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Abstract
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Hoverflies are suggested to be the 2nd most important pollinator group after bees and
bumblebees, and with the changing climate and dwindling numbers of pollinators it might
never have been more important understanding our pollinators. Given the hoverflies’ small
brains, beautiful aerial acrobatics, good temporal resolution, but limited spatial resolution, these
flies make interesting study animals for flight behaviour and vision research. Eristalis tenax
hoverflies are globally spread generalist pollinators, thus well suited for studies internationally.
However, due to weather and behavioural seasonality, the hoverflies can be hard to access
all year round. Furthermore, only observational studies have been performed to investigate
their activity rhythm, and neither pursuit behaviour nor interactions with other insects are well
studied. We therefore developed a new protocol for rearing E. tenax, and by adding artificial
hibernation we managed to get the hoverflies to survive up to a year – making the hoverflies
accessible all year round. Using LAMS, we confirmed earlier suggestions that E. tenax are
diurnal, and also showed that they are active during the entire light phase of an LD cycle. We
also found that the hoverflies locomotor activity is remarkably robust – it was not affected by
age, diet or starvation. However, an accompanying conspecific did affect the locomotor activity.
Using high speed videography in the field we found that female Eristalis are affected by the
presence of other insects outdoors as well. The females escaped their food flowers 94 % of the
times they were approached, even though only 16 % of the incomers were potentially dangerous
wasps. Interestingly, the females seemed to be able to distinguish between wasps and other
incomers, leaving the flowers earlier and at a higher speed when approached by wasps. Bringing
our high-speed cameras indoors we developed a flight arena, allowing for studies of eristaline
flight behaviour all year round. Using this setup, we found that male E. tenax pursue beads 6
- 38.5 mm in diameter traveling at 0 - 1.8 ms-1. Fascinatingly, we found that the flies pursued
the beads from both below and above, often keeping the target outside their bright zone.
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Abbreviations 

°/s  Degrees per second 
b  Bearing angle 
e  Error angle 
j  Retina speed 
q  Retina size 
t  Retina size change or angular increment 
#  Number 
♀	 	 Female	
♂		 	 Male	
A. mellifera  Apis mellifera 
COM  Centre of mass 
C. megacephala Chrysomya megacephala 
d  Distance 
D. melanogaster Drosophila melanogaster 
DAMS  Drosophila activity monitor system 
E. balteatus  Episyrphus balteatus 
E. nemorum  Eristalis nemorum 
E. tenax  Eristalis tenax 
fly-1 min-1  Per fly per minute 
fps  Frames per second 
GPS  Global positioning system 
h  hours   
IR  Infrared 
LAMS  Locomotor activity monitor system 
LD  Light:Dark 
LoS  Line of Sight 
L. sericata  Lucilia sericata 
min-1  Per minute 
ms-1  Meters per second 
RT  Room temperature 
S. pipiens  Syritta pipiens 
sd  Standard deviation 
SEM  Standard error of the mean 
sp.  Species, the genus is known but not the species 
V. inflata  Volucella inflata 
V. bombylans  Volucella bombylans 
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1 Introduction 

1.1 Hoverflies and their usefulness 
 

1.1.1 General information 
The order of Diptera (flies and mosquitoes) consists of more than 150 000 
species, of which roughly 6000 are hoverflies (Syrphidae) who are divided 
into 209 genera (Pape et al. 2011). Hoverflies are abundant and many, 
including the genus Eristalis, can be found all around the globe (Hull 1937; 
Francuski et al. 2013; Nationalnyckeln 2009; Sengupta et al. 2016; Thompson 
1997; Bańkowska 2000; Van Veen and Moore 2004; Stubbs and Falk 2002). 

The hoverfly lifecycle differs between the different genera of Syrphidae, 
but all go through the following stages: egg, larva, pupa and imago (adult) 
(Ball and Morris 2015). There are variations in many parts of the cycle, a few 
examples being in larval food preference (Nationalnyckeln 2009), egg laying 
sites (Nationalnyckeln 2009), egg number (Van Veen and Moore 2004; 
Nationalnyckeln 2009), timing of adult emergence (Nationalnyckeln 2009) 
and morphological differences of larva and imago (Rotheray 1993; 

Figure 1. Lifecycle of Eristalis tenax. 
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Nationalnyckeln 2009; Ball and Morris 2015; Stubbs and Falk 2002; Van 
Veen and Moore 2004).  

The lifecycle of the genus Eristalis takes roughly two months to complete 
(figure 1). In most of Europe the genus Eristalis has two generations, one 
summer generation with territorial males and one autumn generation where 
males are not territorial (Fitzpatrick 1981). The autumn generation will 
hibernate through the cold winter months and emerge with the warmth of 
spring (Kendall and Stradling 1972; Morley 1941; Timms 1946; Ellis 1937; 
Dennys 1927) to be the founders of next year’s summer generation (Kendall 
and Stradling 1972). Females brought out of hibernation will lay eggs after 
approximately 15 days (Kendall and Stradling 1972). The larvae of Eristalis 
are aquatic and saprophagous, feeding on rotting organic matter in liquid or 
semiliquid environments (Nationalnyckeln 2009). The larvae complete two 
moults before seeking a dry and dark place to pupate. The length of the larval 
state depends on food, sex and temperature, and lasts somewhere between 10-
30 days, followed by 4-11 days in the pupal state (Ottenheim and Holloway 
1994; Pérez‐Bañón et al. 2013). The hoverfly then emerges as an imago. If the 
hoverfly is female she can start to lay eggs 10 days later (Dolley et al. 1933) 
and the cycle starts again (figure 1). 

As their name implies, hoverflies are good at hovering near motionless in 
the air (Nationalnyckeln 2009; Ball and Morris 2015; Stubbs and Falk 2002; 
Fitzpatrick 1981). Hoverflies of the Eristalis genus use hovering for territorial 
guarding (Wellington and Fitzpatrick 1981; Fitzpatrick 1981) and males of the 

species Eristalis nemorum can be seen forming 
courtship towers (figure 2), where up to four 
males hover over a single female (Wijngaard 
2014; Heal 1987; Iliff 2003).  

The resemblance of hoverflies to insects of 
the order Hymenoptera is another 
distinguishing feature (Ball and Morris 2015; 
Stubbs and Falk 2002; Van Veen and Moore 
2004). Most hoverflies are considered batesian 
mimics of Hymenoptera, i.e., they belong to a 
harmless species copying a harmful species in 
order to avoid predation (see e.g., figure 3 
comparing a honeybee worker and an E. tenax 
female). It has for example been shown that 
toads that have been stung by honeybees are less 
inclined to eat the E. tenax hoverflies afterwards 
(Brower and Brower 1962). Another predator 
having a hard time differentiating between 
Hymenoptera and mimetic-hoverflies are 
pigeons. When trained to identify wasps and 

Figure 2. Courting tower 
of E. nemorum here with 
two males above a 
female feeding on a 
flower. 



 11 

non-mimetic flies the pigeons reaction to mimetic-hoverflies were closer to 
their reaction to wasps if the hoverfly was classified as a better mimic, and 
closer to that of non-mimetic flies if the hoverfly was classified as a poorer 
mimic. (Dittrich et al. 1993). Naïve human subjects also have a hard time 
differentiating between different Hymenoptera and their hoverfly mimics 
(Golding et al. 2005a). Indeed, the hoverfly E. tenax looks so much like its 
hymenopteran counterpart the honeybee Apis mellifera (figure 3) that in 
ancient times (Fallon 2006; Atkins Jr 1948) and up until around the mid 17th 
century (Osten-Sacken 1893) it was believed that honeybees spontaneously 
arose from the carcasses of dead oxen, when it was in fact newly emerged 
hoverflies of the genus Eristalis. This phenomenon is called bugonia, from the 
Greek words for oxen and progeny (Osten-Sacken 1893), and is also briefly 
mentioned in the bible (Book of Judges 14.8). These kinds of mix ups between 
hoverflies and bees can still be seen, for example at Virgin.org where the 
hoverfly Eristalinus is showcased in a guest blog about bee tourism (McGuire 
2015). Even honey-producers seems to struggle with the mimicry, as can be 
seen on their social media pages where Eristalis hoverflies are shown on 
flowers with captions suggesting they are bees in mid honey production 
(Island Beehive 2019; Svensk Honungsförädling AB 2021). In a video from 
the European Parliament about bee protection an Eristalis female can be seen 
in place of a bee worker (European Parliament 2018). 

Some hoverflies mimic both the morphology (including colour and size) as 
well as the behavioural traits of their models. When comparing the drone flies 
of the Eristalis genus to their model, the honeybee A. mellifera, one can see 
that the drone flies perform similar movements around flowers and have 
similar flight speed as honeybees (Golding and Edmunds 2000; Golding et al. 
2001). However, the behavioural mimicry is not correlated with the 
morphological mimicry in all hoverflies. For example, when comparing flight 
similarities between wasps and a few hoverflies deemed to be wasp mimics, 

Figure 3. Apis mellifera worker (left) and female Eristalis tenax (right). 
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the poorer mimics Syrphus (Dittrich et al. 1993) had more similar flight 
patterns to the wasp than the larger, more morphologically similar hoverflies 
Sericomyia, Hellophilus and Myathropa (Golding et al. 2005b). Thus, it seems 
as if some hoverflies have developed either a morphological or a behavioural 
mimicry, whereas others are using both simultaneously. 

When trying to explain why not all mimics are good copies of their models 
Edmunds (2000) argues that by looking a little like several different models a 
poor mimic can live in more areas than a good mimic, since a good mimic has 
to live in the same area as its model to remain protected. Penney et al. (2012) 
disagrees with Edmunds hypothesis since in their study no hoverfly could be 
found that was an intermediate mimic between several hymenopteran. They 
did however show that mimetic fidelity is not correlated with how abundant a 
species is, but instead correlated with the hoverfly’s size, where larger 
hoverflies are better mimics (Penney et al. 2012). They argue that since a 
larger hoverfly is a more valuable meal than a small one, the evolutionary 
pressure on large hoverflies to become good mimics is higher. 

 

1.1.2 Use in agriculture and as a food source 
With the changing climate the need to understand our pollinators has maybe 
never been greater. Hoverflies are important pollinators together with bees and 
bumblebees (Rader et al. 2016; Jauker et al. 2012; Ssymank et al. 2008; Doyle 
et al. 2020). Unfortunately, the number of bees and bumblebees have been 
reported to decline across the globe (Potts et al. 2010; Goulson et al. 2015; 
Zattara and Aizen 2019). In 2017 Hallmann et al. (2017) reported an alarming 
general decline in pollinator biomass  and in 2018 the EU Pollinators Initiative  
communicated that all kinds of European pollinators (including hoverflies) are 
in decline (European Commission 2018). Indeed, Powney et al. (2019) 
showed a general decline of hoverflies in the UK between 1987 and 2012. 
However, Wotton et all (2019) show that the numbers of migrating hoverflies 
over the UK between 2000 – 2008 was in fact not in decline, but rather that 
the numbers fluctuate a lot. By modelling how climate change might affect 
hoverfly distributions Miličić et al. (2017) agrees that the hoverfly population 
might not be in decline but rather move from low lands to alpine regions across 
Europe over the coming 30 to 50 years. 

Even though hoverflies are not as effective pollinators as honeybees 
(Jauker et al. 2012), in some settings they can be of equal importance (Gladis 
1997; Gladis 1994a; Rader et al. 2016). Hoverflies or solitary bees might even 
be better options in some instances, e.g. closed greenhouses where an entire 
honeybee colony cannot be sustained (Gladis 1997; Gladis 1994a). 
Furthermore, for pollination of some plant combinations a mix of hoverflies 
and solitary bees has proven to be most effective (Gladis 1997; Gladis 1994a).  

For the purpose of crop pollination mass rearing protocols exist (Gladis 
1994b; Francuski et al. 2014). However, these protocols do not share the 
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mating selection pressure that wild hoverflies endure. Wild hoverfly males 
often guard territories and chase both intruders and potential mates 
(Fitzpatrick and Wellington 1983a; Fitzpatrick and Wellington 1983b; 
Fitzpatrick 1981; Wellington and Fitzpatrick 1981; Ball and Morris 2004; 
Rotheray et al. 2014), a behaviour that puts selective pressure on both motor 
skills and sensory systems. This selective pressure is important as Francuski 
et al. (2014) showed that genetic heterogeneity can be quickly lost in mass 
rearing protocols. Protocols for smaller scale rearing also exist (Dolley Jr et 
al. 1937), but they fail to comply with today’s sanitary standards. 

Not only adult hoverflies can be of use to humans, but the larvae as well, 
especially in agriculture. For example the larvae of some species are 
aphidophagous (eating aphids) (Nationalnyckeln 2009) and can be used as 
organic pesticides (Ankersmit et al. 1986). Other dipteran larvae are 
saprophagous (eating degrading organic matter) (Nationalnyckeln 2009; 
Čičková et al. 2012) and protocols exist for their use in degradation of manure 
and other bioorganic waste (Čičková et al. 2012; Van Huis 2013). 
Additionally, dipteran larva have been suggested as food for livestock (Van 
Huis 2013) and in some parts of the world insects are already used as a human 
food source (Ramos‐Elorduy 2009). Successful trials have also been made to 
introduce insects as a food source to populations where entomophagy (the 
eating of insects) is not common (Caparros Megido et al. 2014). Insects has 
also recently made its way into the popular Swedish TV-programme “Hela 
Sverige bakar” as both a bread- and cake-ingredient (Meter Television AB 
2017, 2021). “Worm-tacos” containing mealworms with toasted crickets as a 
side snack also made an appearance in “Klimatkampen”, a program using 
celebrities to teach swedes how to live more environmentally friendly 
(Utbildningsradion 2022). Sveriges Television AB (SVT) even provides the 
recipe for the “worm-tacos” (https://www.svt.se/recept/tacos-pa-insekter). It 
has also recently become legal in all of EU to sell insects as food 
(Livsmedelsverket 2020). This gives hope for a wider spread of insects as a 
food source for both humans and animals which, given that breeding insects 
require very little space (Čičková et al. 2012) and that the insect generation 
time is relatively short (Nationalnyckeln 2009; Ball and Morris 2015; Čičková 
et al. 2012), makes them a good food alternative to mammals (Van Huis 2013). 

 

1.1.3 Use in the lab  
Hoverflies have also proven to be great for laboratory experiments, since they 
are easily available (Nationalnyckeln 2009) and require very little space for 
housing (Dolley Jr et al. 1937). They have been used in numerous field and 
laboratory experiments, a selection of these are presented below. The hoverfly 
Syritta pipiens has been extensively studied in terms of its optics and visually 
mediated behaviour (Collett and Land 1975a). The motion vision of the drone 
fly E. tenax has been studied at a neuronal level with electrophysiology 
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(Nordström and O'Carroll 2006), its lift force during take-off has been 
determined (Chen et al. 2013), and even more recently the floral preferences 
it possesses and how that differs globally was examined (Nordström et al. 
2017). Studies of flying insects can easily be translated to robotics (Floreano 
et al. 2009; Finio et al. 2010). In addition, knowledge gained in insect vision 
can, as Cajal stated already 1915 (1915), help us understand vision in more 
general terms, since the visual system of insects share many features with ours, 
even though it seems so very different at a first glance (Cajal and Sanchez 
1915; Sanes and Zipursky 2010).  

1.2 Diurnal activity and locomotion 
Locomotion in ethology, the study of animal behaviour, is defined by 
Encyclopædia Britannica as “any of a variety of movements among animals 
that results in progression from one place to another” (Zug 2018). Locomotor 
activity, or performing the action of locomotion, is a useful tool when studying 
an animal’s circadian rhythm, i.e. a rhythm with a cycle length of roughly 24 
hours. Most animals are mainly diurnal (active during the day), nocturnal 
(active during the night) or crepuscular (active at dusk and dawn) (Mistlberger 
1994; Lewis and Taylor 1965). Therefore, studying when an animal is most 
active will tell a researcher which of these categories it belongs to and thus 
when it is prudent to perform experiments on said animal. These sorts of 
locomotor studies can be undertaken using activity monitoring, which record 
an animal’s movements, often walking (Bahrndorff et al. 2012; Fernandez et 
al. 1999) or running (Abe et al. 1989). Different methods for this are further 
described in section 3.1.4 of this thesis. Locomotor activity can also be studied 
by simply observing when animals are actively moving during the day (Gilbert 
1985), often complemented by trapping the animals (Ottenheim 2000). 

In flies, circadian rhythms and the hormonal control thereof, have been 
extensively studied in Drosophila (Tataroglu and Emery 2014; Pfeiffenberger 
et al. 2010). Circadian activity rhythms have also been studied in other flies, 
such as blowflies (Cymborowski et al. 1994) and houseflies (Bahrndorff et al. 
2012). The activity rhythm of hoverflies has only been studied by means of 
observation and trapping (Ottenheim 2000; Kikuchi 1962a; Gilbert 1985), and 
they have been shown to be diurnal (Ottenheim 2000). Most diurnal animals, 
including flies, maintain a circadian rhythm if kept in complete darkness, but 
get a strange rhythm or go into constant activity when exposed to constant 
light (Green 1964). Many adult flies are phototactic (Meyer 1978), i.e. 
attracted to or prone to move towards light, which should not be confused with 
their activity rhythm that can be set to a light/dark (LD) cycle and is more of 
an anticipatory behaviour (Green 1964). 
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1.3 The visual system in relation to behavioural 
output 
 

1.3.1 Spatial resolution 
The fly visual system is several magnitudes smaller than that of humans. The 
brain of the housefly Musca domestica weighs about 0.4 mg (Strausfeld 1976) 
and contains about 300 000 neurons (Strausfeld 1976), which is a vast 
difference to the human brain where the average weight is ca 1.5 kg and the 
neuronal count is around 85 billion (Azevedo et al. 2009). Due to the 
similarities in size between hoverflies and houseflies (Nationalnyckeln 2009; 
Landin 1974) it is likely that the neural count of hoverflies are within the same 
magnitude as that of houseflies. Even so, hoverflies are able to perform 
amazing flight manoeuvres in complex visual surroundings (Fitzpatrick 1981; 
Collett and Land 1978), at speeds reaching 10 ms-1 (Collett and Land 1978). 
These findings become even more incredible if one considers their compound 
eyes and the resulting limited spatial resolution. 

A compound eye is divided into sections called ommatidia or facets (figure 
4), where each facet provides one pixel of the image. The entire compound 
eye thus forms one image (Land and Nilsson 2012), just as a camera type eye 
(the type of eyes humans possesses, with only one lens), not to be confused 
with some fictional ideas (Cronenberg 1986; Gordon 1977) that each facet 
forms its own complete image (see figure 5 for a comparison between movie 
ideas, human vision and insect vision). The spatial resolution of the image 
generated by the compound eye depends on the number of ommatidia it 

Figure 4. Head of male Eristalis tenax (left) and zoom in of white square 
(right) illustrating the ommatidial patterning of the compound eye. 
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encompasses, so that the maximum amount of pixels is equal to the amount of 
ommatidia (Land and Nilsson 2012). This arrangement gives the hoverfly a 
spatial resolution of 0.5 - 1° (Collett and Land 1978, 1975a; Land and Nilsson 
2012), which corresponds to the width of your thumb at an arm’s length. If 
humans would have compound eyes, but still keep our spatial resolution of 
0.016°, our eyes would need to be about 20 m in diameter (Land and Nilsson 
2012). Incredibly enough, hoverflies can still detect small targets at a distance 
of approximately 1 m, when the target subtends about 1° (Collett and Land 
1978).  

1.3.2 Temporal resolution 
Humans have better spatial resolution than flies, but we are no match for their 
temporal resolution. The reaction time, i.e. time between visual input and 
motor output, of hoverflies is around 20 ms (Collett and Land 1978), whereas 
in humans this is around 400 ms (Thorpe 1996). It is argued that the human 
neural processing of vision, excluding the motor output, might only take 150 
ms (Thorpe 1996), but this is still nowhere near the reaction time of flies. To 
illustrate just how big a difference it is, in 400 ms the housefly Fannia 
canicularis (with a reaction time of 30 ms) has during a conspecific pursuit 
already completed two changes in flight direction (Land and Collett 1974). In 
a human sprint race, starting less then 100 ms after the start signal is 
considered a false start (cheating by starting to early, IAAF 2017), in which 
time a fly has had well enough time to both observe and react to a stimulus 
(Collett and Land 1978). One explanation for the higher temporal resolution 
in insects can be found in the photoreceptors and the phototransduction 
cascade. Flies have most of the proteins necessary for phototransduction (light 
input to electrical signal output) collected in a big complex and this complex 
has a direct effect on the ion channels that control the electrical signalling of 

Figure 5. My oldest daughter looking at my Eristalis 3D model as seen by a 
human (left), an insect from a 1970s or1980s horror film (middle) and a real 
insect (right), with each facet giving a pixel of the picture mosaic. Note that the 
different color vision of insects is ignored here. 
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the photoreceptor (Yau and Hardie 2009; Fain et al. 2010). In contrast, the 
proteins involved in vertebrate phototransduction need to find each other and 
act via second messengers to affect the ion channels to start a neural signal 
(Yau and Hardie 2009; Fain et al. 2010). 

1.4 Pollination, flower interactions and escape 
responses 
 

1.4.1 Pollination and foraging 
In the field hoverflies are known to feed on pollen and nectar from different 
flowers (Gilbert 1985; Gilbert 1981), with females eating more pollen than 
males. Females also spend more time feeding than males do (Maier and 
Waldbauer 1979b). It has been suggested that hoverflies chose flowers based 
on the morphology of their mouthparts (Gilbert 1981). There is likely some 
truth to this since too short of a proboscis will make feeding from deep floral 
tubes hard or even impossible (Rijn and Wäckers 2016). However, this is 
unlikely to be the entire truth as it has been noted that hoverflies seem to feed 
on any available flower and thus will be more likely to feed on the most 
abundant flowers (Branquart and Hemptinne 2000). This goes well in line with 
the mentioning of hoverflies as generalist pollinators (Rader et al. 2016; 
Nationalnyckeln 2009; Stubbs and Falk 2002; Ball and Morris 2015; Van 
Veen and Moore 2004; Branquart and Hemptinne 2000). Hoverflies have 
indeed been shown to feed on a variety of flowers and can even be fooled to 
visit artificial flowers that offer no reward (Nordström et al. 2017). So even 
though food is necessary for survival and mouthpart morphology likely plays 
a part in the choice of foraging site, hoverflies do not seem to be very selective. 
 

1.4.2 Flower interactions and the escape responses 
There are, however, other things than flower morphology to consider for a 
feeding hoverfly. Hoverflies might meet many other insects when foraging, 
both non-harmful insects, such as other hoverflies (Ball and Morris 2015; 
Nationalnyckeln 2009), and potentially harmful insects, such as wasps, or 
arachnids that may also visit flowers to forage (Akre 1982; Harris and Oliver 
1993; Morris and Reader 2016). The hoverfly Sphaerophoria shows a hesitant 
behaviour before landing on flowers, which could potentially be a way to deal 
with the threat of crab spiders (Yokoi and Fujisaki 2009). Bees have been 
shown to be less prone to land on flowers occupied by crab spiders or those 
flowers that show signs of a potential crab spider meal (Reader et al. 2006). 
However, interactions with other insects are in most cases unavoidable. In the 
1960s Kikuchi described dominance hierarchies formed between insects on 
flowers, and noted that Eristalis not readily shares a flower with another insect 
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(Kikuchi 1962b, a), unless the flower is large (Kikuchi 1963). However, 
Eristalis hoverflies have also been seen to huddle together with conspecifics 
in groups when hibernating through the winter (Kendall and Stradling 1972), 
so there are occasions when they will consider sharing their space with others.  

For most animals there is a trade-off between staying in a potentially 
dangerous situation and leaving it (Cooper and Frederick 2007). Water striders 
will wait longer before leaving a bigger prey, arguably because it is a bigger 
loss than a smaller prey would be (Ydenberg and Dill 1986). Guppies have 
even devised a strategy to figure out if a predator poses a big enough treat for 
them to leave their foraging and escape: One or a few guppies from a school 
will perform an inspection of the predator to assess whether the school can 
stay or needs to escape the threat (Dugatkin and Godin 1992). 

Escaping a hostile situation is one of the actions an animal can take to 
protect itself from injury or death (Blanchard et al. 1998; Cooper and 
Frederick 2007; Hemmi 2005a; Card 2012). Escape is defined by the 
Cambridge Dictionary (Cambridge Dictionary, English Dictionary  2018) as: 
“to get free from, or to avoid something”. The behaviour has been well studied 
in Drosophila (Card and Dickinson 2008a; Card and Dickinson 2008b). Card 
and Dickinson (2008) showed that the escape from a looming stimulus, i.e. a 
stimulus that approached an animal or is perceived to do so, consists of a 
cascade of behavioural events that are different from voluntary take-offs (Card 
and Dickinson 2008a). Escape take-offs are faster but less stable than 
voluntary take-offs (Card and Dickinson 2008a). The behavioural escape 
cascade shown in Drosophila can also be stopped at any point (Card and 
Dickinson 2008b). The speed and size of the looming stimuli has also been 
shown to be encoded by different neuronal groups (Ache et al. 2019). The 
approach direction of the threatening stimulus also affects the escape of 
Drosophila, with direct approaches from the front or back eliciting an escape 
in a 180° angle away from the threat, whereas side approaches gives an escape 
angle closer to 90° (Card and Dickinson 2008b). The most effective stimulus 
angle is 90 ° azimuth and 30 ° elevation, giving an escape response close to 
80 % of the time (Williamson et al. 2018). Also, crabs are affected by the 
approach angle of a threat, responding later but more likely when approached 
directly (Hemmi 2005b). However, this was only true in a lab environment 
(Oliva et al. 2007). In the field the crabs ignored the threat direction and rushed 
straight to their burrows, even if that meant running towards the threat 
(Hemmi 2005b, a). The escape response of the crabs were also heavily 
affected by the distance to the crabs’ burrows, the crabs responded faster and 
with an increased speed and acceleration the further away they were from their 
burrows (Hemmi 2005b, a). The speed of the stimulus had, however, only a 
small effect on the crabs’ escape response, though Hemmi (2005) suggested 
that some of the effect might be lost due to the constraints of the setup. Indeed, 
Oliva and Tomsic (2012) found that in a laboratory setting crabs match their 
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speed to the expansion rate of the threatening stimulus (Oliva and Tomsic 
2012).  

Different triggers have been reported for escape responses. Card and 
Dickinson (2008) showed that for Drosophila a visual stimulus is enough to 
alone elicit an escape response and that the trigger for take-off is the size of 
the visual stimulus (Card and Dickinson 2008b). Also, locusts seem to base 
their take-off decision on stimulus size (Fotowat and Gabbiani 2007). 
However, for crabs the trigger for starting the escape has been shown to be the 
stimulus’ angular increment, i.e. how fast the stimulus grows in retinal size 
(Oliva and Tomsic 2012). 

1.5 Territoriality and pursuit behaviour 
 

1.5.1 Territoriality 
A territory is a defended area (Britannica 1998; Fitzpatrick 1981), whereas a 
home range is an often larger area that the animal do not defend but still lives 
in (Britannica 1998; Fitzpatrick 1981). A territory either makes up the entire 
home range or comprises a part of it (Britannica 1998; Wellington and 
Fitzpatrick 1981). Many animals as different as flies (Wellington and 
Fitzpatrick 1981), fish (Sowersby et al. 2018) and lions (Mosser and Packer 
2009) keep territories. Even the innocent looking butterflies show 
territoriality. (Woodruff et al. 1989; Hayes et al. 2019). Some animals, like 
wolfs and lions, keep territories throughout the year, albeit with some 
variation in territory size (Brandell et al. 2021). Other animals keep territories 
only during certain periods of the year, for example Eristalis hoverflies who 
defend territories in the spring but not during late summer and autumn 
(Wellington and Fitzpatrick 1981; Fitzpatrick 1981). Furthermore, Eristalis, 
Volucella and Merodon hoverflies only maintain territorial behaviour during 
warm sunny weather, and takes breaks or delay start of the territorial 
behaviour when the weather is to cold or cloudy (Wellington 1976; 
Wellington and Fitzpatrick 1981; Ball and Morris 2004; Fitzpatrick 1981; 
Grayson 2003). Some animals only upkeep territories during special 
circumstances, such as the ayu fish, that only keep single-fish territories 
during low fish densities, but school during high densities (Katsumata et al. 
2017).  For some species males and females keep separate territories, like 
snow leopards (Johansson et al. 2018) and some species of frog (Wells 1980). 
Some species also keep territories together in parental units (Sowersby et al. 
2018), e.g. the cichlid fish Hypsophrys nematopus, or as an entire pack, such 
as lions do (Mosser and Packer 2009). There are also several cases where only 
one sex keeps territories, which is true for several hoverfly species, where only 
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the males keep territories (Fitzpatrick 1981; Ball and Morris 2004; Rotheray 
et al. 2014).   

Territories are often kept to obtain food (Pompozzi and Simó 2020; 
Katsumata et al. 2017; Mosser and Packer 2009), increase mating 
opportunities (Fitzpatrick 1981; da Rocha et al. 2018; Ball and Morris 2004), 
secure a space for offspring rearing or egg laying (Sowersby et al. 2018; Souza 
et al. 2021) or some combination of the three. For example, the ayu fish keep 
feeding territories as long as defending the territory does not take away too 
much time from feeding (Katsumata et al. 2017), some frog species with 
parental behaviour keep territories with good egg laying sites (da Rocha et al. 
2018), and hoverfly males keep territories at locations desired by females to 
increase their chances of finding a receptive female (Fitzpatrick 1981; Maier 
and Waldbauer 1979b). 

So, what can territorial behaviour look like? Amongst the dragonflies, who 
mainly keep territories for mating purposes (Lohmann et al. 2019) but might 
also keep them for better feeding opportunities (Williamson 1899), there are 
perchers and hawkers (or fliers). Perchers sit and wait on a perch, whereas 
hawkers patrol their territory on the wing (Corbert 1962; Dannelid and Sahlén 
2008; Olberg et al. 2005). These distinctions also exist in other insect orders, 
e.g. Syrphidae, with some hoverflies perching on vegetation, observing their 
territories (Fitzpatrick and Wellington 1983a), whereas other hoverflies 
combine the percher and hawker behaviours, hovering still in the air 
monitoring their territory (Fitzpatrick 1981; Collett and Land 1975b)  

The male Eristalis hoverflies form territories ranging from size 0.22 m3 – 
2 m3 or 0.36 m2 – 3.6 m2 depending on species (Wellington and Fitzpatrick 
1981; Fitzpatrick 1981). Males will pursue conspecific males and females, 
chasing the former out of the territory and the latter will be stalked to a landing 
spot where the male will try to mate with the female (Fitzpatrick 1981). 
Heterospecific insects will often also be pursued, the more restless the males 
gets the wider the range of pursued targets he will have and the more 
aggressive his approaches will be (Wellington and Fitzpatrick 1981). Male 
Eristalis will have resting periods interspacing periods of territoriality, often 
located in the home range but outside the territory (Wellington and Fitzpatrick 
1981). If a male is unable to get rest, if for example there are too many other 
male territories flanking his territory, the male will increase its aggressiveness 
(Wellington and Fitzpatrick 1981). A relaxed male will wait for a bee worker 
to exit a flower and then chase it for a little while, whereas an aggressive male 
will repeatedly strike (with its body since hoverflies lack the stinger of bees) 
a bee worker, till she stops her pollen collection. The male might even go so 
far as to violently tackle bee workers  to the ground, sometimes stunning the 
bee (Wellington 1976; Wellington and Fitzpatrick 1981). Aggressive males 
might attack passing butterflies, leaves and even hornets, something that might 
have deadly consequences for the territorial hoverfly (Wellington and 
Fitzpatrick 1981; Fitzpatrick 1981). Small falling flower petals, pebbles or 
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small dipterans might also be pursued by Eristalis males (Wellington 1976; 
Wellington and Fitzpatrick 1981), as well as pinecones, cheery seeds or 
strawberry hats thrown by an exasperated PhD student (personal observation). 

Thus, for an Eristalis male, territoriality is expressed by hovering, 
screening the territory for intruders and potential mating partners, pursuing 
said intruders or mating partners, and can in some cases end in clasping, 
tackling, mating or in some rare cases even death. 

 

1.5.2 Pursuit strategies 
3D pursuit (such as e.g. aerial pursuit) can be performed in several ways (Shaw 
1985; Pembury Smith and Ruxton 2020). Here four such techniques (figure 6) 
utilized by flying insects will be briefly presented. The first is smooth pursuit 
(figure 6a), where the pursuer continuously moves towards the current 
position of its target (Boeddeker et al. 2003; Gonzalez-Bellido et al. 2016); 

Figure 6. Pursuit styles illustrated with hoverflies and beads. a) smooth pursuit, 
were the fly continuously flies towards the current position of the bead. b) 
Interception with constant error angle, the hoverfly flies towards a future position 
of the bead by keeping the error angle fixed. c) Interception with constant bearing, 
the fly flies towards a future position of the bead by keeping the bearing angle 
constant. d) Shadowing, the fly has a constant angle towards a point behind itself, 
so it appears motionless when viewed from the bead. Adapted from Paper IV 
figure 5a. 
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Interception, is where the pursuer 
predicts and flies towards a future 
position of the target. There are 
several ways the pursuer can achieve 
this. One is by keeping the error angle 
(e, figure 6b) constant, where the error 
angle is the angle between the fly’s 
heading (black arrows connected to 
flies, figure 6b) and a line connecting 
the fly and the target, often called the 
line of sight (LoS, straight dashed 
grey lines, figure 6). Another way to 
perform interception is by keeping the 
bearing angle constant (b, figure 6c). 
The bearing angle is the angle 
between the LoS and an external 
point. Another way a pursuer can 
approach a target is by using 
shadowing (figure 6d and Pembury 
Smith and Ruxton 2020; Srinivasan 
and Davey 1995), where the pursuer 
keeps itself on a line crossing the 
target and an external point, thereby 
appearing motionless when viewed 
from the target. All these pursuit 
styles have many names, for example 
smooth pursuit can also be called pure 
pursuit (Varennes et al. 2020; Fabian 
et al. 2018; Shaw 1985), classical 

pursuit (Pembury Smith and Ruxton 2020), tracking or target tracking 
(Varennes et al. 2020). Interception with constant error angle is sometimes 
only called interception (Collett and Land 1978) but has also been called 
biased pursuit (Varennes et al. 2020), deviated pursuit (Fabian et al. 2018) or 
constant error model (Gonzalez-Bellido et al. 2016). Interception with 
constant bearing has also been called proportional navigation (pro-nav) 
(Varennes et al. 2020; Fabian et al. 2018; Shaw 1985), constant bearing angle 
model (Wardill et al. 2017), constant bearing, constant absolute target 
direction (Gonzalez-Bellido et al. 2016), or constant bearing decreasing range 
(Hobbs 2009). Shadowing can also be called motion camouflage (Mizutani et 
al. 2003). 

Blowflies and houseflies have generally been believed to use smooth 
pursuit (figure 6a and Trischler et al. 2010; Land and Collett 1974; Boeddeker 
et al. 2003), but recent research suggest that blowflies only use it in the 
horizontal plane (figure 7 for illustration of pursuit in different planes), 

Figure 7. Illustration of pursuits in the 
horizontal and vertical plane. a)  
Smooth pursuit in the horizontal 
plane. b) Interception with 
proportional navigation in the vertical 
plane. 
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whereas in the vertical plane they seem to use interception with constant 
bearing (figure 6d & Varennes et al. 2020). Killer flies, robber flies and 
Dragonflies are all known to use interception with constant bearing (Olberg et 
al. 2000; Wardill et al. 2017), killer flies even use the same tactic to pursue 
targets both from bellow and above (Rossoni et al. 2021; Wardill et al. 2015)., 
Some dragonflies have also been shown to utilize shadowing (Mizutani et al. 
2003). The hoverfly S. pipiens has been recorded to use a multitude of tracking 
strategies, including smooth pursuit, interception with constant error angle and 
shadowing (Srinivasan and Davey 1995; Collett and Land 1975a). In contrast, 
Eristalis hoverflies are thought to use only interception with constant error 
angle to track targets (Collett and Land 1978).  

 

1.5.3 Target location on the pursuer’s retina 
When pursuing targets many insects, such as dragonflies (Dickinson 2015), 
male S. pipiens hoverflies (Collett and Land 1975a), drone bees (Praagh et al. 
1980) and male houseflies (Burton and Laughlin 2003), keep their targets in 
the area of the eyes with the highest visual acuity. This area is called acute 
zone, fovea or love spot (Ignatova et al. 2021; Burton and Laughlin 2003; 
Land 1997). This is similar to eye tracking behaviour  in humans, with a small 
target receiving more corrective eye-movements than a larger target to keep it 
foveated (Heinen et al. 2018). The human fovea has a high density of 
photoreceptor-cells to increase the spatial resolution (Hirsch and Curcio 1989; 
Kolb 2012; Land 1997). For the same purpose insects has large facets and 
small interommatidial angels (Land 1997). Male Eristalis hoverflies and male 
Chrysomya megacephala blowflies do not have an acute zone, but instead an 
area in their eyes with increased facet size called a bright zone (Straw et al. 
2006; Badenhorst and Villet 2018).  The bright zone is suggested to be good 
for target tracking, possibly through an increase in light capture leading to 
better signal-to-noise-ratios (Van Hateren et al. 1989; Straw et al. 2006). 
However, performed studies on Eristalis pursuits (Collett and Land 1978; 
Fitzpatrick 1981) do not show whether or not the Eristalis males keep their 
target in the bright zone during pursuits, and no helpful parallels can be drawn 
from the C. megacephala males since their pursuit behaviour is yet to be 
studied.  
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2 Aims 

The overall aims of these studies have been to develop techniques and 
subsequently use them to investigate the behaviour of the important alternative 
pollinators, the Eristalis hoverflies, to increase their effectivity as model 
animals, and to further understand their visual behaviour during pursuits as 
well as on and around flowers. 

Paper I 
The aims of Paper I were to establish a protocol for effectively rearing 
hoverflies from eggs or 3rd instar larvae, to ensure year-round access to 
experimental wild type animals, and to prolong the survival time of the 
hoverflies in the lab.  

Paper II 
The aims of Paper II were to set up a locomotor activity system and use it to 
investigate the activity of Eristalis hoverflies. In addition, the aim was to 
determine whether the rhythm was diurnal or a response to light, and to 
characterize how intrinsic and extrinsic factors affect hoverfly locomotor 
activity. 

Paper III 
The aims of Paper III were to develop and use a method to study the 
interactions of female hoverflies around flowers in the field and the outcome 
of these, as well as to describe available visual cues during the interactions.  

Paper IV 
The aims of Paper IV were to construct an indoor flight arena that would allow 
for studies of male hoverfly pursuits of artificial targets, to describe these 
pursuits and to characterize the target range of male hoverflies in terms of 
target size and speed. 
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3 Methods 

3.1 Behavioural studies 
The behaviour of animals can be studied using a number of different methods, 
including but not limited to, locomotor activity monitoring systems (Catterson 
et al. 2010; Bahrndorff et al. 2012), videography (Zimmerman et al. 2008; 
Wardill et al. 2017), GPS tracking (Wilson et al. 2013), trapping (Karlsson et 
al. 2005) and observations (Gilbert 1983; Kikuchi 1962b), each with their own 
advantages and disadvantages, which are discussed in more detail below.  
 

3.1.1 Behavioural patterns  
Observational studies, where an observer, often with the help of a tape 
recorder, documents a behaviour while it is performed, are good for studying 
general behavioural patterns since they do not require an extensive equipment 
setup, and can additionally allow the observer to study the behaviour without 
interfering with the animal. These kinds of studies have, for example, been 
used to study time budgets of hoverflies (Fitzpatrick 1981; Alderman 2010), 
to perform comparative behavioural studies between bees and their hoverfly 
mimics (Golding and Edmunds 2000), and to study more specific behaviours, 
such as insect movements on flowers while feeding (Gilbert 1983) and 
dominance hierarchies around flowers (Kikuchi 1962b). Observational studies 
are, however, heavily observer biased and may generate data that can be both 
hard to quantify and to compare between studies. 

 

3.1.2 Geographic spread and quantification of animals 
Manual trapping, where insects are hand netted (Ottenheim 2000), generally 
shares the same problems as observational studies, since the method is 
dependent on the experimenter’s ability to spot and identify the animal. Traps, 
such as the Malaise trap (Karlsson et al. 2005) or sticky traps (Atakan and 
Pehlivan 2015), circumvent such experimenter bias and allow for a high 
amount of data to be collected quickly. However, the temporal resolution 
decreases significantly compared to observational studies, since it will only be 
as high as the frequency with which the traps are emptied, which can vary 
between every few days (Atakan and Pehlivan 2015), to every other week 
(Karlsson et al. 2005). Nevertheless, trapping studies have been used to 
determine the geographic spread of different insects (Karlsson et al. 2005), 
and also the annual (a yearlong rhythm) and diurnal rhythms of different insect 
species (Ottenheim 2000; Karlsson et al. 2005).  
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Another way to study the geographic spread of animals, their annual 
numbers, and also their migratory behaviour is marking studies, successfully 
used in birds (e.g. bird ringing, Bergner et al. 2021) and monarch butterflies  
(Taylor Jr et al. 2020). The tags used on the butterflies weighed 10 mg and 
accounted for 2 % of the butterflies’ body weight, which is a similar amount 
to the radio tags used for birds (Naef-Daenzer et al. 2001), but heavier than 
bird rings (<0.5 %, Hawk Conservancy Trust 2021). This method might work 
well with animals as large as birds or for larger insects, but for the smaller 
Eristalis hoverflies weighing only around 15 mg themselves (Paper I, figure 
3) 10 mg is a significant weight.  

Markings using ink have been used on hoverflies with variable success to 
study territory and home range usage. Some hoverflies left the study area 
immediately after being marked whereas others stayed and was identifiable 
up to nine days later (Fitzpatrick and Wellington 1983a). Small tags (2 x 2 
mm, Modlmeier et al. 2019) have been used on ants to study activity rhythms 
(Mildner and Roces 2017) and interactions during different ant densities 
(Modlmeier et al. 2019). Metal tags have been used on bumblebees to attach 
them to flight mills (a way to study tethered flight), the authors found that the 
tags placement affected several aspects of the bumblebees flight performance 
(Kenna et al. 2019). There have also been some effort with mark-recapture 
studies in Drosophila to study dispersal using protein markers (Vacas et al. 
2019). Mark-recapture studies have also been performed on hoverflies such as 
Volucella pellucens, V. inflata, V. bombylans (Ball and Morris 2004) and 
Hammerschmidtia ferruginea (Rotheray et al. 2014) using enamel paint, 
where recapture rates varied between 7 % and 16 % and were affected by 
experimenter effort. In conclusion, studying hoverflies using individual 
makers is feasible, but the time restraint and experimenter bias is an important 
factor. 

 

3.1.3 GPS tracking and migration 
GPS tracking, which sometimes combines a GPS tracker and accelerometers 
(Wilson et al. 2013), offers an often detailed temporal resolution of animal 
behaviour and has been used to study movements of larger animals such as 
cheetahs (Wilson et al. 2013) or the migratory behaviour of birds (Klaassen et 
al. 2008), and can even be used to track pets such as cats and dogs (Aqraldo 
et al. 2021). GPS tracking can, however, pose a limit on the number of animals 
studied, since like with the marking techniques mentioned above each animal 
has to be individually tagged. In addition, GPS trackers are currently too large 
for mounting on insects, as the one Klaassen et al. (2008) used on birds 
weighed 45 g. Bouten et al. (2013) managed to shrink a GPS tracker down to 
12 g. However, this is still very heavy for an insect like Eristalis, which weighs 
only 0.1-0.2 g. Some efforts are being made with arthropod tracking, however, 
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this is mostly to track big populations or breeding sites (Thomson and Connor 
2000). 
 

3.1.4 Locomotor activity measuring 
Locomotor activity monitors, such as the Drosophila activity monitoring 
system (DAMS) or the larger Locomotor activity monitoring system (LAMS), 
do not offer the detailed view of observational studies, but are high throughput 
systems that allow for a high temporal resolution, as well as objective data 
collection. Both the LAMS and the DAMS record the locomotion of insects 
using infrared (IR) beams. An insect is placed in a glass tube sealed at both 
ends. The tube is then placed in the activity monitor so that one or several IR 
beams passes through the centre of the tube. The number of beam breaks are 
then recorded over a fixed time interval of seconds to days (for a more detailed 
description see Pfeiffenberger et al. 2010; Chiu et al. 2010). 

DAMS is a commonly used method when studying Drosophila and 
especially their sleep-wake behaviour. The method has been used to study e.g. 
the connection between sleep- and starvation-pathways (Keene et al. 2010), 
the sexual differences in locomotor activity (Helfrich-Förster 2000) and the 
effect of temperature on circadian rhythm (Glaser and Stanewsky 2005). The 
larger LAMS has been used to study behavioural rhythms in larger insects, 
such as bees (Giannoni-Guzmán et al. 2014), true bugs (Pivarciova et al. 
2016), houseflies (Bahrndorff et al. 2012) and ants (Mildner and Roces 2017). 

 

3.1.5 Videography 
Videography has been used to study, among other topics, aerial chases of 
insects (Wardill et al. 2015; Collett and Land 1978), predator inspection 
behaviour in fish (van der Bijl et al. 2015), snake predatory behaviour (Clark 
2006) and the mating dances of male peacock spiders (Girard et al. 2015) and 
birds of paradise (Scholes and Laman 2018). Like locomotor activity 
monitors, videography offers a high temporal resolution and often the 
possibility to study behaviour in great detail, similar to observational studies 
but with less, or no, observer bias. The analysis time is, however, often much 
longer than that of observational studies and locomotor activity monitors. 
Thus, if the research question does not require the high detail that videography 
can provide, data analysis time can be greatly shortened by usage of another 
method.  

To study flight behaviour in dipteran flies, videography has for several 
decades, with the more recent addition of high-speed videography, been used 
as an addition to, or as a replacement for, observational studies (Collett and 
Land 1975a; Geurten et al. 2010; Boeddeker et al. 2003; Chen et al. 2013; 
Wardill et al. 2015). Importantly, videography circumvents many of the 
problems with observational studies while maintaining the capability to 
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distinguish behavioural patterns. Different behaviours require different 
temporal resolution and thus different frame rates are required from the 
camera. A high frame rate of 5000 frames per second (fps) can showcase 
individual wing beats (Chen et al. 2013), whereas a slower frame rate of e.g. 
50 fps can be enough for a broader behavioural overview (Collett and Land 
1975a). This is important to keep in mind, as there is a trade-off between the 
temporal resolution (frame rate) and the spatial resolution (number of pixels 
per image) (Nayar and Ben-Ezra 2004). For example, using the camera EX-
FH25 (Casio, Tokyo, Japan) one can film at 120 fps or 1000 fps, but at 120 
fps each frame is 640 x 480 pixels, whereas at 1000 fps this has shrunk to 224 
x 64 pixels (Digital Camera EX-FH25 User's Guide). Thus, if high temporal 
resolution is needed the spatial resolution usually has to be compromised. This 
is an issue in some cases, such as when studying the lift force generated from 
wing beats, which needs high temporal resolution as well as high spatial detail 
(Chen et al. 2013). This can be solved by increasing the percentage of the 
frame covered by the insect, thus increasing the number of pixels the insect 
occupies and thereby the available detail, by e.g., moving the camera closer to 
the insect. To practically move the camera closer to the insect the space 
available to the insect might have to be restricted (Geurten et al. 2010; Chen 
et al. 2013). This in turn might generate a trade-off between the size of the 
area the animal can move in and the behaviour, with larger movement space 
likely giving a more natural behaviour since it is less constrained. A larger 
filming area results in less available detail but more natural behaviour and one 
thus has to decide what is most important for the study question at hand, great 
spatial detail or a more natural behaviour. 

Another factor to consider in videography is the size of the files, since large 
quantities of data, taxing to analyse, can be rapidly generated, as higher frame 
rates and/or higher spatial resolution generates larger files. To keep the file 
size down the film time can be decreased, but this will in turn put a limit on 
the length of the behaviour to be studied. Another solution to maintaining a 
high frame rate and/or spatial resolution while saving data storage space is to 
only save the interesting frames, e.g. using a system that triggers data 
recording when a behaviour is initiated (Chen et al. 2013), or to only save the 
flight path and not the entire movie (Maimon et al. 2008).  
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Many studies on hoverfly flight behaviour have been performed in 2D 
(Collett and Land 1975a; Alderman 2012; Golding et al. 2001). Later studies 
on other dipterans have been performed in 3D (Wardill et al. 2015; Geurten et 
al. 2010; Bomphrey et al. 2009), allowing more detailed studies of the flight 
behaviours. Land & Collett (1974) studied the chasing behaviour of houseflies 
in 2D and acknowledged that there are parts of the behaviour that cannot be 
seen while studying in 2D, though they argued that this would not have a great 
effect on the behaviour covered by their study. This might indeed be true for 
studying e.g. the optomotor response (Collett and Land 1975a), a reflex for 
course or gaze stabilization where the fly follows the motion of its 
surrounding. However, when looking at chases of beads (see e.g. figure 1 in 
Collett and Land 1978), it is impossible to know if the fly approached the bead 
from above, below, or in line with the bead just from looking at the 2D tracks. 
When looking at a track in 2D it can indeed be hard to differentiate between 
the fly flying slowly or at an angle, in the same way that it is hard to 
differentiate between a small object at a close distance and a large object 
further away  without 
3D information 
(figure 8 and Wardill 
et al. 2015). Since 
flies move in a 3D 
space, studying them 
in 3D will likely give 
a more complete 
picture of their flight 
behaviour than 
restricting the study to 2D.  

 

3.1.6 Indoors or outdoors 
Studying animals indoors in a lab environment or outdoors in the animals’ 
natural habitat pose different challenges (Calisi and Bentley 2009) and can 
sometimes (Hemmi and Tomsic 2015), however not always (Butterworth et 
al. 2019), give different results. Take for example fiddler crabs who in the lab 
on a Styrofoam ball always run away from an approaching threat (looming 
stimuli, Oliva et al. 2007) whilst in the field the running direction is also tied 
to the distance and direction to the crabs burrow (Hemmi 2005a). In contrast, 
the blowfly Chrysomya flavifrons perform more similarly in a lab and field 
situation executing the same steps, however with some variation in time spent 
on each step, in its complex mating ritual in both locations (Butterworth et al. 
2019). 

Studying animals in the field gives the most natural response but 
environmental factors might cause the results to be hard to obtain or interpret 
(Calisi and Bentley 2009). In a lab setting many environmental factors can be 

Figure 8. Perspective, a big bead far away appears to be 
the same size as a small bead close by. 
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controlled and thus make the results easier to interpret, however, one risk is 
oversimplifying or over-extrapolating results so that they are no longer 
meaningful to the animal. Another risk is oversimplifying the environment so 
that it starts to affect the animals performance, one example comes from Roy 
et al. (2016) that showed how juvenile  zebrafish reared in a bare environment 
fared worse in memory tests than relatives reared in a more complex 
environment. A trait of the animal might also be hard to interpret out of its 
original setting (Neff 2020). In some cases the animals might even have been 
used so long in the lab so that the their behaviour  have started to diverge from 
the wild population, for example Russell and Kurtz found significant 
differences in three different behavioural assays for the extensively used 
model organism D. melanogaster (Russell and Kurtz 2012). The question then 
arises if the lab populations still provide a good representation of wild type 
behaviour.  

 

3.1.7 Arenas and artificial targets 
 
3.1.7.1 Arenas 

Behavioural arenas have been used to study a number of flight behaviours 
in flies and other insects. Some examples of behaviours studied in hoverflies 
are their optomotor reflex (S. pipiens, Collett and Land 1975a), the effect of 
background on freefall  (Episyrphus balteatus, Goulard et al. 2016), their 
prototypical movements (E. tenax, Geurten et al. 2010) and target pursuit (S. 
pipiens, Collett and Land 1975a). Target pursuit have also been studied in 
many other insects using arenas, for example in killer flies (Wardill et al. 
2015), blowflies (Boeddeker et al. 2003), and dragonflies (Lin and Leonardo 
2017).  

Arenas are one way to solve the problem of how to limit an animal’s 
available space to better be able to capture a behaviour on film (as mentioned 
in section 3.1.5 Videography). However, caution is needed when choosing 
arena size seeing as some behaviours requires a certain amount of space to 
take place. For example Eristalis territories are said to have a minimum size 
(Wellington and Fitzpatrick 1981), suggesting that the flies might not perform 
territorial pursuits in too small a space. Indeed for E. tenax Geurten et al. 
(2010) has shown that arena size affects the flight speed, number of saccades 
and to some extent also the prototypical behaviours. The flies flew slower but 
used more saccades and also spent more time flying backwards in a small 
arena compared to a larger one (Geurten et al. 2010). A larger arena might 
thus be better, and Mischiati et al. (2015) therefore converted an entire room 
into a mini outdoors for their dragonfly pursuit studies. However, larger arenas 
might, as during field studies, force the experimenter to limit where to film 
and important bits of the behaviour studied risk falling outside the range of 
the cameras (Lin and Leonardo 2017; Mischiati et al. 2015). 
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Not all animals perform well in captivity, for example Olberg et al. (2007b) 
found that their dragonflies did not feed well and quickly died when brought 
indoors. In order to study their pursuit behaviour, they instead constructed a 
mech cage outdoors, allowing for all the natural stimuli the dragonflies seem 
to need but still limiting the study area. However, this setup restricted the 
experimental period to when daylight shone on the cage (Olberg et al. 2007b). 
The setup of Mischiati et al. (2015) beautifully solves this problem with their 
effective naturalistic environmental factors, such as light, temperature, 
humidity and visual texture. Their background scenery, even though it 
provides the dragonflies with naturalistic visual cues (Lin and Leonardo 
2017), is however a picture made for human eyes. Printed pictures are often 
photographed with cameras optimised for the human visual system, often with 
more green added (Tabora 2019). Many animals have vision quite different 
from human vision (Land and Nilsson 2012). A special camera was recently 
developed to help understand the vision of birds, allowing us to get an idea of 
how they experience a dense tree canopy (Tedore and Nilsson 2019). 
However, to not only photograph, but to also print pictures that will appear 
natural to animals, one might also need a printer that takes their vision into 
account, since even humans perceive colours differently when printed on 
different printers (with the same red-green-blue-values, Stevens and Cuthill 
2005).  

Another problem with backgrounds is that they might affect tracking 
(discussed in further detail bellow), either by creating low contrast between 
the insect and background or by restricting the filmable part of the arena. Some 
ways to try and solve the issue of the background occluding the camera view 
is by making a hole in the background (Geurten et al. 2010), not cover all sides 
(Geurten et al. 2010; Baird et al. 2021; Lecoeur et al. 2019) or film from inside 
the arena (Bomphrey et al. 2009; Lin and Leonardo 2017). However, the 
problem with low contrast between insect and background might still prevail, 
depending on the camera angle. One can try and solve this problem by using 
a background that gives a higher contrast to the insects being tracked, such as 
different red/white patterns (Geurten et al. 2010; Luu et al. 2011; Lecoeur et 
al. 2019), or by not having a background at all, using a mech (Olberg et al. 
2007a; Hateren and Schilstra ; Schilstra and Van Hateren ; Schilstra and 
Hateren) or Perspex arena (Rossoni et al. 2021).  
 
3.1.7.2 Artificial targets 
Target tracking in insects have been studied at the neuronal level (Nordström 
et al. 2006; Nicholas et al. 2018), as well as the behavioural level (Wardill et 
al. 2015; Collett and Land 1978; Boeddeker et al. 2003). When studied at the 
behaviour level living targets can be used, for example Drosophila as prey for 
killer flies (Wardill et al. 2015) and dragonflies (Lin and Leonardo 2017), or 
conspecific males as targets for hoverfly and housefly males (Collett and Land 
1975a; Wehrhahn et al. 1982). These naturalistic targets comes with its own 
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set of variables due to the unpredictability of living organisms (Mcelroy and 
Mcbrayer 2021; Domenici et al. 2008). One way to gain more predictability 
and thus eliminating some variables, so that the study questions can remain in 
focus, is to use artificial targets. The artificial targets can be physical objects 
such as beads (Wardill et al. 2015; Boeddeker et al. 2003), peas (Collett and 
Land 1978), wooden blocks (Collett and Land 1978), model preys made of 
clay (Morris and Reader 2016) or even dead conspecifics (Maier and 
Waldbauer 1979a) or prey animals (Morris and Reader 2016). The artificial 
targets can also be digital, shown on a computer screen (Nicholas et al. 2018) 
or with a LED setup (Keleş and Frye 2017).  

Clearly an artificial target cannot mimic all the features of a naturalistic 
target, however great efforts are made to replicate naturalistic stimuli when 
the study question requires it. Eichorn et al. (2017) found that blowfly Lucilia 
sericata have age and sex specific wing flash frequencies (how the flies’ wings 
reflect light during wing beats) that are differently attractive for males. They 
managed to get male alighting responses towards acrylic spheres using 
flashing LEDs replicating the wing flash frequencies of young females 
(Eichorn et al. 2017). However, the setup was constructed for stationary 
targets so the technique might be more difficult to use if one would like to use 
a moving target. Lin et al (Lin and Leonardo 2017) showed that dragonflies 
readily pursue both living Drosophila and artificial prey moved by an artificial 
prey presentation system in their arena, and argued that the artificial preys 
allowed them to study a much broader range of target variables than those 
accessible to them using only the Drosophila.  

The motion paths of artificial targets, such as straight horizontal (Lin and 
Leonardo 2017; Collett and Land 1978), straight vertical (Wardill et al. 2015) 
or circular (Boeddeker et al. 2003) paths, are quite simple (Wardill et al. 2015; 
Lin and Leonardo 2017; Boeddeker et al. 2003; Collett and Land 1978) 
compared to flight paths of target conspecifics (Collett and Land 1978) or prey 
(Van Breugel and Dickinson 2012). However, methods for more varied target 
paths are being developed, such as the novel arena set up by Varennes et al. 
(2019) allowing for more complex 2D paths of an artificial target.  

The use of artificial targets allows the experimenter to control one or 
several variables of the target, such as speed (Boeddeker et al. 2003), direction 
of movement (Wardill et al. 2015), size (Olberg et al. 2005) and colour (Morris 
and Reader 2016) just to name a few. Artificial targets have been used with 
killer flies (Wardill et al. 2015), robber flies (Wardill et al. 2017), blowflies 
(Boeddeker et al. 2003), dragonflies (Olberg et al. 2005; Lin and Leonardo 
2017), hoverflies (Collett and Land 1978) and spiders (Morris and Reader 
2016) to determine the target range pursued in terms e.g. size and velocity of 
the target (Wardill et al. 2015; Boeddeker et al. 2003), pursuit style (Collett 
and Land 1978; Wardill et al. 2017; Wardill et al. 2015), where the insects 
keep the target on their retina during pursuit (Lin and Leonardo 2017) and 
mimetic effect of target coloration (Morris and Reader 2016). Artificial targets 
thus allow an experimenter to isolate target variables. However, as with 
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artificial environments in the lab, caution needs to be taken not to over 
extrapolate results or simplify the target situation so that it no longer can 
represent a natural situation. 

3.2 Flight path tracking  
When studying flight behaviour, one might want to track the flying insect 
under study. Depending on the exact behaviour to be studied different parts of 
the fly might need to be tracked. For studies of flight trajectories one point on 
the fly is enough if one assumes that the fly does not fly backwards (Buelthoff 
et al. 1980; Schilstra and Hateren 1999). If one wants to include the body 
orientation two points on the fly needs to be tracked (Geurten et al. 2010; 
Hateren and Schilstra 1999), and to address the lift force during take-off a 
model of the wings may need to be fitted to each frame (Chen et al. 2013). 
This might in turn impose different requirements on the spatial resolution, as 
well as the tracking software.  

Analysis of flight tracks, especially if manual, is often time consuming. 
This time can be decreased with automated tracking (Wardill et al. 2017; Dell 
et al. 2014). However, automated tracking might not be possible if the contrast 
between the insect to be tracked and the background is too low, e.g. if the 
insect is flying in a complex or moving environment, or if the insect to be 
tracked covers too few pixels (see Dell et al. 2014 for a detailed review) 

There are a number of commercially available software solutions for 
animal tracking with different requirements on hardware and animal 
resolution, though most of these only perform tracking in 2D (Dell et al. 2014). 
Recently, software tracking animals in 3D has also started to become available 
(e.g., 3Dtracker (3dtracker.org), Track3D (noldus.com), DeppLabCut 
(mackenziemathislab.org)), though most of these require better resolution of 
the animal than is often possible for e.g., field studies (Nakamura et al. 2016; 
Stewart et al. 2015). Therefore, custom written software that matches specific 
study questions and settings are common (Wardill et al. 2017; Chen et al. 
2013; Geurten et al. 2010). The benefits with automated tracking in 3D using 
commercially available software is that comparison between different studies 
can be easily done, though there is yet to be developed a software that can 
handle enough settings to be useful for this purpose (Dell et al. 2014). 

3D tracking is usually performed with 2 cameras (Wardill et al. 2015; 
Boeddeker et al. 2003), but can be performed with as little as one camera if a 
mirror is used (Buelthoff et al. 1980; Bomphrey et al. 2009). If one has access 
to high computational power an array of cameras can be used for a potentially 
more accurate tracking or tracking over a larger area (Chen et al. 2013; 
Maimon et al. 2008; Dell et al. 2014). 

To be able to perform 3D tracking, the cameras used for recording need to 
be synchronized, so that the same point can be tracked for each frame by 
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both/all cameras (Wardill et al. 2017; Stewart et al. 2015; Chen et al. 2013). 
Many cameras can be synchronized automatically (Stewart et al. 2015), but if 
this feature is not available cameras can also be synchronized manually. 
Manual synchronization is more time consuming than automatic but does 
allow for the usage of 3D tracking in field settings where automatic 
synchronization might be hard. 

Another essential part of 3D tracking is the calibration, giving the software 
information about the size of the setting to be filmed. This can be done by e.g. 
using a checker pattern of known size that is filmed by both cameras 
simultaneously (Wardill et al. 2017). 

Placing the cameras for tracking can sometimes be tricky (Dell et al. 2014), 
especially when in the field. When using two cameras a 90-degree angle 
between the cameras is common (Wardill et al. 2017; Geurten et al. 2010; 
Stewart et al. 2015), though in the field this might not always be achievable 
due to obstruction from e.g., foliage. Since tripods or other camera stances are 
required to not let camera movement affect the subsequent 3D tracking, the 
terrain on which to put the camera stance might also pose a problem (Dell et 
al. 2014).  

3.3 Short description of methods employed in Paper 
I, II, III and IV 
The methods used in Paper I, II, III and IV will be described briefly below. 
For a more detailed description please see the methods section in each paper.  
 

3.3.1 Paper I 
In Paper I rearing methods for the hoverfly E. tenax were developed, 
inspired by previously described protocols for hoverfly rearing. 
Protocols were tested against each other, evaluated for sanitary 
standards and user friendliness. Artificial hibernation was introduced to 
prolong the life of the hoverflies, in order to negate the effect of seasons 
that might otherwise make hoverflies hard to obtain from the wild. 
LAMS was used to confirm that the hoverflies’ activity did not diverge 
from that of wild caught hoverflies. The weight of males and females 
was determined and the sex ratio of the hatched hoverflies investigated 
for a potential sex bias. 
 

3.3.2 Paper II 
In Paper II the locomotor activity of E. tenax and what affects it was 
studied. The different external factors studied were diet, starvation and 
company; the intrinsic factors studied were age and sex. For all 
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experiments, but the starvation experiment (that lasted 7 days), 
hoverflies were kept in a LAMS for 54 h. Hoverflies were kept 
individually in each tube, except when the effect of a conspecific 
companion was investigated, then the hoverflies were kept in pairs. 
Hoverflies were randomly assigned to slots in the LAMS. The light 
cycle was set to a 12:12 LD regime and the temperature was 19-25 °C. 
The circadian rhythm of the hoverflies was also investigated and by 
performing an additional experiment where the light was turned on for 
4 hours during the 2nd night of the experiment, we could determine if 
the rhythm was a light response or a circadian rhythm.  
 

3.3.3 Paper III 
In Paper III the interactions between hoverflies (Eristalis sp. and E. 
balteatus), bees (A. mellifera) and wasps (Vespula sp.) around flowers 
were studied in 3D using high-speed videography with two cameras 
(120 fps) placed at least 30° apart. The data were collected July – 
September 2015 between 10 am and 5 pm on calm sunny days. The 
hoverfly sitting on the flower at the start of the interaction was classified 
as the occupant and was always a female Eristalis. The approaching 
insect was defined as an incomer. Definitions were made after Kikuchi 
(1962b). Calibration and 3D reconstruction was done as previously 
described (Wardill et al. 2017). Briefly, the centre, which is roughly 
similar to the centre of mass (COM, Chen et al. 2013) of both 
interactants were located for each frame and both cameras. These 2D 
coordinates were translated to 3D using custom written Matlab 
software. The movies were manually synchronized using a cell phone 
flashlight, or at instances where the flash was not visible in both 
cameras a distinct motion (e.g., a flower petal flick) was used. The 
movies were then manually checked for 10 frames to ensure correct 
synchronization. From the 3D coordinates visual variables such as 
speed, distance between the interactants, and angular information 
available to the occupant, were calculated.  
 

3.3.4 Paper IV 
In Paper IV an indoor flight arena (1 m3, clear plexiglass) was developed and 
subsequently used to study male E. tenax pursuits of artificial targets. The 
artificial targets were fours sizes of black painted beads (6 mm - 38.5 mm) 
attached to a horizontal fishline. A stepper motor was programmed to 
continuously run a bead back and forth across the length of the arena 
(similarily to Wardill et al. 2017) alternating between seven different speeds 
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of the beads (0.1 ms-1 - 1.8 ms-1), pausing briefly between each speed. 10 males 
and 8 females were kept in the arena at all times. New flies replacing old or 
dead flies were taken from the hibernation stock developed in Paper I. The 
females were only in the arena to encourage the male’s pursuit behaviour and 
were not the focus of this study. Interactions between the male flies and the 
beads were filmed and reconstructed similarly to the occupant-incomer 
interactions in Paper III. The variables studied where also similar to Paper III 
with the addition of error angle to see where in the visual field the male keeps 
the target during pursuit. As well as pursuit length and some relationships 
between bead speed, pursuit probability and pursuer speed to investigate 
pursuit style and target range of the male hoverflies. The light and temperature 
conditions were the same as in Paper II. 
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 4 Results and Discussion 

4.1 Eristalis as study animals 
 

4.1.1 Accessibility 
Hoverflies are used more and more in laboratory studies (Chen et al. 2013; 
Nordström et al. 2008; Geurten et al. 2010; Nicholas et al. 2020; Ouattara et 
al. ; Khan et al.), making yearlong access to adult hoverflies important. One 
way of obtaining adult hoverflies is to catch them in the field. This method 
can be rather time consuming as the right species, and sometimes sex, of 
hoverfly needs to be seen, identified and caught. In Europe the flight period 
of hoverflies does not include the cold winter and the highest number are 
generally seen during the summer (Ottenheim 2000; Nationalnyckeln 2009). 
However, hoverflies are most active between 15 and 25 °C (Gilbert 1985) and 
some species will not fly in rain, cold or cloudy weather (Fitzpatrick 1981; 
Ball and Morris 2004; Grayson 2003), narrowing the window of easy access 
further.  

Another way to access adult 
hoverflies is to breed them and some 
protocols already exist for this 
purpose (e.g., Gladis 1994b; Dolley 
Jr et al. 1937). However, these 
protocols either do not live up to 
current sanitary standards or are 
focused on mass rearing. During 
mass rearing the selective pressure 
on aerodynamic skills and vision is 
relaxed or non-existent compared to 
the situation in the wild (Fitzpatrick 
1981), opening up for less fine tuning 
of these qualities, as well as a 
potential risk of a quick loss of 
genetic heterogeneity (Francuski et 
al. 2014). This would be unfortunate 

given that vision and flight behaviour are two of the most prominent traits of 
the hoverflies, named after their ability to hover and with large eyes covering 
a big portion of the flies head (figure 9 and Nationalnyckeln 2009; Ball and 
Morris 2015). We therefore set out to create a protocol that lives up to today’s 
sanitary standards and allows for mating selection pressure (Paper I). Our 

Figure 9. Head of male Eristalis tenax. 
Photo of dead specimen from the 
Swedish museum of natural history. 
Depicting the large eyes. 
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protocol uses either eggs from wild females or 3rd instar larvae collected from 
the wild, thus keeping the selective pressure in the field. We also further 
increased the previously recorded survival times for adult hoverflies in rearing 
situations from around 4 months (Heal 1989; Dolley Jr and Golden 1947; 
Gladis 1994b) to over a year, effectively combating the low to non-existent 
access during the winter months. We did this by introducing an artificial 
hibernation, were we kept the flies in 8 °C taking them out in room 
temperature to feed and groom every three to four days. The hoverflies were 
successfully used in experiments up to 7 months (Paper II, figure 2) and lay 
fertile eggs up to 5 months (Paper II). Thus, our breeding protocol ensures 
wild selection and access to adult hoverflies that can be used in experiments 
all year round.  

 

4.1.2 Circadian rhythm 
Only observational studies have been done when investigating the circadian 
rhythm of Eristalis hoverflies (Ottenheim 2000; Kikuchi 1962a), possibly 
introducing a bias towards the time of the day where a human observer would 
be most likely to spot the hoverflies. To remove this potential bias we used a 
LAMS setup, which allows for more objective measurements, to quantify the 
circadian rhythm. Our data confirmed that E. tenax are diurnal in their activity 
rhythm and we showed that they are equally active throughout the entire light 
phase of an experimenter set LD cycle (Paper II, figure 1). This fits well with 
what can be seen for other dipteran flies (Bahrndorff et al. 2012; Green 1964; 
Cymborowski et al. 1994), as well as some hymenopterans (Giannoni-
Guzmán et al. 2014), but is in contrast to the bimodal activity pattern 
Drosophila shows in a 12:12 LD lab setting (Schlichting 2020).  

The constant activity of Eristalis in the lab, that could effectively be set 
after an LD cycle, allows for experiments to be carried out during the entire 
day (light phase of the flies) and at a time suiting the experimenter. This, 
together with our finding in Paper I that activity does not differ between lab 
reared and wild caught flies (Paper I, figure 3b), as well as our finding that 
cruising flight speed does not differ between field (Paper III, figure 2, black 
and purple box plots) and indoor recordings (Paper IV, figure 3b, pink violin 
plots), gives a great flexibility that makes these hoverflies well suited as study 
subjects. 

 

4.1.3 Age  
Age is another factor that has been shown to affect activity in many animals 
(Rakshit et al. 2013). For example, Fernández et al. (1999) showed that the 
locomotor activity of some Drosophila strains is affected by aging (Fernandez 
et al. 1999). Eristalis has previously been shown to survive about 4 months 
(Heal 1989; Dolley Jr and Golden 1947; Gladis 1994b) in the lab, whereas 
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some hoverflies species are only known to live a few days (Stubbs and Falk 
2002; Conn 1976). Using artificial hibernation, we managed to extend the life 
of E. tenax hoverflies to just over a year (Paper I). Age could thus be an 
important factor to consider for laboratory experiments with hoverflies. In 
Paper II we therefore looked at the activity of E. tenax, from newly hatched 
flies to 7-month-old flies, and found no difference in activity level (Paper II, 
figure 2a), showing that E. tenax have a stable locomotor activity throughout 
their lifetime, allowing them to be studied during their entire life. However, 
age might be of importance if a less general behaviour should be studied, as 
we in Paper IV noted that male E. tenax started mating tries at around two 
weeks of age and pursuits of an artificial target after two months (Paper IV, 
Materials and methods, Hoverflies). The onset of the mating tries could be 
understood by the timing of the sexual maturation of the females (figure 1 and 
Dolley et al. 1933) as well as the age dependent territorial settlement of the 
males (Fitzpatrick and Wellington 1983a). 
 

4.1.4 Food type and starvation 
It is known that food can affect the activity level in animals (Abe et al. 1989; 
Green 1964). Eristalis is known to feed from pollen and nectar in the field 
(Gilbert 1985; Gilbert 1983; Golding and Edmunds 2000). However, the use 
of pollen as a food additive for lab reared hoverflies has been discussed: some 
believe it to be important for oviposition and sexual maturation (Rijn and 
Wäckers 2016), whereas others believe that bee collected pollen cannot be 
ingested properly by the hoverflies and that only fresh pollen from flowers 
work as a food source (Gladis 1994b). To this day many different kinds of 
food combinations have been used for Eristalis in different studies, including 
e.g. honey and pollen (de Haan et al. 2013; Heal 1979), sugar (Horridge et al. 
1975), honey (Wacht et al. 2000) and pollen and sugar (Dolley Jr et al. 1937). 
In some studies, it is not even disclosed what food, if any, was given to the 
hoverflies (Chen et al. 2013; Geurten et al. 2010). Therefore, we determined 
how different food combinations affected the activity levels of E. tenax and 
noted that their activity level was not affected by the food type used (Paper 
II, figure 4), making it unlikely that food affected the results of previous 
studies. However, we did note that Eristalis males could not survive on a 
pollen only diet (Paper II, fig. 4b black), whereas females could (Paper II, 
figure 4b grey). This could indicate that previous studies suggesting pollen not 
being a suitable food source could have been looking mainly at the male 
population. Thus, a carbohydrate source seems to be needed, at least for the 
males. In Paper I and Paper II we showed that females, both wild caught and 
bred from 3rd instar larvae, successfully lay fertile eggs on a pollen (bee 
collected, dry) and honey diet at 5 months of age. On the coloration of the fly 
droppings, which neatly matched that of the different pollens, in the home 
cages or bags (Paper I, figure 1 for graphics on the flies housing 
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arrangements) we could ensure that pollen had indeed been ingested. This 
does not confirm that pollen is needed for oviposition, however excluding it 
might be risky if oviposition is required for the study, since the blowfly L. 
sericata have been shown to need a protein food source to produce mature 
eggs (Alqurashi 2020) and the hoverfly E. balteatus does not seem to produce 
eggs on a sugar-water diet (van Rijn 2013). 

In Paper II we also found that not even the absence of food (Paper II, 
figure 5) had any effect on the hoverflies’ activity. The hoverflies instead had 
a very even activity till they died of starvation, with females surviving longer 
than males (Paper II, figure 5c, compare grey and black data). This finding is 
confusing since most animals, including many Diptera, increase their activity 
when starved (Scharf 2016; Yang et al. 2015; Grettenberger and Joseph 2019; 
Vera et al. 2007; Mistlberger 1994; Patton and Mistlberger 2013) until they 
find a new food source or die trying (Green 1964). One suggestion for this 
might be that Eristalis are always equally active. However, since their activity 
could be affected by a conspecific (Paper II, figure 3) and field studies show 
that male Eristalis tend to have both active periods patrolling their territory as 
well as resting periods where they are performing less-active tasks (Fitzpatrick 
1981; Wellington and Fitzpatrick 1981), this is not likely. The lack of increase 
in activity during starvation could however be in line with our findings in 
Paper III, where we saw that 94 % of female Eristalis escape from their food 
flowers when approached (Paper III, figure 1a). Even though only 16 % of 
the approaching insects were wasps, who are potentially dangerous to the 
hoverflies, the female hoverflies also most often did not return to the flower 
within our study window (Paper III, figure 1a, 72 % have not returned after 2 
s). We first found it a bit strange that the females neither stayed on the flowers 
nor returned to them, since foraging is a task generally important to animals 
and female Eristalis spend more time feeding than males do (Maier and 
Waldbauer 1979b). However, one explanation for the females escaping their 
food flowers could be high food supply, since this has been seen to affect the 
behaviour of other animals, such as lizards and spiders. Both male (Ducey and 
Heuer 1991) and female (Wu et al. 2019) lizards decrease their interspecific 
aggression when food supply is high, and the dessert spider Seothyra henscheli 
makes its web larger or smaller depending on food supply, spending less 
energy when supply is high (Lubin and Henschel 1996). It might be that 
Eristalis hoverflies are accustomed to a high food supply, and since they are 
generalist pollinators mostly active during blooming season (Nationalnyckeln 
2009; Stubbs and Falk 2002) that might not be too far a stretch. Gilbert (1983) 
also suggested that when visiting Aster novae-angliae flowers, Eristalis 
hoverflies only needs to feed from three florets to justify its visit energetically, 
something that only takes roughly 0.3 s. Thus, it might not be a problem for 
the females to quickly abandon a food source, even if the hoverflies most often 
stay much longer, with the mean visiting time being around 20 s (Gilbert 
1983). Being solitary insects (Nationalnyckeln 2009) Eristalis are not 
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confined to one location either, hence increasing their opportunities for 
finding food. 

Thus, it might be that female Eristalis hoverflies living in a world of 
plentiful food, with little attachment to a single location, and being quick to 
replenish their flight energy, see no point in the potential risk of an interaction 
with another insect. 

4.2 Flight behaviours 
Flies use their ability to fly in several different ways. Some of them are 
hovering, where male hoverflies monitors their territory looking out for 
intruding insects (Fitzpatrick 1981); pursuit, where a male fly chases a 
conspecific male or female (Wagner 1986; Land and Collett 1974; Collett and 
Land 1975a; Fitzpatrick 1981; Maier and Waldbauer 1979b); escape, where 
flies move away from a potential threat (Card and Dickinson 2008b); landing, 
where the flies deaccelerate as they move closer to the landing substrate 
(Collett and Land 1975a; Balebail et al. 2019; Eckert 1983; Wagner 1982). 
Some flight styles have distinguishing features, and I will discuss two of them, 
escape and pursuit, bellow. 

 

4.2.1 Escape 
Kikuchi have shown that Eristalis hoverflies do not readily share their flowers 
with other insects (Kikuchi 1962a), something we confirmed for female 
Eristalis hoverflies in Paper III. The females left their flowers 94% of the time 
when approached by another insect and had 72% of the time not returned after 
2 s (Paper III, figure 1), a time range long enough for an Eristalis hoverfly to 
complete an entire pursuit (Collett and Land 1975b; Maier and Waldbauer 
1979b). The hoverflies left the flowers faster when approached by another 
insect compared to during spontaneous take-offs (Paper III, figure 3a and b). 
The spontaneous take-off flight speed we measured matched those already 
recorded for Eristalis hoverflies of around 0.1-0.2 ms-1 (Golding et al. 2001), 
whereas the take-off speed with another insect present was around 0.5 ms-1, 
with a maximum of 1.5 ms-1. The higher speed when another insect is present 
might indicate that the female hoverflies performed an escape when 
approached. A similar difference in take-off speed can also be seen in 
Drosophila during escape and voluntary take-offs (Card and Dickinson 
2008a).  

Another interesting aspect of the take-off behaviour of the female Eristalis 
is that the take-off speed by far is the fastest when they are approached by 
wasps (Paper III, figure 3a and b). The females also took off earlier, i.e., when 
the distance to the intruder were farther (Paper III, figure 4a), if the incoming 
insect was a wasp, in comparison to other intruding insects. This indicates that 
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the female hoverflies might be able to distinguish wasps, who predates on 
hoverflies (Akre 1982; Richter 2000; Harris and Oliver 1993), from the less 
harmful intruding bees and hoverflies. If this is done visually, that is an 
impressive feat, given the hoverflies spatial resolution. 

Many animals, such as fish 
(Domenici and Blake 1997), 
birds (Tätte et al. 2018), 
Kangaroo rats (Freymiller et al. 
2019) and fruit flies (Card and 
Dickinson 2008a; Williamson et 
al. 2018) escape at an angle 
away from an artificial or real 
threat. Depending on the 
approach angle of the 
threatening stimulus fruit flies 
have even been shown to alter 
both their escape azimuth (Card 
and Dickinson 2008a; Williamson et al. 2018) as well as their escape elevation 
(Williamson et al. 2018, see figure 10 for a graphic representation of elevation 
& azimuth). We could see the Eristalis females behave similarly, taking off 
away from intruders (Paper III, figure 3c), with the direction being upwards 
or to the sides (Paper III, figure 3d). Our findings thus suggest that flower 
take offs with an incomer present is indeed escapes. 

An incomer can be perceived as a looming stimulus. In Drosophila a 
looming stimulus can elicit an escape response (Card and Dickinson 2008a; 
Fotowat et al. 2009), and the escape starts when the looming stimulus reaches 
an angular width threshold (Fotowat et al. 2009). Looming stimuli can also 
elicit escape responses in goldfish, and even though the angular size and speed 
effects their escape probability, the stimulus contrast is the variable found to 
best predicts the fish escape response (Otero Coronel et al. 2020). In birds the 
flight initiation distance, i.e., the distance between the threat and the bird at 
take-off, is an important measuring tool (Tätte et al. 2018). The same type of 
studies has also proven useful when studying escape behaviour in dragonflies, 
showing that larger dragonflies escape when the predator is further away (Bell 
et al. 2019). For female Eristalis neither distance to the incomer (Paper III, 
figure 4a), angular width of the incomer on the retina (Paper III, figure 4b), 
angular speed of the incomer on the retina (Paper III, figure 4c) or angular 
increment (Paper III, figure 4d), could alone predict the start of the females 
escape response from the flowers.  

Even though the females seem to be performing an escape response, the 
approaching insects might not perform an active attack since the incomers did 
not accelerate during the approach (Paper III, figure 2a) – something many 
animals do during pursuit (Collett and Land 1978, 1975a; Bomphrey et al. 
2016; Wardill et al. 2017; Fiehler et al. 2019). The flight speed we measured 

Figure 10. Azimuth and elevation. 



 43 

for the Eristalis incomers (Paper III, figure 2, black and purple data) instead 
matched the cruising flight speed previously measured in the field (Golding et 
al. 2001) and in our indoor flight arena (Paper IV, figure 3b, pink data). The 
cruising flight speed measured in Paper III was also lower than the flight 
speed measured during male hoverfly pursuit (Paper IV, figure 3, orange and 
blue), adding to the likelihood that the incomer was not in active pursuit of the 
occupant females.  

 

4.2.2 Pursuit 
Eristalis pursuit behaviour has previously only been studied outdoors, using 
observation (Fitzpatrick 1981; Wellington and Fitzpatrick 1981) or one 
camera (Collett and Land 1978). In fact, all syrphid pursuit studies, including  
Collett and Lands (1975a) arena study of S. pipiens pursuit behaviour, have so 
far been performed outdoors (e.g. Ball and Morris 2004; Rotheray et al. 2014; 
Alderman 2010; Collett and Land 1975a, 1978; Fitzpatrick 1981; Wellington 
and Fitzpatrick 1981). In Paper IV it is shown for the first time that eristaline 
hoverflies can pursue artificial targets in an indoor flight arena (Paper IV, 
figure 1).  

The target range of Eristalis males have been suggested to be focused 
around that of a conspecific in terms of size and speed (Collett and Land 
1978). However, observational studies suggest that the males can, during 
special circumstances, also pursue both much larger and smaller targets 
(Fitzpatrick 1981; Wellington and Fitzpatrick 1981). We therefore gave the 
males four different target sizes to pursue: 6 mm, 8 mm, 10 mm and 38.5 mm. 
The E. tenax hoverflies has a length of 14 – 16 mm (Nationalnyckeln 2009) 
and males have been shown to pursue targets with a 7 mm diameter (Collett 
and Land 1978), thus the 8 and 10 mm beads were expected to lay within their 
target range. The 6 mm bead, which is slightly smaller than the previously 
shown target diameter, and the 38.5 mm bead, which is much larger, would 
thus not be pursued if Collett and Lands (1978) suggestion would hold true.  

We found that the males only rarely pursued the 6 mm bead, but readily 
pursued all the other bead sizes (Paper IV, table 2). Thus, our findings 
suggests that if the flies would have a target range centred around conspecific 
size they are using the length rather than width, which is ca 5.5 mm for E. 
tenax (Gilbert 1981), of their conspecifics. However, newly settled territorial 
males have been observed to pursue small targets in the field, but this is only 
a short phase of the male’s territorial period (Fitzpatrick 1981; Wellington and 
Fitzpatrick 1981) and would thus be observed more rarely. The fact the flies 
pursue the largest bead support the observations of males pursuing large 
targets, such as leaves, butterflies and hornets (Fitzpatrick 1981; Wellington 
and Fitzpatrick 1981), but is in direct contrast to the conspecific centred target 
range suggested by Collett and Land (1978). In Paper I we found that female 
Eristalis are larger than males (Paper I, figure 4) and since male territorial 
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behaviour, including their pursuit behaviour, have been suggested to be 
focused on finding a mating partner (Fitzpatrick 1981) a target range shifted 
to larger sizes would thus make sense for the males. Blowflies, killer flies and 
dragonflies all pursue targets their own size (Boeddeker et al. 2003; Wardill 
et al. 2015; Khelifa 2021; Lohmann et al. 2019). However, blowflies and killer 
flies also pursue larger targets (Boeddeker et al. 2003; Wardill et al. 2015), 
and dragonflies and killer flies also pursue smaller targets (Wardill et al. 2015; 
Lin and Leonardo 2017). Thus, Eristalis is indeed not the only flying insect 
with a wide size target range. 

In Paper IV we also found that E. tenax males pursue target speeds well 
below the previously suggested 8 ms-1 (Collett and Land 1978), namely              
0 ms-1 – 1.8 ms-1 (Paper IV, figure 2b). In view of Collett and Lands (1978) 
suggestion that target speeds matches the speed of a conspecific, these lower 
speeds could stem from the fact that the flies were restricted to a flight arena 
(Paper IV, figure 1a), instead of being able to fly freely outdoors. Indeed, 
Geurten et al. (Geurten et al. 2010) showed that the size of a flight arena does 
affect the flight speed of E. tenax. However, there is another possible 
explanation: Collett and Land (1978) might have given Eristalis hoverflies a 
to narrow flight speed range to begin with. The bead speeds chosen for our 
experiments are more in line with the results from Golding et al. (Golding et 
al. 2001), who showed that Eristalis hoverflies in the field have a cruising 
flight speed of 0.2 ms-1. We confirmed this cruising speed in both Paper III 
(figure 3, 0.34 ms-1) and Paper IV (0.35 ms-1, figure 3b, pink data). The speed 
of escaping female Eristalis (Paper III, figure 3a-b) also lays within the 
pursued bead speed range in Paper IV (Paper IV, figure 2b). It is also very 
likely that territorial male Eristalis hoverflies encounter females cruising or 
escaping from flowers in their territories centred around flower beds or 
flowering bushes (Wellington and Fitzpatrick 1981; Fitzpatrick 1981). Thus, 
the suggestion that male Eristalis hoverflies pursue targets flying at 
conspecific speed (Collett and Land 1978) might still hold true, but the speed 
range might be wider than first suggested.  

Something interesting in the distribution of pursued speeds per target size 
(Paper IV, figure 2b) is that the largest bead is pursued almost exclusively at 
the two lowest speeds as well as when stationary. The pursuits of the largest 
bead were also longer than the pursuits of the smaller beads (Paper IV, figure 
2a). It could be that the hoverflies sometimes react to the largest bead as they 
would to a passing butterfly or hornet, or possibly seeing it as a big conspecific 
(Fitzpatrick 1981; Wellington and Fitzpatrick 1981). This should interest the 
males since females in general are larger than males (Paper I, figure 4). 
Another possibility is that the large bead looks like a flower from a hoverfly 
point of view, since Collett and Land (Collett and Land 1975a) showed that 
male S. pipiens hoverflies would land on stationary flowers and also argues 
that flowers moving in the wind might give raise to some tracking behaviour 
before landing. 
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The majority of the pursuits of the three smaller beads were performed at 
the four or five highest speeds (Paper IV, figure 2b). Looking closer at the 
pursuits of the 8 and 10 mm beads we found that the speed of the bead did not 
have much effect on the flight speed of the pursuing males (Paper IV, figure 
3b). This, together with the broad ranges of the four variables that we found 
in Paper IV (figure 4): pursuit distances to the target, retina size of target, 
retina speed of target and retina size change of target, suggest that the males 
do not have as fixed a pursuit model as suggested by Collett and Land (Collett 
and Land 1978). Instead, they seem to have a broader pursuit range, possibly 
arising from a different end goal with pursuit than catching the target. Doing 
so otherwise seems to be the goal of pursuit for both dragonflies and blowflies, 
who have been shown to have catch rates as high as 97 % and 95 % 
respectively (Olberg et al. 2000; Boeddeker et al. 2003).  

Could it be that instead of catching their target hoverflies tries to get close 
to, but not in physical contact with, their target? Field observations might 
suggest so, since Eristalis males rarely make contact with an intruder if they 
are not in a heightened aggressive state (Wellington and Fitzpatrick 1981; 
Fitzpatrick 1981). Indeed, many animals do not choose physical contact as 
their first response in a conflict. For example, dolphins display before contact 
in both inter- and intraspecific conflicts (Volker and Herzing 2021) and cichlid 
fish do the same with an artificial conspecific (Cobey et al. 2020). 
Furthermore, mountain gorillas also choose non-physical interactions the 
majority of times when two groups meet (Mirville et al. 2018). This behaviour 
can also be seen in the insect world with e.g. hornets clicking their jaws before 
attacking (Ros et al. 2006), or dragonflies who pursue conspecifics and prey 
in different ways – overshooting much more frequently during territorial 
conspecific pursuits (Lohmann et al. 2019). Lohmann et al. (Lohmann et al. 
2019) suggested that this could be because the dragonflies tried to avoid 
contact during territorial pursuits. 

Another indicator that the flies’ main goal might not be catching the target 
is that they do not only pursue targets in their dorso-frontal bright zone (Paper 
IV, figure 5), which is suggested to be good for target pursuit (Straw et al. ; 
Van Hateren et al.). Many insects do keep their target foveated during pursuit, 
including dragonflies (Lin and Leonardo 2017), some hoverflies (Collett and 
Land 1975a) and houseflies (Burton and Laughlin 2003).  

In summary, the Eristalis hoverflies may track targets outside their bright 
zone, and have a broad target range in terms of size, speed and visual variables, 
as adaptive features to get close to, but not in contact with, their targets. 
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5 Conclusions 

In Paper I we developed a protocol allowing us to breed hoverflies of the 
species E. tenax in the lab and, with the use of artificial hibernation, keep them 
alive for up to a year, mitigating the effects of weather and season on hoverfly 
availability. We also confirmed that the lab reared flies’ weight and activity 
was not different from wild caught flies and that we do not get a sex bias in 
the hatched flies. 

In Paper II using LAMS we concluded when during the day it is best to 
perform experiments on E. tenax. We show that the flies are diurnal and active 
during the entire light phase of an experimenter set LD cycle. We also showed 
that E. tenax are remarkably robust, with neither food, starvation, age or sex 
affecting their activity. However, the presence and sex of a conspecific did 
affect their activity. 

In Paper III we show that female Eristalis hoverflies leave from their food 
flowers 94 % of the times she was approached and 72 % have not returned 
after 2 s. We concluded that the take offs when another insect is present seem 
to be escape responses even though the incomer does not seem to be 
performing an attack, but rather just cruse around nearby. Interestingly the 
females left the flowers at the highest speed and with the incomer at the 
farthest distance when the incomer was a wasp, suggesting that the hoverflies 
can somehow differentiate between wasps and less dangerous insects. We 
believe that the trigger for take-off is visual, but we were unable to 
conclusively determine which visual cue(s) contribute most to the take-off 
decision. 

In Paper IV we developed an indoor flight arena for studies of eristaline 
flight behaviour. We thereby circumvent the seasonality of the hoverflies 
flight activity patterns and remove some of the hardships of performing 
videography in the field. Using the arena, we show that male Eristalis 
hoverflies pursue artificial target their own size, as well as much larger targets. 
On the contrary, they rarely pursue targets smaller than themselves. We saw a 
difference in pursuit of the largest bead compared to the others. The pursuits 
were longer and the largest bead was mainly pursued at slow speeds or when 
stationary. Looking at the smaller targets, the speed of the targets had little 
effect on the flies’ speed and the range of visual variables were large. The 
males did also surprisingly perform pursuits both from below but also above 
the target, putting many targets outside the dorso-frontal bright zone of the 
hoverflies. All together this might suggest that the males end goal is not to 
catch the target but only to get close to it. 
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6 Future perspectives 

6.1 Alterations of Paper I protocol for genetic studies 
A possible future direction on the research presented in this thesis is to develop 
the breeding protocol of Paper I in such a way that it can be used for genetic 
studies. Both genomic and mitochondrial sequences are available for Eristalis 
hoverflies (Li et al. 2017; Hawkes et al. 2021a, b, 2022; Wiegmann and 
Richards 2018) and in view of how genetic tools, e.g. the CRISPR/Cas9 
system (Cui et al. 2018), have been used in previous research on D. 
melanogaster (e.g. Kohsaka and Nose 2021; Smylla et al. 2021) the 
possibilities seems endless.  

We have noted that E. tenax hoverflies readily mate with their 
siblings and produce viable offspring in the lab so similar crossing 
schemes as used with Drosophila- (Brown 2021) or Lucilia- (Linger et 
al. 2016)  mutant flies could indeed be set up within our protocol. 
Depending on the study questions one might however need to take some 
care not to lose too much genetic heterogenicity over time (Francuski 
et al. 2014; Eusebi et al. 2019), and actively test against wild type flies 
produced with the original protocol to see so that no key behavioural 
traits are lost. Protocols for blowfly breeding regularly mix fly cages 
(Nasoori and Hoomand 2017) and introduce new individuals from the 
wild, into the established colonies, to reduce inbreeding (Magni et al. 
2021; Nasoori and Hoomand 2017). The usage of a large starting 
population have also been shown to help slow down loss of genetic 
diversity in Drosophila (Montgomery et al. 2000), and back crossing 
with founder sperm when breeding endangered frogs can mitigate some 
of the effects of a small starting population (Howell et al. 2021).  

In order to use the protocol for genetic research the larval diet might 
need to be changed to accommodate an eventual higher sanitary 
standard. It has been shown that the blowfly C. megacephala can be 
bred on both a meet (Smith et al. 2015; Reddy et al. 2014) and meet free 
larval diet (Reddy et al. 2014). This blowfly shows similarities with E. 
tenax hoverflies in several ways. For example, their larvae feed on 
similar substrate, however the E. tenax larvae needs a more aquatic 
setting (Nationalnyckeln 2009; Hobson 1932; Shah et al. 2015; Ireland 
and Turner 2006). If the larval diet in the study by Reddy et al. (2014) 
could be given a slightly more liquid character there might be a 
potential also for Eristalis larvae to successfully develop within it. Early 
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protocols for Eristalis breeding offer some larval diets free from animal 
waste, including rotting plant material (Ottenheim and Holloway 1994), 
soil soaked cereal (Gladis 1994c), hay infusion (Dolezil 1972), a 
sawdust-grass mixture with additives (Kobayashi 1972), wet oats 
(Gladis 1994b) or oat seeds (Gladis 1997). However, the meet free C. 
megacephala larval diet might be more user friendly and sanitary. A 
more sanitary protocol could also open up for use of Eristalis as a food 
substrate for humans or animals. 

6.2 Potentials for genetically engineered hoverflies 
Eristalis hoverflies are globally spread pollinators (Nationalnyckeln 2009). 
With genetic tools it would thus be possible to study how their genetics varies 
around the globe. It would also be possible to study how morphology are 
affected by different climates and living environments of the flies.  

It is already known that the season affects both the behaviour (Fitzpatrick 
1981; Wellington and Fitzpatrick 1981) and sometimes morphology of 
Eristalis (Mielczarek et al. 2016). Temperature is also known to affects wing 
length in E. arbustorum (Ottenheim and Volmer 1999). Thus, a morphological 
difference across the globe is indeed possible. With the excellent collections 
at the Swedish natural history museum, and other similar museums across the 
world, even a longitudinal look at how climate change has affected the flies is 
possible. 

Another great possibility could be to genetically engineer the flies to help 
figure out which genes are important for the on switch (sexual maturation of 
spring generation or indoor raised flies) and off switch (autumn generation) of 
territoriality. With new videography methods arising, with AI controlled 
cameras (Pannequin et al. 2020) and cameras mounted on the insects 
themselves (Iyer et al. 2020), comparing lab data to field studies of 
unrestricted animals could also soon be possible. Furthermore, the rise of VR 
arenas (Kaushik and Olsson 2020) could open up for more well controlled 
settings to test flies, possibly with a combination of behavioural and neuronal 
techniques (fluorescent neurons, Schnell et al. 2010; optogenetics, Kohsaka 
and Nose 2021; Smylla et al. 2021). 
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7 Svensk sammanfattning (Swedish summary) 

Blomflugor har föreslagits vara den näst viktigaste gruppen pollinatörer efter 
bin och humlor, och klimatförändringar samt oroande rapporter om 
minskande antal pollinatörer gör att det kanske aldrig varit viktigare att förstå 
våra pollinatörer. Med sina små hjärnor, sin fantastiska flygförmåga, goda 
temporala optiska upplösning, men mer begränsade spatiala optiska 
upplösning, är blomflugor också intressanta att studera för sin flygförmågas 
och syns skull. Eristalis tenax är globalt spridda generalist-pollinatörer, vilket 
gör att de enkelt kan studeras internationellt. Blomflugornas tillgänglighet 
påverkas dock av väder och årstid, vilket gör att de kan vara svåra att tillgå 
under vissa delar av året. Dessutom är inte deras jaktbeteende samt 
interaktioner med andra insekter särskilt välstuderat, och vidare har deras 
aktivitetsrytm enbart studerats genom observationsstudier. För att kunna fylla 
i dessa kunskapsluckor började vi med att utveckla ett nytt protokoll för 
uppfödning av E. tenax, och genom att införa en period av dvala i 8 - 10 °C 
kunde vi få blomflugorna att överleva i upp till ett år – vilket gör att vi nu har 
tillgång till dem hela året. Vi kunde också, med en LAMS, bekräfta tidigare 
påståenden om att E. tenax har en dygnsrytm där de är aktiva under hela 
ljusperioden. Vidare upptäckte vi att E. tenax aktivitet är oerhört robust – 
varken ålder, diet eller svält påverkade aktiviteten nämnvärt. Däremot 
påverkades aktiviteten av närvaron av en artfrände. Genom att använda 
höghastighetskameror fann vi att Eristalis-honor också i fält påverkas av 
närvaron av en annan insekt. Vi såg att honorna lämnar sina blommor 94 % 
av gångerna då en annan insekt närmar sig, trots att bara 16 % av dessa 
insekter var potentiellt farliga getingar. Intressant nog verkade Eristalis-
honorna kunna särskilja getingar från andra insekter som de interagerade med 
– de lämnade sina blommor mycket tidigare och med en högre hastighet om 
det var en geting som närmade sig jämfört med om det var en annan blomfluga 
eller ett bi. För att kunna studera flygbeteendet för E. tenax året runt 
utvecklade vi en inomhusarena, och med hjälp av höghastighetskamerorna 
upptäckte vi att E. tenax-hanar jagar kulor med en diameter på 6 - 38.5 mm 
som rör sig i hastigheterna 0 - 1.8 ms-1. Fascinerande nog upptäckte vi att 
hanarna jagar kulorna både när de är ovanför och under flugorna, vilket gör 
att kulorna ofta placeras utanför det område på näthinnan som tros vara viktigt 
för att spåra mål i luften (bright zone).  
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