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Abstract

The problem of estimation from a sample is well known and its solutions are the foundation for
the sample surveys conducted at e.g. national statistical institutes. This dissertation looks at
the estimation problem from the perspective of business survey methodology. The focus is on
two types of survey sampling: Cut-off sampling and coordinated sampling. We introduce and
evaluate new method for estimation in cut-off sampling as well as a tool for drawing coordinated
samples in the R programming language.
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1 Introduction

The problem of estimating a population total from a subset of the population has been rigorously
studied for at least about a century (Neyman, 1934). A central issue is that of representativity. If
you just send out a questionnaire without prior knowledge of the population then you cannot know
which and how large proportion of the population each respondent represents.

This can be alleviated by drawing a sample from a sampling frame – an enumerated list of
all the units in the population of interest – and weighting their responses with the inverse of
their respective probability of sample inclusion before adding. It has been shown by Horvitz and
Thompson (1952) that under various conditions this leads to an unbiased estimate of the total.
Moreover, the estimates can be made more precise and accurate by stratifying the frame before
sampling, i.e. to divide it up into a partition of subsets and taking a subsample in each subset.

For business surveys in particular there are certain conflicting considerations to be taken into
account. On the one hand, bigger businesses typically contribute more to e.g. economic estimates
than smaller ones so we want as many big businesses as possible in the surveys. On the other hand,
we might not want to include the same businesses in several surveys – or perhaps we do.

When the size of the business is relevant then it is not uncommon to use cut-off sampling (e.g.
Benedetti et al. 2010) – to exclude businesses that are smaller than a certain threshold from the
frame and only sample among the bigger ones. Obviously this inserts bias into the estimates. One
way of trying to reduce this bias is to use model estimates for the smaller businesses. Whether this
actually reduces the bias one cannot really tell.

Furthermore, when more than one survey or more than one instance of the same survey is
considered, then coordinated sampling can help with either spreading out the response burden by
reducing the overlap between samples, or reducing variance by increasing the overlap. The former
case is called negative coordination, and the latter positive coordination.

In the following papers we first present a novel method of making cut-off samples representative
by including old information on businesses that previously were excluded from the frame. Next we
present a tool for drawing coordinated samples using permanent random numbers.

2 Survey sampling

2.1 Background

Survey sampling is used by statistical agencies and other institutes that need accurate information
about a population without having to ask everyone. Instead a sampling frame – a list or table of
all units in the population – is used, in which each unit k is given probability πk of being included
in the sample, where πk ∈ (0, 1) ∀k and where∑

k∈U

πk = n

for population U , population size N and sample size n. Next a study variable y is collected for each
unit in the sample, and the population total Y is estimated as

Ŷ =
∑
k∈s

yk
πk
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for sample s. For simple random sampling, where each unit has the same inclusion probability, this
simplifies to

Ŷ =
N

n

∑
k∈s

yk

It has been shown (Horvitz and Thompson, 1952) that this is an unbiased estimation procedure.
If an correlating auxiliary variable x is available then the ratio estimator (Royall and Cumber-

land, 1981) can be used instead,

Ŷ =
XU

Xs

∑
k∈s

yk

where
XU =

∑
k∈U

xk

and
Xs =

∑
k∈s

xk

For simple random sampling it is easy to see that this is the Horvitz-Thompson estimator augmented
with more information to replace the less specific factor N/n.

A more powerful estimation procedure that can take an arbitrary number of auxiliary variables
into account is the general regression estimator (Deville and Särndal, 1992), which is a form of
calibration estimator. The fundamental idea of calibration is to use weights that are calculated
such that they are as close as possible to the design weights and also satisfy a number of constraints
called calibration equations. Deriving these weights is a constrained minimization problem which
involves Lagrange multipliers and which is outside the scope of this dissertation.

However, one important area of application for calibration is surveys with non-response (Lund-
ström and Särndal, 1999). Calibrating against known population totals for auxiliary variables can
give us weights that take into account the presence of non-response and thus we can have a more
accurate estimate.

2.2 Cut-off sampling

Consider a sampling frame where each unit contains a size measure X, for instance number of
employees in the case of business surveys. We define a stratified design by taking three strata along
X with sample sizes and inclusion probabilities that vary greatly between strata. Below we list an
example of such a stratification.A : X ∈ [K,∞), nA = NA, πk = 1

B : X ∈ [k,K), nB < NB , πk ∈ (0, 1)
C : X ∈ [0, k1), nC = 0, πk = 0

Here, all large enough units, i.e. ones with X ≥ K, are put into a take-all stratum A and are
thus included with probability 1. Between K and k there is a take-some stratum B, where some but
not all units are sampled. k is a cut-off threshold, where any unit smaller than k is given inclusion
probability 0 and is in effect excluded from the frame. To simplify the analysis we put these into
their own stratum C, a situation that Baillargeon and Rivest (2009) calls a ”take-none” stratum.
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For the sake of simplicity, we assume that we draw a simple random sample from this population.
Then the values of πk are 1, nB/NB , and 0. Collecting values of the variable of interest y for the
sampled units, we get an unbiased estimate of the population total Yabove for the population above
the cut-off threshold as

Ŷabove =
∑
k∈A

yk +
∑
k∈B

NB

nB
yk.

It is now easy to see that, since no information from C is included, using Ŷabove as an estimate of
the total for the entire population would lead to bias – particularly an underestimate, assuming y
is non-negative. However, there are situations where we want this kind of cut-off sampling design,
e.g. to minimize cost or response burden. We therefore need inference methods to compensate for
this missing information.

Benedetti et al. (2010) use auxiliary information, known for the entire population, to model
how large proportion of the target population total is missing due to the take-none stratum. This
is then expressed as a fraction δ, and the total estimate is adjusted by a factor (1 + δ). Knaub
(2007) reviews the use of a ratio estimator with one auxiliary variable and regression predictions
replacing y for the take-none stratum. Elisson and Elvers (2001) looks at two regression estimators
and conclude that, while cut-off sampling can be useful, it leads to a difficult estimation problem,
and furthermore that care must be taken when choosing a size variable.

When read critically, the aforementioned papers all seem to make a few assumptions:

1. Correcting for the excluded information is done during estimation.

2. Information cannot be collected from below the threshold.

3. Inclusion probabilities are identically zero and cannot be used.

These assumptions are reasonable but yield complicated estimators with an unknowable bias. An
alternative approach is to find a way to make the cut-off sample representative of the excluded
population and directly estimate inclusion probabilities to use in estimation. Prior to this work, no
research has looked into this approach.

2.3 Coordinated sampling

Coordinated sampling is a useful tool. Suppose we have either more than one survey, or more
than one occasion of the same survey. In either case, depending on what quality priorities we
make, we might want to maximize compatibility, spread out response burden, minimize variance,
or something else. Each of these amount to ways to control the overlap between the samples, either
by maximizing it – positive coordination – or by minimizing it – negative coordination.

To see how two samples can be coordinated automatically and with precision, consider a stan-
dard procedure for drawing, for instance, stratified simple random samples or stratified Pareto
probability-proportional-to-size (πps) samples. Without loss of generality, we assume that the
number h of strata equals 1, if not then the routines are repeated for each stratum.

For simple random sampling with sample size n and population size N , we generate N random
numbers Uk that follow a continuous uniform distribution between 0 and 1, attach them to the
sampling frame such that each unit is associated with a random number, and sort the frame in-
creasingly along Uk. Then the n units with the lowest Uk – the top n elements of the sorted frame
– are sampled.
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For Pareto πps sampling (Rosén, 1997) with similar notation for sample size and population
size, we first define a measure xk of the size of a unit k, with which we calculate the approximate
inclusion probabilities

λk = n
xk∑
xk

where the sum is taken over all elements in the relevant stratum. Next we generate the same kind
of random numbers Uk as in simple random sampling. However, instead of sorting directly on Uk

we calculate a rank Qk that incorporates the approximate inclusion probabilities λ:

Qk =
Uk(1− λk)

λk(1− Uk)

We sort the frame increasingly along Qk and the n units with the lowest Qk are sampled. The
factor (1 − λk)/λk means that units with higher λk are sampled more often than ones with lower
λk, and the factor Uk/(1− Uk) means that this difference is probabilistic.

Notice how in each of these sampling routines, Uk is the only source of randomness. Thus an
intuitive way of achieving reproducibility is to pre-generate the Uk’s before the sampling routine
starts, attach them to the sampling frame, and use these pre-generated – or permanent – random
numbers instead of letting the routine generate them. Then we can reuse them and get the sample
twice. Furthermore, by choosing to sample from e.g. 0.4 increasingly or 1.0 decreasingly instead of
0.0 increasingly, we can control how many units from the first sample are sampled the second time.
Thus we have a method for sample coordination using permanent random numbers.

Since this is by its nature a computationally intensive process there is a need for software
packages that can support it. So far, there exists such a software package for SAS, called DraUrval
and developed at and for Statistics Sweden. Sadly all documentation for it is currently internal to
Statistics Sweden. Prior to the work around which this dissertation is centered, no such package
existed in the R programming language.

3 Summary of papers

3.1 Quasi Randomization and Cut-Off Samples

With some data in missing by design, we start from the assumption that cut-off sampling can
be viewed as designed non-response. This opens up for the possibility of applying methods that
were previously used for non-response to this type of sampling. We investigate the so-called quasi-
randomization approach to calculating response probabilities (Oh and Scheuren, 1983), and apply
it to cut-off samples.

We calculate inclusion probabilities based on historical values of the size variable – the variable
along which the cut was made – and start from the assumption that a unit that was not excluded
at year t but was excluded at the previous year t − 1 could be representative of its size class at
t− 1. By collecting one-year lagged data on such units at year t we should be able to calculate an
accurate estimate of the excluded population for year t− 1.

This is in fact the case, which we show mathematically as well as empirically via a fictional
register-based cut-off sample survey. We use number of employees as size variable X, excluding all
below 10, and turnover as study variable y. Treating the subset of the population with Xt ≥ 10
and Xt−1 < 10 as a Poisson sample with equal probabilities, we find that for each domain defined
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by Xt−1 = 1, . . . , 9, the sample mean is sufficiently close to the true mean to conclude that the
method is sound. At X = 0 the method does not perform as well due to selection bias: Businesses
that grow from zero to ten employees from one year to the next are not representative of the vast
majority of businesses with zero employees – particularly in terms of turnover.

We conclude that the method is potentially useful but that care should be taken in modelling
the inclusion probabilities, to avoid introducing bias in estimates.

3.2 prnsamplr: Permanent Random Number Sampling in R

As is mentioned in Section 2.3 there is a need for software tools that can draw coordinated samples
using permanent random numbers (PRN’s). In this paper we present an R package that has been
developed specifically for this purpose. It can be used for both positive and negative coordination in
stratified simple random sampling as well as stratified Pareto πps sampling, in the manner described
in Section 2.3, and we show its performance on an artificial dataset.

We find that the tool behaves as expected: Drawing samples from two nearby points and in
the same direction leads to a relatively high overlap, while drawing samples from two farther-away
points or in opposite directions gives a lower overlap. Drawing samples from the same point and
in the same direction gives 100% overlap, showing that there is no randomness introduced by the
tool.

4 Discussion

There are two parts of statistical inference: Sampling and estimation. The former deals with deter-
mining from whom we gather information, and the latter deals with how we can draw conclusions
about the population given this information. Sampling influences estimation by limiting which
types of estimation we can make given the sampling design, and conversely, estimation influences
sampling by limiting which sampling design we can use given the type of estimation we want to
make. In the statistics production process there are several other steps before, between, and after
sampling and estimation, but these are the two inference steps.

If we want to be rigorous, then these steps cannot be performed in any ad-hoc manner we want.
Instead we need clearly defined procedures that are based on scientifically sound methods and aided
by useful tools. In these papers we look at methods and tools for the sampling step of the statistics
production process.

In the first paper we look at a certain type of sampling that does not sample from the entire
population, namely cut-off sampling, where only the largest units in the population are sampled.
Cut-off sampling is a cost-effective method but one that is prone to bias. This paper suggests
reducing this bias by collecting past data on units that only recently grew past the threshold for
being sampled, and using such data in order to make inferences on the population that is below
the threshold. This is a new contribution to the field of cut-off sampling. However, to further
develop the method, it is important to test it on survey data rather than register data. This is to
see how well it performs compared to methods based on, for instance, model estimation or taking
a supplementary sample below the threshold. Then we can develop theoretically sound models for
estimating the probability that a business moves over the threshold from one year to the next.

The second paper approaches the need for useful tools in a computer-intensive field that lacks
them, namely coordinated sampling. We introduce a new software tool, written in R and distributed
as a package on CRAN (Coder Gylling, 2023), that makes it possible to use R for drawing stratified
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simple random samples as well as stratified Pareto πps samples, with or without coordination.
There are several R packages with similar functionality, primarily sampling (Tillé and Matei, 2021),
survey (Lumley, 2023), and pps (Gambino, 2021). However, this is the first R package supporting
permanent random number sampling that is available on CRAN. It is also the first R package on
CRAN that supports stratified Pareto πps sampling. There are however several πps routines that
the package cannot yet handle, for instance systematic πps sampling. Work has also not yet been
done at making this tool fully compatible with the data structures and syntax of such packages as
survey or dplyr. The reader is more than welcome to contribute, since the package is open source.
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Quasi Randomization and Cut-Off Samples

Kira Coder Gylling and Thomas Laitila
Örebro University and Statistics Sweden

Abstract

Cut-off samples, where many small units are explicitly removed from the sampling frame, are
common in business statistics settings where the study variable is assumed to correlate with
the size variable. The problem that then arises is how to estimate the population total for the
subset of the population that is cut off from the frame. In this article we suggest a method based
on the insight that units that are included in the sample one year can be representative of the
population outside of the sample the previous year. We find that under the right conditions this
representative can be captured and the population total can be estimated with approximately
unbiased estimators.

Keywords sampling, business surveys, modelling

1 Background

Business populations tend to be skewed. There are a few very large businesses that contribute
a lot to economic statistics, and many small ones that individually do not contribute much. In
such circumstances, national statistical institutes might decide to base their business surveys on
cut-off samples: samples drawn from a frame from which each business below a certain size has
been excluded. This way one gets a certain bias but in return gets lower variance, cost, or response
burden.

Despite their usefulness in official statistics production, not a lot has been published about cut-
off samples. Most papers, such as Elisson and Elvers (2001), Benedetti et al. (2010), and Hwang
and Shin (2013), aim at designing estimators. For a general introduction to the subject, see Knaub
(2008). Haziza et al. (2010) introduced an interesting setting where auxiliary information is used
for both the estimation step and for creating pseudo-weights for estimating the population total for
the sub-population that was excluded from the sampling frame.

This paper uses a similar setting as the latter one. However, we do not view the population as
static. We rather base the pseudo-weights on a Quasi Randomization interpretation. Probabilities
are defined in terms of how large the units were during the year before the sample was drawn,
and use their values of the variable of interest at this previous year in order to estimate a lagged
population total. This allows us to use simpler estimators than in Haziza et al. (2010), and under
the right conditions we can define approximately unbiased estimators.

In Sections 2 through 4 we present the theoretical underpinnings of the method. Section 5
includes an example of the risks of selection bias.
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2 Quasi Randomization and Cut-Off Samples

2.1 Quasi Randomization

The approach of treating non-response as an outcome of a random trial is by Oh and Scheuren
(1983) named “Quasi Randomization” (QR). Here the subset of respondents from the sample is
assumed generated by randomization while the sampling design is unknown, as are the individual
units’ response probabilities.

Adapting the QR-approach paves the way for cheaper and faster statistics compared with re-
sampling of non-respondents. The sampling design for the original sample combined with the design
for the response set can then be interpreted as a two-stage sampling design. If the second stage
sampling design is invariant to the first, the probability of the k:th population unit being included
in the response set is πk = π1kθk, where π1k is the probability of inclusion in the first stage sample
s ⊂ U (U denotes the population set), and θk is the inclusion probability in the second stage.

The probability of sample inclusion of a unit in the first stage is defined by the design and is
known. The inclusion probabilities in the second stage are not known, however. The idea is instead
to formulate and estimate a probability model for sample inclusion, usually under an independence
assumption, i.e. P (r ⊃ {k, l} | {k, l} ⊂ s) = θkθl denoting the response set with r.

Little (1986) suggests estimation of a logit model with auxiliary variables known for all sampled
units. Then estimated probabilities are used for dividing sample units into adjustment cells and
within cells constant response probabilities are calculated.

Let θ̂k denote estimated inclusion probabilities in the second stage. Then the direct weighting
estimator is defined as

Ŷ =
∑
r

1

π1kθ̂k
yk (1)

where yk is the study variable and Y the population total.

2.2 Cut-Off sampling

A similar QR-approach is here suggested for cut-off sampling. A variable xk known for all units
in the population is used to divide the population into two sets: U1 = {k : xk ≥ c, k ∈ U} and
U0 = U −U1. A sample s is drawn from the set U1 while no units are drawn from U0, they are “cut
off” from the population studied.

Having the sample units from U1 and their responses, inference may either be on the cut-
off population U1 or the whole population U . These combinations of sampling and inference is
by Knaub (2008) defined as methods 1 and 2, respectively. Method 1 is within the standard
randomization theory and poses no problem with respect to how inference is to be made. Method
2 on the other hand involves extrapolation of results valid for U1 to the units cut off in U0. This
can only be made by adding assumptions on how units in the two subpopulations relates to each
other. An example is to use the sample from U1 to estimate an assumed regression model valid for
the whole population U . Estimates of study variables are then obtained by predictions for units in
U0.

Treating xk as the outcome of a random trial cut-off sampling seems to mimic the QR-approach
to survey non-response, but in reversed order. The QR selection is in the first stage while the
traditional randomization sampling design is the second stage. In general the second stage will
not be invariant to the first stage meaning the sampling follows a two-phase design. For a given
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U the probability a unit is in the cut-off population U1 is θk = Pr(U1 ∋ k) = Pr(xk ≥ c),
where c is the cut-off threshold. Given it is included in U1 its sample inclusion probability is
πk|1 = Pr(s ∋ k | U1 ∋ k, U1) .

The conditional probability πk|1 is defined by the outcome in the first phase. Thus π∗
k = θkπk|1

does not equal the inclusion probability πk = Pr(s ∋ k), which is obtained by accounting for all
possible U1, containing unit k, and their probabilities.

An alternative to the weighting estimator in (1) is the “star”-estimator (Särndal et al., 1992)

Ŷ ∗ =
∑
s

1

π∗
k

yk (2)

suggested for estimation under two-phase sampling.
The first phase design corresponds to Poisson sampling if the outcomes of xk are independent

among units in the population. Laitila and Olofsson (2011) and Olofsson (2011) treats a two-phase
design with Poisson sampling followed by fixed size simple random sampling (SI). They derive the
inclusion probabilities

πk = θkE(n/N1 | U1 ∋ k) (3)

where expectation is with respect to the distribution of N1, the number of units in U1.
With proportional sampling n = f1N1 a two stage design is obtained with πk = θkf1. Further-

more if plimN→∞N1/N = α, a constant, and n = O(N) then (n/N1 − E(n/N1 | U1 ∋ k)) → 0 in
probability as N → ∞. Thus, for larger population sizes N , implying larger N1, an approximation
of inclusion probabilities is

πk ≈ θk(n/N1) = π∗
k (4)

For small N the approximation can not be assumed useful. With cut-off sampling the approxi-
mation may work well for estimation of population totals. This may not be so in domains close to
the cut-off threshold because of larger variation in domain sizes.

3 Cut-off Sampling in Practice

The idea of leaving a part of the population outside of the sampling frame is to make survey designs
more efficient, trading a small bias for reduced estimator variance and/or lower costs. Here the
excluded population part is considered less important for estimates of totals. This means that
the cutoff is made indirectly with respect to the size of the study variables. Hence, a unit in the
sampling frame is not representative of those units not included. However, if a unit is included in
U1 but was excluded from a previous sampling frame, say at time t− 1, it is representative for the
excluded population part at that time. If data for time t− 1 can be retrieved from the unit, it can
be used for estimation of characteristics of the population part excluded at time t− 1.

Let F1t denote the cut-off sampling frame at time t. Sampling of units from the population Ut−1

is obtained in two steps:
Step 1 - A QR selection of units in Ut−1 into F1t.
Step 2 - A sample st is drawn from F1t with a probability sampling design.
For simplicity the populations are assumed to stay the same over the time periods t and t− 1.

Deaths of firms may add problems if they belonged to the population part cutoff in time t−1. Those
firms have zero probability of being sampled in time t. Deaths of firms in U1,t−1 poses a problem
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if st is used for inference on that cut-off population. Births of firms are handled by exclusion with
an inclusion indicator.

In the first step units are selected independently with probabilities θk. In the second step
units are drawn with inclusion probabilities πk|1. In combination the inclusion probabilities are
πk = θkEs1t(πk|1 | F1t ∋ k) = θkπ̄k|1, which equals (3) under SI in Step 2.

Let Zk = 1(k ∈ UD,t−1) be a domain indicator and consider estimation of the domain total
YD,t−1. One example of interest is Zk = 1(k ∈ U0,t−1) and estimation of Y0,t−1. Two estimators
are the HT estimator

ŶD,t−1 =
∑
st

1

πk
Zkyk (5)

and the star-estimator

Ŷ ∗
D,t−1 =

∑
st

1

π∗
k

Zkyk (6)

where yk is the value of the study variable at time t − 1 and st is the cut-off sample obtained in
time t.

Suppose there is an estimate of Ŷ1,t−1. An estimate of the total Yt−1 is obtained by adding an
estimate of Y0,t−1 using e.g. (6)

Ỹt−1 = Ŷ1,t−1 + Ŷ ∗
0,t−1 (7)

with Zk = 1(k ∈ U0,t−1). If the first estimator on the right-hand side is based on the cut-off
sample st−1, the two estimators on the right are independent because the two phase sampling
design effectively implies a stratification of Ut−1 into the strata U1,t−1 and U0,t−1. It is possible to
define several other estimators of Y0,t−1 and Yt−1 with or without auxiliary variables, e.g. ratio and
regression estimators. By setting Zk = 1 the estimators provide estimates of Yt−1 directly from the
cut-off sample st. However, this last estimator will be biased by deaths of firms included in F1,t−1.

4 Properties of estimators

The properties of the estimators (5) and (6) are well known and can be found in results 2.8.1
and 9.3.1, respectively, in Särndal et al. (1992). For the HT estimator the second order inclusion
probabilities are θkθlEF1t

(πk,l|1 | F1t ⊃ {k.l}) = θkθlπ̄k,l|1 (k ̸= l).
Using Result 2.8.1 in Särndal et al. (1992) a variance estimator for the HT estimator is

V̂ (ŶD,t−1) =
∑∑

st

π̄k,l|1 − π̄k|1π̄l|1

π̄k,l|1π̄k|1π̄l|1θkθl
DkykDlyl +

∑
st

1− θk
π̄k|1θ

2
k

Dky
2
k (8)

Using Result 3.9.1 (ibid) gives

V̂ (Ŷ ∗
D,t−1) =

∑∑
st

πk,l|1 − πk|1πl|1

πk,l|1πk|1πl|1θkθl
DkykDlyl +

∑
st

1− θk
πk|1θ

2
k

Dky
2
k (9)

Both variance estimators takes on the same form and they resemble the variance estimators
(3.12) in Lundström and Särndal (1999) and (5) in Chang and Kott (2008) for estimators adjusting
for nonresponse. For the HT estimator π̄k|1 is defined for all units in Ut−1 and is invariant to F1t.
The marginal distribution of st equals a joint distribution of two independent trials, πk = θkπ̄k|1.
This is an assumption usually made in applications of the QR approach and explains the similarity
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between (8) and variance estimators for nonresponse adjusted estimators. The similarity of (9) is
due to treating second stage inclusion probabilities conditional on the outcome of the first step,
ignoring the invariance.

5 Selection Bias

A critical part in estimation is the assessment of the θk, the probabilities of population units being
over the cut-off threshold a given year. If they are incorrect validity of estimation results cannot
be claimed.

One approach is to utilize observational data on firms moving and not moving over the threshold
from one year to another. Table 1 presents data from a fictional Swedish survey on firms below
the threshold of 10 employees in 2020 and above nine in 2021. The data were collected from
the Swedish business registry, and sole traders - businesses whose organisation number equals the
owner’s personal number - were excluded. As a study variable register data on turnover is used.

In the left part of the table, the number of firms and mean turnover are presented for all firms
(0-9), domains of number of employees {0, 1, ..., 9} and for firms with at least one employee (1-9).
The right part presents the same variables for the subset of firms moving over the threshold in 2021.

For each size category {0, 1, ..., 9}, the subset of firms over the threshold in 2021 is here treated
as a constant probability Poisson sample from the population units below the threshold in 2020.
The sample mean is considered an estimate of the domain population mean in 2020, and associated
standard error estimates are given.

For firms with 1 employee a 95% confidence interval (2287± 1.96 · 355) covers the true domain
mean 1928. Confidence intervals for the other size classes also covers the true population value,
with exception for firms with 2 employees where the true value falls slightly below the lower limit
3728.4. Thus, the separate domain estimates do not contradict an assumption of equal sample
probabilities within the size classes.

The mean estimate over all domains (0-9) is more than twice as large to the true value 4249.
The standard error is also large yielding the 95% confidence interval 4078 – 15572. Over the domain
with at least one employee the mean estimate is close to the true value and its standard error is
small.

The difference is explained by the sample obtained of firms with 0 employees. The estimate
there is more than 3 times as large than the true value. One explanation here is an erroneous
assumption of equal probability among firms of moving over the threshold in 2021. Firms with
higher turnover are indicated to have a higher probability. If so the sample is characterized by a
selection bias problem.

Selection bias is not indicated by the results for the other size categories. This cannot be
excluded however and there may very well be such a problem regarding estimation of other variable
totals.

6 Discussion

We have suggested a method of drawing inference on the subpopulation excluded under cut-off
sampling when the population is repeatedly surveyed with different probability samples. The idea
is to utilize information on population units that are excluded from the cut-off sampling frame in
one survey, but turn up in the cut-off sample in another.
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Table 1: Data.

Population under CO 2020 Units moved over CO in 2021
N:o N:o Mean N:o Mean Standard

Employees Firms Turnover Firms Turnover Error

0 267 401 3 648 413 13 118 5 238
1 92 240 1 928 120 2 287 355
2 42 163 3 572 155 5 757 1 035
3 21 678 5 437 164 6 748 1 712
4 15 386 7 408 214 7 700 1 040

5 11 683 10 423 341 9 201 2 297
6 9 251 11 403 569 10 346 1 439
7 7 565 12 491 842 11 741 1 661
8 6 020 15 162 1 310 15 719 1 663
9 5 019 16 708 2 005 17 488 921

0-9 478 406 4 249 6 133 9 825 2 932
1-9 211 005 5 010 5 720 5 653 360

Samples are obtained via a two-phase design where the first phase is modeled through quasi-
randomization describing units moving from being cutoff in one survey to being in the cut-off
sampling frame in another survey. The second phase consists of the ordinary sampling design used
on the cut-off sampling frame. Given selection probabilities in the first phase, standard theory on
two-phase sampling is applicable for inference.

One option in designing the second phase sampling is to account for the purpose of inference on
the units cutoff in another survey. One option is to stratify the cut-off sampling frame with respect
to exclusion or not from the other frame.

A weakness of the method is the unknown selection probabilities in the first phase. If these
are not correctly specified it can introduce selection bias in estimates. Care has thus to be
taken when modeling and estimating these probabilities. This is no different from estimating non-
response/response probabilities.

However, cut-off sampling is usually applied in business surveys and the event of moving into the
cut-off sampling frame stems from a different kind of decision than the one determining a response
or non-response. Based on theories on growth of firms (e.g. Penrose 1959) theoretically sound
selection models can be developed.

There are several potential uses of the method. As described it can deliver estimates on the
set of cutoff units. It can also be used for evaluation purposes where another estimation method
is in use. A final suggestion is to use the method combining data from the whole population in
estimation of prediction models.
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prnsamplr: Permanent Random Number Sampling in R

Kira Coder Gylling

Örebro University and Statistics Sweden

Abstract

We present an R package for coordinated survey sampling using permanent random numbers.
This tool implements the sampling procedures of the Swedish SAMU system for economic
statistics. We present the functionality of the package and show how it can be used to control
overlap between samples.

Keywords survey sampling, sample coordination, software package

1 Introduction

1.1 Background

In official statistics production there are two conflicting issues that need to be handled: Response
burden and comparability. The former issue requires us to have a low overlap between samples –
negative coordination – and the latter issue requires us to have a high overlap – positive coordination.
The problem is that the desired coordination cannot be controlled by drawing independent samples
for each survey, when the sampling procedures base the samples on independent sets of random
numbers.

The Swedish so-called SAMU system for economic statistics, as described by Ohlsson (1992)
and Lindblom (2014), solves this problem by associating with each unit in the business registry a
so-called permanent random number (PRN) which replaces the random numbers that the sampling
procedure generates, and which is supplied to the sampling procedure in order to control the
sample overlap between surveys or within surveys over time. A fortunate side effect of this is that
the samples are reproducible in case something goes wrong in the sampling process.

1.2 Outline

In Sections 2.1 and 2.2 we describe the two sampling methods that prnsamplr can handle. In Section
2.3 we describe a central mechanism for shifting the PRN’s in order to control sample overlap. In
Section 3 we give an overview of the included functions and data. In Section 4 we show some results
of using the package, and in Section 5 we recapitulate and summarize what we have discussed.
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2 Permanent random number sampling

2.1 Stratified simple random sampling

Simple random sampling is arguably the simplest and most easily explained unbiased sampling
routine, and is appropriate when every unit in a given stratum should have the same sample
inclusion probability. Given sample sizes nh and a sampling frame with permanent random numbers
(PRN’s), we only need two steps in the algorithm:

1. Sort the frame ascending along the PRN’s within each stratum.

2. The nh elements with the lowest PRN’s are sampled, for each stratum h.

2.2 Stratified Pareto πps sampling

Pareto πps (probability proportional to size) sampling is a more complicated sampling routine than
simple random sampling, and is appropriate when big units should have a higher sample inclusion
probability than smaller units. A good introduction to Pareto πps sampling is given by Rosén
(2000), but a short summary is given below.

Given sample sizes nh and a sampling frame containing PRN’s and a size measure x, the
algorithm is shown below.

1. For each item k in the frame, calculate

λk = nh
xk∑
k∈h xk

2. If any item has λk ≥ 1 then these items get λk = 1, are sampled, and the remaining λk in the
corresponding stratum h are recalculated as

λk = mh
xk∑

k∈h′ xk

where h
′
is the set of elements in h with λk < 1, and mh is the desired sample size from h

′
,

i.e. the number of elements that remain to be sampled after the ones with λk ≥ 1 have been
marked for sampling.

3. Repeat step 2 until no new λk ≥ 1.

4. When no new λk ≥ 1, calculate

Qk =
Uk(1− λk)

λk(1− Uk)

for each item k with λk < 1, where Uk are the PRN’s.

5. Sort the frame ascending along Q within each stratum h
′
.

6. The mh elements with the lowest Q are sampled, for each stratum h
′
.

7. Concatenate the partial samples from steps 2 and 6.

It is possible to calculate Qk for each element, and thus to set it to 0 for elements with λk = 1. A
problem that can appear is if more than nh elements get λk = 1. In this case it is a good idea to
revise the stratification plan, and possibly define a take-all stratum.
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2.3 Transformation of permanent random numbers

We want to control the overlap between samples, and hence the sample coordination, in order to
either spread out the response burden by having a low overlap (negative coordination) or maximize
comparability by having a high overlap (positive coordination). The problem is that the sampling
algorithms always select the items with the lowest PRN’s, which would imply maximum positive
coordination at all times, so we might want to e.g. count down from 1 for one sample and up from
0.4 for another.

Lindblom and Teterukovsky (2007) showed that we can transform the PRN’s according to a
simple modulo-1 operation such that the start point gets moved to zero and the direction turns
to up. Then we can utilize the sampling algorithms without modification using the transformed
PRN’s.

The operations are, for PRN’s U and using start point s,

Unew = (Uold − s+ 1) mod 1, (1)

Unew = 1− ((Uold − s+ 1) mod 1) (2)

for directions up and down, respectively.

3 Overview of prnsamplr

3.1 Function srs

A straightforward function, implementing the algorithm in Section 2.1 with a handful of lines.
Input is the sampling frame together with parameters stratid, nsamp, and prn, which should point
to variables on the frame containing stratum information, sample sizes, and the PRN’s, respectively.
Output is a copy of the frame together with a variable sampled, indicating which units have been
sampled.

3.2 Function pps

This is a recursive implementation of the algorithm in Section 2.2: Step 2 is repeated by calling
the function on the subset {k : λk < 1}. Input is the same as for srs with an extra parameter size,
pointing to a variable on the frame that contains the size measure. Output is the same as for srs,
with the extra variables lambda and Q.

3.3 Function transformprn

This function implements the modulo calculations in Section 2.3 with two ”if” statements. Input is
the sampling frame, the name of the variable containing the PRN’s, direction for the transformation,
and starting point for the transformation. Output is a copy of the sampling frame with the PRN’s
transformed according to specification, and with the untransformed PRN variable renamed to
prn.old.

3.4 Function samp

A wrapper for srs and pps. Input is the sampling frame, a specification of the method to use – srs
or pps – and arguments that the functions srs and pps use. Output is the same as for srs or pps.
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3.5 Dataset ExampleData

An example dataset with N = 40, 000 observations in 100 strata with names ranging from st00001
to st00100. Stratum boundaries were drawn from the U(1, N) distribution, and sample sizes were
calculated as nh = U · Nh, where Nh are the stratum sizes and U ∼ U(0, 1). PRN’s were drawn
from the U(0, 1) distribution, and a size measure was calculated as 10 · U where U ∼ U(0, 1).
Stratification information can be found in Appendix A, and code that generated the data can be
found accompanying this paper.

4 Usage and examples

In Tables 1 and 2 we show overlaps between six SRS samples and six πps samples, respectively. For
the PRN transformations we used the same starting points and directions as in the SAMU system,
see Appendix 2 in Ohlsson (1992). Each sample was drawn on the ExampleData dataset that is
included in prnsamplr and used the same stratification.

Table 1: Overlap between six SRS samples with varying start point and direction for the PRN
transformation.

U0.0 U0.2 D0.3 D0.7 U0.7 D1.0
U0.0 100% 67.8% 68.9% 72.3% 57.8% 48.5%
U0.2 100% 57.1% 76.7% 48.7% 66.6%
D0.3 100% 50.9% 76.3% 57.6%
D0.7 100% 48.5% 57.8%
U0.7 100% 68.9%
D1.0 100%

Table 2: Overlap between six πps samples with varying start point and direction for the PRN
transformation.

U0.0 U0.2 D0.3 D0.7 U0.7 D1.0
U0.0 100% 78.4% 82.6% 78.4% 72.6% 67.7%
U0.2 100% 75.7% 83.4% 67.7% 75.2%
D0.3 100% 68.9% 80.8% 72.4%
D0.7 100% 67.8% 72.3%
U0.7 100% 83.0%
D1.0 100%

Furthermore we have run the following tests on the data and code:

• Each stratum has only one population/sample size

• nh ≤ Nh in every stratum

• srs: Exactly nh items are sampled in each stratum

• pps: Exactly nh items are sampled in each stratum
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• pps: λk summarizes to nh in each stratum

The code and data passed each test.

5 Summary and discussion

In this paper we have presented a package for coordinated survey sampling in R. This package
allows us to use permanent random numbers (PRN’s) to draw coordinated samples using either of
two methods: stratified simple random sampling and stratified Pareto πps sampling. Furthermore
it allows us to reduce or increase the sample overlap by shifting the permanent random numbers.

We have drawn samples with various transformations of the PRN’s and calculated the overlap
between them, and we find that the overlap is reduced when the PRN’s are counted from opposite
directions or from points that are far from each other. This is expected. We also find that the
overlap is in general higher for Pareto πps sampling than for simple random samples. This is also
expected.

Finally, the functions and included data pass each test we have ran, verifying that the functions
are sound and calculate correctly.
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A Tables

Table 3: Sample and population sizes in the example dataset.
stratum npopul nsample
st00001 535 324
st00002 398 261
st00003 1424 503
st00004 114 31
st00005 356 354
st00006 542 344
st00007 609 130
st00008 339 44
st00009 550 263
st00010 155 144
st00011 710 426
st00012 1330 1299
st00013 386 283
st00014 619 221
st00015 40 18
st00016 131 20
st00017 247 4
st00018 1099 787
st00019 207 22
st00020 28 13
st00021 501 321
st00022 300 298
st00023 68 34
st00024 1055 511
st00025 907 158
st00026 363 275
st00027 282 128
st00028 55 29
st00029 212 44
st00030 51 12
st00031 253 151
st00032 1018 586
st00033 317 25
st00034 94 4
st00035 68 44

stratum npopul nsample
st00036 81 76
st00037 155 93
st00038 400 225
st00039 273 144
st00040 130 129
st00041 48 25
st00042 935 639
st00043 138 84
st00044 687 165
st00045 152 40
st00046 691 504
st00047 35 16
st00048 16 3
st00049 37 28
st00050 141 15
st00051 459 397
st00052 166 103
st00053 837 467
st00054 444 146
st00055 932 423
st00056 793 397
st00057 1069 194
st00058 1181 626
st00059 527 40
st00060 191 54
st00061 153 33
st00062 32 10
st00063 365 327
st00064 48 22
st00065 259 203
st00066 742 654
st00067 228 95
st00068 736 47
st00069 55 19
st00070 205 149

stratum npopul nsample
st00071 243 83
st00072 344 217
st00073 991 834
st00074 369 316
st00075 141 56
st00076 300 115
st00077 5 5
st00078 58 38
st00079 161 120
st00080 257 156
st00081 195 177
st00082 123 37
st00083 542 104
st00084 404 359
st00085 257 130
st00086 482 423
st00087 871 165
st00088 125 95
st00089 214 156
st00090 225 213
st00091 38 21
st00092 638 455
st00093 247 97
st00094 393 40
st00095 187 174
st00096 873 248
st00097 399 236
st00098 637 71
st00099 1252 1053
st00100 325 104
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