3-20, 2020.

[3] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrish-
nan, L. Downs, J. Ibarz, P. Pastor, K. Konolige et al., “Using simulation
and domain adaptation to improve efficiency of deep robotic grasping,”
in 2018 IEEE international conference on robotics and automation
(ICRA). 1EEE, 2018, pp. 4243-4250.

[4] T. Chen, A. Murali, and A. Gupta, “Hardware conditioned policies
for multi-robot transfer learning,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[51 X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE international conference on robotics and automation (ICRA).
IEEE, 2018, pp. 3803-3810.

[6] M. Hazara and V. Kyrki, “Transferring generalizable motor primitives
from simulation to real world,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 2172-2179, 2019.

[71 A. A. Rusu, M. Vecerik, T. Rothorl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” in Conference on robot learning. PMLR, 2017, pp. 262-270.

[8] A. Ghadirzadeh, X. Chen, P. Poklukar, C. Finn, M. Bjoérkman, and
D. Kragic, “Bayesian meta-learning for few-shot policy adaptation
across robotic platforms,” in 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 1EEE, 2021, pp. 1274—
1280.

[9] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine,

and C. Finn, “Learning to adapt in dynamic, real-world environments

through meta-reinforcement learning,” in International Conference on

Learning Representations.

K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari,

“Rl-cyclegan: Reinforcement learning aware simulation-to-real,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2020, pp. 11 157-11 166.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
(32]

[33]

M. E. Taylor and P. Stone, “Transfer learning for reinforcement
learning domains: A survey.” Journal of Machine Learning Research,
vol. 10, no. 7, 2009.

Z.-H. Yin, L. Sun, H. Ma, M. Tomizuka, and W.-J. Li, “Cross domain
robot imitation with invariant representation,” in 2022 International
Conference on Robotics and Automation (ICRA). 1EEE, 2022, pp.
455-461.

S. James, A. J. Davison, and E. Johns, “Transferring end-to-end
visuomotor control from simulation to real world for a multi-stage
task,” in Conference on Robot Learning. PMLR, 2017, pp. 334-343.
A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, ‘“Learning
invariant feature spaces to transfer skills with reinforcement learning,”
arXiv preprint arXiv:1703.02949, 2017.

Q. Yang, J. A. Stork, and T. Stoyanov, “Mpr-rl: Multi-prior regularized
reinforcement learning for knowledge transfer,” /IEEE Robotics and
Automation Letters, 2022.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni,
L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martin-Martin, “What matters
in learning from offline human demonstrations for robot manipula-
tion,” arXiv preprint arXiv:2108.03298, 2021.

A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, pp. 1-35, 2017.

Y. Zhu, Z. Wang, J. Merel, A. Rusu, T. Erez, S. Cabi, S. Tunyasu-
vunakool, J. Kramdr, R. Hadsell, N. de Freitas et al., “Reinforcement
and imitation learning for diverse visuomotor skills,” arXiv preprint
arXiv:1802.09564, 2018.

J. Ho and S. Ermon, “Generative adversarial imitation learning,”
Advances in neural information processing systems, vol. 29, 2016.
K. Zolna, S. Reed, A. Novikov, S. G. Colmenarejo, D. Budden,
S. Cabi, M. Denil, N. de Freitas, and Z. Wang, “Task-relevant
adversarial imitation learning,” in Conference on Robot Learning.
PMLR, 2021, pp. 247-263.

O. Mees, M. Merklinger, G. Kalweit, and W. Burgard, “Adversarial
skill networks: Unsupervised robot skill learning from video,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 4188-4194.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International Conference on
Machine Learning. PMLR, 2017, pp. 1126-1135.

K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331-5340.

K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki, “Meta rein-
forcement learning for sim-to-real domain adaptation,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2020, pp. 2725-2731.

C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learn-
ing modular neural network policies for multi-task and multi-robot
transfer,” in 2017 IEEE international conference on robotics and
automation (ICRA). 1EEE, 2017, pp. 2169-2176.

K. Pertsch, Y. Lee, and J. Lim, “Accelerating reinforcement learning
with learned skill priors,” in Conference on robot learning. PMLR,
2021, pp. 188-204.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
CoRR, vol. abs/1312.6114, 2014.

D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,” in
International conference on machine learning. PMLR, 2014, pp.
1278-1286.

Q. Yang, A. Diirr, E. A. Topp, J. A. Stork, and T. Stoyanov, “Vari-
able impedance skill learning for contact-rich manipulation,” IEEE
Robotics and Automation Letters, vol. 7, no. 3, pp. 8391-8398, 2022.
Y. Zhu, J. Wong, A. Mandlekar, and R. Martin-Martin, “robosuite:
A modular simulation framework and benchmark for robot learning,”
arXiv preprint arXiv:2009.12293, 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR,
2018, pp. 1861-1870.

