
http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at International Conference on Automated
Planning and Scheduling (ICAPS).

Citation for the original published paper:

Köckemann, U., Calisi, D., Gemignani, G., Renoux, J., Saffiotti, A. (2023)
Planning for Automated Testing of Implicit Constraints in Behavior Trees
In: Proceedings of the Thirty-Third International Conference on Automated Planning
and Scheduling (pp. 649-658).
https://doi.org/10.1609/icaps.v33i1.27247

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-112201

Planning for Automated Testing of Implicit Constraints in Behavior Trees

Uwe Köckemann1, Daniele Calisi2, Guglielmo Gemignani2,
Jennifer Renoux1, and Alessandro Saffiotti1

1Center for Applied Autonomous Sensor Systems
Örebro University, Sweden.

2Magazino GmbH, Munich, Germany.
{uwe.kockemann, jennifer.renoux, alessandro.saffiotti}@oru.se, {calisi, gemignani}@magazino.eu

Abstract

Behavior Trees (BTs) are a formalism increasingly used to
control the execution of robotic systems. The strength of BTs
resides in their compact, hierarchical and transparent repre-
sentation. However, when used in practical applications trans-
parency is often hindered by the introduction of implicit run-
time relations between nodes, e.g., because of data depen-
dencies or hardware-related ordering constraints. Manually
verifying the correctness of a BT with respect to these hidden
relations is a tedious and error-prone task. This paper presents
a modular planning-based approach for automatically testing
BTs offline at design time, to identify possible executions that
may violate given data and ordering constraints and to exhibit
traces of these executions to help debugging. Our approach
supports both basic and advanced BT node types, e.g., sup-
porting parallel behaviors, and can be extended with other
node types as needed. We evaluate our approach on BTs used
in a commercially deployed robotics system and on a large
set of randomly generated trees showing that our approach
scales to realistic sizes of more than 3000 nodes.

Introduction
Behavior Trees (BTs) have been used for almost 20 years
to model complex agents in the computer game industry
(Isla 2005; Nicolau et al. 2017; Sekhavat 2017). BTs of-
fer an alternative way to encode complex behaviors of non-
playing characters and provide more readability and better
support for modular design compared to the widely used
Finite State Machines. Because of these characteristics, the
field of AI and Robotics has also started to give attention
to BTs (Colledanchise and Ögren 2017; Bojic et al. 2011;
Ögren 2012; Marzinotto et al. 2014; Iovino et al. 2022), and
BTs are today increasingly used as a tool to encode robot
control strategies both in academia and industry.

When used in practical robotic systems, BTs typi-
cally need to be enriched with additional capabilities, and
several extensions to their initial formulation have been
presented in order to accommodate, e.g., sensing (Yang
et al. 2021), multi-agent coordination (Agis, Gottifredi, and
Garcı́a 2020), or passing data between nodes (Gemignani
2021). While these extensions increase the representation
power of BTs, they also make their design more error prone.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The latter capability, in particular, introduces implicit con-
straints among nodes in the BT which are not directly visi-
ble in the tree’s topology. For instance, suppose that a node
A in the tree runs a task that computes a pose estimate, and
a node B in another part of the tree uses that pose estimate.
A BT designer must make sure that any execution of the
tree will run node A before node B. In another example, a
given robotic system may require that a sensor initialization
task, done in node A, is always performed before running
any task, say in node B, that uses that sensor.

Figure 4 later in the paper shows a fragment of a BT ac-
tually used at Magazino where such dependencies are in-
dicated. When dealing with trees of notable size, a BT de-
signer might easily overlook possible execution sequences
that violate implicit constraints. As a matter of fact, such in-
consistencies are often present in robotic systems based on
BTs, including commercially deployed ones, which may re-
sult in runtime errors leading to potentially significant pro-
ductivity losses. This paper addresses this problem.

We present a planning-based approach that automatically
tests data dependencies and ordering constraints on BTs of-
fline, before these trees are deployed. The critical move is to
translate each dependency into a planning problem, whose
solution is a trace of a possible execution that violates that
dependency if it exists. Since each planning problem focuses
on a specific dependency, we can prune large portions of the
BT before converting it into a planning problem. As a re-
sult, our approach can deal with large trees with more than
3000 nodes, such as those typically found in real deployed
applications.

The use of automated planning for testing BTs brings
about a number of important advantages. First, the gener-
ated plan precisely describes the sequence of events that re-
produces a constraint violation, if any; this may give con-
crete hints to the BT designer on the origin of the prob-
lem and how to fix it. Second, we can support additional
control flow nodes used by BT variations by simply adding
new planning operators without modifying any algorithm.
Finally, according to the empirical findings reported below,
domain-independent planning algorithms perform very well
on this problem both when an inconsistency is present and
when the tree is entirely consistent.

In this paper, we consider a concrete use case based on
a real-world application: the BTs used by Magazino GmbH

Proceedings of the Thirty-Third International Conference on Automated Planning and Scheduling (ICAPS 2023)

649

Figure 1: The TORU (left) and SOTO (right) robots.

to encode the behavior of its robots. Magazino GmbH is a
Germany company that develops autonomous mobile pick-
and-place robots for production lines and warehouses in
e-commerce applications. Such robots, called TORU and
SOTO, are shown in Figure 1. These robots can pick single
items from shelves and operate as part of a swarm, working
alongside humans. The behaviors of the robots are described
via a modified version (Tenorth 2016) of the classical BTs
formalism (Marzinotto et al. 2014). This version has a richer
data passing mechanism (Gemignani 2021), that will be de-
tailed in the background section, and is the main object of
the automated testing described in this paper. We empha-
size, however, that the approach described in this paper is not
limited to the formulation of BTs used by Magazino: other
control flow nodes and decorators can be modeled simply by
defining the corresponding planning operators.

The remainder of this paper is organized as follows. First,
we discuss related work. Then we introduce the necessary
background on BTs and automated planning. Based on this,
we introduce BT testing as a decision problem which is then
turned into a planning problem. Then we briefly discuss how
pruning is performed and how parallel nodes can be con-
verted to non-parallel nodes for the purpose of testing data
dependencies. Finally, we illustrate our approach on BTs
used by Magazino, and we show a systematic evaluation on
randomly generated BTs that supports the scalability of our
approach.

Related Work
Despite the increasing popularity of BTs to describe the de-
sired behavior of an intelligent autonomous system, there are
still very few tools for formal validation of their correctness
that can help BT designers (e.g., Biggar and Zamani (2020);
Serbinowski and Johnson (2022)).

Conditional Behavior Trees (CBTs) (Giunchiglia et al.
2019) attach preconditions and effects (as used in classical
planning) to execution nodes in behavior trees. This makes
it possible to verify that conditions are guaranteed to be sat-
isfied when reaching an execution node, e.g., by convert-
ing a conditional BT to a Boolean satisfiability problem
(Giunchiglia et al. 2019; Colledanchise et al. 2021). This ap-
proach does not perform pruning on BTs beforehand and se-
lector (fallback) control flow nodes require a quadratic num-
ber of symbols. This leads to the conversion to SAT requir-
ing time quadratic in the size of the BT, whereas our ap-
proach converts a BT to a state in linear time. Moreover, as
described in the Interpreting Solution section, our approach
not only can detect invalid trees, but can also show exam-

ples of exact sequence of events that render them as such.
Finally, conditional BTs can be modeled with an extension
of the data dependencies we consider in this work. First, we
represent each CBT precondition by a data requirement and
each CBT effect by a data producer. Negative preconditions
can be turned into goals asserting that data is unavailable.
Negative effects can be modeled as nodes that make data
unavailable (e.g., by turning off a sensor). Then, it is suffi-
cient to test each CBT precondition symbol individually, as
we do with data requirements in our approach.

Model checking for BTs has been discussed by Yata-
panage, Winter, and Zafar (2010), who address the problem
of “slicing” for BTs, a mechanism similar to the pruning
approach we describe later. While our pruning approach di-
rectly operates on the BT, the slicing-based approach oper-
ates on a BT dependency graph. During slicing parts of a
BT may become disconnected and have to be re-attached
which is not the case of our pruning approach. The BT used
to test the approach contains 125 nodes before slicing and
was pruned down to 36, 116, and 73 nodes for three tested
theories. While Yatapanage, Winter, and Zafar (2010) use
linear temporal logic which allows for more complex prop-
erties to be expressed, our approach allows more aggressive
pruning, while still enabling the verification of BT proper-
ties used in the deployment of complex robotics systems.

Background
Behavior Trees
A behavior tree B is a directed graph whose nodes are either
the root node ∅B , an execution node T (a leaf) or a control
flow node F . Each BT has a single root node with a single
child and no parents. All other nodes have a single parent.
Execution nodes have no children, and control flow nodes
have at least one child. A BT is executed by periodically
“ticking” the root node with some frequency. When the root
node is ticked, it will tick its sole child node. When an exe-
cution node is ticked for the first time, it will be executed and
return its state. The state of each node is either pending, run-
ning, success, or failure. An execution node will return run-
ning until it is completed and then return either success or
failure based on its outcome. The pending state is never ac-
tually returned but will be useful in later definitions. Control
flow nodes behave depending on their type. Every formula-
tion of BTs define two common types of control flow nodes:
sequence (→) and selector (?). A sequence node → acti-
vates its children in order. When any child returns running
or failure it will return the child’s state. On success the next
child will be activated. When all children have succeeded,
the sequence also returns success. A selector node ? acti-
vates its children in order. When any child returns running
or success it will return the child’s state. On failure the next
child will be activated. When all children have failed, the se-
lector also returns failure. We use TB and CB as the set of
all execution and control flow nodes in BT B respectively.
The state of a BT during execution is written as a map from
each node to its current state SB = {∀n∈TB∪CB

n ← s|s ∈
pending , running , success , failure} and we use SB(n) for
the current state of node n in state SB . The set of all pos-

650

sible states reachable by a given tree is written S∗
B . For any

node n we write its type as typen. If n is an execution node,
its type is exec, and if n is a control flow node, the type is
a symbol representing the type of control flow node. For a
control flow node n, we write children(n) for the list of its
children in execution order. children(n)i is the ith child of
n.

Behavior Tree Extensions
Many different formulations of BTs exist. Such different for-
malisms are often extended or have hidden dependencies
that may introduce constraints between execution nodes.

One possible extension of BTs can introduce new types of
control flow nodes. These may support, for instance, loops or
parallel execution in various ways. In the current paper, we
additionally considered the following set of control flows:

• ParallelAll: a ParallelAll node activates all children in
parallel and returns success only if all of them return
success. If one of the children returns failure, the node
returns failure immediately. Else, if some children return
running, the node returns running.

• ParallelSelector: a ParallelSelector node activates all
children in parallel and returns success as soon as one
of them returns success. If all the children return failure,
the node returns failure. Else, if some children return run-
ning, the node returns running.

• OnFailure: an OnFailure node activates its children in
order. If the first child returns success, the node returns
success immediately without activating the other chil-
dren. If the first child returns failure, all the other chil-
dren are activated one after the other, following the se-
quence rule. Independently if the the result of the re-
maining children is success or failure, the node returns
failure. If some children return running, the node returns
running. This composite is typically used to perform op-
erations (e.g., clean up), upon failure of the first child.

• Finally: a Finally node activates the first child until it
reaches the success or failure state. Then, it activates all
the other children one after another until one returns fail-
ure or all return success. At this point, Finally returns the
state returned by the first child. This composite is typ-
ically used to perform operations, no matter the return
value of its first child.

• Inverter: an Inverter node inverts the return state of the
child. If the child returns success or failure, the node re-
turns failure or success, respectively. If the child returns
running, the node also returns such state.

A second extension of the formalism allows execution
nodes to produce and consume data. In our use-case, for
example, a variable of a node can be defined as being in-
put, output, or both, as well as having other characteristics:
see Figure 4 for an example. More generally, there may also
be other constraints on the order in which certain execution
nodes should be executed that are not directly apparent in
the BT.

We denote the fact that execution node T
produces data x when in state s ∈ S as

Figure 2: A randomly generated tree with depth 4. Nodes
marked→ are sequences and nodes marked ? are selectors.
Arrow shaped nodes are data producers (right arrow) and
consumers (left arrow). Producers indicate the produced data
on the right of the node name and producers on the left.

produces(T, x, S) or as produces(T, x) if and only if
produces(T, x, {running , success , failure}). S is the set
of states in which execution node n produces x. The
fact that execution node T requires data x is written as
requires(T, x).

We use PB and RB as the set of all produces and requires
facts for tree B respectively. The set of all data produced or
required in B is denoted DB . Data required by any execution
node has to be produced by a previous execution node in
the tree. Producers and consumers can directly be extracted
from many BT design tool or taken from CBT models with
the method explained above.

If data x is available in a state SB of a tree, we write

available(x, SB) ≡ ∃nproduces(n, x, S) ∈ PB∧SB(n) ∈ S

Figure 2 shows a BT with one node (a2) producing data x
(indicated by the right arrow node shape, and a single node
(a6) requiring x. For this example (and our evaluation later
on), we assume that data is produced as soon as a node enters
the running state.

While this notion is focused on data dependencies, we can
use it also to represent generic ordering constraints between
nodes in a tree. Consider, the following cases in which A, B,
and C are execution nodes. (A only after B): B produces x
and A requires x. (A only after B or C): B and C produce
x and A requires x. (A only after B and C): B produces x
and C produces y. A requires x and y. (Where x and y are
variables not used anywhere else in the tree.)

Planning
A classical task planning problem (Ghallab, Nau, and
Traverso 2004) (S0, G,O) consists of an initial state S0, a
goal state G and a set of operators O. Here we use Sim-
plified Action Structures (SAS+) planning (Bäckström and
Nebel 1995), where S0 and G (as well as all precondi-
tions and effects) are state-variable assignments. A single
state-variable assignment of value v to variable x is writ-
ten x ← v. State-variables are convenient for our domain
since we often need to track a series of values representing
the states when completing control flow nodes. An operator
o = (no, Po, Eo) consists of a name no, set preconditions

651

Po and effects Eo. Both, Po and Eo are state-variable as-
signments. A goal or precondition G is satisfied in a state
S if G ⊆ S. Applying an effect E to a state S replaces the
value assignments of all state-variables in S with the ones
assigned by E. A plan π = a1, . . . , an is a sequence of
operators that can be applied starting at the initial state S0

leading to the state sequence S0, S1, . . . , Sn. A plan is ap-
plicable if ∀iPai

⊆ Si−1. A plan is a solution if it results in
state Sn with G ⊆ Sn. In the evaluation presented later, we
use a planner that implements a greedy forward state space
search with the Causal Graph heuristic (Helmert 2006).

Behavior Tree Testing as a Decision Problem
Before jumping into the planning problem, it is worth for-
mulating BT testing as the following general decision prob-
lem, which may be solved in different ways. Given a tree
B, is there any data in x ∈ DB with a requirement
requires(n, x) ∈ RB such that can we reach a state s in
which n is running but x is not available? We refer to any
tree B that satisfies Eqn. 1 as invalid, and as valid otherwise.

∃x∈DB ,s∈S∗
B ,n∈TB

s.t. requires(n, x) ∈ RB (1)

∧ ¬available(x, s)
∧ s(n) ̸= pending

Behavior Tree Testing as a Planning Problem
To formulate our decision problem as a planning problem,
we need to define states, goals, and operators. The state in-
cludes the tree’s structure, each node’s current state SB , and
some additional variables for modeling more complex con-
trol flow nodes. The goal is to reach a node without satisfy-
ing a specific data requirement and thus follows almost di-
rectly from the decision problem in Eqn. 1. As shown later,
we create a dedicated set of goals for each element in RB .
While this means that we have to solve multiple problems,
it will allow heavy pruning of the BT which allows our ap-
proach to work well even on large instances. Operators cover
state changes of nodes from pending to running and from
running to success or failure . Data is made available by
producer nodes. Finally, there is a set of operators for each
type of control flow node that models its behavior. This leads
to a very modular domain formulation that allows adding
new types of control flow nodes easily.

State
Table 1 summarizes the construction of the initial state. Most
of these variables and values capture the structure and cur-
rent state of the tree. active is used to track nodes that can
be ticked. available is used to track which data is available.
Other variables are used for bookkeeping in more complex
operators: stateinit is used to track how nodes in a parallel
control flow node are activated. statefinal is used to remem-
ber a state of an earlier child that may be returned later (e.g.,
for OnFailure). positive is used for control flow nodes where
the first child node is treated specially (e.g., OnFailure). Un-
like in the tree state SB , state(n) is also used to track the in-
dex of a control flow node’s current child or how many chil-
dren are finished. This, together with the successor(i) and

Variable Value Condition
state(n) pending
stateinit (n) pending
statefinal (n) pending
active(n) false n ̸= ∅B
active(n) true n = ∅B
type(n) t t = typen
child(n, i) nc nc = children(n)i
end(n) i i = |children(n)|
produces(n, x) true produces(n, x) ∈ PB

requires(n, x) true requires(n, x) ∈ RB

successor(x) x+ 1 x ∈ {1 . . .mB}
positive(x) x = 1 x ∈ {1 . . .mB}
available(x) false x ∈ DB

Table 1: State variables and values used when constructing
the initial state from a BT B. In all conditions, we assume
n ∈ TB ∪ CB .

child(n, i) variables, is used to move on to the next child
when a child returns its result that allows starting the next
child. In the same way, end(n) is used to mark the last child
to decide the outcome of a control flow node.

The state’s size depends on the number of nodes in the tree
and the number of children of each control flow node. Let
mB = maxn∈CB

(|children(n)|) be the maximum number
of children of any node in the tree. The size of the state can
then be bound by O(|TB |+ |CB |mb). If we credit each item
child(n, i)← nc in the list of children to the corresponding
child nc and consider that each node has at most one parent
that will require such an entry, we can see that the size of
the state is bound by O(|TB | + |CB |) which is linear in the
number of nodes in the tree. The state can be created from
a tree by traversing the tree depth-first from the root node in
execution order while visiting each node exactly once. We
can see that all conditions in Table 1 can be directly read
from each node. Control flow nodes require visiting all of
their child nodes, but as before, we can distribute this as a
constant effort across all children for an overall time com-
plexity of O(|TB |+ |CB |).

Goal
Given how we construct the state, we can create goals almost
directly from Eqn. 1. For each requires(n, x) ∈ RB :

G(n,x) = {available(x)← false, state(n)← running}

Any plan that satisfies this goal is an execution trace
through the BT that would lead to data x not being avail-
able when it is required by node n. Thus it shows that B is
invalid and how an invalid state can be achieved.

The definition above creates a goal for each entry in RB .
This leads to |RB | goals and as many individual planning
problems to solve, each focused on testing the validity of B
for a single requirement. As mentioned above and shown
in our evaluation on randomized problems, these individ-
ual problems by themselves become relatively easy to solve
since they allow us to prune large parts of the search tree
with the method explained below.

652

Operators
As mentioned above, we have operators for execution nodes
(that may produce data), and for each control flow node. For
each control flow node, a set of operators typically covers
the following cases: (1) If the node is active and pending, set
the first child to active. (2) If a child has succeeded or failed,
process the result accordingly by either returning a result and
skip remaining child nodes or moving to next child node.
(3) If the last child succeeds or fails, return the appropriate
result.

Below we show the operators for the sequence control
flow node1. These operators are expressed using the AI Do-
main Definition Language (AIDDL) (Köckemann 2020) a
general-purpose modeling language that allows us to rep-
resent BTs and the SAS+ flavor of planning problems and
makes the translation from BTs to states easier to imple-
ment. In the example below, the colon : is used for key-value
pairs, and the prefix ? indicates a variable. Preconditions and
effects are sets of key-value pairs representing state-variable
assignments2. All example operators share the common con-
dition that the node’s type must be sequence. If a sequence
node is active and pending (1), the seq-init operator allows
setting the first child to activate and remember the currently
active child in the state of the sequence node. If the currently
active child succeeds (2), the seq-advance operator allows
setting the next child to active while deactivating the fin-
ished one. If the currently active child fails (2), seq-fail can
set the sequence to active and its status to failing. Finally, if
the last child succeeds (3), seq-succeed can set the sequence
to active and its status to success.

name:(seq-init ?n ?n_c)
preconditions:{

(type ?n):sequence
(state ?n):pending
(active ?n):true
(child ?n 0):?n_c }

effects:{
(state ?n):0
(active ?n):false
(active ?n_c):true }

name:(seq-advance ?n ?i ?n_i ?j ?n_j)
preconditions:{

(type ?n):sequence
(state ?n):?i
(child ?n ?i):?n_i
(active ?n_i):true
(state ?n_i):success
(after ?i):?j
(child ?n ?j):?n_j }

effects:{
(active ?n_i):false
(active ?n_j):true
(state ?n):?j }

1Full set of operators are available at https://doi.org/10.5281/
zenodo.7708806

2Equivalent operators could be represented in the Planning Do-
main Definition Language (PDDL) (Ghallab et al. 1998), but our
use of state-variable assignments would make this representation
more cumbersome.

name:(seq-fail ?n ?i ?n_i)
preconditions:{

(type ?n):sequence
(state ?n):?i
(child ?n ?i):?n_i
(active ?n_i):true
(state ?n_i):failure }

effects:{
(active ?n_i):false
(active ?n):true
(state ?n):failure }

name:(seq-succeed ?n ?i ?n_i ?j)
preconditions:{

(type ?n):sequence
(state ?n):?i
(child ?n ?i):?n_i
(active ?n_i):true
(state ?n_i):success
(after ?i):?j
(end ?n):?j }

effects:{
(active ?n_i):false
(active ?n):true
(state ?n):success }

Pruning Trees for Testing
Obviously, the size of trees grows exponentially with their
depth (assuming a branching factor greater than one). This
increase directly impacts the state’s size since we need to
keep track of the state of every node in the tree. This means
that once we reach a certain size, trees become very difficult
to test. In the previous section, we extracted a goal for each
node that requires an input x. Multiple execution nodes may
produce x, but only a single consumer exists per planning
problem. For any sub-tree that does not contain the requir-
ing node or any of the producer nodes, we are only impacted
by the outcome of the entire tree not by how a combination
of individual execution nodes in the sub-tree achieved the
outcome. In Figure 2, for instance, the sub-tree containing
a4 and a5 has no impact on the validity of the tree wrt. x.
As a result, we can replace any sub-tree that does not con-
tain a relevant node by a single execution node represent-
ing the outcome of said sub-tree. More precisely, given a set
of relevant execution nodes K ∈ TB , we traverse the tree
depth-first and replace each sub-tree n for which
prune(n,K) = n /∈ K ∧ ∀c∈children(n)prune(c,K) (2)

evaluates to true with a new execution node. Obviously, the
smaller the set of relevant execution nodes, the more sub-
trees can be pruned. Assuming requires(n, x) ∈ RB we
have the set of relevant execution nodes

K(n,x) = {n} ∪ {n′|produces(n′, x) ∈ PB}.
With this, we can prune a tree for each goal G(n,x), which

leads to a significant reduction in tree (and consequentially
state) size. Figure 3 shows the result of applying this pruning
rule to the tree depicted in Figure 2.

Dealing with Parallel Control Flow
Parallel nodes create a broad variability on how a tree can be
traversed. Therefore, it would be preferable to replace them
with non-parallel nodes where possible.

653

Figure 3: Pruned version of the tree depicted in Figure 2. The
node p1 represents a pruned sub-tree of the original tree.

It turns out that all types parallel nodes considered in this
paper can be replaced for data dependencies testing by se-
quence or selector nodes in the following way.

• If no providing or requiring execution node appears in
any child of a parallel node, it will be pruned as explained
in the previous section

• If either a requiring execution node or a providing execu-
tion node appears in a child of a parallel all/selector node,
replace this node with a sequence/selector node (the par-
allel order does not matter)

• If both a requiring and a providing execution node ap-
pear inside the same child of a parallel all/selector node,
but not in any other child node, replace this node with a
sequence/selector node (the order does not matter)

• If both a requiring and a providing execution node appear
in two different children of a parallel all/selector node,
replace the node with a sequence/selector and order its
children such that the requiring execution nodes appear
before the providing execution nodes (the order matters,
but we can assume a non-parallel order that requires be-
fore it produces)

Note that in the last case the tree may still be consistent, e.g.,
if the data is provided before entering the parallel node.

Interpreting Solutions
One of the advantages of our approach is that finding a so-
lution to the generated planning problem not only tells us
that a tree is invalid, it also tells us exactly how to reproduce
invalid behaviors. We can represent a plan as a sequence of
action names that lead from the initial state to a state that
satisfies the goal. Running our approach on the tree in Fig. 3
produces the following plan.

(0) (seq-init (sequence 1) (selector 2))
(1) (sel-init (selector 2) (sequence 3))
(2) (seq-init (sequence 3) a1)
(3) (run-0 a1)
(4) (fail-0 a1)
(5) (seq-fail (sequence 3) n0 a1)
(6) (sel-advance (selector 2) n0

(sequence 3) n1 p1)
(7) (run-0 p1)
(8) (fail-0 p1)

(9) (sel-advance (selector 2) n1 p1 n2
(sequence 8))

(10) (seq-init (sequence 8) a6)
(11) (run-0 a6)

The first three actions initialize control flow nodes (0-2).
Then a1 runs and fails (3,4), leading to the sequence to fail
(5) and the selector to advance (6), p1 runs and fails to move
to the last node of the selector (7-9). The sequence contain-
ing a6 and a7 initializes (10) and finally a6 runs (11) without
x being available. Note that in this example, p1 represents a
sub-tree pruned from Fig. 2. This illustrates another advan-
tage of pruning trees ahead of testing as it leads to shorter
and more focused explanations for the reason the tree is in-
valid. In the original tree, actions 7 and 8 would have to be
replaced by a plan that initializes the pruned selector an then
fails a4 and a5. To make the above plan even easier to inter-
pret, we can also filter control flow actions to produce a very
compact plan that focuses on the state changes of execution
nodes.

Evaluation
We evaluate our approach in two ways. First, we test it on
actual sub-trees used at Magazino. Second, we evaluate how
the approach scales on randomly generated BTs of increas-
ing depth. BTs and planning problems are represented and
solved in the AIDDL Framework for Integrative AI 3.

Evaluation on Magazino Trees
The automatic test framework has been run on a selection
of BTs currently used by Magazino in production environ-
ments. It is not uncommon that these trees present problem-
atic execution of nodes that leads to missing inputs to some
nodes. An example is shown in Figure 4, where, depending
on the result of the previous nodes, the producer node can
be skipped. The problematic executions have been correctly
found by the planner: e.g., if the node above the red framed
(producer) node returns a FAILURE, the producer node is
not executed and the subsequent consumers (blue arrow) can
be executed without the required input.

It should be noted that Figure 4 is a fragment of an ac-
tual, much larger BT, used here for illustration purposes. The
problematic execution above would not occur in the context
of the full BT, because in this specific case the missing in-
put is provided by the parent tree. Bugs similar to this one,
however, do occur in actual trees and they often make it to
deployment, being unobserved for days or even weeks, be-
cause they are often related to infrequent executions or to
branches that are activated only to react and recover to ex-
ceptional situations. Nevertheless, these bugs have a large
impact on the performance of the robot, as, when they oc-
cur, the BT execution (and thus the robot functionality) must
be suspended. When applying the automatic test framework
to the trees provided by Magazino, the algorithm was able
to correctly detect some issues related to missing input user
data. These were minor issues that would not substantially
affect the operation of the robots in the field. This result was

3aiddl.org

654

Figure 4: A fragment of a Magazino BT in which an output
is produced by the framed node, and is required by all of the
nodes pointed by an arrow. The BT is shown in Magazino
custom left-to-right format.

expected, since the tested trees were already validated by a
daily use of several hundred robots in production.

Evaluation on Randomly Generated Trees
We conducted four different analyses on random trees:
(1) The total time used to check a tree. (2) The distribution
of time between the different steps of our approach (prun-
ing, initialization, solving). (3) The efficiency of the pruning
(through the proportion of pruned tree). (4) The impact of
control flow nodes on planning time. Finally, we look at the
outliers (trees for which the planning time was longest) to
see the structure of the trees and understand the cause for
the increase solving time.

Evaluation was performed on a 12th Gen Intel(R)
Core(TM) i9-12900H with 20GB of available memory. The
complete analysis is available on Zenodo4, together with ad-
ditional results on the initialization and planning steps, not
included in this paper for space reasons.

Random Tree Generation We generate random BTs
based on the following parameters. The depth of the tree
(from 3 to 10), the minimum and maximum number of child
nodes for control flow nodes (2 and 3, respectively), the min-
imum and maximum number of producer nodes (1 and 3
respectively), the number of requiring nodes (1), the prob-
ability that a node is an execution node (leaf) before the
maximum depth of the tree is reached (0.2), and the type
and distribution of control flow nodes used when generating
non-leaf nodes (see Table 2). For each setting in Table 2 we
generated 100 trees (50 valid, 50 invalid) for each depth in-
crement from 3 to 10 (inclusive), leading to a total of 800
trees for each setting. For the Basic set at depth 10 the av-
erage tree has 1587.5 nodes with a maximum of 3463 and
a minimum of 121 nodes. The numbers of valid and invalid
trees are guaranteed by using our approach during genera-

4https://doi.org/10.5281/zenodo.7708806

Type Basic Advanced Parallel

sequence 1/2 1/5 20/100
selector 1/2 1/5 20/100
inverter 0 1/5 20/100
on-failure 0 1/5 19/100
finally 0 1/5 19/100
parallel-all 0 0 1/100
parallel-selector 0 0 1/100

Table 2: Type and distribution of control flow nodes.

tion and making sure we keep generating trees until we have
the desired number with each property.

Results on Generated Trees
Total Time per Tree Type Figure 5 shows the total test-
ing time per type of tree (Basic, Advanced, Parallel) for
valid and invalid trees. As expected, the total amount of time
taken by our framework increases linearly with the number
of nodes. We note that the time remains well below 1 second
in almost all cases even for the largest trees. We also note
that there is no significant difference in testing time between
the valid trees and the invalid trees.

Time Spent per Step We calculated the average time
taken in each of three steps for all types of tree. Our
approach takes the most time in the initialization step
(mean = 0.09s), followed by the planning step (mean =
0.02s). The pruning step is negligible (mean = 2.8·10−5s),
and the difference between these steps increases with the
size of the tree. This result is homogeneous among the three
tree types. This can be explained by the fact that initializa-
tion includes grounding (i.e., replacing each planning oper-
ator including variables by all possible grounded operators
that do not include variables), heuristic initialization, com-
piling away variables that never appear in effects, and re-
placing composite terms with numerical terms for cheaper
comparisons during search. This, combined with our prun-
ing approach, leads comparatively low time needed to ac-
tually solve the problem. This result suggests that better
grounding strategies might be adopted to reduce this step’s
total time. A domain dependent way to achieve this would
be to perform grounding while traversing the tree when the
state is created.

Impact of Pruning Figure 6 show the proportion of the
tree that has effectively been pruned.

Thanks to our pruning strategy, the number of nodes in
the pruned tree increases linearly with the depth of the tree,
though the number of nodes in unpruned trees increases ex-
ponentially (assuming a branching factor greater than one).
This analysis confirms the relevance of the pruning step in
our approach. To check whether the longer testing time cor-
related with less efficient pruning, we calculated a Spearman
correlation between the proportion of pruned nodes and total
testing time in trees of depth 105. Results do not show a sig-

5We only selected the largest set of trees to avoid artifacts due

655

Figure 5: Total testing time over the three type of trees. Note that the y scale is logarithmic.

Figure 6: Proportion of the tree effectively pruned.

nificant correlation (Basic: r = −0.26, p = 0.07 ; Advanced
r = 0.007, p = 0.94 ; Parallel r = 0.16, p = 0.1), indicat-
ing that these longer testing time are not due to inefficient
pruning.

Influence of Node Types Finally, we evaluate the influ-
ence of each control flow node type in the initial BT (be-
fore pruning) on the total testing time by calculating a set of
Spearman correlations over the trees of depth 10, adjusted
for the family-wise error rate with the Holm-Bonferroni pro-
cedure. We found out that the only statistically significant
correlation is with the parallel nodes (ρ = 0.26, p = 0.006,
α = 0.006), indicating that increasing the number of paral-
lel control flow nodes increases the total testing time. This
suggests that improved heuristics for handling parallel nodes
could be beneficial in reducing the overall planning time.
This result must, however, be put in perspective as there is a
very small proportion of parallel nodes in the generated trees
(2%). The full correlation table is available in the extended
result.

to a too small number of nodes in the smaller trees.

Investigating Outliers Finally, we looked at some out-
liers, specifically problems with the longest testing time for
the two largest depths for tree type (total = 6). We found out
that all these outliers share a commonality: they all have 3
data producer nodes (the maximum possible), all which are
situated very far down in the tree and in different branches.
This leads us to think that the structure of the tree, i.e. the
number of nodes and the position of producers and con-
sumers, explains the longer testing time of some problems.

Comparison with Magazino Trees In order to confirm
that the generated trees are representative of real cases, we
selected a subset of the BTs used by Magazino to control the
behavior of its robots. The selection includes larger trees that
make them hard to analyze just by visual inspection. Table 3
shows the statistics extracted from this selection. The depth
of the trees and the average number of children per compos-
ite are consistent with the parameters used to generate the
trees described in the previous sections. The distribution of
node types is also similar, apart from a smaller number of fi-
nally and on-failure and the presence of other composite and

656

Statistic Value

Average depth of the tree 10.22
Average number of composite children 2.7

% sequence 0.3
% selector 0.18
% inverter 0.1
% on-failure 0.03
% finally 0.01
% parallel 0.05
% (other) 0.32

Table 3: Statistics extracted from a selection of the real trees
used by Magazino on their robots.

decorator types that have not been considered in this paper
as they are slight variations of those defined here.

Conclusion
We have provided a method that verifies that data dependen-
cies in BTs (often implicit) are met during their execution.
Our approach converts this problem into an automated plan-
ning problem that attempts to find a sequence of events in a
BT that reaches a node without the required data available.
We introduced a pruning algorithm that replaces irrelevant
sub-trees with execution nodes to reduce the complexity of
the overall tree before planning. The approach was evalu-
ated on various sets of randomly generated trees that reach
similar numbers of execution nodes and have a comparable
average number of child nodes to the tree used at Magazino.

The presented approach focuses on validating one data
requirement at a time which allows pruning significant
amounts of the input tree. However, this limits the expres-
sivity of the properties we can test. Thus one direction for
future work is to investigate if and how we can test for more
complex properties, such as the full set of features of Con-
ditional BTs, while preserving the overall performance on
realistically sized BTs. In addition, we intend to extend the
range of control flow node operators in order to deploy the
approach for usage on real behavior trees at Magazino.

Acknowledgements
This work has been supported by the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No. 101016442 (AIPlan4EU).

References
Agis, R. A.; Gottifredi, S.; and Garcı́a, A. J. 2020. An
event-driven behavior trees extension to facilitate non-player
multi-agent coordination in video games. Expert Systems
with Applications, 155: 113457.
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Comput. Intell., 11: 625–656.
Biggar, O.; and Zamani, M. 2020. A Framework for Formal
Verification of Behavior Trees With Linear Temporal Logic.
IEEE Robotics and Automation Letters, PP: 1–1.

Bojic, I.; Lipic, T.; Kusek, M.; and Jezic, G. 2011. Extend-
ing the JADE Agent Behaviour Model with JBehaviourTrees
Framework. In Proceedings of the 5th KES International
Conference on Agent and Multi-Agent Systems: Technolo-
gies and Applications, 159–168. ISBN 9783642219993.
Colledanchise, M.; Cicala, G.; Domenichelli, D. E.; Natale,
L.; and Tacchella, A. 2021. Formalizing the Execution Con-
text of Behavior Trees for Runtime Verification of Deliber-
ative Policies. In 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 9841–9848.
Colledanchise, M.; and Ögren, P. 2017. Behavior Trees in
Robotics and AI: An Introduction. CoRR, abs/1709.00084.
Gemignani, G. 2021. Controlling an apparatus, e.g., a robot,
with a behavior tree. Patent Number EP 4040293A1.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.; Ram,
A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL -
The Planning Domain Definition Language. Technical re-
port, CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Giunchiglia, E.; Colledanchise, M.; Natale, L.; and Tac-
chella, A. 2019. Conditional Behavior Trees: Definition,
Executability, and Applications. In 2019 IEEE International
Conference on Systems, Man and Cybernetics (SMC), 1899–
1906.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26(1): 191–246.
Iovino, M.; Scukins, E.; Styrud, J.; Ögren, P.; and Smith,
C. 2022. A survey of Behavior Trees in robotics and AI.
Robotics and Autonomous Systems, 154: 104096.
Isla, D. 2005. Handling complexity in the Halo 2 AI. In
Game Developers Conference (Vol. 12), volume 12.
Köckemann, U. 2020. The AI Domain Definition Language
(AIDDL) for Integrated Systems. In KI 2020: Advances in
Artificial Intelligence, 348–352.
Marzinotto, A.; Colledanchise, M.; Smith, C.; and Ögren, P.
2014. Towards a unified behavior trees framework for robot
control. 2014 IEEE International Conference on Robotics
and Automation (ICRA), 5420–5427.
Nicolau, M.; Pérez-Liébana, D.; O’Neill, M.; and Brabazon,
A. 2017. Evolutionary Behavior Tree Approaches for Nav-
igating Platform Games. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 9: 227–238.
Ögren, P. 2012. Increasing Modularity of UAV Control Sys-
tems using Computer Game Behavior Trees. In Proceedings
of AIAA Guidance, Navigation, and Control Conference.
Sekhavat, Y. 2017. Behavior Trees for Computer Games.
International Journal on Artificial Intelligence Tools, 26.
Serbinowski, B.; and Johnson, T. T. 2022. BehaVerify: Ver-
ifying Temporal Logic Specifications for Behavior Trees. In
Proceedings of the 20th International Conference on Soft-
ware Engineering and Formal Methods (SEFM), 307–323.
Tenorth, M. 2016. Controlling process of robots having a
behavior tree architecture. Patent Number EP 3214510B1.

657

Yang, S.; Mao, X.; Wang, S.; and Bai, Y. 2021. Extending
Behavior Trees for Representing and Planning Robot Ad-
joint Actions in Partially Observable Environments. Journal
of Intelligent & Robotic Systems, 102(2): 36.
Yatapanage, N.; Winter, K.; and Zafar, S. 2010. Slicing be-
havior tree models for verification. In IFIP International
Conference on Theoretical Computer Science, 125–139.

658

