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Abstract

If a non-expert wants to program a robot manipulator he needs a natural inter-
face that does not require rigorous robot programming skills. Programming-by-
demonstration (PbD) is an approach which enables the user to program a robot
by simply showing the robot how to perform a desired task. In this approach,
the robot recognizes what task it should perform and learn how to perform it
by imitating the teacher.

One fundamental problem in imitation learning arises from the fact that
embodied agents often have different morphologies. Thus, a direct skill transfer
from human to a robot is not possible in the general case. Therefore, a system-
atic approach to PbD is needed, which takes the capabilities of the robot into
account–regarding both perception and body structure. In addition, the robot
should be able to learn from experience and improve over time. This raises the
question of how to determine the demonstrator’s goal or intentions. It is shown
that this is possible–to some degree–to infer from multiple demonstrations.

This thesis address the problem of generation of a reach-to-grasp motion
that produces the same results as a human demonstration. It is also of interest
to learn what parts of a demonstration provide important information about
the task.

The major contribution is the investigation of a next-state-planner using
a fuzzy time-modeling approach to reproduce a human demonstration on a
robot. It is shown that the proposed planner can generate executable robot
trajectories based on a generalization of multiple human demonstrations. The
notion of hand-states is used as a common motion language between the human
and the robot. It allows the robot to interpret the human motions as its own,
and it also synchronizes reaching with grasping. Other contributions include
the model-free learning of human to robot mapping, and how an imitation
metric can be used for reinforcement learning of new robot skills.

The experimental part of this thesis presents the implementation of PbD
of pick-and-place-tasks on different robotic hands/grippers. The different plat-
forms consist of manipulators and motion capturing devices.

Keywords: programming-by-demonstration, imitation learning, hand-state,
next-state-planner, fuzzy time-modeling approach.
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Chapter 1

Introduction

Today when the robotics community is finding more and more applications for
robots it would be beneficial to make these machines easier to use than it cur-
rently is. Since it would be hard to program such a general robot to anticipate
every possible situation or task it may encounter, the user must be able to in-
struct the robot in a natural and intuitive way, instead of to program it like
a computer programmer does. One such way is to instruct the robot what to
do using our own body language and knowledge of the task. For humans it is
easy to imitate a movement or a task shown, so one could assume that imita-
tion would be an easy task for state-of-the-art robots (nowadays), considering
computing power and sensors available today. However, a robot that is able to
learn new skills that we as humans consider to be simple has been very hard to
accomplish. It turns out to be very hard for a robot to acquire even elementary
skills by imitation, to quote Schaal [1999]:

“Interestingly, the apparently simple idea of imitation opened a
Pandora’s box of important computational questions in perceptual
motor control.”

The ability to imitate is very well developed in humans and some primates
but rarely found in other animals. And given a second thought–think of a pet–it
is not straight forward to just show your dog or cat how to fetch the newspaper.
So it should be no surprise that it has proven very hard to design a robot with
the same imitating capabilities as humans. But, it is an appealing thought to
have a robot to be able to learn from and improve upon human demonstration.
Therefore, there is a growing interest in robots that can be programmed just
by observing a task demonstrated to it. This is a scientific challenge for robotic
scientists. It would save much time otherwise spent on programming the robot.

A topic related to imitation is intention recognition. To understand the
user’s intention is a very difficult task and will not be addressed directly in
this thesis. Most of this thesis focus on how to perform learning from demon-
stration.

1
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1.1 Robot Programming

Biggs and MacDonald [2003] classified programming of industrial robots in
two categories: manual- or automatic programming. In manual programming
a text- or graphical interface control the robot. “Automatic programming”
means to automatically create the program that controls the motion executed
by the robot, thus, the user affects the robot’s behavior instead of the program.
The most common way to program an industrial robot is to guide the robot
manually using a teach pendant (an advanced joystick) or a similar device. It is
also possible to move the manipulator manually by hand to record joint posi-
tions and trajectories. This approach belongs to manual programming since the
programmer typically needs to manually (e.g., using a text editor) modify the
final trajectory, which allows the programmer to have extensive control over
the task.

The concept to simplify robot programming is the so-called Programming-
-by-Demonstration-paradigm, PbD, which enables the robot to imitate a task
shown by a teacher. The demonstration can be performed in several ways, by
manually guiding the robot, by teleoperating it with a remote control or by a
demonstrator performing the task without any interaction with the robot by a
so-called motion capturing system, which records human motions. Kuniyoshi
et al. [1994] was one of the earliest researchers considering the imitation pro-
gramming, where the user pursue the task in a “natural” way, not by guiding a
robot.

In a study by Asada et al. [2001], they approached the subject PbD in a
cognition context, where the robot should develop cognitive skills by imitating
humans.

1.2 Motivation

The motivation for the work described in this thesis is to develop new PbD
methods and improve existing ones in order to facilitate easy programming of
robotic manipulators. In industry, manipulators are part of automation lines
used mainly by companies that make high volume products or products that
require high repeatability in the assembling task. These automation solutions,
designed for high volume manufacturers, are typically both expensive and com-
plicated. Depending of the task the robot has to perform; the programming
process can be both difficult and time-consuming. Small and medium sized en-
terprises (SME) are unlikely to invest in an expensive robot and reprogram it
when their products change, unless the transition from assembling or handling
of one product to the other requires much less effort than performing the work
manually.

PbD provides simple programming of industrial robots, thus removes one
impediment for SMEs with small production series to automating their produc-
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tion. This is also important for large companies because even they may have an
internal structure of several SMEs.

When a robot acquires new knowledge using a pure machine learning strat-
egy, it most probably will be cumbersome to learn a task without prior knowl-
edge, if it is possible at all. Indeed, Schaal [1997] showed that PbD speeds up
certain types of machine learning problems.

Another reason for using learning from a demonstration by imitation is if
the expert’s knowledge for doing some task is not straight forward to put into
rules, or the rules get too complicated to deal with. In other words, the teacher
cannot explicitly tell the learner what it should learn.

1.3 Key Questions

There are five main problems involved in the general formulation of skill trans-
fer by imitation Nehaniv and Dautenhahn [2002]. These are who, when, what,
how to map and how to evaluate.

Who to imitate? This problem is about defining who is the teacher. In this the-
sis, the teacher is defined by who is wearing the motion capturing device.

When to imitate? This problem concerns when it is appropriate to imitate. In
this thesis, we address this question on a short time scale by judging what
parts of the trajectory that is important for a specific task.

What and how to map? These two questions involve how to create a mapping
from human body motions to robot motions, and what impact such ac-
tions have on the world. The morphological differences–the fact that the
demonstrator and the robot are not the same person–raises a correspon-
dence problem, which is a major challenge [Nehaniv and Dautenhahn,
2002]. These questions are of main interest in imitation research in gen-
eral, and addresse the actual execution of a skill or a task–the main scope
of this thesis–and the purpose of a task.

How to evaluate? Probably the hardest question to answer, since this means
to find a metric by which the robot can evaluate the performance of its
own actions. In this thesis we will use a predetermined metric, partially
derived from demonstration, for skill evaluation.

To record a trajectory with a motion capturing device and then replay it to
the manipulator might seem as an easy way to obtain the demonstrated mo-
tion. Compare this to recording a sound like music or a talk. The sound can
be replayed and exactly mimicked the original recording, but to claim that the
device that replays the recording can play music, talks or have a philosophi-
cal monolog is—to say the least–far fetched. Analogously, to replay a recorded
motion on a robot does not account for generalization capability, morphologi-
cal differences, noise or any other feature that machine leaning can provide the
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robot with; it only replays the motion. Furthermore, neither the motion cap-
turing nor the robot controller is perfect, thus, an exact reproduction becomes
impossible [Atkeson and Schaal, 1997].

The difference in the location of the human demonstrator and the robot
might force the robot into unreachable parts of the workspace or unreachable
arm configurations even if the demonstration is perfectly feasible from human
viewpoint. Thus, it is not possible to transfer the human task demonstration
directly as a desired motion trajectory for the robot. Instead, it serves as a
source of information about the target object as well as the basic properties of
the arm and hand motions during reach and grasp.

Other challenges stem from the robot’s lack of a theory of mind, thus, the
robot cannot know the intention of the user. However, from a series of demon-
strations performed with variation the robot can infer what part(s) of a demon-
stration seem to be important and what is of less importance. To give reaching
motions a meaning grasping is discussed in this thesis in the context of gener-
ating a reaching motion suitable for grasping. Reaching motions are a comple-
ment to grasping as they provide both hand-trajectory and a proper positioning
for the end-effector to perform a grasp.

Many articles discussed in this thesis concern reaching and pointing but not
grasping, and generally only investigates reaching in two dimensions. In this
context this thesis provides an extension since we consider all six dimensions
to position and orient the end-effector to execute a grasp.

1.4 Objectives

Our long term objective is to develop an architecture that makes instruction of
a robotic manipulators easy. It should be possible to teach the robot new basic
skills. These basic skills should then be used for the composition of novel tasks,
more complex than the basic skills. The initial skills, acquired from the teacher,
should also self-improve during operation and possibly become better than the
initial skill.

The short-term objective was to investigate how to use learning to control
a manipulator, using a motion capturing system. We consider simple opera-
tions such as pick-and-place first after the robot have learned some “basic”
skills like move-to-point (reaching). The aim of the work in this thesis is to
investigate learning of reaching skills and basic manipulation tasks from hu-
man demonstrations. One important benefit derived from the PbD method is
the humanlike appearance of the motion which implicitly also augments safety
since the motion is predictable to humans (in contrast to, e.g., time-optimal
motions).

The more specific objectives of this thesis include:

• To address the correspondence problem resulting from morphological dif-
ferences between the human and the robot.
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Figure 1.1: The imitation process in our approach.

• Enable skill transfer from humans to robots, despite morphological dif-
ferences.

• Preserve the key characteristics of human motion during the transfer into
robot motions.

• Find a skill description which is general enough to allow the robot to
learn from both human demonstrations and own experience in the same
modeling framework.

1.5 Our Approach to PbD

To illustrate the applicability of our approach the platform requires only hard-
ware available of-the-shelf: a general-purpose motion capturing system and an
industrial robot. Industrial manipulators are mature products and thus very re-
liable in operation. We use commercially available motion capturing systems
for the demonstration of motions from the teacher. We describe our approach
as an imitation process. This process, illustrated in figure 1.1, is the framework
that has evolved during our work. Each transition in this process is enumerated,
here are the explanations:

1. The human operator intends to do some task involving object manipu-
lation, thus having a target object within the task, such as “move object
A, from point B to C, in a way described by the trajectory D”. From the
start this target is hidden from the robot–and other humans–since it is
not observable. When the human performs the task a number of motion
primitives are activated.
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2. A motion primitive is a small unit of behavior that, for example, can
encode a part of a trajectory or a specific motion type such as “Move
down”. Several motion primitives are combined to perform a task, a skill
or just a motion.

3. The motion that the human performs is observable. A set of primitives–
underlying the human motion–can be used to encode the trajectory.

4. Some aspects of the target also become observable, such as which object
should be moved and, to some extend, in which way.

5. When the target can be observed, the robot has access to this knowledge.

6. In addition, the mirror neuron system, MNS, provides a link between the
human primitives and the robot primitives. The human side of the MNS
system has primitives encoded to fit the human motion.

7. In a similar way, primitives are encoded to fit the robot’s morphology. If
the observed motion is novel to the robot new primitives are created. i.e.,
a new primitive has been learned.

8. The target and the MNS together activate the primitives.

9. The final motion is executed by the robot’s own primitives.

1.6 Contributions

One of the main contributions of this thesis is the creation of a PbD architecture
on the basis of the following methods and approaches:

• We evaluate learning of a sensor mapping from a demonstration to a
robot manipulator without any knowledge of the demonstrator’s arm
configuration.

• We introduce of fuzzy time-modeling for encoding demonstrated trajec-
tories.

• In addition, we also introduce of distance dependent variability.

• We introduce an application of a next-state-planner based on the fuzzy-
clustering principle, which plans actions “on-the-fly” instead of complete
trajectories.

• We use the notation of hand-states applied to PbD, for a coherent de-
scription of prehension which synchronizes reaching and grasping.

• We show how a demonstration can speed up learning of a reaching task,
using reinforcement learning.

• A skill metric is introduced to adapt a skill to the morphology of the
robot, after the initial learning.
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1.7 Terminology

In the robot imitation literature terms often have different meanings in differ-
ent but similar contexts, especially when dealing with terms like “primitive”,
“skill” and “task”. To avoid confusions of terminology this thesis will use the
terminology listed below.

Primitive A primitive is a small unit of behavior. In this thesis a primitive refers
to the cluster centers that encode a motion, which is the smallest piece of
motion considered.

Skill A skill is encoded by a sequence of primitives, e.g., reaching for a cylin-
drical object.

Task A task is a sequence of skills such as pick-and-place.

1.8 Publications

The work in this thesis has been presented in a number of publications:

• Alexander Skoglund, Johan Tegin, Boyko Iliev and Rainer Palm Pro-
gramming-by-Demonstration of Reach to Grasp Tasks in Hand-State Spa-
ce Accepted for publication at 2009 International Conference on Ad-
vanced Robotics (ICAR 2009), Munich, Germany, June 22-26.

• Johan Tegin, Boyko Iliev, Alexander Skoglund, Danica Kragic and Jan
Wikander Real Life Grasping using an Under-actuated Robot Hand–
Simulation and Experiments Accepted for publication at 2009 Interna-
tional Conference on Advanced Robotics (ICAR 2009), Munich, Ger-
many, June 22-26.

• Alexander Skoglund, Boyko Iliev and Rainer Palm. A Hand State Ap-
proach to Imitation with a Next-State-Planner for Industrial Manipula-
tors Presented at 2008 International Conference on Cognitive Systems,
Karlsruhe, Germany, April 2-4. Will be published by Springer in the first
edition of the Springer series “Cognitive Systems Monographs”.

• Alexander Skoglund and Boyko Iliev. Programming By Demonstrating
Robots Task Primitives SERVO Magazine, December 2007. Not peer-
reviewed.

• Alexander Skoglund, Boyko Iliev, Bourhane Kadmiry and Rainer Palm.
Programming by Demonstration of Pick-and-Place Tasks for Industrial
Manipulators using Task Primitives Presented at 2007 IEEE International
Symposium on Computational Intelligence Robotics and Automation,
Jacksonville, Florida, June 20-23.
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• Alexander Skoglund, Tom Duckett, Boyko Iliev, Achim Lilienthal and
Rainer Palm. 2006 Teaching by Demonstration of Robotic Manipulators
in Non-Stationary Environments Presented at 2006 IEEE International
Conference on Robotics and Automation Orlando, Florida, US, May 15-
19.

• Alexander Skoglund, Rainer Palm and Tom Duckett. 2005 Towards a
Supervised Dyna-Q Application on a Robotic Manipulator Proc. SAIS-
SSLS 2005, 3rd Joint Workshop of the Swedish AI and Learning Systems
Societies, Västerås, Sweden, April 12-14.

• Jacopo Aleotti, Alexander Skoglund and Tom Duckett. 2004. Teaching
Position Control of a Robot Arm by Demonstration with a Wearable
Input Device Proceeding IMG04, International Conference on Intelligent
Manipulation and Grasping, Genoa, Italy, July 1-2.

1.9 Outline of the Thesis

The rest of this thesis is organized as follows:
Chapter 2 Methods in Imitation Learning We start with an overview of

the field of imitation learning and its application to PbD. This chapter reviews
methods related to the approach in this thesis.

Chapter 3 Supervised Learning in Programming-by-Demonstration This
chapter describes two approaches to PbD based on supervised learning. The
first is a prototype of a PbD system for position teaching of a robot manipu-
lator. This method does not require analytical modeling of neither the human
arm nor robot, and can be customized for different users and robots. A sec-
ond approach is also presented where a known task type is demonstrated and
interpreted using a set of skills. Skills are basic actions of the robot/gripper,
which can be executed in a sequence to form a complete a task. For modeling
and generation of the demonstrated trajectory a new method called fuzzy time-
modeling is used to encode motions, resulting in smooth and accurate motion
models.

Chapter 4 Trajectory Generation in Hand-State Space Here, we present
an approach to reproduce human demonstrations in a reach-to-grasp context.
The demonstration is represented in hand-state space, which is an object cen-
tered coordinate system. We control the way in which the robot approaches
the object by using the distance to the target object as a scheduling variable.
We formulate the controller that we deploy to execute the motion as a next-
state-planner. The planner produces an action from the current state instead of
planning the whole trajectory in advance which can be error prone in non-static
environments. The results have a direct application in PbD.

Chapter 5 Reinforcement Learning for Reaching Motions In this chapter we
investigate how demonstrations can be used to speed up learning of a reaching
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task, in a reinforcement learning framework. Hence, the usually slow reinforce-
ment learning is speed up by using the demonstration to guide the learning
agent. Furthermore, a developmental approach is presented which combines
the fuzzy modeling based next-state-planner from chapter 4 with reinforce-
ment learning. From an imitation metric, based on the hand-state error and
the success-rate in a reach to grasp task, the robot develops new skills from
executing a model of the observed motion.

Chapter 6 Conclusions This chapter concludes this thesis by a summary and
discussion. We also propose directions for future research.





Chapter 2

Imitation Learning

Imitation learning refers to the process of learning a task, skill or action by
observing someone else and reproduce it. This learning process should not be
confused with the concept of machine learning since the former uses the term
“learning” in a general sense while the latter is a collection name for algorithms
used to extract knowledge from data. Different machine learning techniques
can be (and are!) used as tools for imitation learning, such as instance-based
learning and reinforcement learning both applied by e.g., Atkeson and Schaal
[1997], and learning a set of rules [Ekvall and Kragic, 2006].

Programming-by-Demonstration (PbD) provides a natural way to program
robots by showing the desired task. PbD is an application of imitation learning
meaning that the robot must imitate the demonstrated motion by first inter-
preting the demonstration and then reproduce it with its own action repertoire.
There are three main benefits offered by PbD. Firstly, as robots become more
common for a specialized task, they are not yet suited as general purpose ma-
chines for everyday use. One of the main reasons is that they are difficult to
program. They require expert users to do this job while it should be as easy
as asking a colleague to help you. Secondly, imitation learning provides a re-
duced search space for machine learning algorithms, thus limiting complexity
and reducing time to learn a task. Finally, models of perception coupling and
actions, which are at the core of imitation learning could help us to understand
the underlying concepts of imitation in biological systems.

2.1 Programming by Demonstration Systems, An

Overview

In a general setting a PbD environment consists of a robot manipulator and a
motion capturing system. Methods and equipment are built on different princi-
ples. For example, the manipulator can be guided through kinesthetic demon-
stration which means that the teacher moves the manipulator manually while
the robot observes the joint angles of the arm [Calinon et al., 2007]. A similar

11
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Figure 2.1: Industrial manipulator programmed using a demonstration.

method is to guide the manipulator using a teach pendant or a joystick, which is
a common method in mobile robotics [Li and Duckett, 2005]. Another method
for data recording is to capture the motions of a human, while performing a
demonstration. However, this comes at the cost that the robot might not be able
to imitate the teacher because of differences in morphology and configuration.
Therefore, the teacher must be aware of this in order to produce a meaningful
demonstration. Going one step further is to only rely on robot vision to acquire
the demonstration 1 which typically suffers from occlusions and inaccuracy. In
the above data acquisition process there are two different ways to do imita-
tion. One way is to learn directly by imitating, which requires the imitation
capability to be there from the start. The other way is to observe the whole
demonstration first and make the imitation afterwards. Typically, the type of
task determines which approach is more applicable.

To shed some light on the roots of the PbD paradigm a brief history is pro-
vided. These papers represent a snapshot of state-of-the-art for their respective
time:

1984 Dufay and Latombe [1984] proposed a teaching approach based on sym-
bolic AI, where a symbolic planner generated a sequence of instructions.
They did not perform data capturing of the human motion, the joint po-
sitions of the robot and a force sensing wrist were instead used to capture
sensor data.

1994 Kuniyoshi et al. [1994] outlined a system with motion capturing sensors
that records the human in a natural posture. The robot reproduced the
recorded task.

2004 Tani et al. [2004] showed a strategy with phases for learning, action
and recognition, implemented on a humanoid robot for behavior control
taught with kinesthetic demonstrations.

1Several motion capturing systems are based on vision, however, these systems require the user
to wear some special makers or colors. A “true vision system” resembles biological vision systems
that do not require engineered environments or cameras distributed in the environment.
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Today’s research in imitation learning often address one or several of what
has been identified as key questions in imitation learning. These are five central
issues in imitation, elegantly identified by Dautenhahn and Nehaniv [2002b],
who dubbed them the “big five”. These are who, when, what, how to map to
imitate, and how to evaluate an imitation.

Who to imitate This problem concerns who is a good expert for building a
model and is linked with the general perception problem that robotics
generally deal with. Most studies in robotic imitation avoid or circum-
vent questions regarding “who to imitate” and if “the learner can be-
come the teacher”. By the nature of most motion capturing systems only
one person’s motions is recorded and per definition used for teaching.
In doing so, both the perception- and who problems are avoided. This
is the case for the experiments presented in this thesis. Given that there
are off-the-shelf products (such as BioStage from OrganicMotion2), offer-
ing markerfree motion capturing, the author believes that the computer
vision community will provide a solution to the perception problem in
restricted environment and usage very soon.

When to imitate This is about knowing how to distinguish when it is appro-
priate to imitate and when not. In the context of interaction, the robot
should also be able to distinguish a demonstration from irrelevant mo-
tions. Also, the robot should be able to know when to imitate on a short
time scale, e.g., the beginning of a motion or the end, or both.

What to imitate What was the purpose, or the goal, in performing an action?
This involves the problem of recognizing the intention of the action [Jan-
sen and Belpaeme, 2006]. In the context of reaching and grasping, it is
important to know what parts of a demonstration are relevant in order
to grasp an object. If an agent is skilled in interacting with the world,
imitation can be performed on this level.

How to map a demonstration into an imitation when the teacher and learner
have different morphologies, means that the correspondence between the
two has to be established. Consider, for example, a standard industrial
manipulator configuration, called “elbow up”, which is quite different
from the human arm with an “elbow down” configuration. If a direct
mapping of joint coordinates from the teacher to the imitator is made,
there will be a mismatch in joint coordinates since there is a difference in
morphology. Hence, a correspondence problem3 occurs in the case of a
mismatch between teacher and imitator.

To evaluate an imitation The ability to self-evaluate an imitation would enable
the robot to self-improve its skills obtained from demonstration. Several

2www.organicmotion.com
3In the literature on imitation this is known as “the correspondence problem”.
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researchers have suggested different metrics to evaluate the demonstra-
tion and clearly the metric is context-depended. While studies have ad-
dressed this issue in a task specific context, there is to the knowledge of
the author, no study yet to approach this question in a holistic manner.

2.2 Biologically Inspired Methods

Biological systems often serves as inspiration for approaches to robotic imita-
tion learning. Biologically inspired imitation systems are typically classified into
two groups: conceptual and connectionist models. The latter look at the biolog-
ical system at a neuron level–the actual neural mechanisms–and build systems
that are biologically plausible both in function and structure, thus usually uses
artificial neural networks. The former approach, conceptual modeling, looks
at the function of a biological system and builds artificial systems that mimic
the function of the biological counterpart. These models are typically based on
findings from, for example, neuroimagining studies, where an area is shown
to be associated with some phenomena. In the conceptual approach any ar-
tificial mechanism, for example, support vector machines or fuzzy modeling,
could be used without biological motivation. However, on a system level it has
equivalent properties as its biological counterpart. The approach that we will
describe later in this thesis, specifically chapter 4, is inspired from the mirror
neuron system, and follows that system model from a conceptual approach.

In nature, imitation occurs in many different ways. In evolutionary imita-
tion, for example, a harmless insect can evolve to look like some other poi-
sonous or dangerous insect. On the other side of the time spectrum is instan-
taneous behavioral imitation that parents are familiar with: “Don’t do like I
do. Do what I say!”–a strategy that is far from perfect. When a match occurs
between an observed motion and a motor action already existing in the ob-
server’s motor repertoire it is called response facilitation. According to Byrne
[2003], this is different from true imitation where a novel action is observed
and reproduced. Many robotic approaches to imitation do classification/recog-
nition of known skills, and should consequently be called “response facilitation
systems” instead of “imitation systems”. Response facilitation systems involve
the correspondence problem in which the mapping from the observed behavior
has to fit some existing motor action. However, from a task point of view a
new task can be performed by following a demonstration where only the basic
components of the task (the skills) are known beforehand.

A mirror neuron is a type of neuron that fires both when the subject ob-
serves a demonstration and when it performs the same action as the observed
[Rizzolatti et al., 1996]. Hence, the mirror neuron system provides a link from
visual input to motor actions in the context of reaching and grasping motions.
These neurons which are scattered over different areas of the brain were first
discovered in monkeys and later also in the human brain. It is not yet clear
if these neurons are what makes imitation possible or if they just participate
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in the motor reproduction of movements [Rizzolatti, 2005, Brass and Heyes,
2005].

Dautenhahn and Nehaniv [2002a] hypothesize that mirror neurons are na-
ture’s own solution to the correspondence problem, in that they are matching
mechanisms for mapping observations (visual input) to execution (motor out-
put). Zentall [2007] criticizes the mirror neuron hypothesis for being unclear
about the underlying mechanisms that makes these neurons fire.

Oztop and Arbib [2002] propose a functional model of the mechanisms
behind primate grasping. Furthermore, they introduce the Mirror Neuron Sys-
tem (MNS) model to explain the function of the MNS located in Brodmann’s
brain area F5, which is related to grasping. The model uses the notion of af-
fordances, defined as object features relevant to grasping. This suggests that
the mirror neuron system in F5 uses an internal representation of the action,
which is independent of who executed the action. In accordance to that, they
introduced the term hand-state defiend as a vector whose components repre-
sent the movement of the wrist relative to the location of the object and of the
hand shape relative to object’s affordances. Consequently, grasp motions are
modeled with hand-object relational trajectories as internal representations of
actions.

2.2.1 Architectures for Human Motions

Given a task such as picking up a cup and drinking, the human’s central ner-
vous system (CNS) can execute the task in infinitely many ways. However, de-
spite the number of possibilities human motions are highly stereotypical, both
across one individual performing the task several times and across a number of
individuals performing the same task. This has lead researchers to search for a
model that describes “human motion”.

Movement primitives have been proposed as small units of behavior on a
higher level than motor commands. By combining these primitives a full motor
repertoire can be executed, which is an attractive thought from a computa-
tional point of view. Evidence from neuroscience shows that that movement
primitives actually exist in nature [Bizzi et al., 1995]. They demonstrated that
only a small number of primitives are enough to encode a frog’s motor scheme,
where a small number of force fields represents the whole workspace of the
frog’s leg. In an artificial imitation framework, a motion primitive could be
symbolic description like “Move down” [Aleotti et al., 2004]. They can also
be described as parametric models of policies that in combination are capable
of achieving a complete movement behavior [Schaal, 1999]. In robotics it is
desirable to have a limited set of primitives that can be combined to arbitrary
tasks, either sequentially or in parallel. On a symbolic level (see section 2.4)
these primitives can either be predefined, discussed in chapter 3, or learned,
discussed in chapter 4.
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Bizzi et al. [1995] and Mussa-Ivaldi and Bizzi [2000] put forward the equi-
librium point hypothesis where modules in the spinal cord are viewed as com-
putational primitives for motion. From experimental studies on frogs where
electrical stimulation is applied to the premotor circuits in the spinal cord,
Bizzi et al. [1991] showed that these circuits are organized in a set of discrete
modules. Furthermore, Mussa-Ivaldi et al. [1994] showed that the principle of
vectorial summation can be applied to leg moments in frogs and rats, when two
of the modules are simultaneously stimulated. According to this hypothesis, a
motion trajectory is produced by temporal series of equilibrium points, called
“virtual trajectory”.

Wolpert and Ghahramani [2000] suggest the notion of internal models, or
inverse internal models, also called controllers, or behaviors. An internal model
is the central nervous system model of the mapping from a desired consequence
(sensory information) to an action (motor command). The opposite mapping
is the forward model or predictor predicting the consequence of an action.
Wolpert et al. [1998] hypothesized that the internal models are located in the
cerebellum and that an inverse model of the dynamics is learned when an object
is manipulated. Furthermore, Wolpert and Kawato [1998] proposed a modu-
lar approach to describe human motor learning and control, called MOSAIC
(MOdule Selection And Identification for Control).

Samejima et al. [2006] used MOSAIC to perform a swing up task for a sim-
ulated two link robot with one actuator. Four modules, each with a controller
and a predictor, were trained by observing the swing up task using a respon-
sibility signal which decides how much each module contribute to the final
control signal. To train the state prediction and control reinforcement learning
was used.

2.2.2 Characteristics of Human Motions

Often, robot trajectories are time optimal or planned to follow some joint
space restrictions, which may lead to trajectories that are unlike human mo-
tions. However, in many cases it is desirable to make robots moving humanlike
for two reasons. Firstly, if robots and humans shall interact, humans must be
able to predict the robot’s motions and thereby “intention”. This is a matter
of safety4 and comfort for the human operator. Secondly, to follow a demon-
strated motion it is desirable that the motions produced by the robot controller
have humanlike characteristics to conform with the original motion.

A number of specific characteristics which are all associated with human
motions can be modeled and applied to robots accordingly.

Fitts [1954] formulated a law describing the tradeoff between speed and
accuracy of the human hand motion in mathematical terms. It states that the
duration of a reaching motion to a target is related to the amplitude of the

4In todays factories robots must be placed behind fences.
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movement and the size of the target (the precision of the motion). For a reach-
to-target motion the amplitude is equal to the distance to the target at the start
of the motion. This relation is formulated by Fitts’ law as:

MT = a + b log2

(

2A

W

)

(2.1)

where MT is the duration of the motion, A is the amplitude of the motion,
equal to distance to the target at the start of the motion, W is the width of the
object and a and b are coefficients. By applying Fitts’ law, a robot can preserve
the equivalent duration of movement as from the observed demonstration and
compute an estimated movement duration.

Flash and Hogan [1985] investigated voluntary human arm movements.
The subject used a mechanical manipulandum (a passive robot) to record pla-
nar, multi-joint reaching motions. They described human motions mathemati-
cally as minimum jerk motions, which is the derivative of the acceleration. By
assigning a cost to each function the one with the lowest cost is selected. For a
one dimensional problem that is to minimize:

C(x(t)) =
1
tf

∫ tf

t0

...
x

2
dt (2.2)

where C is the cost, x(t) is the end-effector location as a function of time,
...
x is the jerk and t0 and tf are the times of start and reaching the final goal
respectively. This can be described as a control policy:

∆ẍd(t) =

(

−
60
D3 (xt − x̂(t)) −

36
D2 ẋd(t) −

9
D

ẍd(t)

)

∆ẋd(t) = ẍd(t) (2.3)

∆xd(t) = ẋd(t)

where D = tf−t the remaining time to reach the goal, xd is the desired location
at time t and x̂ is the current estimate of the end-effector location, adopted from
Shadmehr and Wise [2005]. Equation 2.3 computes the changes in acceleration,
velocity, and position as a function of its current position and the time being
left to reaching the goal, that is a next-state-planner, which will be described in
section 2.7.

By recording arc shaped drawing motions in a 2-dimensional plane (both
constrained and unconstrained), Lacquaniti et al. [1983] showed that the tan-
gential velocity of the human hand is dependent on the curvature of its move-
ment. More specifically, the velocity V(t) of the motion is dependent of the ra-
dius R(t) of the curvature at each segment where the relation can be described
by the the two-third power law:

V(t) = kR(t)1−β (2.4)
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where k is a gain factor and β ≈ 2/3 is the constant giving this relationship its
name.

When a human grasps an object and moves it to a final location, she per-
forms the movement so that she reaches the orientation of the end-state in a
most comfortable way. Rosenbaum et al. [1996] called this the end-state com-
fort. However, the end-state comfort does not apply when a subject first grasps
an object and transport it to some other location, and then grasp it again and
transport it back. Instead, the subject remembers the end-effectors posture at
the end-state and applies this posture instead of what would be the end-state
comfort posture [Weigelt et al., 2007]. This can be applied in robotics, for
reaching motions as a check that the desired end-state is kinematically reach-
able, which provides an early detection of failure. The fact that a subject re-
members the grasp pose can be applied in robotics as storing a successful grasp
pose for later re-execution. Similarly, when a grasp fails the corresponding pose
might be discarded or enlisted as a “bad pose” for this grasp type or object.

For goal directed motions Harris and Wolpert [1998] suggested the min-
imum variance hypothesis, which incorporates several features of the human
movement into one framework. The minimum variance hypothesis states that
the variance of the end-effector position should be minimized over multiple tri-
als. This results in smooth (minimum jerk) motions. The variance of a motion
is a cost function during the post-movement period:

Cvariance =

T+N−1
∑

t=T+1

V(t) (2.5)

where V(t) is the positional variance at time t, T is the time at the goal state
and N is the post-movement period. This hypothesis explains several observed
properties of human reaching, including Fitt’s law, two-third power law, and
the bell shaped velocity profiles which all are characteristics of human motions.

Simmons and Demiris [2005] have implemented a minimum variance con-
troller for a robotic arm. They used a planar fully actuated two link arm to
perform reaching motion. They showed that the minimun variance model not
only describes characteristics of human arm movements, but also allowed a
robot move in a humanlike way.

Instead of applying a model that resembles humanlikeness, Rigotti et al.
[2001] used a neural network trained from human motions from a motion cap-
turing system to drive an avatar, i.e., a human model. This technique can be
translated to control a robot manipulator, thus moving in a humanlike way.
The advantage of such an approach is the use of real digitalized human mo-
tions to drive the model instead of applying a model derived from empirical
data. By imitating the actual recorded motion the regenerated motion will pre-
serve some human characteristics. As discussed is the introduction in chapter 1,
to simply play back the recorded trajectory is inappropriate for several reasons:
different structures (correspondence problem), noisy data and no possibility to
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generalize to new situations. However, the correspondence problem (see sec-
tion 2.1) need to be addressed, since humans and robots have different body
configurations. They used a model of the human that was designed to fit the hu-
man morphology, thus, they could ignore the correspondence problem in their
study.

2.3 Segmentation of Motion Trajectories

Since both empirical and theoretical evidence suggests that rhythmic motions
are different from discrete motions [Huys et al., 2008], we consider only the
latter one in this thesis. To reproduce a complete demonstration it is necessary
to segment the demonstration into a set of discrete motions. Another important
reason for having a segmentation process is to determine if a motion is goal-
directed, i.e., in relation to some object or point. The reference frame can either
be an absolute frame, a relative frame to some object (hand-state space), or to
reproduce some motion pattern, for example, a gesture.

Fod et al. [2002] outlined and compared two techniques for automatic
segmentation of recored motions. Four joint angles of a human subject were
recorded and segmented. The first segmentation technique used the angular ve-
locity of each joint to detect zero velocity crossings. The second segmentation
technique used the sum of all measured angular velocities. A motion was then
defined as the segment above a threshold.

Ehrenmann et al. [2002] used a sensor fusion approach for trajectory seg-
mentation. A segmentation point in time is identified by analyzing the force
from a force sensor (mounted on the fingertip) together with the position, ve-
locity, and acceleration with respect to a minima.

Another simple and effective way to segment manipulation demonstrations
is measuring the mean squared velocity of the demonstrator’s end-effector [Skog-
lund et al., 2007]. This technique is equivalent to the one developed by Fod
et al. [2002], but instead of using the mean squared velocity of the joints an-
gles, the end-effector’s velocity were used.

2.4 Imitation Levels

Imitation can occur at different levels. Robotics research on imitation learning
can be put into four categories:

Task level Also called symbolic level or high level. The task level represents a
skill as a sequence of symbolic actions, e.g., [Ekvall and Kragic, 2006]
and [Pardowitz et al., 2007]. Typically this approach uses classification
techniques to identify a set of predefined actions within a demonstration.
The advantage is that once the sequence of actions is recognized in the
demonstration the robot maps these to its own actions, which typically
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are preprogrammed so that the robot actually can execute the task. How-
ever, if an action cannot be classified, it is usually hard to build a new
action from the demonstration within this framework.

Trajectory level This refers to when the demonstrated trajectory is mapped into
a robot trajectory, e.g., [Ijspeert et al., 2003]. This approach typically con-
cerns the correspondence problem that is, how to perform the mapping
from human to robot. New, previously unseen actions are encoded into
new robot actions (or primitives). Using this approach it is hard to com-
bine actions in a sequence and reason about in what order they should
occur or what the intention of a particular movement is.

Goal level Means when the goal of an action is inferred from action observa-
tion to acquire knowledge of what task to perform [Cuijpers et al., 2006].
Typically, the robot has a priori knowledge on how to perform an action
(as in the Task level approach).

Model-based level Is when a predictive model of the world is learned, such as
model based reinforcement learning discussed in chapter 5. Schaal [1997]
showed that this type of learning greatly benefits from demonstrations in
contrast to other reinforcement learning approaches. This approach is
related to “predictive forward models”, discussed in section 2.2.1.

We will elaborate on the task- and trajectory levels of imitation since they
are important to the subsequent chapters of this thesis. The goal based level
is not considered in this thesis. In task encoding of a skill the segmentation
of a demonstration is one of the most important steps. Each of the segments
should be encoded into a predefined action. Each of these actions has a sym-
bolic description (e.g., “grasp object”). Symbolic descriptions represent a task
as sequence or graph where each node is a skill. This representation is the
main advantage of a symbolic description. The main drawback is that symbolic
descriptions require predefined actions, which instead would be more advanta-
geous to learn, since situations might occur where the predefined actions cannot
execute the task adequately.

A common approach to make an abstract representation of a task is to
form a hierarchical tree [Aleotti et al., 2004, Dillmann, 2004]. A set of skills
can execute the task at the top of the hierarcy. Each skill is in turn decomposed
into a set of movement- or action-primitives, also called elementary actions or
basic tasks. Ultimately, a finite set of well designed movement primitives should
be able to generate an arbitrary skill.

Like other task-based approaches, Ekvall and Kragic [2006] viewed a de-
monstrated task as a composite of specific actions. In addition they also took
the impact of an action onto the current world state, thus effectively combining
the goal with the task level. For example, besides the action an object position
was taken into account which enabled a similarity measure of effects on the
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world state. An important point was to determine if the change of position of
an object were absolute or relative by computing the minimum variance with
respect to other objects:

relobji = argmin
∀ j moved

|cov(xi − xj)| (2.6)

where xi is the position of object i.
For trajectory encoding several different methods has been proposed. They

will only be briefly reviewed here since we use a different method: fuzzy mod-
eling in combination with a next-state-planner.

From a stereo vision system Ude [1993] recorded demonstrated trajectories.
The output from the vision processing was a list of discrete points describing
the object’s trajectory during a demonstration with a high level of noise. From
the noisy data, splines were used leading to smooth trajectories that a simulated
robot could follow.

From a set of demonstrated trajetories, Aleotti and Caselli [2006] used dis-
tance clustering to group those trajectories that correspond to “macro-move-
ments” representing qualitatively different executions of the demonstration.
The proposed technique is a combination of Hidden Markov Models (HMM)
for trajectory selection and Non-Uniform Rational B-Splines (NURBS) for tra-
jectory encoding. The HMM distance clustering prevents all demonstrations
from being fused into one average model, thus risking obstacle collision.

By combining Gaussian Mixture Regression with Gaussian Mixture Mod-
els, Calinon et al. [2007] encoded both the trajectory and the variability (see
section 2.5) into a single coding scheme. The trajectory encoding used mean
vectors and covariance matrices at selected points. This results in smoother
average trajectory, where all demonstrations are fused into an average.

To encode a demonstrated trajectory, Ijspeert et al. [2002] used a set of
Gaussian kernel functions, where each kernel is:

Ψi = exp(−
1

2σ2
i

(x̃ − c)2) (2.7)

where x̃ is the distance to the goal, σ is the width of the Gaussian distribution
and c the position. Locally weighted learning was used to find the weights
wi which minimize the criterion Ji =

∑

t Ψt
i(u

t
des − ut

i), where udes is the
desired output. This output is the difference udes = ẏdemo − z, between the
demonstrated trajectory ydemo and the internal state variable z.

Compared to the above approaches, Kuniyoshi et al. [2003] proposed a
quite different trajectory encoding in a self-learning task. A robot explored dif-
ferent motion patterns and observed its own actions with a camera. An optical
flow was generated with 12 directions for each of the 400 points from a 256-
by-256 image. To encode the motions a set of Gaussians with binary activation
represents the joint angles. The mapping from the visual input to the motor
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output was fed to a non-monotonic neural network as a temporal sequence.
A non-monotonic neural network can encode a temporal sequence instead of
a static point, hence, the network can learn a trajectory. After the robot have
leaned the vision-motor association, it could imitate a demonstrator’s arm ac-
tion by performing similar arm actions.

2.5 Performance Metrics in Imitation

One must take into account the nature of the skill to be learned, as Dawkins
[2006, chapter 6, page 224] describes “digital” and “analog” skills distin-
guished by how they are performed. In analog skills, a trajectory is learned
by making a copy of the teacher’s motion. An example of an analog skill could
be dancing where a specific goal is missing. In such a case, it is hard to formu-
late some evaluation metric other than the teacher’s motion. In digital skills,
the motion must have a specific goal, such as in a reaching task or hammering.
The goal of a reaching task is to reach a point, despite the initial position of the
hand. When hammering, the nail should be driven in despite how many hits it
takes.

To the knowledge of the author, there is no study on how to distinguish dig-
ital from analog skills. The two kinds of skills need different evaluation meth-
ods. The objective of an analog skill (such as gestures) is to minimize the differ-
ence between the observed action and the executed action, an issue addressed
by several authors including Kuniyoshi et al. [2003], Billard et al. [2004] and
Lopes and Santos-Victor [2007]. For digital skills a different measure is needed,
usually also including world state since these skills often are object and goal
state dependent, addressed for example by Erlhagen et al. [2006] and Jansen
and Belpaeme [2006].

It is possible to infer the metric of a skill, meaning the constraint, from sev-
eral demonstrations with a slight variation. By applying some statistical method
on the data set, the essential parts of the demonstration can be identified and
constraints on the motion can be applied in this region while other regions with
less or no constraints can vary.

To apply a Jordan curve theorem at least two demonstrations are needed
[Delson and West, 1994]. From two demonstrations, it is possible to determine
the outer boundaries in a two dimensional task. As new demonstrations add
more data to the data set, the task boundaries might be extended. A drawback
of this approach is if there are two possible ways to go around an obstacle, and
the demonstrator shows both so that the obstacle is within the boundaries.

Calinon et al. [2007] made generalizations across several demonstrations
by measuring variance and correlation information of joint angles, hand path
and object-hand relation. To have access to all this information the robot was
thought by kinesthesis, i.e., the teacher moves the limbs of the robot, while the
robot records temporal and spatial information. This metric was then used to
analytically find an optimal controller. The use of an average trajectory could
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be problematic for obstacles (like with the above mentioned Jordan curve) if
different types of demonstrations will be fused into one with a higher variance.

Pardowitz et al. [2007] fused several sensor modalities (voice besides from
motions) and looked at the frequency that some features occur across sev-
eral demonstrations to form a relevance measure for each feature. A weight-
ing mechanism enables the system to cope with both sparse knowledge at the
initial learning phase and adapts when more knowledge arrives through new
demonstrations.

On a symbolic level Ekvall and Kragic [2006] builds a list of constraints
describing in what order states should occur. Initially, all actions are constrained
to the orders in which they were demonstrated. As more demonstrations are
appended, the list is updated to remove contradicting constraints.

2.6 Imitation Space

Skills can encode human movements in different spaces: joint space [Fod et al.,
2002], Cartesian space [Dillmann, 2004], torque space [Yamane and Naka-
mura, 2003], visual coordinates [Lopes and Santos-Victor, 2007] or and even a
combination [Kuniyoshi et al., 2003]. Here, we introduce hand-state space and
its application in PbD.

As a part of the MNS model, Oztop and Arbib [2002] introduced the con-
cept of hand-state, which stems from research in neurophysiology, more specif-
ically schema theory. A hand-state trajectory describes the evolution of the
hand’s pose and shape (finger configurations) in relation to the target object.
That is, it encodes the goal-directed motion of the hand during reach-and-
grasp. Thus, when a robot tries to imitate an observed grasp, it has to move
its own hand so that it follows a hand-state trajectory similar to the one of the
demonstration.

Recent experimental evidence by Ahmed et al. [2008] support the idea that
the brain encodes motion in object coordinates, i.e., hand-state, as well as in
Cartesian space. They suggest that the brain represents a new object first in an
arm-centered space, but that this representation develops into the hand-state
representation as the subject gains experience with the manipulated object.

The hand-state describes the configuration of the hand and its geometrical
relation to the affordances of the target object. Thus, the hand-state H and its
components are defined as:

H = [h1 ... hk−1, hk ... hp] (2.8)

where h1 to hk−1 are hand-specific components, and hk to hp are components
describing the hand pose with respect to the object. The combination of hand-
specific components and hand pose components distinguish the hand-state from
other similar descriptions introduced by other authors such as [Ogawara et al.,
2003, Liebermann and Breazeal, 2004, Ekvall, 2007, Calinon et al., 2007]. In
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a PbD context Iliev et al. [2007] was the fist to consider the hand-state space
and Skoglund et al. [2008] elaborated this work.

The formulation of the hand-state (equation 2.8) allows the representation
of motions in terms of hand-state trajectories. Note that the hand-state com-
ponents are specific to the hand’s kinematic structure and the definition of the
object affordances. This means that some hand-state components will be de-
fined differently for different grasp types since they involve different object af-
fordances. For robots imitating humans, we have to define H in such way that
it matches the capabilities of particular types of end-effectors, e.g., dexterous
robot hands, two-finger grippers, as well as the human hand.

We apply the hand-state concept in the work covered in chapter 4, which
also describes the application in more detail.

2.7 Next-State-Planners

A next-state-planner (NSP) plans a motor action one step ahead given its cur-
rent state. This is in contrast to traditional approaches for robots where the
complete trajectory is pre-planned all the way to the target and then executed
by the controller. The NSP approach is consistent with the equilibrium point hy-
pothesis [Bizzi et al., 1995] in that a target position acts as an attractor point.
The planner requires the current state to be known at each step as well as a
control policy. The trajectory that the robot executes is generated by a control
policy, commonly known as the dynamic system approach [Ijspeert et al., 2001,
Iossifidis and Schöner, 2004, Tani et al., 2004, Erlhagen and Bicho, 2006, Her-
sch and Billard, 2008]. In this thesis we use the term “next-state-planner”, as
defined by Shadmehr and Wise [2005], because it emphasizes on the next-state-
planning ability, and the alternative term “dynamic system” is very general.

One of the earliest next-state-planners is the VITE (Vector Integration To
Endpoint), developed by Bullock and Grossberg [1989]. The VITE model is
described by the two equations:

ẍ(t + 1) = α(−ẋ(t) + xg − x(t)) (2.9)

ẋ(t + 1) = ẋ(t) + ẍ(t)

where ẍ is the acceleration, α a positive constant and xg − x a difference vector
between the goal and the current state, where the position of the end-effector
at time t is given by x and the goal position is xg.

Hersch and Billard [2008] proposed a combined controller with two VITE
controllers running in parallel, to control a humanoid’s reaching motion, with
one controller acting in joint space and the other one in Cartesian space. Hersch
et al. [2006] applied the VITE inspired controllers in a PbD framework where
a humanoid robot executed a “put an object in a box” task. The data was
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recorded using kinesthetic demonstrations. To weight the demonstrated trajec-
tory against the trajectory produced by the next-state-planner a time dependent
factor γ(t) was used:

γ(t) = γ0max(((T − t)/T)2, 0) (2.10)

where T is the duration of the observed motion and γ0 is a gain. The desired
velocity ẋd was determined by:

ẋd(t + 1) = γ(t)ẋ(t) + (γ0 − γ(t))ẋo(t) (2.11)

where ẋo is the demonstrated velocity and ẋ is the actual velocity.
Several alternative NSPs have been suggested for different purposes. Ijspeert

used two different dynamical systems as NSPs, one for a rhythmic motion and
one for a discrete reaching task [Ijspeert et al., 2002, 2003].

Ito et al. [2006] introduced the recurrent neural network with parameter
basis (RNNPB) where a dynamical system–acting as a NSP–is learned by the
network. The network learned several behaviors through kinesthetic demon-
strations, where the network encoded different behaviors using the parameter
biases. This was tested for a humanoid robot with two 4 DOFs arms in a ball
handling task, where the behaviors switched between rolling and lifting the
ball.

2.8 Other Approaches to Imitation

There are other approaches to imitation learning, which deserve a brief expla-
nation. They have not been explicitly addressed in this chapter, since they have
little connection to the rest of this thesis.

Criticism to methods relaying on several demonstrations states that it is
inadequate for the user and causes fatigue. In contrast, Friedrich et al. [1996]
and Aleotti [2006] used one-shot learning. One-short-learning usually requires
prior knowledge of the task, since without such knowledge it is hard to estimate
essential parts of the demonstration which can lead to ambiguities [Ogawara
et al., 2003]. It is desirable that there should be no prior knowledge and the
required knowledge should be acquired from a demonstration. Thus, several
demonstrations are typically needed.

Incremental learning is a unification of one-shot learning from multiple
demonstrations in that it starts learning from the first demonstration and then
continues. This leads to a learning process that gradually improves as more and
more demonstrations are observed.

If the demonstration and the actions executed by the robot can be repre-
sented in some common domain, such as the hand-state space, and the robot
has access to a performance metric of the task, then the robot can self-improve.
This means that initially the learning agent watches the teacher performing the
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task, and after some time the agent starts to perform the task itself. To improve
the model, the agent evaluates its own performance after the initial trials in the
same way as the teacher is evaluated. This approach is illustrated by Bentivegna
et al. [2004], who conducted experiments with a humanoid robot that learned
to play air hockey. The task was represented using a predefined set of move-
ment primitives, that could both be observed in the human demonstration and
executed by the robot. As a learning mechanism locally weighted learning was
used to first learn from observing the teacher and then from self-observation.
This approach falls under the model-based learning category as a model of the
environment is learned.

2.9 Summary and Proposed Improvements

This chapter has reviewed PbD systems, their general functions and discussed
drawbacks of existing methods. We have reviewed the key problems in imita-
tion learning and have also discussed how to address them. We have identified
topics of special interest: how to map a human demonstration to a robot; and
what to imitate. We have also covered the subject of evaluating an imitation in
terms of a performance metric. Characteristics of human motions, i.e., how to
generate motions that are humanlike, have also been discussed and how they
can be used as a performance metric. Typically, robotic imitation occurs in one
of two levels: task or trajectory (high level or low level). One of the open is-
sues in robotic imitation is how to combine these two levels within a single
framework.

To address the identified problems and drawbacks of existing methods the
rest of this thesis contain proposed improvements corresponding to the follow-
ing list:

• A reversed learning algorithm to learn a model-free mapping from human
to robot, explained in chapter 3.

• Use of recorded human motions to drive a robot in a humanlike way
discussed in chapter 3 and 4.

• Application of a mathematical model that describes some characteristics
of human motions (Fitts’ law), chapter 4.

• As a novel approach of encoding demonstrated trajectories, fuzzy model-
ing is presented in chapter 3.

• A next-state-planner, based on the fuzzy modeling approach is used to
execute the imitated task, discussed in detail in chapter 4.

• To provide a link between the human and the robot in the PbD frame-
work, the hand-state notion is applied, discussed in chapter 4.
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• How demonstrations can speed up reinforcement learning for a reaching
task, discussed in chapter 5.

• How demonstrated skills can become new skills in the action repertoire of
the robot using the hand-state space and minimum jerk as a performance
metric, discussed in chapter 5.





Chapter 3

Supervised Learning in

Programming-by-

Demonstration

In this chapter, supervised learning methods are introduced and applied to po-
sition teaching by demonstration as well as task learning from demonstration
using skills. Position teaching by demonstration deals with supervised learn-
ing of robot positioning with the help of a human a demonstrator. The ap-
proach presented in section 3.2 is different from most work on Programming-
by-Demonstration (PbD) in that the human first imitates the robot, so that
the robot can build a user specific model for positioning the end-effector. The
method does not require any analytical modeling of neither the human nor the
robot and can be customized for different users and robots. An experiment us-
ing this approach is presented in section 3.2.3. The setup consists of a wearable
motion capturing device and a light weight manipulator.

A method for task learning from demonstration using skills is described in
section 3.3. Skills are basic actions of the robot/gripper, which the robot/gripper
can execute in a sequence to form a complete task. It includes how a demon-
stration of a pick-and-place task could be interpreted and mapped to a set of
predefined basic skills (in our previous work referred to as “task primitives”).
The demonstration is interpreted by a set of skills for a known type of task, then
a robot program is automatically generated. A pick-and-place task is analyzed
based on the velocity profile, and decomposed into skills. To illustrate the ap-
proach, we carried out an experiment using an industrial manipulator equipped
with a vacuum gripper. The demonstration is captured using a magnetic tracker
and a motion capturing glove, and modeled using fuzzy time-modeling.

29
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Fuzzy time-modeling is based on Takagi-Sugeno modeling which we use
to model the demonstrated trajectories and to generate robot trajectories. In
section 3.1.3 Takagi-Sugeno fuzzy-modeling is introduced. We show that this
modeling produces very compact models and results in smooth and accurate
motion trajectories.

The contributions presented in this chapter are:

1. A method for model free mapping of positions from a human demonstra-
tion to a robot manipulator. “Model free” means that no knowledge of
the demonstrator’s arm configuration is required.

2. The introduction of time-clustering for modeling trajectories captured
from human demonstration.

3.1 Supervised Learning

Supervised learning includes techniques that provide a learning agent with in-
formation on how to perform a certain task. Supervised learning requires some-
kind of teacher, providing the agent with a target output vector yi, which is the
desired output, for each input vector xi, where i ∈ {1, 2, . . . , n}. The agent’s
objective is to form an input-output mapping ŷ = F(x), where ŷ is the predicted
output, which minimizes the error E for a given training set. E is the sum of
prediction errors:

E =
∑

‖ŷ − F(x)‖ (3.1)

To confirm that the agent has been trained to perform the intended task a
test set is provided for validation. The test set is a data set different from the
training set.

3.1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are among the most well-known and well-
used learning methods that were developed to imitate the function of neurons
in the brain. An ANN consists of computing neurons and connections be-
tween them with weights assigned to each connection. This is true for all types
of ANNs. However, the similarities between different types of networks ends
there. Commonly used networks like a multilayer feedforward network, do not
always provide the solution to the problem at hand. Hence, much research has
been done on different network structures during the last few decades. Research
on neural networks has resulted in numerous different types, each with its own
characteristics and features. Multilayer feedforward neural networks (MLFF)
are among the most commonly used ones.
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Figure 3.1: A multilayer feedforward neural network with one input layer (usually not
counted) two layers of perceptions, and one output layer with only one unit. This type
of network is usually named “two layer MLFF neural network”, because it has two
layers of operating units.

Multilayer Feedforward Networks

In the fully connected multilayer feedforward neural network, each input unit
is connected to all neurons in the next layer. The layer without any direct con-
nections to the input or output is called the hidden layer. All connections have
an associated weight to it, a value usually between −1 and 1, where a value
close to 0 indicates a weak connection, and a value close to −1 or 1 indicates
either a strong negative or positive connection respectively. First, each neuron
sums all the inputs multiplied by their respective weights. The weight for each
connection is denoted by wk

ij where i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m}, n is
the number of input nodes and m the number of output nodes for the kth layer,
with k ∈ {1, 2, . . . , l}. Typically, k is a small number, e.g., 1 or 2. The sum is
then:

sk
i =

∑

j

wk
ijx

k
i + wk

0j (3.2)

where wk
0j is a bias term. Then, an activation function denoted by g() is used,

also called a transfer function or squashing function, typically a sigmoidal func-
tion, often implemented by:

gi(si) =
1

1 + e−si
(3.3)

or:

gi(si) = tanh(si) (3.4)

which both produce a smooth step output around si = 0, from 0 to 1 and −1 to
1, respectively. Other common types of activation functions are step functions
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and linear functions. Figure 3.1 shows a feedforward network with two input
units with the input values x1 and x2. Each layer is first computed according
to equation 3.2, and then the output of each neuron is calculated by a transfer
function (equation 3.3 or 3.4). The output of a neuron becomes the input to
the next layer.

To train the network, i.e., to tune the weights so they minimize the error, the
most commonly used method is the backpropagation algorithm. In this algo-
rithm, the error is back-propagated layer by layer and the weights are adjusted
to decrease the error at each iteration of training.

3.1.2 Memory-Based Learning

Memory based learning (MBL), also known as “instance based learning” or
“lazy learning”, can be used for function approximation, summarized by Mitch-
ell [1997, chapter 8]. Compared to other learning methods, for example, the
multilayer feedforward network described earlier, the memory-based techniques
generally do not require an explicit training step. Instead, they simply store each
given training example. The absence of an explicit training phase has made
MBL methods fast in training time, but slow on query time, since the general-
ization is postponed until a query is given. This is why these methods are often
called “lazy”. The names “instance based” and “memory-based” refer to the
fact that all the training samples are stored. Memory-based methods, in gen-
eral, have the property of never unlearning. A problem that most MBL methods
share is that the query time grows as the number of data points increases.

Minimum Distance Classifier

Using a Minimum Distance Classifier method; the mean vectors are calculated
for each class in the training data. The squared Euclidean distance to each of
the mean vectors is calculated to classify a new input vector, and the vector is
assigned to the class with the shortest distance.

Equivalently, the decision function for a minimum distance classifier can be
written as:

dj(x) = xT mj −
1
2

mT
j mj (3.5)

where x is the pattern vector to be classified, and mj is the mean vector for
class j. Classification is then determined by the class that produces the highest
decision value.

Distance Weighted Nearest Neighbour

The distance weighted nearest neighbor (DWNN) method is one of the most
fundamental MBL methods, which assigns a weight to all training points based
on a distance measure, for example, the Euclidean distance:
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w = dE(x, q) =

√

∑

j

(xj − qj)2 (3.6)

where q is the query point, x are the training vectors, and j is the number
of elements in the vectors x and q. This means that each data point has a
weight, denoted w, based on the distance, which measures its contribution to
the prediction. All selected points are then combined in a weighted sum to form
the prediction:

ŷ =

∑k
i=1 wixi

∑k
i=1 wi

(3.7)

where ŷ is the predicted output, and k is the number of training vectors.

Locally Weighted Learning

A further development of the distance weighted nearest neighbour method is
locally weighted learning (LWL), surveyed by Atkeson et al. [1997a,b]. Like
DWNN, LWL is a memory based method but instead of just using the distance
measure a weighting kernel function also included that require tuning, making
it a more sophisticated algorithm.

LWL has shown to scale well to problems with high dimensionality [Schaal
et al., 2001, 2002]. In many real world examples the number of dimensions
is very high, however, only small fractions contain useful data. Vijayakumar
et al. [2005] interpret this as evidence that, despite the often high number of
variables, the real dimension is lower. This can be illustrated by an example:
when looking at one pixel in a picture of a natural scene, the surrounding pixels
are often very similar. That is, the picture contains redundant information, and
therefore the picture can be compressed. The same argument is also valid for
the human body posture.

LWL is very well suited as a function approximator for reinforcement learn-
ing, which means an approximation of the output, a scalar value denoted by y,
with an approximation ŷ, based on known input vectors x. The inputs x, can
be of higher dimension, denoted by the bold notation {x1, x2, . . . , xn}, while
the output is a scalar, denoted {y1, y2, . . . , yn}, and n is the number of training
samples.

If different dimensions have different measures they might have to be scaled.
This scaling is necessary, for example, when an approximation of both states
and actions are needed, but the states and actions are of different measures. For
example, the state could be the individual joint angles of a manipulator while
the actions are the joint’s velocity. A distance measure is applied to assign dif-
ferent weights to different dimensions, which are known as scaling the query
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point q. An important note is that this is done for each input dimension. Differ-
ent distance functions can be used for this scaling, for example, the unweighted
Euclidean distance, equation 3.6, or the diagonally weighted Euclidean dis-
tance:

dm(x, q) =

√

∑

j

(mj(xj − qj))2 (3.8)

Using a scaling factor of zero does not mean that dimensions are ignored in
LWL. For dimensionality reduction principal component analysis or singular
value decomposition should be used instead.

Each data point is then weighted using a kernel function, denoted by K(),
that uses the result from the distance function d(xi, q). This is similar to the
weighting function earlier described in the DWNN method. There are several
different options when choosing a kernel function for the weighting, such as:
distance to a negative power, K(d) = 1

dp , Gaussian kernel, K(d) = e−d2
etc.

The output prediction is then formed by:

ŷ(q) =

∑

yiK(d(xi, q))
∑

K(d(xi, q))
(3.9)

Again, d() is the distance metric, K(d) is the kernel function and yi the output
for the query point.

Locally Weighted Regression Projection

Locally Weighted Regression Projection (LWPR), developed by Vijayakumar
et al. [2005], is an extension of the LWL algorithm in which LWPR does not
explicitly store training data, hence, is not a memory based algorithm anymore.
In LWPR statistics are used instead of storing all the data points, so the learning
is accumulated in statistical variables. This makes LWPR well suited for incre-
mental learning. A forgetting factor is also incorporated into the algorithm to
forget older data, another important feature of incremental learning strategies.
Another advantage LWPR has over LWL is the automatic distance metric adap-
tation, instead of the a fixed distance metric D.

3.1.3 Fuzzy Modeling

Takagi and Sugeno [1985] proposed a structure for fuzzy modeling of input-
output data of dynamical systems. Let X be the input data set and Y be the
output data set of the system with their elements x ∈ X and y ∈ Y. The fuzzy
model is composed of a set of c rules R from which rule Ri reads:

Rule i : IF x IS Xi THEN y = Aix + Bi (3.10)
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Figure 3.2: Time-clustering principle.

Xi denotes the i:th fuzzy region in the fuzzy state space. Each fuzzy region Xi

is defussified by a fuzzy set
∫

wxi
(x)|x of a standard triangular, trapezoidal, or

bell shaped type. Wi ∈ Xi denotes the fuzzy value that x takes in the i:th fuzzy
region Xi. Ai and Bi are fixed parameters of the local linear equation on the
right hand side of equation 3.10.

The variable wi(x) is also called degree of membership of x in Xi. The
output from rule i is the computed by:

y = wi(x)(Aix + Bi) (3.11)

A composition of all rules R1 . . . Rc results in a summation over all outputs from
equation 3.11:

y =

c
∑

i=1

wi(x)(Aix + Bi) (3.12)

where wi(x) ∈ [0, 1] and
∑c

i=1 wi(x) = 1.
The fuzzy region Xi and the membership function wi can be determined

in advance by design or by an appropriate clustering method for the input-
output data. In our case we used a clustering method to cope with the different
non linear characteristics of input-output data-sets (see [Gustafson and Kessel,
1979] and [Palm and Stutz, 2003]). For more details about fuzzy systems see
[Palm et al., 1997].

In order to model time dependent trajectories x(t) using fuzzy modeling,
the time instants t take the place of the input variable and the corresponding
points x(t) in the state space becomes the outputs of the model.

For the purpose of modeling human demonstrations, e.g., end-effector tra-
jectories, the incorporation of the time in the modeling process has the follow-
ing advantages:

1. Representation of the dynamic arm motion by a small number of local
linear models and few parameters.

2. Nonlinear filtering of noisy trajectories.

3. A simple interpolation between data samples.
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The Takagi-Sugeno (TS) fuzzy model is constructed from captured data
from the end-effector trajectory described by the nonlinear function:

x(t) = f(t) (3.13)

where x(t) ∈ R
3, f ∈ R

3, and t ∈ R
+.

Equation (3.13) is linearized at selected time points ti with

x(t) = x(ti) +
∆f(t)

∆t
|ti
· (t − ti) (3.14)

resulting in a locally linear equation in t.

x(t) = Ai · t + di (3.15)

where Ai =
∆f(t)

∆t
|ti
∈ R

3 and di = x(ti) −
∆f(t)

∆t
|ti
· ti ∈ R

3. Using (3.15) as a
local linear model one can express (3.13) in terms of an interpolation between
several local linear models by applying Takagi-Sugeno fuzzy modeling [Takagi
and Sugeno, 1985] (see figure 3.2)

x(t) =

c
∑

i=1

wi(t) · (Ai · t + di) (3.16)

wi(t) ∈ [0, 1] is the degree of membership of the time point t to a cluster with
the cluster center ti, c is number of clusters, and

∑c
i=1 wi(t) = 1.

The degree of membership wi(t) of an input data point t to an input cluster
Ci is determined by

wi(t) =
1

c
∑

j=1
(

(t−ti)T Mipro(t−ti)

(t−tj)T Mjpro(t−tj
)

1
m̃proj−1

(3.17)

The projected cluster centers ti and the induced matrices Mipro define the input
clusters Ci (i = 1 . . . c). The parameter m̃pro > 1 determines the fuzziness of
an individual cluster [Gustafson and Kessel, 1979].

3.2 Position Teaching of a Manipulator

In this section we will present a position teaching approach, where human
arm positions are mapped to robot arm positions by learning the correspon-
dence. Different robotic manipulators have different configurations and kine-
matic constraints. Most of them do not permit a straightforward mapping from
the human arm domain to the robot’s restricted joint space. In this experiment
the aim is to provide a general method for mapping human motions to the
robotic arm domain, assuming a redundant human arm will teach a robot arm
with few degrees of freedom (DOF). Data capture is achieved with the special
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Figure 3.3: A simplified schematic picture of the experiment setup.

motion capture sensor called ShapeTapeTM that is worn by the human operator
(see section 3.2.1). The method is general in the sense that any human arm (or
even leg, neck, or spine) could be mapped onto any robotic manipulator.

With this approach, the mapping from human to robotic joint angles need
not be isomorphic (one-to-one). The method permits a human demonstrator
to control non-anthropomorphic robots and to decide which arm motions to
associate with different robot movements (controls). Non-linear function ap-
proximation algorithms such as artificial neural networks are used to learn a
direct sensor-motor coupling from the sensor readings to the desired joint an-
gles of the robot. We also propose an interactive training method, whereby the
robot and human take turns to follow each others’ actions until the learned
mapping is considered satisfactory by the user. Experiments with a real manip-
ulator are presented in section 3.2.3.

3.2.1 Experimental Setup

The experimental setup consists of a motion capture sensor, a robot manipula-
tor, and two workstations running Windows. Figure 3.3 provides a schematic
overview of the setup.

The robotic system comprises a light-weight arm called PANDI-1, shown
in figure 3.4, developed “in house” at the AASS Intelligent Control Laboratory
[Ananiev et al., 2002]. It has six degrees of freedom and can lift a maximum
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Figure 3.4: The light weight robot ma-
nipulator Pandi-1 used in the experi-
ments.

Figure 3.5: The ShapeTape sensor at-
tached to a demonstrator.

payload of 3.5 kg (nominal 2 kg) and weighs about 18 kg, including controller
and power electronics. Only the first three joints were used in this experiment.

The platform has a client-server structure shown in figure 3.3. From the
client side the user can choose between different options: to collect the data for
the training phase, to train and test the learning algorithms or to control the
robot manipulator in real-time with the trained system.

The motion capture sensor used for collecting the human arm data is the
ShapeTape from Measurand Inc. shown in figure 3.5. The ShapeTape, a multi
degree of freedom input device, is a 1.84 m long strip containing optical light
sensors that measure the bend and twist angles between two sensor segments,
at 110 Hz. The sensor provides curvature data in vector format: the data are
paired in bend and twist angles for 16 distinct positions along its length. The
demonstrator attaches the tape to the arm with straps. A part of the sensor is
looped onto the back of the demonstrator to fit the tape to the arm.

3.2.2 Methods

We propose a general training strategy where the robot learns a user model
to map user-to-robot positioning. The method is based on learning a direct
sensor-motor coupling from the ShapeTape captured data to the joint space of
the robot. Mapping the sensor readings to the desired joint angles is non-trivial
because the input state space is large and the unknown target function is non-
linear. This gives us a “2m-to-n” mapping problem which could be illustrated
in the form:
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where bm and tm are the bend and twist angles respectively for each of the m

sensors and θn is the angle for each of the n joints. In practice, as stated before,
not all of the sensor values from the ShapeTape can be used (only those which
are actually located along the human arm). In the experiments presented here,
we use m = 7 and n = 3.

It would be advantageous to learn the mapping from human to robot, since
this mapping (using this type of sensor) will be different form human to hu-
man. This means that different sections of the sensor will correspond to the
same manipulator joint for different human demonstrators. The performance
of two different learning algorithms was investigated, namely, a minimum dis-
tance classifier (MDC) and a multi-layer feed-forward (MLFF) neural network.

Interactive Learning

The user interface allows the demonstrator to teach the system with an inter-
active learning procedure. The system informs the demonstrator and asks for
feedback after each cycle in the interactive learning loop, shown in figure 3.6.
We divide the interactive cycle into three different phases: the training phase,
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the recall phase and the decision phase. The system goes through each phase as
follows:

Training phase. The robot makes a sequence of motions and the human demon-
strator copies them. Then, the recorded data from the sensor, and the ma-
nipulator is used for training and testing the selected learning algorithm.

Recall phase. The human demonstrator controls the robot in real-time by mov-
ing the arm and the robot perform the corresponding commands by using
the learned behavior.

Decision phase. The human demonstrator decides whether the resulting mo-
tion was satisfactory.

These phases are repeated until the human demonstrator is satisfied with the
result (this is a subjective decision made by the user).

In the first phase, the robot is programmed to perform a sequence of small
movements and, after each movement, the user is asked to copy the observed
motion by moving the hand (and thereby affecting the measured joint angles)
to the corresponding final position in the user’s workspace. The user is free to
choose which motions to associate with different robot joints movements. For
each movement the system records 100 sensory readings and then computes the
average for each sensor of the ShapeTape. This process takes approximately
one second while the user is asked to leave the arm in a fixed position. This
approach tries to compensate for small variations in the position of the arm and
noise on the sensor readings. After the data collection procedure the sensory
readings are preprocessed to get transformed variables with zero mean and
unit standard deviation.

In the recall phase, the system cycles through a loop that consists of several
steps. First, a new input pattern is read from the ShapeTape sensor that corre-
sponds to the current configuration of the demonstrator’s arm. These raw data
are then preprocessed and used as inputs to the trained system, which computes
the output joint angles. The outputs are discarded if they exceed the joints’ lim-
its or if the difference between each new computed angle and the previous one
exceeds a predefined threshold for safety reasons. Otherwise, the movement
command is sent to the server that controls the robot arm.

In the decision phase, the demonstrator decides whether the robot’s motion
was satisfactory or not according to the error between the resulting perfor-
mance and the expected behavior. If the demonstrator accepts the learned pol-
icy then the interactive learning process ends. The parameters of the learning
algorithms are saved and can be reused by the same demonstrator in a future
session.
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Minimum Distance Classifier

The first algorithm that was implemented is based on a minimum distance clas-
sifier (MDC) [Duda et al., 2000].

In the implementation the classes are points organized in a grid, and each
point is associated with a vector of bend and twist data stored in a look-up
table.

The MDC was successfully tested on a two-joint workspace for the ma-
nipulator. During the data collection phase the manipulator is programmed to
reach each vertex in its workspace, and the user is asked to copy the robot by
moving the hand to a corresponding position. The robot cycles several times
through the grid to collect enough data for the training and testing phases. In
the training phase the look-up table is built by simply associating the prepro-
cessed sensor data, read from one loop, with the corresponding joint angles of
the manipulator.

During the test- and recall-phases the MDC finds the point in the look-
up table with the minimum squared distance from the actual input vector. To
produce a continuous function approximation from the sensory inputs to the
desired outputs a linear interpolation is applied between the nearest vertex and
its neighbors in the vertical and horizontal directions.

While this learning algorithm provided a useful proof of concept, gener-
alization of this approach to higher dimensional grids would be tedious and
time-consuming (resulting from the well-known “curse of dimensionality”).
We therefore investigated the generalization capabilities of artificial neural net-
works, described as follows.

Ensemble of Multi-layer Feedforward Networks

The second learning algorithm that was integrated into the system is based on
an ensemble of multi-layer feed forward (MLFF) neural networks [Sharkey,
1996]. One MLFF network is trained for each of the robot’s joint angles. Fig-
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Figure 3.8: A sequence of images showing the recall phase.

ure 3.7 shows the structure of the neural network ensemble. The standard
MLFF architecture was applied; using sigmoid activation functions in the hid-
den units and linear activation functions in the output units (described in sec-
tion 3.1.1).

The 2×m raw input data are first preprocessed, then the transformed vari-
ables are used as input to the three independent MLFF networks, one for each
used joint of the manipulator. An alternative solution with only one neural
network with three outputs was also investigated as a reference.

The parameters that can be changed in the training phase include the num-
ber of hidden layers and units, the number of training epochs, and the error
tolerance for the backpropagation algorithm. In the experiments the number of
hidden units was determined manually by validation on the test data, but an
automatic procedure for adding and pruning hidden units could also be used,
such as the cascade-correlation algorithm [Fahlman and Lebiere, 1990]. After
the training process each network generates a weight file that is used for the
test and recall phases.
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Algorithm No. SSE Mean
joints Error(deg)

a MDC (9× 9 grid) 2 2.95 9.00
b MDC (5× 5 grid) 2 5.43 23.45
c 1 MLFF 2 8.20 15.00
d 2 MLFF 2 2.40 8.13
e 3 MLFF 3 3.60 8.13

Table 3.1: Experimental results from the test phase.

3.2.3 Experimental Evaluation

Our first experiment was a simple reaching task where the human demonstrator
tries to lead the robot manipulator to a specific point in space or to follow a
sequence of movements. The two learning algorithms were evaluated on tasks
that involve the first two joints of the manipulator. Table 3.1 summarize the
results: the chosen performance measures are the sum squared error (SSE) and
the mean error per joint expressed in degrees on an independent test set.

The data set in the robot’s workspace consists of a grid of 81 points (9× 9)
equally spaced in the horizontal direction by 20 degrees and in the vertical
direction by 10 degrees. Thus, the resulting grid lies on the surface of a sphere.
The demonstrator was asked to copy the robot’s movements, producing 81
corresponding configurations of the arm, and to repeat the whole sequence 3
times (thus the total size of the data set was 243 examples). For the training
phase, one group of 81 examples was chosen for both the MDC and MLFF
algorithms, while the remaining examples were used for testing. In experiment
b the MDC was trained with a smaller data set of 25 points to investigate how
the performance degrades if the resolution of the grid decreases.

The best result with the lowest SSE of 2.4 (experiment d) was obtained
with 2 neural networks, each one controlling a specific joint. The correspond-
ing mean error was 9 degrees for each joint. Figure 3.9 shows the expected and
output angles of the first joint for a sequence of patterns (experiment d). Ex-
periment c comprised a single neural network with two outputs: the resulting
mean error is quite large and almost 80% of the error was caused by the second
joint. This demonstrates that the solution with only one neural network is not
effective.

In the experiments, the MLFF networks were trained with non-linear sig-
moid activation functions in the hidden layers and linear activation functions
in the output layers. The size of the hidden layer was fixed to 4, based on the
SSE on the test data.

The reaching task was also extended to learn the position of three active
joints using the ensemble of MLFF networks (case e). The system was trained
in free space by collecting a sequence of 243 examples with multiple demon-
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Figure 3.9: Expected angle and output angle for the base joint 1 (16 test patterns).

strations. After training, the performance of the system was validated in the
recall phase. The robot arm could follow the user’s actions as shown in the
sequence of pictures in figure 3.8.

After the training phase the user remarked that it is hard to show the robot
the same position several times, because reaching a point in free space with the
same configuration of the joints is non-trivial without some reference. This is
probably the main source of error in the current system.

We have also tried some more complex experiments that involve grasping
of objects. While moving the arm, the demonstrator can also open or close the
end-effector of the robot by pressing a keyboard. The performance was not
satisfactory because the trained algorithm produces a position error. This error
often leads to an insufficient positioning accuracy of the gripper.

3.2.4 Discussion

We have described a system for robot-learning-from-demonstration which is
able to capture and map a human control policy to a robot arm. We show how
a motion capture sensor can be used to train a learning algorithm to position a
robot manipulator. Artificial neural networks and a minimum distance classifier
were tested, where an ensemble of multi-layer feed forward neural networks
(MLFF) performed slightly better than the minimum distance classifier. The
method provides the robot with a model of the human operator and a mapping
from a particular human pose to a corresponding robot pose. The experiment
showed that the performance was not satisfactory for precise reach-and-grasp
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tasks. The main cause of discrepancies in the current system is probably the use
of absolute bend and twist angles in the input to the learning algorithm, since
it is very difficult for a human demonstrator to position the arm at exactly the
same configuration in repeated trials. Since the measurement is relative to the
base of the sensor, an additional sensor is required to localize the base. In the
case of MLFF, a source of error can also be the separation of the networks.
Since the joints are coupled, the networks shouldn’t be treated individually.

3.3 Task Learning from Demonstration Using Skills

In this section, we describe a method for task learning from demonstration
using skills. We focus on a pick-and-place task using a 6 degree-of-freedom
manipulator and a vacuum gripper. The type of task is assumed to be known
and mapped on to a set of predefined skills. A task is composed of a sequence
of skills. The skills in our approach are designed for a particular gripper type,
reducing the risk for failures during the execution phase and misunderstanding
during the demonstration phase. Thus, our approach alleviates the correspon-
dence problem [Nehaniv and Dautenhahn, 2002]. In addition, we assume that
the demonstrator is aware of the functionality of the particular robot, and its
skills directly reflect specific capabilities of the robot arm/gripper. In this way,
the skills serve as a common language for the robot and the demonstrator.
The sensor system consists of a magnetic tracker–mounted on the hand of the
demonstrator–to record the demonstrated trajectories. Another benefit of our
setup is that we do the teaching in the manipulator’s own coordinate system,
where the manipulator and the demonstrator share the same workspace.

3.3.1 Skill Encoding using Fuzzy Modeling

Five important desirable properties for encoding movements have been identi-
fied by Ijspeert et al. [2001]. These are:

1. The representation and learning of a goal trajectory should be simple.

2. The representation should be compact (preferably parameterized).

3. The representation should be reusable for similar settings without a new
time consuming learning process.

4. For recognition purpose, it should be easy to categorize the movement.

5. The representation should be able to act in a dynamic environment and
be robust to perturbations.

Let us examine the properties of fuzzy modeling with respect to the above
enumerated desired properties. Fuzzy modeling is simple to use for trajectory
learning and is a compact representation in form of a set of weights, gains and
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offsets (i.e., they fulfill property 1 and 2) [Palm and Iliev, 2006]. To change a
learned trajectory into a new one for a similar task with preserved characteris-
tics of a motion, Iliev et al. [2007] proposed an algorithm using fuzzy time mod-
eling, thus addressing property 3. Furthermore, the method satisfies property
4, as it was successfully used for grasp recognition by Palm and Iliev [2007].
The method is not tested for property 5. However, in Skoglund et al. [2008]
a next-state-planner based on fuzzy time-modeling was introduced. Since next-
state-planners are known to be robust to perturbations [Ijspeert et al., 2002,
Hersch and Billard, 2008], we believe that this should be the case for our sys-
tem as well. This will be tested in our future work.

Alternative method for encoding human motions are described in section 2.4.

3.3.2 Trajectory Segmentation

One simple and effective way to segment a manipulation demonstration is by
measuring the mean squared velocity of the demonstrator’s end-effector. This
is a technique equivalent to the one developed by Fod et al. [2002], but instead
of using the mean squared velocity of the joints angles we use the end effector’s
velocity. The mean squared velocity is given by:

MSV(t) =

3
∑

i=1

(

dx(i, t)
dt

)2

(3.18)

where i = 1...3 is the number of the spatial coordinate, t is the time, dx(i, t) ∈
R

1 is the position difference dx(i, t) = x(i, t+dt)−x(i, t) between two samples,
dt is the time difference between two samples. A constant threshold v for MSV

is set to define the start time tr of a motion. If MSV(t) > k × v, where k is
a multiplication factor, then t = tr. The start time tr is checked for each time
instant t after a motion has stopped. A similar procedure is used to find the
stop of a motion.

3.3.3 Automatic Task Assembly

The scenario we consider is to teach an industrial robot equipped with a vac-
uum gripper, shown in figure 3.10, how to execute a pick-and-place task. The
demonstration is done under the assumption that the teacher’s index finger
is associated with the suction cup of the gripper. During demonstration, the
fingertip is tracked by a motion capturing device, shown in figure 3.11. Ini-
tially, the demonstrator moves from a starting point to the desired pick-point,
Ppick. Then, the demonstrator moves along a certain path towards the desired
place-point, Pplace and finally, back to the starting position. The collected data
consists of position coordinates P, used for the following purpose:

• Detect the pick- and place-positions, Ppick and Pplace.
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Figure 3.10: The manipulator in our ex-
perimental setup, an ABB IRB140 ma-
nipulator equipped with a vacuum grip-
per.

Figure 3.11: The 6D-tracker, mounted
on a data glove, is shown that was used
to capture the human demonstration.

• Reconstruct the desired trajectory that the robot should travel from Ppick

to Pplace (FollowTaj).

In summary, the steps from the demonstration to the compilation of instruc-
tions are:

1. A human demonstration is captured and transformed into robot’s refer-
ence frame.

2. Trajectories are modeled using fuzzy modeling, to smooth and and reduce
noise from the sensors.

3. Trajectories are segmented to extract the points where the motions start
and end (see section 3.3.2).

4. Extracted motions are decomposed into skills as those described in sec-
tion 3.3.4.

5. Each skill is automatically translated into robot-specific code.

6. The complete task is executed on the real ABB IRB140 manipulator.

For step 4 in the above list it is important to note that the task is known in
advance, making it possible to describe the task as a sequence of skills. These
skills are designed specifically for the task, and can be executed on most 6 DOF
serial manipulators. The skills controlling the grasp and release action are spe-
cific to the type of gripper used.

In the scenario, the demonstrator and the robot share the same workspace.
Our assumption is that the demonstrator knows the manipulator’s structure
such as workspace and possible motions, making a complicated data prepro-
cessing unnecessary.
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Figure 3.12: Decomposition of a task into skills. The solid boxes are the implemented
skills.

3.3.4 Skills

To distinguish the different segments of a demonstrated motion, the captured
data needs to be segmented. Here we follow the technique described in sec-
tion 3.3.2. These segments are the basic skills, which are highly dependent on
the task to perform. The decomposition of a Pick-and-Place task into skills is
illustrated in figure 3.12. MoveToPosJ moves the manipulator’s end-effector to
the point where it can “hook on” to the demonstrated trajectory. MoveToPosL
moves the manipulator’s end-effector to the desired point linearly in the work
space coordinates (for an introduction to robot motions, see Appendix A.4).MoveZ is a the skill for making a search motion when there is uncertainty of
how to approach an object. FollowTraj takes a sequence of points, with rel-
atively high granularity, as the input and executes the motion linearly between
these points.

By using skills reflecting the commands available in the robot language of
the manipulator, we achieve a simple implementation. The basic skills, which
all other high level tasks (in this work) consists of, are:

- MoveToPosL which moves linearly (Cartesian space) to a predefined point,

- MoveToPosJ which moves to a predefined point,

- MoveToPosZ which moves in an up-down direction,

- FollowTraj which follow a demonstrated trajectory,

- Grasp which grasps an object,

- Release which releases an object,

The two first skills are usually implemented on standard industrial manip-
ulators, yet needed as primitives for many tasks. In our setup the two skills
controlling grasp and release are very simple due to the design of the vacuum
gripper. However, for more complex grippers, or even anthropomorphic hands,
a complex set of skills is needed [Palm and Iliev, 2006].
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Figure 3.13: Fuzzy clustering principle. The blue stars are the cluster centers positions,
the lines are the output from each local linear model and the blue line is the total ap-
proximated model. The weights of each local model and the offsets are not shown.

When the trajectory is transfered to the manipulator’s controller, it is writ-
ten in a compact meta format representing the local program of the controller
processes. By doing so, we assume the lower control levels of the manipulator,
such as inverse kinematics (see Appendix A.1), constraints of the workspace,
generation of the trajectory with a higher granularity etc., to perform the re-
quired task in a proper way.

The skill FollowTraj is implemented using trajectory modeling based on
fuzzy time-modeling described in section 3.1.3. Between the points detected as
pick-and-place, the trajectory chosen by the demonstrator should be followed
to reproduce the demonstration and to make the motion humanlike. The skillFollowTraj implements the trajectory following and uses a so-called time clus-
tering method [Palm and Iliev, 2006] based on Takagi-Sugeno fuzzy modeling
[Takagi and Sugeno, 1985] and fuzzy clustering [Palm and Stutz, 2003]. The
basic idea is to consider the three end effector coordinates of the hand as model
outputs and the time instants as model inputs, see figure 3.2. Figure 3.13 illus-
trates a TS fuzzy model.

Before the manipulator performs a grasp or release operation, the approach
phase of the gripper towards the object is of high importance. In this section
we only consider approach motions towards the object perpendicular to the
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d
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Figure 3.14: The gripper and the spring. d, the distance target set point and the starting
point, is dependent of the sensor inaccuracy, y. The length that the spring is compressed,
l, is determined when the switch turns on, indicating a resistance.

surface of the table (this also implies objects with flat top surfaces), which is a
simplification derived from the design of the 1 DOF vacuum gripper. The posi-
tion and orientation of the table are known since the manipulator is mounted
on the table (see figure 3.10). However, the height of the object to be picked
is unknown resulting from the uncertainty of the sensor, thus, the approach
skill has to deal with this uncertainty. Therefore, the manipulator’s gripper is
equipped with a switch that detects when a spring is compressed to a certain
extent (illustrated in figure 3.14). The downwards motion immediately stops
when the switch detects contact, and the appropriate action (grasp or release)
is performed.

A grasp operation is distinguished from a release operation by two discrete
states, internally represented in the MoveToPosZ skill. When performing a grasp
or release operation the manipulator is given a set coordinate to move in the
direction of the object and search for contact with it. When the switch detects a
certain resistance (that is, the spring is compressed a length, l) the motion stops.
The distance d determines the starting point, derived from the inaccuracy of the
sensor that performs the motion capturing, typically factor of 1.1 ∼ 2.0. The
approach skill is implemented using the SearhL command in RAPID (see the
ABB specific programming languages, facilitating instructions for manipulator
motions).

3.3.5 Experimental Results

The experimental setup consists of a 6D magnetic tracker, Polhemus Fastrak,
and a 6 DOF industrial manipulator, the IRB140 from ABB Robotics. A vac-
uum gripper is mounted on the manipulator. The gripper has a magnetic switch
and a spring. We have selected a pick-and-place task for our work since it is a
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Lw(t)

Pw(t)

P0

L0

Pplace Ppick

Figure 3.15: An illustration of the trajectories, where the dotted line is the demonstra-
tion, and the solid line the manipulators end effector path. The manipulator’s initial and
final positions are denoted L0 and Lw(t) respectively, and the demonstrator’s P0 and
Pw(t). t.

common task for manipulators. The demonstrator stands in front of the ma-
nipulator so that both share the same workspace. The demonstration consists
of pointing at two different locations in the workspace and returning to the ini-
tial position. The first detected position is the pick position, denoted by ppick,
and the second detected position is the place position, denoted by pplace (see
figure 3.15). The manipulator’s initial and final positions are denoted by L0 and
Lw(t) respectively in figure 3.15, and P0 and Pw(t) denotes the demonstrator’s
initial and final positions, and t indicates the time. The different positions at
the start and end of the trajectory are resulting from the fact that demonstrator
and manipulator are not in the same start and final position, but they share the
same workspace and therefore the pick- and place points, and the trajectory in
between are the same.

Figure 3.16 shows three example trajectories of the three different pick-
and-place positions. Figure 3.17 shows three sample velocity profiles where the
segmentation has detected three start of movements and their respective ends in
each demonstration. The MSV threshold was set to 40 and the multiplication
factor to 1.5 for this specific example. Through figure 3.18, 3.19 and 3.20, we
can see that the models cover correctly the task trajectory, as performed by the
human. The pick-and-place points as reflected by both the model and the raw
data show a discrepancy of 3.62 mm, which is tolerable for this type of tasks
to be performed by the robot arm.

The trajectories are segmented, and fuzzy time-modeling is performed be-
tween the pick to the place position. The result shows a good modeling quality,
with a slight displacement in time.

The different illustrations in figure 3.16 to figure 3.20 show a series of three
sets of measurement for the same task (pick-and-place), between two demon-
strated points in the workspace. We can first establish that the data obtained
by repetition of the task shows similar profiles, and the models extracted from
these sets of data show both similarities to their respective sets of data.
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The sampling rate of the tracker is approximately 12 Hz, for position and
orientation data, in reference to a fixed point. When incorporating a data glove
for capturing the demonstrator’s hand motions the tracker will be mounted on
the wrist, and the data glove provides the transformation to the end-effector.
With a fixed coordinate system on both the manipulator and the demonstrator
it is straight forward to transform the local coordinate system of the demon-
strator into robot coordinates. While being accurate in office environments the
magnetic tracker is less suitable if there are any large metal parts in the neigh-
borhood of the probe. In our experiments, the position error could be over 40
mm for demonstrations near the robot. When we replicated the workspace of
the robot in another area with no surrounding metal parts, the position error
was reduced to under 4 mm. The reason for the degrading performance in the
robot cell was the amount of metal in manipulator and frames of the cell, which
distorts the magnetic field. A passive motion capturing device, such as an opti-
cal measuring device used by Skoglund et al. [2006], would remove this effect.
A visual system could be another option, but most vision systems have lower
accuracy and problems with occlusions, in comparison with the 6D-tracker.

A video of the task performed is available at the authors home page:
http://www.aass.oru.se/Research/Learning/arsd.html.

3.3.6 Conclusions

In this section we have discussed a method for trajectory modeling and task
reconstruction based on skills, linking high-level human instructions to partic-
ular robot/gripper functionalities. In our setup, the demonstrator is aware of
the function of the skills. This awareness reduces the risk for misinterpreta-
tions and infeasible instructions to the robot. The pick-and-place task can be
mapped to a sequence of skills that are scalable for different sizes of the work
space of the manipulator. A wearable input device captures the motions of the
demonstrator by recording the coordinates of pick-and-place positions and the
path in between. We use the mean squared velocity to segment the recorded mo-
tions and extract the pick- and place positions. We apply a fuzzy time-modeling
method to approximate the desired path in space. The method shows excellent
modeling performance and preserves dynamical (humanlike) properties of the
motion.

3.4 Summary

In this chapter we have presented two methods for PbD. The first one was an
approach to model-free mapping from human arm position to robot position
of the end-effector. In the second method, a task (pick-and-place) is described
hierarchically as a set of skills where a demonstration is mapped onto these
skills. To implement the skill which follows a demonstrated trajectory a method
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called fuzzy time-modeling is introduced. The skill “grasp” although being im-
plemented in a very simple manner because of the simple gripper, provides
experience on how built-in autonomy and sensing–even on a basic level–can
alleviate the inaccuracy problem related to motion capturing devices.

In all experiments in this chapter, the accuracy of the motion capturing
device (the ShapeTape and the magnetic tracker) was a source of problems. In
the first experiment this caused poor repeatability in the positioning of the end-
effector, and in the second experiment it was hard to locate and manipulate
objects. Therefore, in later performed experiments we replaced the ShapeTape
and the 6D magnetic tracker by a new more accurate motion capturing system,
described in section 4.3.1. To allow programming of more complex grippers,
data from the demonstrator’s hand configuration are also used in subsequent
experiments, described in chapter 4.

The fuzzy time-modeling method shows good performance in modeling of
human trajectories. Furthermore, it fulfills four of five desired properties for
skill encoding, enlisted in section 3.3.1.

The next chapter goes into detail on some critical issues not addressed in this
chapter, namely: how to map human arm and hand motions to a robot despite
different morphologies; how to learn and generalize from multiple demonstra-
tions.
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Figure 3.16: Demonstrated trajectories (blue line) together with the modeled trajecto-
ries and the detected pick-and-place positions (squares) and the modeled pick-and-place
positions (rings). Scales are in [mm].
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Figure 3.17: Velocity profiles of the demonstrations. Ring and cross marks where the
segment process indicates the start and end of a motion.
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Figure 3.18: Trajectory profiles obtained throughout measurement and task-model as
function of time for task P3 to P5.
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Figure 3.19: Trajectory profiles obtained throughout measurement and task-model as
function of time for task P4 to P6.
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Figure 3.20: Trajectory profiles obtained throughout measurement and task-model as
function of time for task P3 to P4.



Chapter 4

Trajectory Generation in

Hand-State Space

This chapter presents an approach to reproduction of human demonstrations
in a reach-to-grasp context. The demonstration is represented in hand state
space, a hand-object relative frame. By using the distance to the target object as
a scheduling variable the robot’s approach motion to the object is controlled. A
trajectory generator is employed to plan the motion and is formulated as a next-
state-planner. The planner produces an action from the current state instead
of planning the whole trajectory in advance, and can thereby compensate for
differences in modeled and actual trajectory.

One major problem, discussed earlier in section 2.1, is the different mor-
phology between human and robot, known as the correspondence problem
in imitation [Nehaniv and Dautenhahn, 2002]. The behavior matching needs
to be addressed to reproduce an action. That is, what action can an imita-
tor apply that corresponds to the demonstrated action. The next-state-planner
will be shown to provide this mapping since it produces a robot version of
the demonstrated behavior. Another problem is the difference between the ini-
tial locations of the human demonstrator and the robot while aiming for the
same target object. When executing the demonstrated motion, different initial
locations might force the robot into unreachable parts of the workspace or sin-
gular arm configurations even if the demonstration is perfectly feasible from
the human viewpoint. The duration of the robot motion will also differ from
the demonstrated motion resulting from different initial positions. The next-
state-planner generates trajectories from the robot perspective and exploits the
constraints imposed by multiple demonstrations to adapt the trajectory to the
morphology of the robot. That is, it allows the robot to reproduce the task in
its own way.

In this chapter we focus on goal-directed imitation of reaching and grasp-
ing, where the essential properties of the target object and the desired motion

59
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profile are obtained from demonstrations. The suggested approach can be out-
lined as follows. Firstly, a demonstration is recorded, segmented and converted
into a hand-object relation trajectory, the so called hand-state space. The robot
can then extract the essential grasp related properties of the target object (its
affordances). Secondly, the demonstrated task is reproduced using a trajectory
generator that accounts for experience and the current robot configuration.

In chapter 3 it was shown how a pick-and-place-place task was transformed
from a human demonstration into desired trajectories for the robot. However,
the grasping part; i.e., how to pick up an object, was implemented in a simple
manner to match the limited capabilities of the robot gripper. Moreover, the
trajectory generation used in chapter 3 was set to follow the demonstrated tra-
jectory at a predetermined distance to the target. This strategy does not address
the problem of morphological difference between demonstrator and imitator.
To solve the problem of morphological differences this chapter presents a trajec-
tory planner that includes statistical knowledge from multiple demonstrations.

The approach presented in this chapter has four goals. First, to interpret
the demonstrated task and reproduce it in a way feasible for robots, taking
the morphological differences into account. Second, the robot shall generalize
human demonstrations to use an earlier learned skill for new similar unseen
scenarios. Third, it shall coordinate reaching and grasping motions into a co-
herent goal-directed motion. Fourth, the robot shall be enabled to learn from
its own experience and improve grasp performance over time.

To illustrate the approach, two series of experiments will be presented using
slightly different planners. The first set of experiments is done using a simulated
robot, originally presented by Skoglund et al. [2008]:

• The first experiment shows how demonstrated trajectories can be repro-
duced and how the correspondence problem associated with different ini-
tial positions and morphological differences can be solved.

• The second experiment illustrates how the robot generalizes its knowl-
edge to reproduce the demonstration when the object is placed at random
positions in the workspace.

The second series of experiments includes tests with a real industrial ma-
nipulator. These experiments extend the approach to grasping, specifically ad-
dressing the position accuracy to enable grasping, presented by Skoglund et al.
[2009]. Four experiments describe how human demonstration of goal-directed
reach-to-grasp motions can be reproduced by a robot. Specifically, the genera-
tion of reaching and grasping motions in pick-and-place tasks is addressed.

• The first experiment is a simulation of an autonomous grasp performed
from different poses in relation to the target. This will show how accurate
the positioning of the end-effector needs to be to execute a successful
grasp. It is important to know when the end-effector is in a position where
the grasp execution can be started.
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• The second experiment replicate the first set of experiments by generating
trajectories to execute on a real robot and discuss problems associated
with real manipulation.

• The third experiment illustrates how the robot generalizes its knowledge
for new positions of the object. It reproduces the demonstration regard-
less of the initial position of the robot and the position of the object.
The goal of this experiment is to investigate how well each model can
generalize across the workspace. This is related to the number of mod-
els needed for the robot to perform a successful reaching-to-grasp action;
good generalization ability means that fewer models are needed.

• The fourth experiment is done to assess the reaching and grasping as an
integrated process. A complete pick-and-place task is demonstrated and
executed by the robot.

The contributions of the work presented in this chapter are as follows:

1. We introduce a novel approach using a next-state-planner based on the
fuzzy modeling approach to encode human and robot trajectories.

2. We apply the hand-state concept [Oztop and Arbib, 2002] to encode mo-
tions in hand-state trajectories and apply this in PbD. The hand-state
description is the link between human and robot motions.

3. The combination of the next-state-planner and the hand-state approach
provides a tool to address the correspondence problem resulting from
the different morphology of the human and the robot. The experiments
show how the robot can generalize and use the demonstration despite its
fundamentally different morphology.

One advantage of this approach over trajectory averaging, see for example
[Delson and West, 1996] or [Calinon et al., 2007], is that one of the human
demonstrations is used instead of an average which might contain two essen-
tially different trajectories [Aleotti and Caselli, 2006]. By capturing a human
demonstrating the task, the synchronization between the reach and the grasp is
also captured, which we demonstrate in the experiment in section 4.2. Other
ways of capturing the human demonstration, such as kinesthetics, cannot easily
capture this synchronization.

This chapter is organized as follows: In section 4.1 we review the hand-state
hypothesis and related work. Furthermore, we describe methods for analyzing
the demonstration. In section 4.2 the trajectory generation based on the hand-
state approach is presented. A different version of the trajectory generation is
presented in section 4.3 where several additional experiments are presented.
Section 4.4 summaries this chapter.
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4.1 Interpretation of Human Demonstrations in

Hand-State Space

To create the associations between human and robot reaching/grasping we em-
ploy the hand-state hypothesis from the Mirror Neuron System (MNS) model
of Oztop and Arbib [2002]. The aim is to mimic the functionality of the MNS
to enable a robot to interpret human goal-directed motions in the same way as
its own motions. Following the ideas behind the MNS-model, both human and
robot motions are represented in hand-state space. A hand-state trajectory is
defined as the evolution of the pose and configuration of the hand in relation to
the target object. That is, it encodes the goal-directed motion of the hand during
reach and grasp. It will be shown that the hand-state space serves as a common
language for the demonstrator and the robot and preserves the necessary ex-
ecution information. Hence, a particular demonstration can be converted into
executable robot code and experience from multiple demonstrations is used to
control/improve the execution of new tasks. Thus, when the robot tries to im-
itate an observed reach and grasp motion, it has to move its own hand so that
it follows a hand-state trajectory similar to the demonstrated one.

The approach is based on the assumption that human demonstrations con-
tain motions associated with a particular task that can be interpreted, for exam-
ple, pick-and-place. Grasp recognition can provide grasp type Gi, for example,
a cylinder grasp or a precision grasp, where each grasp type corresponds to a
motion primitive Mi which executes the associated type of grasp. A grasp type
is also associated with object affordance Ai, which means that the object af-
fords a type of grasp. For example, a cup affords a cylinder grasp around its
body. The position of the object can be retrieved by a vision system, or it can be
estimated from the grasp type and the hand pose. If hand motions with respect
to a potential target object are associated with a particular grasp type Gi, it
is assumed that there must be a target object that affords the observed grasp
type, with the affordances Ai. The set of affordances for different grasps Gi is
defined a priori or learned from a set of training data. In this way, the robot
is able to associate observed grasp types Gi with their respective affordances
Ai. Once the target object is known, the hand-state can also be defined. Ac-
cording to Oztop and Arbib [2002], the hand-state must contain components
describing both the hand configuration and its spatial relation with respect to
the affordances of the target object. Thus, the hand-state is defined in the form:

H = {h1, h2, . . . hk−1, hk, . . . hp} (4.1)

where h1 . . . hk−1 are hand-specific components which describe the motion of
the hand during grasping. The remaining components hk . . . hp describe the
motion of the hand in relation to the object. Thus, a hand state trajectory con-
tains a record of both the reaching and the grasping motions as well as their
synchronization in time and space. Note that the hand-state components are
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Figure 4.1: Left: The hand-state describes the relation between the hand pose and the
object affordances. Right: Reconstruction of hand-state trajectory.

specific to the kinematic structure of the hand and the definition of the ob-
ject affordances. This means that some hand-state components will be defined
differently for different grasp types since they involve different object affor-
dances. If a robot should imitate a human, we have to define H in such way
that it matches the capabilities of particular types of end-effectors, e.g., dexter-
ous robot hands, two-finger grippers, or even the human hand.

In the PbD framework, h1, . . . hp must be such that they can be recovered
from both human demonstrations and the perception system of the robot. That
is, the definition of H is perception invariant and can be updated from arbitrary
type of sensory information. To the left in figure 4.1 the definition of the hand
state used in this chapter is shown.

Let the human hand be at some initial state H1. Then the hand moves along
a certain path and reaches the final state Hf where the target object is held by
the hand [Iliev et al., 2007]. That is, the recorded motion trajectory can be seen
as a sequence of states, i.e.,

H(t) : H1(t1)→ H2(t2)→ . . .→ Hf(tf) (4.2)

When a complete recording of the demonstration becomes available, the robot
can recognize the grasp type from Mi. This can be done for example by us-
ing the grasp recognition method introduced by Palm and Iliev [2007]. Then,
applying the a priori defined associations between grasp types, affordances
and motion primitives Mi the unknown hand-state components can be recon-
structed. This process is done in a few steps, see right of figure 4.1:

1. Define the type of affordance Ai corresponding to observed grasp type
Gi by using the Gi → Ai associations.

2. Substitute the reconstructed Ai in components hk − hp to obtain the
complete hand-state at Hf.

3. Update the remaining states of the hand-state trajectory from the final
state Hf to the initial state H1. Encode the trajectory using fuzzy time-
modeling.
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To determine the hand-state representation of a demonstration the robot
needs to have access to the complete motion trajectories of the teacher’s hand
since the motion must be in relation to the target object. This means the hand-
state trajectories only can be computed during a motion if the target object is
known in advance.

Since the human demonstration Hd(t) cannot be executed by the robot
without modification in the general case, we have to construct the robotic ver-
sion of Hd(t), denoted by Hr(t), illustrated to the left in figure 4.2. To find
Hr(t) a mapping from the human grasp to the robot grasp is needed, denoted
Tr

h. This mapping is created as follows. We can measure the pose of the demon-
strator hand and the robot hand holding the same object at fixed position and
obtain Tr

h as a static mapping between the two poses. The pose of the robot
hand at the start of a motion defines the initial state Hr

1. The target state Hr
f

will be derived from the demonstration by mapping the goal configuration of
the human hand Hf into a goal configuration for the robot hand Hr

f, to the left
in figure 4.2, using the transformation Tr

h:

Hr
f = Tr

hHf (4.3)

where Tr
h is the transformation from human to robot. For the power grasp the

robot hand is positioned so the grasp is expected to be successful at Hr
f. Next

the human hand position Hf in hand state space and the robot hand position
Hf are use to compute the transformation Tr

h from human to robot obtained
by:

Tr
h = Hr

fH
−1
f (4.4)

It should be noted that this method is only suitable for power grasps. In
the general case it might produce ambiguous results or rather inaccuarate map-
pings. For a predefined grasp type Tr

h becomes known immediately after we
have access to Hf.

4.2 Next-State-Planner

In this section we will present the fuzzy modeling based next-state-planner,
which generates the robot trajectory. Section 4.2.1 describes the modeling which
is needed by the planner. Let us first see how the hand-state is implemented for
trajectory generation.

4.2.1 Trajectory Modeling

The encoded trajectory Hd(t) is then used for generating the robot’s reaching
trajectory towards the target object. To provide the robot with more knowledge
about the task, multiple demonstrations are recorded, thus imposing trajectory
constraints. Finally, the trajectory generator produces a trajectory from Hr

1 to
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Figure 4.2: Left: Mapping from human hand to robotic gripper. Right: The transforma-
tion between different frames. Tee is the end-effector transformation, Tob is the object
transformation and Ths is the transformation from object to hand, which describes the
object-hand part of the hand-state.

Hr
f using one demonstration, but with the constraints from several demonstra-

tions. Hd(t) is also used for scheduling the activation of the proper grasping
motion primitive.

Having the initial and the target states defined, we have to generate the tra-
jectory between the two states. In principle, we could transform Hd(t) using
equation 4.3 in such way that it has its final state in Hr

f. Then, the robot starts
at Hr

1, approaches the displaced demonstrated trajectory and tracks it until the
target state is reached. However, such an approach would not take trajectory
constraints into account. Thus, it is also necessary to specify exactly how to ap-
proach Hd(t) and what segments must be tracked accurately. Moreover, Hr(t)

has to synchronize the reaching motion driving the arm with the grasp primitive
driving the hand.

The workspace restrictions of the robot also have to be considered when
creating trajectories. A trajectory might contain regions which are out of reach,
or two connected points on the trajectory require different joint space solutions
(see Appendix A.4), thus, the robot cannot execute the trajectory. To avoid or
remedy the effect from this problem the manipulator must be placed at a posi-
tion/orientation with good reachability. Other solutions include a mobile plat-
form, larger robot, or more degrees of freedom (DOF) to mimic the redundancy
of the human arm.

Next, a hand-state trajectory must be constructed from the demonstrated
trajectory. From the recorded demonstration we reconstruct the end-effector
trajectory, represented by a time dependent homogeneous matrix Tee(t). Each
element is represented by the matrix:

Tee =

(

Nee Oee Aee Qee

0 0 0 1

)

(4.5)

where Nee, Oee and Aee are the normal vector, the side vector, and the ap-
proach vector respectively. The last vector Qee is the position. The matrix Tee
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Figure 4.3: Vectors definition in a human hand. Nee is the the normal vector, Oee the
side (orthogonal) vector and Aee is the approach vector. The vector Qee is the position
of the point.

is defined differently for different end-effectors, for example, the human hand
is defined as in figure 4.3.

Given the applied grasp type, we can also estimate affordances of the grasped
object. For example, when a cylindrical grasp is recognized, we estimate the af-
fordances associated with a cylinder. These are: center position P = [Px Py Pz]

T ,
radius r and cylinder axis R = [Rx Ry Rz]

T . The position P is determined from
Tee(tf), where tf is the time at the final position. The cylinder axis is deter-
mined by the orientation vector Oee of Tee. For a cylindrical object grasped
with a power grasp the approach vector Aee is free to rotate around the cylin-
der axis of the object. Therefore, the approach vector Aee is set in the direction
pointing from the base of the robot to the object. For grasping a plannar object
both Nee and Oee are fixed, but the signs (positive or negative directions) are
free to move so that the robot can choose the most convenient one of the two
possible approach vectors Aee.

Now, recall the definition of the hand-state from equation 4.1, we describe
the object-hand components by a transformation matrix called Ths. Ths is rep-
resented in the object frame Tob, which is Tee(tf). The transformation to the
end-effector frame relative to the object frame is expressed by:

Ths = T−1
ob · Tee (4.6)

where Ths is the hand-state transformation, Tee is the hand frame and Tob is
the object frame. These transformations are illustrated in figure 4.2.

The hand-state representation equation 4.1 is invariant with respect to the
actual location and orientation of the target object. Thus, demonstrations of
object-reaching motions at different locations and initial conditions can be rep-
resented in a common domain. This is both the strength and weakness of the
hand-state approach. Since the hand-state space has its origin in the goal ob-
ject, a displacement of the object will not affect the hand-state trajectory. When
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an object is firmly grasped then, the hand-state is fixed and will not capture a
change in the object position relative to the base coordinate system. This implies
that for object handling and manipulation the use of hand-state trajectories is
limited.

Once the hand-state trajectory of the demonstrator is determined it has to
be modeled, for reasons enumerated in section 3.3.1.

There is evidence that the internal models of arm dynamics found in bio-
logical systems are state-dependent rather than time-dependent [Conditt and
Mussa-Ivaldi, 1999]. Therefore, when we transform human demonstrations
into robot motions; we define distance to object d, as an additional schedul-
ing variable for hand-state trajectories. However, to preserve the velocity pro-
file from the human demonstration the distance to the target is modeled as a
function of time using fuzzy time-modeling, see section 3.1.3. The inputs to the
fuzzy modeling are the hand-state components and the Euclidean distance at
each instance t of time.

dE =

√

(Qee − P)2 (4.7)

where Qee and P are the end-effector position and object position respectively.
The same procedure is applied to the hand-state trajectories. Two types of

models are needed: one describing the distance to the object as a function of
time; one modeling of the hand-state as a function of distance. In this section
a general formulation of the hand-state is adopted to suite industrial grippers
with two states: open and close. We formulate the hand-state as:

H(t) = [φf(t) dn(t) do(t) da(t) φn(t) φo(t) φa(t)] (4.8)

The first component is the only hand-specific one, describing the angle between
the thumb and the index finger. The next three components, dn(t), do(t) and
da(t), describe the distance from the object to the hand along the three axes
n, o and a with the object as the base frame. The next three components,
φn(t), φo(t) and φa(t), describe the rotation of the hand in relation to the
object around the three axes n, o and a. The notion of the hand-state used in
this section is illustrated in figure 4.1. The individual components denote the
position and orientation of the end-effector as well as the opening and closing
of the gripper, reflecting the limited capabilities of a parallel gripper.

The components of the hand-state, as a function of distance, are given by:

H(d) = [φf(d) dn(d) do(d) da(d) φn(d) φo(d) φa(d)] (4.9)

where the hand-state components are the same as in equation 4.8, and d ∈
R

1 The role of the scheduling variable d is important since it expresses when
the robot should move to the next state. However, the hand-state variables
reflect where the hand should move. Thus, d synchronizes when (dynamics and
synchronization) and where (desired path).
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Note that with this simplified definition of H we cannot determine the ac-
tual human grasp type. This reflects the fact that the grippers we use in our
experiments only are capable of one type of grasp. However, the method can
be applied in a straightforward way also to complex robotic hands being capa-
ble of executing several grasp types, see [Iliev et al., 2007] for details.

The configuration of the human hand is used for grasp classification, de-
scribed in work by Palm and Iliev [2006, 2007], where the grasps are classified
according to the taxonomy by Iberall [1997]. The grasp type G, and it’s associ-
ated set of affordances A are used to provide the frame in which the hand-state
is described. Grasp classification is out of scope of this thesis, and only cylin-
drical or spherical grasps are used our experiments. Thus, the grasp type is as-
sumed to be known G = {cylindrical, spherical}; the affordances are: position,
size, and cylinder axis A = {width, axis}.

The Takagi-Sugeno fuzzy models are constructed from captured data from
the end effector trajectory described by the nonlinear function:

x(y) = f(y) (4.10)

where x(y) ∈ R
n, f ∈ R

1, and y ∈ R
m. The parameter y can be the time t

or the distance d. The modeling follows the same procedure as described in
section 3.1.3, using equation 3.14 to 3.17.

From demonstrations, we obtain models of motions as in the form of equa-
tion 4.9. However, the robot’s motion time MTrobot will differ from the demon-
stration since the initial conditions are different. MTrobot is computed at t = 0
before the robot starts executing the motion. Therefore, the model of the hu-
man motion needs to be adapted to fit the robot version. To adapt the model
to the robots initial condition, we need to perform four steps:

1. Normalize the cluster centers positions Ci, where each cluster center is a
point in time. Adjust the offsets ai (i = 1 . . . c) with respect to the position
of the maximum cluster center cmax, by:

C̃i = Ci/Cmax

ãi = ai/cmax (4.11)

2. Compute the new cluster centers positions Crobot, in time, and the new
offsets arobot by multiplying them by MTrobot, that is:

Crobot
i = MTrobot ∗ C̃i

arobot
i = MTrobot ∗ ãi (4.12)

3. Compute a scaling factor k that relates the demonstrated time duration
to the robot time duration MTrobot, by:
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Figure 4.4: The top graph shows the original model of the distance to the target as the
time evolves. The bottom graph shows how the model is adapted to the robots domain.
This estimate is made at the initial position, and might change during the execution.

k =
cmax

MTrobot

(4.13)

4. Finally, the distance at time t is given by:

drobot = k ·

c
∑

i=1

wi(t) · (Ai · t + arobot
i ) (4.14)

where drobot is the robot’s distance as a function of time, c is the number
of cluster centers, and anew are the robot’s offsets. Note that the number
of cluster centers is the same, it is only the position that has changed.

The demonstrated distance model, top graph in figure 4.4, is scaled using
the above algorithm to a new duration shown in figure 4.4, bottom.

Since multiple demonstrations of a task is available to the robot we can
compute statistics such as the variance of the motion. We exploit the fact that
when humans grasp the same object several times they seem to repeat the same
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grasp type which leads to similar approach motions. Based on that, multiple
demonstrations of grasp type G using affordances A become more and more
similar to each other the closer one gets to the target state. This implies that
successful grasping requires an accurate positioning of the hand in an area near
the object while the path towards this area is subject to less restrictions. There-
fore, by looking at the variance of several demonstrations the importance of
each hand-state component can be determined. The idea is that if the variance
in certain components is low the trajectory should be followed, in contrast, if
the variance is high the goal state should be approached. The variance of the
hand-state as a function of the distance to target d is given by:

var(kh(d)) =
1

n − 1

n
∑

i=1

(khi(d) − mean(kh(d)))2 (4.15)

where d is the Euclidean distance to the target, khi is the kth hand-state param-
eter of ith demonstration (from equation 4.8) and n is the number of demon-
strations. Figure 4.5 shows how the variance decreases as the distance to the
object decreases. This means that the position and orientation of the hand are
less relevant when the distance to the target increases.

To preserve some human motion characteristics the robot can be made to
move according to Fitts’ law. Recall that Fitts’ law from equation 2.1, in sec-
tion 2.2.2 describes the tradeoff between speed and accuracy of reaching mo-
tions:

MT = a + b log2

(

2A

W

)

where MT is the duration of the motion, A is the amplitude of the motion,
equal to distance to the target at the start of the motion A = d(t0), W is the
width of the object and a and b are coefficients.

Suppose that MT , d(t0) and W are known from demonstrations. Then we
can solve for the coefficients a and b. When a robot is instructed to imitate the
human demonstration, we cannot assume the amplitude of the motion to be the
same as in the demonstration. Thus, we need to compute the desired duration
of the robot’s motion MTrobot if we want to preserve the characteristics of the
human motion. Since we know the width of the object, the initial distance to
the object and the coefficients a and b, we can apply Fitts’ law to compute the
time MTrobot.

4.2.2 The Goal- and Trajectory-Following-Planner

In this section we present a planner that balances its actions between following
a demonstrated trajectory and approach a target, first presented by Skoglund
et al. [2008]. Section 4.3 presents a different version of the same planner with
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simplified dynamics and more experimental results, presented in [Skoglund
et al., 2009].

To generate the robot trajectory a next-state-planner is used, which is in-
spired by the Vector Integration To Endpoint (VITE) planner (discussed in 2.7)
suggested by Bullock and Grossberg [1989]. The VITE planner is a biologically
inspired planner for human control of reaching motions. A next-state-planner
plans one step ahead from its current state. This contrasts to traditional ap-
proaches that plan the entire trajectory in advance. The next-state-planner ap-
proach requires a control policy, a set of equations describing the next action
from the current state and some desired behavior.

The proposed next-state-planner generates a hand-state trajectory for the
robot using the TS fuzzy-model of a demonstration. It also includes a weighting
factor obtained from multiple demonstrations, based on the variance in hand-
state space.

One of the first researchers to use the next-state-planner approach in im-
itation learning were Ijspeert et al. [2002]. They encode the trajectory in an
autonomous dynamical system with internal dynamic variables that shapes a
“landscape” used for both point attractors and limit cycle attractors. Their
approach shows robustness to perturbations and was demonstrated on a hu-
manoid robot by performing gesturers and a tennis swing. However, object
manipulation was not address in their work.

For controlling a humanoid’s reaching motion Hersch and Billard [2008]
considered a combined controller with two VITE controllers running in paral-
lel. One controller acts in joint space and while the other one acts in Cartesian
space. Separately, the controller acting in Cartesian space produces straight mo-
tions to the target. The controller which acts in joint space, if used separately,
produces a trajectory that avoids joint limits and thereby singular configura-
tions. By combining the two controllers, a coherent trajectory is produced that
takes constraints from both domains into account. In a PbD application the
approach suggested by Hersch and Billard [2008] can remedy the effect of un-
reachable joint configurations if the planning is done in Cartesian space. How-
ever, this might violate the constraints imposed by the demonstration.

To generate reaching motions and avoiding obstacles simultaneously Iossi-
fidis and Schöner [2006] used attractor dynamics. The target object acts as a
point attractor on the end effctor. The end-effector as well as a redundant elbow
joint avoids an obstacle as the arm reaches for an object. They show how an
obstacle avoiding behavior can be included in a next-state-planning approach.
The end-effector is assumed to move in the direction of the approach vector (see
figure 4.3 for a definition using a human hand). In PbD this is not the general
case, the hand might move in some arbitrary direction.

In our approach, a human demonstration is used to guide the robot to grasp
an object. Our use of a dynamical system differs from previous work, i.e., [Her-
sch and Billard, 2006, Ijspeert et al., 2002, Iossifidis and Schöner, 2004], in the
way of how to combine the demonstrated path with the robots own plan. The
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use of hand-state trajectories distinguishes our work from most previous work
on imitation. Most approaches in the literature use the joint space for motion
planning while some other approaches use the Cartesian space, according to
Ijspeert et al. [2002].

The proposed next-state-planner generates a hand-state trajectory for the
robot using the TS fuzzy-model of a demonstration. As the resulting Hr(t) is
formulated in Cartesian space the inverse kinematic provided by the controller
for the robot arm is used. The TS fuzzy-model serves as a skill for controlling
the arm’s reaching motion. The initial hand-state of the robot is determined
from its current configuration and the position and orientation of the target
object since these are known at the end of the demonstration. Then, the desired
hand-state Hr

d is computed from the fuzzy time-model (equation 3.16). Then
the desired hand-state Hd is fed to a hand-state trajectory generator. Figure 4.7
shows the architecture of the next-state-planner. The planner works as follows:
first, the distance to the target is computed d(t0) = A. Then the duration of
motion MT is computed using Fitts’ law (see equation 2.1). Since the position
and affordances of the object are assumed to be known the initial hand-state of
the robot can be computed for initialization. Then, the desired distance dd is
obtained from the TS fuzzy-model (equation 4.14), and the desired hand state
Hd from the TS fuzzy-model (equation 3.16). The planner has the following
dynamics:

Ḧ = α(−Ḣ + β(Hg − H) + γ(Hd(d) − H)) (4.16)

where Hg is the hand-state goal, Hd(d) the desired state at distance d, H is the
current hand-state, Ḣ and Ḧ are the velocity and acceleration respectively. α

is a positive constant and β, γ are positive weights for the goal and tracking
point, respectively. The goal hand-state Hg is obtained from the fuzzy cluster-
ing model at the modeled final time step. The desired hand-state value Hd(d)

at distance d is computed using the desired distance at the current time step
and uses the fuzzy model at that distance, equation 3.16 rewritten using the
applicable terms:

H(d) =

c
∑

i=1

wi(d) · (Ai · d + ai) (4.17)

By looking at the variance in the hand-state we can conclude that as the
distance to the target decreases the variance in hand-state also decreases, see
figure 4.5. Hence, the closer to the object we are the more important it becomes
to follow the desired trajectory.

This property is reflected in the planner by adding a higher weight (γ) to
the trajectory-following dynamics when we get closer to the target. And in
reverse, a long distance to the target leads to a higher weight (β) to the goal
directed dynamics. To follow a specified path to the goal a low value of β and a
high value of γ is needed, see equation 4.16. The weights β and γ are variables
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Figure 4.5: Position- and orientation-variance of the hand-state trajectories as function
of distance, across 22 demonstrations of a reaching to grasp motion. Note that distances
over 0.47 are extrapolations made by the clustering method.

reflecting the importance of the goal versus the path acquired from the variance.
How they change over time in a typical reaching task is shown in figure 4.6.
In the experiment in this section, β is set to drobot(t)/drobot(t0), and γ to
3 ∗ (1 − β) based on the statistics from figure 4.5, where drobot is obtained
from equation 4.14. Recall that the position of the object must be known to
compute the hand-state, so in this section we use the final position of the hand
for this purpose. Therefore, the variance at zero distance is zero.

The controller has a feedforward structure as in figure 4.7. The reason for
this structure is that a commercial manipulator usually has a closed architec-
ture, where the controller is embedded into the system. For this type of ma-
nipulators, a trajectory is usually pre-loaded and then executed. Therefore, we
generate the trajectories in batch mode for the ABB140 manipulator. Since our
approach is general, for a given different robot platform with hetroceptive sen-
sors (e.g., vision) our method can be implemented in a feedback mode, but this
requires that the hand-state H(t) can be measured during execution.
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Figure 4.6: The weights β and γ determining the trade-off between following a trajectory
or moving towards a target. These are determined from the normalized distance to the
target.

4.2.3 Experimental Evaluation

To illustrate our approach a set of reaching motions is demonstrated and recor-
ded. In this section, robotic simulations are made in Matlab using “Robotic
Toolbox” [Corke, 1996]. Two experiments are performed:

1. Generate a new trajectory based on one of the models from the recorded
trajectories but in the robot’s workspace.

2. Generate trajectories from the robot’s home position to 100 randomly
placed objects within the reachable workspace of the robot.

As experimental platform we used a motion capturing device for the human
demonstration and an industrial serial manipulator (ABB IRB140) equipped
with a two-finger gripper. In these experiments the manipulator is simulated.

Capturing the Human Demonstration

For motion capturing of human demonstrations we use the Immersion Cyber-
Glove with 18 sensors to capture the hand configuration. The glove contains
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Figure 4.7: Hand-state planner architecture. Hg is the desired hand-state goal, Hd is the
desired hand-state at the current distance to target.

strain gauges placed on the fingers, between the fingers, and on the palm and
wrist. Each sensor measures a bend angle at approximately 12 Hz. In the exper-
iments the yaw and pitch angle of the wrist are used to determine the position
of the grasp center point; the thumb abduction sensor is used to determine if a
grasp is performed. The remaining sensors measure joint angles of the fingers,
which can be used for grasp recognition but are ignored in these experiments.

A Polhemus FASTRAK 6 DOF magnetic tracker is mounted on the wrist of
the glove to capture the position and orientation of the hand, see section 3.3.5
for more details. T he experimental setup is shown to the left in figure 4.8.
Compared to vision systems the use of wearable sensors is somewhat impeding
for the user but provides several important benefits:

1. Wearable sensors are generally more accurate.

2. They do not suffer from occlusion.

3. Typically they provide fast and simple computation.

4. Ambiguities can be avoided by placing sensors directly on the desired
point of interest.

In the experiments, a demonstrator performs a set of grasps of a cylindrical
object (bottle) located at a fixed position. The grasp begins from an arbitrary
position in the workspace. The demonstrator’s arm/hand moves toward the
object and the grasp ends when the object is firmly caught in the hand. Then,
the hand moves away from the object and rests before repeating the task from
another initial position. The motions are automatically segmented into reach
and retract motions using the velocity profile. In our experiments only reaching
motions is considered. A set of paths for hand motions is shown to the right in
figure 4.8.

The poor performance of the magnetic tracker in the near vicinity of a
real robot required the demonstration to be performed elsewhere. Therefore,
we captured the data from the demonstration at a different location and then
transformed it into the coordinate frame of the robot.
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Figure 4.8: Left: The experimental setup with the data glove and the 6D tracker used
for data collection. Right: Trajectory of a reaching and grasp task. 24 demonstration
reaching for a cylindrical grasp.

Experiment 1 – Hand-State Reconstruction

In the first experiment, we try to generate robot trajectories from the robot’s
initial positions, which are different from the demonstrator’s initial position. It
is assumed that the final position is the same for both the robot and the demon-
strator. A set of 24 demonstrations is used (shown in figure 4.8), where two
were discarded by the automatic segmentation algorithm. Statistics from all re-
maining 22 demonstrations are used to make the variance calculation, shown
in figure 4.5, and the coefficients a and b in Fitts’ law (see section 2.2.2). Then,
each of the trajectories, H(t), is tested for robot trajectory generation. The fi-
nal position of the path is the same for both the robot and the demonstration,
but the initial positions are different. In figure 4.9 the hand-state trajectories
from three demonstrations are displayed together with the corresponding gen-
erated trajectory for the robot. By comparing the hand-state trajectory of the
demonstrator the one of the robot we can see how similar they are. As ex-
pected, we can see in the graphs in figure 4.9 that, despite the different initial
conditions, the generated trajectory has converged to the demonstration af-
ter approximately 1.5 − 2.0 sec. The graphs at the bottom of figure 4.9 show
the hand-state component φf(t) describing the angle between the index finger
and the thumb (a normalize value across the demonstrations, not the actual
angle). Here, φf(t) is used as a simple grasp recognition feature, where 1 cor-
responds to “open” and 0 means “closed”. Since we don’t consider grasping in
this experiment, φf(t) is only used to illustrate how the hand-state can be used
to synchronize reaching with grasping. Figure 4.10 shows the generated and
demonstrated reaching motions towards objects for four recorded trajectories.
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Figure 4.10: Four sample trajectories. The blue line is trajectory executed by the robot,
the red the demonstrated trajectory to follow. (The object is not shown here to not
occlude the path.

Experiment 2 – Trajectory Generalization

In the second experiment trajectories are generated toward objects placed at
random positions within the reachable area of the workspace. The robot started
from the same initial pose (home position where the position of the joints are:
Θ = [0, 0, 0, 0, 0, 0, 0]), and one trajectory–one for each of the 22 models–was
generated to each of the 100 randomly generated positions of the object. This
means that in total 2200 trajectories were tested. It is assumed that these objects
have observable affordances acquired a priori by some other means; e.g., vision,
intelligent environment or CAD models. In total, 1425 of 2200 trajectories have
been classified as “successful”. Success is defined as:

treach < 1.5 ∗ test and
√

d2
f − d2

des < 0.01m (4.18)

where
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No. 1 2 3 4 5 6 7 8 9 10 11
SR 100% 99% 99% 99% 99% 31% 99% 99% 8% 7% 42%
Var 0.08 0.06 0.16 0.03 0.11 0.77 0.22 0.11 0.30 0.95 0.45
No. 12 13 14 15 16 17 18 19 20 21 22
SR 99% 99% 94% 87% 5% 1% 13% 79% 15% 99% 52%
Var 0.02 0.12 0.20 0.12 1.08 0.00 0.48 0.17 0.18 0.42 0.30

Table 4.1: The success rate for each model by which they generated a successful reaching
motion. “SR” is the success rate, and “Var” is the variance of the duration.

test is the estimated duration of the movement,
treach is the actual reaching time

ddes is the desired distance to the object at the end of the motion
df the actual end-effector distance to object at the end of the motion

In this experiment ddes = 0, since the position at tf defines the base of
the hand-state space. In table 4.1 the success rate and the variance for each
model are shown. Here “SR” means success rate and “Var” is the variance of
movement duration. Model 1-5, 7, 8, 12, and 13 succeeded in reaching the
target 99-100% of the time and with a low variance. However, model number
9, 10, 16, and 17 succeeded in less than 10% of the trials and have a high
variance. The model number 21 has a high success rate but also a high variance.
Figure 4.11 show the success-rate and the variance in a graph where the models
in the lower right corner are the ones with low variance and high success-rate.

The variance in hand-state over the 1425 trials is shown in figure 4.12. As
a reference, the duration of the human demonstrations had a mean value of
3.22 sec and a variance of 0.33 sec.

By testing the performance of each model, it can be decided if it general-
izes satisfactorily enough or not. Models that fail to generalize can be removed
since all demonstrations describe the same type of task. Furthermore, the gen-
eralization capability can be used as a performance metric that can be used in
a reinforcement learning framework, as we will see in chapter 5.

4.3 Next-State-Planner, Simplified Version

The next-state-planner uses the demonstration to generate a similar hand-state
trajectory with the distance as a scheduling variable. Hence, the closer to the
object the robot is the more important it becomes to follow the demonstrated
trajectory. This property is reflected by adding a higher weight to the trajectory-
following dynamics when we get closer to the target. In revese, long distance to
the target leads to a lower weight to the trajectory following dynamics.

The final position of the path is the same point as the target position, thus,
the point of attraction becomes the same at the end of the motion. Therefore,
the planner can be simplified if the trajectory following property is judged to
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Figure 4.11: The performance of each model measured by the success-rate and the vari-
ance. The horizontal line is the human variance in movement duration, and the vertical
line is an ad-hoc separation in success-rate.

be of greater importance, thus, the β weight is set to zero. Hence, system (4.16)
gets the following dynamics:

Ḧ = α(−Ḣ + γ(Hd − H)) (4.19)

where H, Ḣ and Ḧ are the hand-state, and its first and second derivatives. Hd

is the desired hand-state trajectory encoded in equation 3.16, α is a positive
gain and γ is a positive weighting parameter for the importance of the tracking
term. A block scheme of the planner is shown in figure 4.13.

The weight γ reflects the importance of the path following capability of
the planner and is acquired form the variance in multiple demonstrations, see
section 4.2.1. We have empirically found γ to produce satisfactory results for:

γpos = 0.3
1

√

Var(Hxyz(d))

γori = 5
1

√

Var(Hrpy(d))
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Figure 4.12: The variance over 1425 trajectories where the models succeeded in reach-
to-grasp.
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Figure 4.13: Hand-state planner architecture. Hd is the desired hand-state at the current
distance to target.

where γpos and γori are the weights for position and orientation, respectively.
From equation 4.15 Var(Hxyz(d)) and Var(Hrpy(d)) are the variances for
the position and orientation, of the respective hand state component, see fig-
ure 4.14. In our experiments αpos and αori were fixed at 8 and 10, respectively,
with the time difference between two points in the generation being dt = 0.01.
These gains were chosen to provide dynamic behavior similar to the demon-
strated motions, but other criteria can also be used.

Analytically, the poles in equation 4.19 are found from:

p1, p2 = −
α

2
±

√

α2

4
− αγ (4.20)



82 CHAPTER 4. TRAJECTORY GENERATION IN HAND-STATE SPACE

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−5

10
−4

10
−3

10
−2

Distance (m)

P
o
s
it
io

n
 V

a
r 

(m
)

x

y

z

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
10

−3

10
−2

10
−1

10
0

R
o
ta

ti
o
n
 V

a
r 

(r
a
d
)

Distance (m)

r

p

y

Figure 4.14: Position- and orientation-variance of the hand-state trajectories as function
of distance, across 21 demonstrations of a reaching motion to grasp a soda can.

so the real part of p1 and p2 will be 6 0, which will result in a stable system
[Levine, 1996]. Moreover, α 66 4γ and α > 0, γ > 0 will contribute to a
critically damped system, which is fast and has small overshoot. Figure 4.15
shows how different values γ affects the dynamics of the planner in a tracking
task.

In these experiments the hand-state does not contain any hand configura-
tion components. The hand-state is defined to contain six hand-object relation
components: displacement x, y and z direction and rotation around the three
axes: roll r, pitch p and yaw y, see figure 4.1.

4.3.1 Experiments

For these experiments human demonstrations of a pick-and-place task are re-
corded with two different subjects using the PhaseSpace Impulse motion cap-
turing system described below. The motions are automatically segmented into
reach and retract motions using the velocity profile and distance to the object.
The robot used in the experiments is the industrial manipulator ABB IRB140.
The robot is equipped with an anthropomorphic hand developed at the Royal
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Institute of Technology (Stockholm, Sweden), described in detail by Tegin et al.
[2008].

Motion Capturing System

The Impulse motion capturing system consists of four cameras mounted around
the operator to register the position of the LEDs. Each LED has a unique ID
by which it is identified. Each camera can process data at 480 Hz and have 12
Mega pixel resolution resulting in sub-millimeter precision. The Impulse sys-
tems can be seen in figure 4.16. The operator wears a glove with LEDs attached
to it, see figure 4.16 and 4.17. Each LED modulates at a unique frequency giv-
ing them a unique ID. Thus, each point on the glove can be associated with a
finger, the back of the hand or the wrist. The LEDs on top of the palm are used
to compute the orientation of the hand. One LED is mounted on each finger tip,
and the thumb has one additional LED in the proximal joint, see figure 4.17.
One LED is also mounted on the target object.

Experiment 1 – Gripper Pose Variation

To investige how end-effector position–and hence the approach trajectory–
affect grasp success, we have dynamically simulated the grasping of an or-
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Figure 4.16: The Impulse motion captur-
ing system from PhaseSpace.

Figure 4.17: The Impulse glove.

ange using different hand positions across a 3D-grid. All experiments were
performed using the GraspIt! simulator. The hybrid force/position controller
is applied to the Barrett hand model from grasp initiation until the grasp is
completed. See Tegin et al. [2008] for a detailed description of the robotic hand
and the hybrid force/position controller. A successful grasp can be either a pre-
cision disc grasp or a power grasp. A grasp is considered to have failed if no
force closure grasp were reached during grasp formation. Figure 4.18 shows
the results from such simulations. Additional simulations and control details
can be found in e.g., Tegin et al. [2009].

These experiments showed that the required position accuracy of the robot
hand is in the centimeter range. This means that the reaching motion must po-
sition the the end-effector with an accuracy within the range required by the
anthropomorphic hand. The variance in the robot trajectories, shown to the
left in figure 4.19, is within the millimeter range which satisfies the accuracy
requirements. The required accuracy of the reaching motion is depended of ca-
pabilities of the gripper; an autonomous robotic hand like the Barrett hand or
the KTHand impose a looser constraint on the reach motion than a parallel
gripper, which requires much higher accuracy. For fully autonomous execution
of a grasp learnt using the suggested approach, we must also consider uncer-
tainties with respect to object position, orientation, and in the object model
itself.

Experiment 2 – Learning from Demonstration

For this experiment 26 demonstrations of a pick-and-place task were performed.
A soda can was grasped with a spherical grasp. To make the scenario more re-
alistic the object is placed with respect to what is convenient for the human and
what seems to be feasible for the robot.

Five of the 26 demonstrations were discarded in the segmentation and mod-
eling process for reasons such as failure to segment the demonstrations into
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Figure 4.18: Grasp results from dynamic simulations of different initial hand positions.
Grid spacing is 10 mm in the xy-plane and 5 mm along the z-axis. Courtesy of Johan
Tegin.

three distinct motions (approach, transport and retract) or the amount of data
was not enough for modeling because of occlusions. In this experiment, only
the reach-to-grasp phase of the motion is considered. All 21 demonstrations
were used for trajectory generation and to compute the variance, shown in fig-
ure 4.14. The trajectory generator produced 21 reaching motions which are
loaded to the robot controller and executed. Note that, for each produced tra-
jectory, all demonstrations are used to compute the γ-gain, which determines
how much the robot can deviate from the followed trajectory. In eight attempts,
the execution succeeded while 13 attempts failed because of unreachable con-
figurations in joint space. This could be prevented by placing the robot at a
different location with better reachability. Moreover, providing the robot with
more demonstrations, with higher variations in the path, will lead to fewer con-
straints. Three samples of hand-state trajectories of the successfully generated
ones are shown in figure 4.20.

In the eight successfully executed reaching motions we measured the varia-
tion in position of the gripper, shown to the left in figure 4.19, which is within
the millimeter range. This means that the positioning is accurate enough to en-
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Figure 4.19: Left: The end-effector position in the workspace for the eight successfully
executed trajectories. Right: A trajectory generated when the initial position is the same
as the desired final position, showing that the method generate trajectories as similar to
the demonstration as possible based on the distance.

able successful grasping using an autonomous gripper, such as the Barrett hand
[Tegin et al., 2007] or the KTHand.

Experiment 3 – Generalization in Workspace

In this experiment, the method is tested on how well it generalizes by examining
if feasible trajectories will be generated when the object is placed at arbitrary
locations and when the initial configuration of the manipulator is very different
from the demonstration. This will determine how the trajectory planner handles
the correspondence problem in terms of morphological differences.

If the initial distance between the end-effector and the target is outside the
data range, the TS-models must be extrapolated, a risky strategy for longer dis-
tances. Another approach is to apply a different control scheme for this region,
e.g., the VITE strategy [Bullock and Grossberg, 1989] if the distance is within
the data range the proposed trajectory generator takes over.

Three tests were performed to evaluate the trajectory generator in different
parts of the workspace.

• First, trajectories are generated when the manipulator’s end-effector starts
directly above the object at the desired final position with the desired
orientation that is Hr

1 = Hr
f. The resulting trajectory is shown to the right

in figure 4.19. Four additional cases are also tested displacing the end-
effector by 50 mm in +x, -y, +y, and +z direction from Hf, all with very
similar results (from the robot’s view: x is forward, y left and z up).
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Figure 4.21: The object is placed at four new locations within the workspace.

• Second, we tested reaching the object at a fixed position from a random
initial configuration. Figure 4.22 shows the result from two random ini-
tial positions where one trajectory is successfully followed and the other
one fails. The failure is a result of operation in hand-state space instead of
in joint space, and it might therefore have a tendency to go onto unreach-
able joint space configurations, as seen in the right column of figure 4.22.
To prevent this it is possible to combine two controllers: one operating
in joint space and the other in hand-state space, similar to the approach
suggested by Hersch and Billard [2006], but at the price of violating the
demonstration constraints.

• Third, the object is placed at four different locations within the robot’s
workspace; displaced 100 mm along the x-axis, and -100 mm, +100 mm,
+200 mm, and +300 mm along the y-axis, see figure 4.21. The initial
pose of the manipulator is the same in all reaching tasks. The planner
successfully produces four executable trajectories to the respective object
position.

The conclusion from this experiment is that the method generalizes well in
the tested scenarios, thus adequately addressing the correspondence problem.
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However, the unreachability problem has to be addressed in future research to
investigate how the robot should balance the two contradiction goals: reaching
an object in its own way, with the risk of collision, and reaching an object as
the demonstrator showed. Indeed, if the robot has more freedom to choose
the path it is more likely to avoid unreachable configurations. However, such
freedom increases the risk for collision.

Experiment 4 – A Complete Pick-and-Place Task

To test the approach on an integrated system the KTHand is mounted on the
ABB manipulator and a pick-and-place task is executed, guided by a demon-
stration showing pick-and-place task of a box (110×56×72 mm). The reaching
motion and the grasp are executed as described in the previous experiments in
this section. The synchronization between reach and grasp can be performed
by a simple finite state machine. After the grasp is executed, the motion to
the placing point is performed by following the demonstrated trajectory (see
section 3.3.4). Since the robot grasp pose corresponds approximately to the
human grasp pose it is possible for the planner to reproduce the human trajec-
tory almost exactly. This does not mean that the robot actually can execute the
trajectory, due to workspace constrains. The retraction phase follows the same
strategy as the reaching motion, but in reverse. Figure 4.23 shows the complete
task learned from demonstration.

4.4 Summary

In this chapter, we presented a method for Programming-by-Demonstration of
reaching and grasping tasks. A hand-state representation is employed as a com-
mon language between the human and the robot which allows the robot to in-
terpret the human motions as its own. It is shown that the suggested method can
generate executable robot trajectories based on current and past human demon-
strations despite morphological differences, thus meeting the first goal outlined
in the introduction. The second goal, the generalization ability of the trajec-
tory planner is illustrated by several experiments where an industrial robot
arm executes various reaching motions and positions the gripper accurately
enough to perform a power grasp using a three-fingered hand. The third goal
(synchronization between reaching and grasping), which for a simple–yet very
common–type of gripper, have been shown in how the different components
of the hand-state are synchronized. Since the hand-state provides a description
of both the human hand and the gripper, it also gives the robot the ability to
interpret its own motions in the same way as the demonstrator’s. Therefore,
the robot can learn from its own experience in a similar manner, the fourth
outlined goal. We will elaborate this in the next chapter.

One main question for future research is how to learn from the demonstra-
tion the gains α, β and γ used to control the dynamics of the next-state-planner
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(see section 4.2.2 and section 4.3). Currently they are manually determined,
even if the variance is incorporated in their choice.

Reinforcement learning, discussed in chapter 5 can be used to make the
robot improve over time if it has access to a performance metric. This is a key
question in future research.
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Figure 4.22: A trajectory generated from two different randomly initial position reaching
for the same object. In the left column, a successful reaching motion is generated where
the final position is on top of the can. The right column shows a case where the robot
reaches an unreachable joint configuration and cannot move along the trajectory.
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Figure 4.23: Industrial manipulator programmed using a demonstration. A movie of the
sequence is available at: http://www.aass.oru.se/Research/Learning/arsd.html.



Chapter 5

Reinforcement Learning for

Reaching Motions

In this chapter we investigate how reinforcement learning can be used in a
Programming-by-Demonstration framework, and how reinforcement learning
can benefit from a demonstration in order to reduce the search space. When a
robot has learned how to perform a task, it should be able to self-improve its
skills and learn new skills.

The contributions of the experiments in this chapter are as follows:

1. We show how demonstrations speed up reinforcement learning of reach-
ing motions.

2. We present a reinforcement learning strategy for the fuzzy time-model
based next-state-planner. This learning strategy enables the robot to eval-
uate its performance and adapt its actions to better fit its own morphol-
ogy instead of following a demonstration.

Section 5.1 briefly introduces reinforcement learning, and section 5.2 and
5.3 present the experiments on reinforcement learning in a Programming-by-
Demonstration setting. A short summary and a discussion are given in sec-
tion 5.4.

5.1 Reinforcement Learning

Reinforcement learning is very general in its formulation and can cover a wide
variety of problems [Sutton and Barto, 1998]. As a practical example, consider
an agent (such as a robot) that learns a control policy during its interaction with
the environment. From a given state s, the agent takes an action a, following
policy π, or to be formal:

π(s)→ a (5.1)

93



94 CHAPTER 5. REINFORCEMENT LEARNING FOR REACHING MOTIONS

State

Agent Environment
Action

Reward −1

−1

−1

−1

−1

−1

−1

−1

−1 −1

G
+100

+100

Figure 5.1: Left: The interaction between the agent and the environment. Right: At each
transition a reward of −1 is given for all actions, except the ones leading to the goal
state denoted G. The transitions to the goal state give a reward of +100, and the trial is
terminated.

Initially it is assumed that the agent has no knowledge about the world
it operates in, but gains knowledge from exploring the world with initially
random actions. During the exploration of the environment the agent receives
a response from the environment in the form of a state transition and a reward
for each transition, given a certain action, illustrated in figure 5.1. The agent’s
objective is to maximize the accumulated reward, meaning that the reward
function must indicate the goal of the system. The reward accumulation is done
by summing the rewards over time:

R = r(s0, a0) + . . . + r(sn, an) (5.2)

where r() is the reward function for a state-action pair sn, an at time step n

and R is the total reward.
Consider the example to the right of figure 5.1. A positive reward is assigned

when the agent reaches the goal, and a small negative reward is given for ev-
ery (time) step the agent spends searching for the goal, hence the reward of
−1 for all other state transitions. The positive reward the agent receives when
performing an action is often delayed until a goal is reached. A delayed reward
usually means that the agent receives the same reward everywhere (for example
0 or -1) until the goal state or a forbidden state is reached, where a large re-
ward or punishment is received. This way of assigning rewards will result in a
system that strives towards reaching the goal state as quickly as possible. If the
reward is given for the goal state and not for other states that are considered
by the designer to be good, reinforcement learning solutions tend to converge
towards the optimal solution, although this is not always guaranteed. When
using delayed rewards the reinforcement learning agent has in its first trial(s),
by luck or accident, to run into the goal state before it can begin to perform
better than the initial random behavior.

If reinforcement learning is compared to supervised learning, where a target
function explicitly shows how to perform a task, the reinforcement learning
agent is only provided with a quality measure like “good” or “bad”, but not
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with the input-output mapping as in supervised learning. Hence, reinforcement
learning is designed to express what to do, without having a teacher telling you
how to do it.

If the agent keeps the exploration capability it is possible for the agent to
learn a better policy than the one initially learned, assuming that it was not
optimal.

Generally, a task can be considered to belong to one of two cases, either it is
an episodic task or a continuing task. An episodic task is an activity that ends,
like a reaching motion, that trial is over and the next one starts. The other case
is a continuing task, when the agent is not trying to get to the goal but rather
“keep close to it”.

5.1.1 Temporal-Difference Learning

One of the major developments within reinforcement learning was Temporal-
Difference learning (TD-learning) by Sutton [1988]. TD-learning waits only
until the next time step to update the value function. Given state-action values,
denoted by Q(st, at), the temporal difference between time t and t + 1 is of
interest:

δt = rt+1 + γQ(st+1, at+1) − Q(st, at) (5.3)

where δt is the TD-error at time t and γ is the discount factor. The update
equation using the TD-error is then:

Q(st, at) = Q(st, at) + αδt (5.4)

where α is a step size parameter. One of the most popular TD-learning tech-
niques is Q-learning which therefore deserves some more attention.

5.1.2 Q-learning

Q-learning was originally developed by Watkins [1989] and has become one of
the most popular learning algorithms within the reinforcement learning family.
In Q-learning each state-action pair is marked with a quality measure. For value
estimation and control, two different functions are used, Qπ and π, respectively.
When different functions are used for estimation and control the method is
called an “off-policy method”.

The action selection policy can either be greedy, which means that the action
with the highest value is selected, or ǫ-greedy that means with small probability
ǫ a random (i.e., exploring) action is selected. With a low value of ǫ the exploit-
ing action is more often selected. When a policy π is followed, the Q-function
is given a value by:
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π← Qπ(s, a) (5.5)

The ongoing process of self-evaluation that the agent continuously goes
through contains both evaluation and improvement of the policy. When an
action is selected and taken, an evaluation is given in response to this action by
a reward signal. This reward is then used to update the Q-value.

In the discrete form of Q-learning, the Q-value Q(s, a) is usually imple-
mented as a table. To update the Q-value for each state-action the following
equation is used iteratively during learning:

Q(s, a)← Q(s, a) + α [r + γ maxa′Q(s ′, a ′) − Q(s, a)] (5.6)

where s is the state, s ′ next state, a action, a ′ next action, α step size param-
eter, r the reward and γ a discount factor. Note that the Q-learning algorithm
is recursive, and a starting value is needed. Usually this is initialized to zero, al-
though it could be initialized arbitrarily. The full Q-learning algorithm is shown
in table 5.1.

If the agent is shown how to perform a task by a teacher, it can record the
actions and update the Q-table during the demonstration. The RL-agent will
then start with a Q-table containing non-zero values in the state-action space
where the teacher provided examples, which will make the agent to follow the
teacher’s example, unless an exploring action is selected. Hence, the policy is bi-
ased by the demonstration, and initially performs better (or at least differently)
from a random behavior. If the ǫ-parameter, which determines the randomness
of the actions, is set to zero the agent would always exploit the Q-table by se-
lecting the maximum reward action, hence perform exactly as the teacher does
in a deterministic environment. However, when setting the ǫ-parameter to some
small number the agent can explore and eventually find a better solution than
the teacher, if it exists.

5.1.3 Large Continuous State- and Action-Spaces

Reinforcement learning was developed for discrete problems, hence the type of
problems reinforcement learning can be applied to was limited to discrete for-
mulations. Therefore, several researchers have worked to extend reinforcement
learning to continuous values, e.g., [Doya, 2000, ten Hagen, 2001].

In the case of large state- and action-spaces, a generalization must be done,
since it will be impossible to try all possible cases. If a continuous state or ac-
tion problem is encountered, this means finding the V(s) or Q(s, a) value for
the continuous case, a function approximator can be used to approximate the
V- or Q-function. Neural networks are one possible method for approximating
the value function, where only the weights of the network need to be stored.
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• Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A(s)

• Do forever:

– s← current state

– a← ǫ-greedy(s, a)

– Execute action a; observe the resultant state s ′ and reward r

– Q(s, a)← Q(s, a) + α [r + γ maxa′Q(s ′, a ′) − Q(s, a)]

– s← s ′

Table 5.1: Pseudo code for the Q-learning algorithm.

A function approximator permits representation of value functions with less
variables, instead of keeping a table of all possible states and actions. A func-
tion approximator also enables generalization (interpolation and possibly some
extrapolation) on previous experiences.

Reinforcement learning has been shown to perform well on mobile robot
tasks with low dimensional state- and action-spaces, but when the dimen-
sionality grows it scales poorly. Several papers address the issue of reinforce-
ment learning in mobile robotics, normally using 2 DOF, which means a much
smaller action space than that of a manipulator or a humanoid robot. Locally
weighted learning is well suited for performing function approximation in high
dimensional spaces, and has also proved to be useful for online incremental
learning [Vijayakumar and Schaal, 2000]. By using a feasible function approx-
imator the value function can be approximated in regions not yet experienced,
which also can speed up the learning process.

When moving into higher dimensional spaces the ǫ-greedy policy becomes
dangerous and the risk of failure increases. This is because the max operator,
usually used to determine the next action, can make the policy evaluation un-
stable [Peters et al., 2003]. Increases in dimensionality require a more feasible
method than the max operator as a policy gradient method to determine the
best policy. This have led to the development of gradient-based methods suit-
able for continuous valued functions such as the vanilla gradient improvement
[Gullapalli, 1993] and the natural policy gradient improvement [Peters et al.,
2003].

5.1.4 The Dyna Architecture

An important contribution to reinforcement learning and artificial intelligence
is the Dyna architecture, developed by Sutton [1991], which combines learning
and action with planning. Next follows a description of how the Dyna architec-
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• Initialize Q(s, a) and Model(s, a) for all s ∈ S and a ∈ A(s)

• Do forever:

– s← current state

– a← ǫ-greedy(s, a)

– Execute action a; observe the resultant state s ′ and reward r

– Q(s, a)← (s, a) + α [r + γ maxa′Q(s ′, a ′) − Q(s, a)]

– Model(s, a)← s ′, r

– Repeat N times:

* s← random previously observed state

* a← random action previously taken in s

* s ′, r←Model(s, a)

* Q(s, a)← Q(s, a) + α [r + γ maxa′Q(s ′, a ′) − Q(s, a)]

Table 5.2: Pseudo code for the Dyna-Q algorithm.

ture can be applied to Q-learning, although Dyna can be combined with other
reinforcement learning algorithms.

In the original Q-learning algorithm the update of the Q-value is made one
time per iteration, making convergence of the Q-values slow. One way to over-
come this drawback is to use the so called “eligibility traces”, which is a trace
that the agent leaves behind, to “remember” which path was taken. Another
way is to keep a memory map containing samples of states (or state-action)
values visited before. Dyna uses a memory, called “model”, that contains infor-
mation about which states have been visited, what action was taken there, what
state that action resulted in and the expected reward. After each real action the
agent has taken the Q-table is updated using the reward signal. Thereafter an
iterative simulation phase starts with n iterations using the model, where a
random state-action pair is selected from the model, and its Q-value is updated
based on the recorded data. This simulation, or planning, could be called a
“mental rehearsal” process, thus implementing a so-called indirect reinforce-
ment learning algorithm. The Dyna-Q algorithm is described in table 5.2.

5.1.5 Robotic Applications Using Reinforcement Learning

To investigate how demonstration of a task influenced the speed of the learn-
ing process, Schaal [1997] used reinforcement learning (V-learning, Q-learning
and model-based reinforcement learning). An implementation on a real manip-
ulator showed some convincing results on learning from demonstration when
performing a pole-balancing task. With a demonstration the robot succeeded
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in the very first trial using the model-based reinforcement learning method,
which also offered more robustness in this task than the other methods inves-
tigated. He showed that model-based learning, such as Dyna, benefits greatly
from demonstration and speeds up the learning process, in contrast to the other
methods investigated, such as V-learning and Q-learning, which did not benefit
significantly from demonstration.

5.2 A Dyna-Q Application for a Robotic Arm

This experiment addresses how demonstrations can speed up Q-learning of a
reaching task. We use a concept of combining acting, learning and planning,
known as Dyna (see section 5.1.4), and implement it on a simulated articulated
robotic arm. We use a model of the human arm that the data of the capturing
device is mapped to. The human arm model is introduced due to the inaccuracy
of the learned model described in the experiment in chapter 3. In this work the
aim is to use a demonstration that provides the reinforcement learning agent
with knowledge of the task.

One solution to the learning problem would be to apply a direct supervised
learning algorithm, where the teacher tries to provide input-output mapping
examples of all possible situations by error minimization. However, this ap-
proach is problematic because the demonstrations may be incomplete and only
partly correct [Kaiser et al., 1995]. Instead our approach is to apply reinforce-
ment learning, where the demonstration may be given in order to guide and
accelerate the learning through autonomous exploration.

5.2.1 Method

By using the Dyna-Q algorithm, which combines learning and action with plan-
ning, a learning agent is used to control the robotic manipulator. When the
agent has made its first action and the environment has responded the Q-table
and the model are updated. The model contains information about which states
that have been visited, what actions were taken there, what state that action
brought it to and the expected reward. When the agent has taken a real action
and observed the next state and reward, it starts planning for n iterations using
the model. This way an evaluation can be made of the received information
about the surrounding states.

In our implementation a discrete state-space is used and the learning aims
at making the manipulator reach a goal configuration from any position. There
are 1331 states (each joint position is divided into 11 discrete states and three
joint are used, in total 1331 states) and at each joint an action can be “go
forward”, “go backward” or “stay”. In all our experiments the learning rate,
α, was set to 0.1 and the discount factor, γ, to 0.95.
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For reaching the goal configuration a reward of 100 was given and -1 for
all other state transitions. The task is episodic, that means when the goal con-
figuration is reached the trial terminates.

In our implementation the Dyna-Q algorithm described in table 5.2 is used.
At the start the Q-table and the model are initialized with zero values. At each
new trial the manipulator is initialized to a random position. If it is in the
goal state the trial is terminated, otherwise an action is selected using ǫ-greedy
selection from Q and s. Then the observed new state, s ′ and the reward are
determined, and the Q-table updated accordingly. The new state s ′ and reward
are also stored in the model. The planning then starts, where the agent selects
one of the visited state-action pairs and retrieves the expected reward, and uses
this to update the Q-table.

If a demonstration by the teacher is used (the first n trials, where n is
the number of demonstrated trajectories) one of the recorded trajectories is
replayed to the agent to bootstrap the Q-table. When all demonstrated trajec-
tories are done, randomly initialized starting positions are given to the agent.

5.2.2 Experiment Setup

The motion capture system ShapeTape from Measurand was used in this exper-
iment, the same as in the previously described experiment in section 3.2.1. The
training is done by a human demonstrator by means of this wearable sensor
device. The sensor signals of the input device are used to drive the robot’s joints
so that the robot copies the motion of the human arm in the most exact way
possible.

5.2.3 Human Arm Model

The first step in our system was a simple imitation of the motion of the hand of
the demonstrator which has already been realized by a direct connection of the
ShapeTape sensor and a kinematical model of the robot. Yet it turned out that
a plain imitation ignores the configuration of the demonstrator’s arm during
motion completely and offers no additional DOF to influence the robot’s con-
figuration. Therefore a model “in between” has been adopted that imitates the
kinematics of the human arm as much as possible. The features of the human
arm model are:

• Direct analytical models with kinematical parameters, for example, link
lengths, ranges of angles, singularities, work spaces, numbers of DOF.

• Differential inverse kinematics to calculate the joint angles corresponding
to given Cartesian coordinates [Liegeois, 1977] and [Palm, 1992].

The human arm is modeled by a 4-link mechanism with 7 DOF and the robot
as a 6 DOF mechanism, see figure 5.3.
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Figure 5.2: Block scheme of the system including demonstrator, shape tape, human arm
model, and robot.

The redundancy of the human arm model and the different numbers of
degrees of freedom between the human arm model and the robot requires the
calculation of their direct and inverse differential kinematics, taking further
into account the position and the orientation both of the human hand and the
end-effectors of the robot. Figure 5.2 shows the block scheme of the whole
setup.

To the left side in figure 5.4 shows a simulation of a trajectory being taught
by the demonstrator using the ShapeTape. Ergonomic reasons led to the idea
not simply to imitate the trajectory of the human arm but to mirror it. The
method presented also makes the consideration of restrictions or side condi-
tions possible, with respect to kinematical configurations and obstacles.

5.2.4 Simulation Results

To demonstrate the concept, a simulated robot was given the task to reach a
goal configuration, shown to the right in figure 5.4, from a randomly initial-
ized position. The simulations are done using Matlab and a robotic toolbox
[Corke, 1996], which also provides a visualization of the simulation. To make
the state space convenient for calculations but without being unrealistically
small the number of used DOFs is reduced from six (in conventional industrial
manipulators such as the Puma 560), to only use the first three links. This per-
mits the manipulator to reach a certain position but not a specific orientation.

The actions are deterministic, which means the manipulator will move into
the next state from all states except from those that bring the joint out of range.
The range span from −180 to 180 degrees for each joint.

In our experiments, it turned out that the ǫ-parameter had little influence
on the learning curve. Instead the number of planning steps are of greater in-
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Figure 5.3: A kinematical model of the human arm and the robot.

terest. Comparing 0 and 100 planning steps together with a “soft planner”
affects both the learning rate and the computational time. When we use 100
planning steps we call it “full planning” abbreviated FPL, and 0 planning steps
we call “non-planning” abbreviated NPL. The so-called “soft planner” (SPL)
is a planner that decreased the number of planning steps linearly from 100 to 0
per episode with one planning step less per episode. Six different experiments
were carried out investigating the planning variable, together with the RL boot-
strapped by a demonstration (denoted GU for GUided), versus RL with random
exploration (denoted RA). GU and RA are combined with different planners
FPL, NPL and SPL.

The left graph in figure 5.5 shows how the learning curve jumps up when
the agent is “released” and explores autonomously. In this case the agent uses
the demonstrated trajectories to provide the exploration policy for the first
20 episodes in order to bootstrap the learning. The non-planning agent jumps
up to about 200 trials and slowly converges, while the two planning agents
perform equally well, initially about 40 steps per episode. The middle graph in
figure 5.5 shows initially random agents and compares the planning and non-
planning cases. Here the non-planning agent, as before, needs several more
episodes before converging compared to the planning agent, while the soft- and
full-planner shows similar results.

A comparison between the guided and initially random case is shown to the
right graph in figure 5.5 for the soft planner. Between the 20th and the 35th
trial the initially random agent actually performs a little better than the guided
agent.

Planning improves the convergence result and speeds up learning, measured
in steps per episodes, but slows down learning when measuring CPU time. Even
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Figure 5.4: Left: Simulation of the mapping between the wearable input device, human
arm model and robot. Right: The simulated Puma560 robot in the Robotic toolbox.

Planning mode Guided Initially random

Non 14.6 sec 25.4 sec
Full 708.0 sec 1435.4 sec
Soft 237.1 sec 752.0 sec

Table 5.3: The number of seconds for each computation displayed in the figure 5.5.
One hundred planning steps increases the computing time, but decreased the number of
iterations before the learning converges, while no planning-step increases the number of
episodes before convergence, but decreases the computational effort. The soft planner is
a tradeoff of both.

though the first trial in the unplanned tasks took approximately 2500 steps, the
computational time was the lowest, about 50 times faster than its correspond-
ing planning agent. The soft planning agent performs roughly twice as fast
compared to the full planning agent. Table 5.3 summarize the comparison be-
tween the computational times needed for 0 and 100 planning steps together
with the soft planner.

In these simulations the trajectories from the ShapeTape-sensor for the guid-
ed agent was not used, instead we used a set of hand-generated trajectories (20
in total). Our aim is to integrate the two modules in our future work.

5.2.5 Discussion

We have shown how a demonstration can speed up the learning and how rein-
forcement learning then continues as the agent continues to explore. The plan-
ner further accelerates the learning. After the agent’s initial fully guided trials it
starts to run autonomously but is still not optimal. However, the learned policy
did not benefit from demonstration.
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5.3 Reinforcement Learning Using a

Next-State-Planner

In the previous experiment the scenario is over-simplified, thus, not very re-
alistic. The reason for the simplification is owed to an–otherwise large–state-
action space, which would be unfeasible to use because of the computational
limitations. To overcome these limitations the state space can be approximated,
and the human demonstrations can be used as actions. Moreover, for imitation
learning the robot needs a method by which it can transform observed actions
into robot actions, not only by observation and interpretation, but also by exe-
cuting the observed action and comparing the result to the demonstration. This
implies a developmental structure where an action is first learned by observa-
tion and later modified to better fit the robot’s morphology and the experience
it gains upon executing the action.

The developmental learning approach was first proposed by Weng et al.
[2001], as a way to have robots with developmental learning instead of pre-
programmed knowledge. This approach emphasizes on the learning of skills,
which are neither known at the time of programming, nor by the program-
mer. Furthermore, learning should be on-line and in real time and should first
involve basic skills and then move to more complex skills.

We propose a three staged process for the robot to acquire novel skills from
demonstration, where the stages are observation, execution and self adaptation.
This will equip the robotic system with the above outlined developmental skills.
In the experiments the robot first observes a demonstration, creates a model,
and then executes its own version of the skill using the model. If the execution
is successful a new model is created, based on the successfully executed motion.

Let us assume that planning and re-planning is performed in hand-state
space. Our hypothesis is that in this case the self executed motions using models
built from the robot’s own motions are better adapted to the robot than a
model built from the motions of the human demonstrator. This means that
skills modeled form the robot’s own actions should receive a higher reward
than the skills directly modeled from human demonstrations. The purpose of
the experiment is twofold: firstly, to test our hypothesis; secondly, to test our
proposed reinforcement learning strategy for the fuzzy-modeling based next-
state-planner, introduced in chapter 4.

Another important aspect of our method is that a skill which has been ob-
served, modeled, and successfully executed can be stored for recognition pur-
pose and reused later. This means that even if a particular demonstration would
not be executable by the robot, an earlier demonstration–which resulted in an
executable robot skill–can be recognized as an instance of this skill and used
instead of the current demonstration.
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5.3.1 Methodology

In the experiments in this section an imitation metric of a reaching trajectory
are used for Q-learnig (section 5.1.2) of action selection. The major term in
determining the success of the trajectory is the result of a grasp. In adding,
the metric is based on the hand-state error (see section 4.1) and the minimum
jerk (section 2.2.2). The hand-state error determines how much the motion re-
sembles the demonstration, and the minimum jerk measure will penalize jerky
motions. Here, the same next-state-planner as in section 4.2 is used for trajec-
tory generation, but with a simpler method for determining the dynamics. The
experiment will show how well a skill modeled from a demonstration performs,
and how well a skill modeled from its own execution of this skill performs in
comparison to each other. More importantly, the experiment will show how
useful these skills are for arbitrary initial positions of the end-effector. Hence,
we test the generalization capability of the planner and extend the results from
the experiment presented in section 4.2.3.

The models obtained from human demonstration are used as actions, thus,
the action space is discretized in form of models, i.e., skills. From our previous
work (chapter 4), we know that theses actions can perform reaching motions
sufficient enough for the robot to use as actions. This means that a full reaching
motion–the trajectory–is used as an action, instead of applying action selection
at each point in time to produce a trajectory.

The demonstration will be done in two stages: the first in which the envi-
ronment is recorded, and a second where the task is shown. We use a simplistic
modeling of the environment where all objects are modeled as box shaped ob-
jects. A more sophisticated modeling could be used if a better granularity of the
workspace is needed [Charusta et al., 2009]. The learning process is illustrated
in figure 5.6 containing five phases as follows:

Demonstration The data acquisition phase where the demonstrator performs
the task. The hand state trajectory Hd

n is recorded.

Modeling The demonstrations are interpreted under the assumption that a
pick-and-place task is performed. The pick and the place positions are
determined, and the trajectories are modeled in hand-state space using
fuzzy modeling Ĥd

n.

Execution of Demonstrations After the demonstrations are interpreted and con-
verted into hand-state trajectories, these trajectories are executed by the
robot manipulator. The trajectory executed by the robot is denoted Hr

n.

Evaluation Trajectories executed by the manipulator are evaluated, and the
ones that performed sufficiently well are remodeled. The evaluation cri-
teria are based on how closely the hand-state trajectory is followed and if
the grasps were successful.
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Model Hr
n → Ĥr

Execute Ĥd
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Recognize Ĥd
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Find Ĥd = Hd
n that Ĥd → Ĥr

Figure 5.6: The learning and evaluation process in our framework. The two gray-shaded
boxes are not implemented for this experiment.

Re-modeling If the evaluation shows that the executed motion performs well,
the executed trajectory Hr

n is used to create a model Ĥr (exactly like the
demonstration Hd

n). This means that a successful robot version of the
demonstration is “worth” more that the human demonstration.

In figure 5.6 box number 3 referrers to the skill recognition, and is not im-
plemented or tested in the experiment in this section. However, as new demon-
strations Hd

n are observed and modeled these new models can be compared to
previous models, e.g., Hd

1 . In this way, skills can be recognized using the same
scheme as described by Palm and Iliev [2006]. If a new demonstration (model)
matches an already modeled trajectory, indicated by box number 5 in figure 5.6,
the corresponding robot model Hr is used to execute the robot motion. If no
match occurs (no recognition), the all the above described process are used to
acquire the new skill.

For testing our hypothesis, the re-modeled trajectories are executed by the
robot and evaluated using the same criteria as the initial evaluation. Accord-
ing to our hypothesis the re-modeled trajectories obtained from trajectories
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executed by the manipulator, should perform better than the original models,
obtained from human demonstrations. The hypothesis is tested using a rein-
forcement learning framework where models built both from demonstrated and
self executed trajectories are used as actions. By using a reinforcement learning
framework, an option for self improvements of actions is opened.

Generation of Robot Trajectories

For robot trajectory generation the next-state-planner described in section 4.2 is
used. The reason for using that next-state-planner instead of the simplified ver-
sion described in 4.3 is that we provide two types of demonstrations: one task
demonstration, i.e., a pick-and-place of an object; one environment demonstra-
tion, i.e., the target objects in the workspace are shown to the robot. The envi-
ronment demonstration provides an accurate description of the workspace for
box shaped objects. A bounding box represents each object with position of the
center and length, width and height, which are used to compute the orientation
of the object. Since this description is more accurate than the object estimation
from the task demonstration the next-state-planner described in section 4.2,
which explicitly takes the goal into account, is better choice, compared to the
planner described in section 4.3. The task demonstration contains the trajecto-
ries which the robot should execute to perform the task. Like in chapter 4 the
notion of hand-state describes the object related trajectories. In these experi-
ments the orientation interpolation between initial and final position is made
using spherical linear interpolation [Shoemake, 1985].

One modification to the next-state-planner used in this section is a different
weighting mechanism than the variance used in the experiment in section 4.3.
Since the environment demonstration provides accurate data compared to the
task demonstrations, the weight of the task demonstration is set ot 0 at the near
the target object. An in reverse, the target object pose obtained from the envi-
ronment demonstration receives the full weight of 1 at the end of the trajectory.
Formally we express this as:

β = K(1 − Γ(t))

γ = KΓ(t)

}

0 6 Γ 6 1 (5.7)

where β is the weight of the demonstration; γ is the weight of the target; and K

is a fixed gain, in this experiment K = 2. The weighting function denoted Γ(t)

is dependent of the time:

Γ(t) =

(

tleft

tfinal

)2

(5.8)

where

tleft =

{

tfinal − t IF t 6 tfinal

0 IF t > tfinal
(5.9)
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Figure 5.7: The two gains β and γ in equation 5.10 during a reaching motion. β rep-
resents the weight of the target goal from the environment demonstration, and γ the
weight of the task demonstration (the reaching motion).

and tfinal is the duration of the demonstration. This will lead the weight to
shift from the demonstrated trajectory to the demonstrated target. Figure 5.7
shows β and γ as a function of time, when the reaching motion approaches
the target object. The weight β represents the importance of the target pose
recorded from the environment demonstration. Similarly, γ is the weight of the
reaching motion in the task demonstration. During the motion, the importance
shifts from the demonstrated trajectory to the demonstrated goal. A similar
weighting mechanism was presented by Hersch et al. [2006], in an equivalent
context. The dynamics of the NSP will be as in equation 4.16:

Ḧ(t) = α(−Ḣ + β(Hg − H) + γ(Hd(d) − H)) (5.10)

where Hg is the hand-state goal, Hd(d) the desired state at distance d, H is the
current hand-state, Ḣ, Ḧ are the velocity and acceleration respectively, and α is
a positive constant. In these experiments α was fixed at 8 and dt = 0.01s.



110 CHAPTER 5. REINFORCEMENT LEARNING FOR REACHING MOTIONS

Evaluation using Q-learning

The actions of the robot have to be evaluated to enable the robot to improve its
performance. The trajectory executed by the robot is evaluated based on three
criteria:

• Deviation between the demonstrated and executed trajectories.

• Smoothness of the motion, less jerk is preferred.

• Successful or unsuccessful grasp.

Using a Q-learning framework (section 5.1.2), the reward function can be
formulated as:

r = r1 + r2 + r3 (5.11)

where

r1 = −
1
tf

t=final
∑

t=0

|Hr(t) − H(t)| (5.12)

r2 = −
1
tf

t=final
∑

t=0

...
x

2
(t) (5.13)

r3 =







−100 if Failure
0 if Success, but overshoot

+100 if Success
(5.14)

where Hr(t) is the hand-state trajectory of the robot, H(t) is the hand-state of
the demonstration. The second term of the reward function is proportional to
the jerk of the motion, where tf is the duration of the motion, t0 is the staring
time and

...
x is the third derivative of the motion. For the third term, “failure”

means a failed grasp and “success” means that the box shaped object was suc-
cessfully grasped. There is another case where the end-effector performs a suc-
cessful grasp but with a slight overshoot. An overshoot means that the target is
sightly missed, but the end-effector then returns to the target. Overshooting is
and unwanted property, since it might displace the target, or even worse dam-
age the gripper or target. This case is considered as neither a complete “failure”
or “success” and received zero reward.

When the robot has executed the trajectories and received the subsequent
rewards and computed the accumulated rewards, it determines what models to
employ. The actions that received a positive reward are re-modeled, but this
time as robot trajectories using the hand-state trajectory of the robot. This
will give less discrepancies between the modeled and the executed trajectory,
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Parameter Value Description
Diag. only 1 1/0 to update only the diagonal distance metric
Penalty 10−7 A smoothness bias
Kernel Gaussian Gaussian or BiSquare
Dinit eye(dim) ∗ 25 Initial distance weighting matrix
αinit ones(dim) ∗ 100 Initial learning rates
wgen 0.2 Threshold to create a new receptive field
Meta 1 1/0 allow the use of a meta learning parameter
Metarate 100 The meta learning rate
λinit 0.995 Initial forgetting rate
λfinal 0.9999 Final forgetting rate

Table 5.4: The Locally Weighted Projection Regression parameters and their corre-
sponding values used in our experiment. Note that these parameter names should not
be confused with the same names used in other methods, for example the learning rate
in LWPR named α.

thus resulting in a higher reward. In Q-learning a value, a quality measure, is
assigned for each state-action pair by the rule:

Q(s, a) = Q(s, a) + α ∗ r (5.15)

where s is the state, in our case the joint angles of the manipulator, a are the
actions, i.e., each model from the demonstration, and α is a step size parameter
(not to confuse with the dynamic parameter α in Egn. 5.10). The reason for
using the joint space as the state space is the highly non-linear relationship
between joint space and Cartesian- or hand-state space: two neighboring points
in joint space are neighboring in Cartesian space but not the other way around
(see Appendix A.1.3 for more details). This means that action selection is better
made in joint space since the same action is more likely to be suitable for two
neighboring points than in Cartesian- or hand-state space.

Unlike most other applications of reinforcement learning, there is only one
state action transition, meaning that from a given position only one action is
executed and then judged upon.

To approximate the Q-function we used Locally Weighted Projection Re-
gression (LWRP)1 as suggested by Vijayakumar et al. [2005], see their paper
for details. Table 5.4 summarizes the parameters of LWRP used in our experi-
ment.

5.3.2 Experimental Results

The motion capturing system we used to record the demonstrations is the Im-
pulse system from PhaseSpace, described in section 4.3.1, with the addition of
tactile sensors, i.e., force sensing resistors. The sensors are mounted on the fin-
gertips of the glove, shown in figure 5.8. We define a grasp as when contact is

1Available at: http://www-clmc.usc.edu/software/lwpr
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Figure 5.8: Left: The glove in the motion capturing system with the tactile sensors
mounted on each finger tip. Right: The anthropomorphic gripper KTHand used in the
second experiment.
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Figure 5.9: Left: The result of an environment demonstration. Right: Five sample
demonstrated trajectories (the wrist is plotted), the robot and the two objets of inter-
est. The object to the right is marked with a red star to indicate that this object was the
nearest when a grasp was detected in the task demonstration.

detected at the thumb sensor and one additional finger. This means that only
grasps which include the thumb and one other finger can be detected. No grasp
recognition is necessary since only one grasp type is possible on the grippers we
used in this experiment. When a grasp is detected the distance to each object
in the workspace is measured and the nearest object, if below some distance
threshold, is identified as the target object. The robot used in this experiment is
the 6 DOF serial manipulator ABB IRB140 described in section 3.3.5.

The demonstrations were performed with the teacher standing in front of
the robot and performing the task demonstrations in two stages. First, the envi-
ronment is demonstrated by tactile exploration of the workspace. The demon-
strator touches the objects of interest; with special care so that the boundaries
of each object are correctly captured. Second, the task is demonstrated where
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the teacher starts with the hand in a similar position as the end-effector of the
robot would be in its home position, i.e., Θ = [0 0 0 0 0 0]T . The result
from the environment and task demonstrations is shown in figure 5.9, with the
base frame of the robot as the reference frame. The object is determined from
the environment demonstration, since it is more exact compared to the task
demonstration.

A Small Parallel Gripper–Failed Grasps

The gripper used for this experiment is a pneumatic parallel gripper with a
grasping width of 8 mm, where the distance between the jaws is 42 − 50 mm.
The base of the object used for the task is 43 × 59 mm. Given a perfect align-
ment and orientation, the required accuracy of the positioning of the gripper is
(50− 43)/2 = 3.5 mm in the O-direction of the gripper (the jaws), which is the
direction which requires the highest precision. A series of pictures in figure 5.11
shows different gripper orientations around each axis, given a perfect position-
ing and alignment around the other axis. The real required accuracy is much
higher since the different measures are strongly correlated. This means that the
highest tolerance, 3.5 mm, will be further lowered by the required accuracy
from the other axes, rendering the real value less than 3.5 mm.

The experiment was carried out as follows. Five task demonstrations were
recorded and one workspace demonstration was recorded. Then in the mod-
eling phase the recorded trajectories were modeled using fuzzy modeling. One
of the models and the generated trajectory is shown in figure 5.10. Each of
the generated trajectories was then executed on the real manipulator. However,
none of these generated reaching trajectories were successful: all failed in the fi-
nal segment of the trajectory, as shown in figure 5.12, where the gripper collides
with the object.

The reasons for the failure are multiple: The size of the gripper is small
compared to the object to be grasped. A human demonstration is not very
exact and when the subject demonstrates a pick-and-place task the focus is not
on precision. Clearly, under our assumptions we have reached the limit to where
this approach can be used. One solution which can remedy the inaccuracy of
the human task demonstration is to associate an approach motion towards
the object obtained from the more accurate environment demonstrations. An
approach vector would also depend on the type of gripper for grasping.

The Anthropomorphic Gripper–Successful Grasping

In this experiment we use the anthropomorphic gripper KTHand, which can
perform power grasps (i.e., cylindrical and spherical grasps) using a hybrid
position/force controller. For details on the KTHand, see Tegin et al. [2008].

Twenty demonstrations of the same pick-and-place task were performed,
where only the first reaching part of the task was used to train a reaching skill.
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Figure 5.11: Pose of the gripper to show how much it can rotate around each axis,
given that the positioning and orientation around the other axis is exact. Left: Rotation
around the N-vector of the gripper. Middle: Rotation around the O-vector of the gripper.
Right: Rotation around the A-vector of the gripper.

Figure 5.12: The parallel gripper fails to grasp the box shaped object. The object is
positioned on clay so that there is no assumption on its orientation, besides that it can
be grasped.

Five of these demonstrations are shown in figure 5.9. All demonstrations were
modeled using fuzzy time-modeling, where the position of the index finger and
orientation of the wrist were used to record the trajectory. Three of the mod-
eled trajectories are shown in figures 5.13 to 5.15 in the top graph as dashed
lines. The reason for using the index finger instead of–what would be more
appropriate–the center point between the index finger and the tip of the thumb
is that the LED on the thumb was often hidden resulting from occlusions dur-
ing the motion. To compute the orientation of the wrist, three LEDs must be
visible during the motion. The back of the hand is the best choice since three
LEDs are mounted there and they are most of the time visible for at least three
cameras. Thus, the number of occlusions is minimized.

All models were then executed by the robot to test the performance of each,
evaluated using the criteria in equation 5.11. Three of the executed trajectories
are shown in figures 5.13 to 5.15 in the top graph as solid lines and in the
bottom graph as Cartesian trajectories. At the end of the demonstrations in
figures 5.13 to 5.15 the difference between the model and the actual trajectory
is up to 8 cm (in y-direction). Since the modeled is created from the trajectory
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of the fingertip of the index finger, the end of the trajectory will be displaced
from the center of the target object. This is due to the fact that the index finger
will be at the side of the box shaped object during the grasp. Recall from the
definition of the hand-state space (section 4.1) that the target object is the frame
in which all motions are in relation to. This mean that the origin of the hand-
state is the top center of the target object. The point attractor of equation 5.10
for the trajectory generation is switch from the task demonstration to the target
object, as described by equation 5.7. Therefore, the point [0, 0, 0] becomes the
point attractor at the end of the motion.

The hand-state error and minimum jerk can be evaluated already in the gen-
eration state in simulation, i.e., before the actual execution on the real robot.
The grasp success is evaluated from real execution. In the real execution the
robot starts in the home position Θ = [0 0 0 0 0 0]T deg, with a small pertur-
bation added on the last three joints since the home position is a singular con-
figuration. All models succeeded in generating trajectory which positioned the
end-effector in such a way that a successful grasp can be performed, resulting in
a positive reward of +100. This reward is then decreased by adding a negative
reward from hand-state error and jerk, as described by equations 5.11-5.14. In
table 5.5 this is shown in the rows with joint configuration Θ = [0 0 0 0 0 0]T

deg. The models from human demonstration H6 and H11 performed best when
the robot executed them. Hence, these were selected to be remodeled into robot
skills: R1 and R2, meaning that the robot trajectory is used to create the fuzzy
models. Worst performance was obtained in H19 and H20, where H19 received
a negative Q-value. Finally, R1 and R2 were tested from the home configuration
and evaluated using the same criteria, shown in figure 5.16 and 5.17. As ex-
pected, their performance was better than all others, since the hand-state error
is reduced.

To evaluate if these new skills also performed better than the skills modeled
from human demonstration, H6 and H11 were selected for comparison, since
they performed best. In addition we also selected the worst model H20 of the
remaining models, with a positive Q-value, thus, excluding H19 since a nega-
tive reward might mean a failed grasp. Twelve joint configurations were cho-
sen approximately corresponding to 1/4 of the full joint range at each joint,
except last joint where 1/8 of the range was used. Some modifications were
also done resulting from workspace restrictions, i.e., Θ = [0 20 40 1 1 1]T

deg. The resulting Q-values form these joint configurations can be seen in
table 5.5, with the highest Q-values highlighted. From joint configurations
Θ = [0 − 45 0 1 1 1]T deg and Θ = [0 0 0 1 − 55 1]T deg (dark rows
in table 5.5) non of the models where able to execute a successful reaching mo-
tion. This mean that new demonstrations should be done from these positions.
Neither H6 nor H11 performed best in any test case, however the worst model
H20 was the only one to perform a successful reaching motion from configu-
ration Θ = [0 0 − 50 1 1 1]T deg, resulting in the highest Q-value. From the
rest of the configurations robot skill R1 or R2 performed best, thus confirming
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our hypothesis that skills built from own experience are better adapted than
skills directly modeled from observation. Figure 5.18 show four sample con-
figurations where the robot skill R1 and R2 are used to generate actions from
configurations different from the trained position. In figure 5.19 two sequences
are shown where the robot executes the reaching skills from from the trained
position, and from the tested position.

5.3.3 Discussion

Human demonstrations have been shown to provide knowledge to produce
models good enough for the robot to use as its own skills. The robot gains expe-
rience from human demonstration, and we have shown how the robot can im-
prove upon this when the self executed motions are performed. Thus, we apply
reinforcement learning on each skill model–constructed from demonstration–
as an action to learn a Q-function for each state to select (or suppress) different
actions. The reinforcement learning process provides a developmental structure
to our system, where the robot can observe, imitate, and improve. It also en-
ables the robot to generalize skills so that one skill can be used for different
tasks, and determines when to select what skill. Furthermore, if the learning
process is implemented as a continuing process it enables the robot to improve
performance not only at the initial stage, as we tested, but over a longer time
scale. The method relies on an external teacher to judge if the reaching-skill
was successful. The ability to forget a poorly performed skill or a skill that
produced a very similar trajectory compared to other skills will also be part
of our future work. A pruning ability will prevent the database of skills from
becoming too large.

In the experiments, we also saw the limits of our approach. Grippers with
low tolerance requires both an accurate environment demonstration as well
as an accurate approach to the object. The former was provided by the en-
vironment demonstration, but the latter could not be acquired from the task
demonstration. However, for autonomous grippers, such as the KTHand, the
method provides effective skill learning with good generalization capability.

Since our modeling method also is suitable for recognition [Palm and Iliev,
2006, Ju et al., 2008], future work will include recognition of skills to allow
the robot not only to imitate, but instead use its own experience to execute the
demonstrated skill in its own way. Future experiments will test how the perfor-
mance will change if more demonstrations of the same task, but with a greater
variety, are provided to the robot. Of interest if how many demonstrations are
needed before the robot have reached sufficient performance.

5.4 Summary

We have shown how demonstrations of reaching motions can speed up a slow
learning process. Furthermore, we have shown how an imitation metric can
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be used to evaluate and select actions among a demonstrated set of skills in
a reinforcement learning framework. In section 5.2, the state space was the
Cartesian space and the actions-space was a step in a discrete direction. The
state space was also very coarse, which is not suitable in a real application.

In section 5.3 the reward concept from reinforcement learning was used as
a metric of imitation. The joint angles represented the states, and the models
from human demonstrations were the actions, meaning that one action will
bring the end-effector to the goal in one single action. The fuzzy modeling based
next-state-planner performed the actions, which combined with the imitation
metric provided a developmental approach where the robot can improve its
performance after own experience of a task.

In our first approach a discrete representation of the state-action space was
used, which renders the approach over-simplified. In the second approach the
state space was approximated using LWPR to have a continuous representation,
thus, a realistic scenario. Furthermore, the actions were represented by skills
already known to perform well from human demonstration, so we still have a
discrete representation of the action space. This leads to an approach which is
practically possible to implement with good performance results in a real reach
to grasp scenario. Compared to the first approach, which produces new skills
by performing action selection in every step along the trajectory, in the second
approach new actions can be created based on the actual execution of a skill,
i.e., the full trajectory. It is impractical to have a continuos state-action space
with no initial knowledge of the skill to learn since the search space will be
enormous. Our alternative have showed that a practical implementation with
initial knowledge is realistic and provides good results and the possibility to
improve the performance.
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Figure 5.13: Demonstration number H6, one of the two best performing models, and
the generated reaching trajectory the robot executes.
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Figure 5.14: Demonstration number H11, one of the two best performing models, and
the generated reaching trajectory the robot executes.
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Figure 5.15: Demonstration number H20, the worst performing model with a positive
Q-valus, and the generated reaching trajectory the robot executes.
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Figure 5.16: Robot model R1 and the generated reaching trajectory the robot executes.
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Figure 5.17: Robot model R2 and the generated reaching trajectory the robot executes.
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Figure 5.18: Reaching from different initial positions. Four sample configurations, Θ =

[−45 0 0 1 1 1]T , Θ = [0 20 40 1 1 1]T , Θ = [0 0 25 1 1 1]T and Θ = [0 0 0 1 55 1]T .
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Chapter 6

Conclusions

This chapter first summarizes and discusses the work, the main contributions,
and the experimental results of the thesis. An important part of the discussion
is the lessons learned during the study, and how these were addressed. Secondly,
a discussion follows which points out the strengths as well as the weaknesses,
of the approach in this thesis. Finally, building on what we learned, we provide
some future research directions, addressing the weaknesses in the approach and
hypothesizing on how to further develop the system.

6.1 Summary and Discussion

The scope of this thesis was to investigate how to–in the context of robot progr-
amming–interpret and use human demonstrations and to infer skill knowledge
and transfer this knowledge to the robot. As a result, we have developed a
method for Programming-by-Demonstration (PbD) for reaching and grasping
tasks.

A large part of this project was to create the infrastructure needed for PbD.
This work includes developing a system architecture containing a manipulator
with a suitable motion capturing system, and providing the software around
this platform. For the choices of motion capturing system, we have learned
some important lessons in this process. Systems that measure position rela-
tive to a base attached to the user which is also moving are hard to use for
teaching of object manipulation and goal directed motions. Accuracy is also
a crucial point since object manipulation typically requires at least centimeter
precision. If object interaction is not a requirement motion capturing systems
like ShapeTape are applicable, for example, when recording human motions
for animation purposes. The magnetic tracker used to track the wrist or index
finger position also had its shortcoming in that application. It is not possible
to use the tracker in the near vicinity of the robot since large metal parts dis-
tort the magnetic field. Hence, if the robot and the user should share the same
workspace, this type of sensor is not an option. Or final choice was a marker
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based motion capturing system using stereo cameras. It is accurate enough but
suffers from occlusions, where the ShapeTape sensor and the magnetic tracker
have the advantage.

A true vision system, with no constrains on the user, would be more con-
venient and a time consuming calibration process would be unnecessary. Fur-
thermore, such a system would enable the robot to explore the environment, its
own actions, and the effect the actions have, something which is not possible
with our current system since it requires markers. The approach presented in
this thesis is complemented by such a developmental process where the hand-
state space can evolve from exploration.

To use grippers with sensing or built in autonomy alleviates the accuracy
problem for positioning. This is illustrated by the experiments with a vacuum
gripper with contact sensor, and the hybrid force/position controlled anthropo-
morphic hand. In both cases, the success in grasping an object is dependent on
the autonomy of the gripper, which in turn is dependent on an accurate enough
(defined for each gripper) reaching motion to execute a successful grasp.

The fundamental correspondence problem–the fact that embodied agents
generally have different morphologies–in imitation learning have also been ad-
dressed in this thesis. In our first experiment, section 3.2, we investigated how
to learn a model-free mapping from human to a robot arm, based on a re-
versed imitation scheme where the human imitates the robot. However, the
performance was not satisfactory because the trained algorithm produces a po-
sition error which often prevents a sufficiently accurate placement of the grip-
per. To improve the modeling of the human motions we introduced a new way
of encoding demonstrations–fuzzy-modeling using time-clustering. The fuzzy
modeling method uses time as model input on a predefined number of cluster
centers. The method shows excellent modeling performance and preserves the
dynamical (humanlike) properties of the motion.

To allow the robot to interpret the human motions as its own, we employ
a hand-state space representation as a common basis between the human and
the robot. For the robot, to adjust its path towards an object a class of meth-
ods called next-state-planners can be used. Next-state-planners are biologically
inspired by human motions and adapts the trajectory while the motion is exe-
cuted. We contributed to the design of a next-state-planner, which includes the
advantages of fuzzy modeling and executes the motion in hand-state space. To
determine the importance of different parts of the trajectory the variance of the
demonstrated trajectories is computed as a function of the distance to the tar-
get. This variance determines the gain for the planner, to follow the trajectory
closely for parts of the trajectory with low variance.

One disadvantage of our approach regards the fact that it operates in Carte-
sian space (hand-state space) which may lead to unreachable joint space trajec-
tories. Although it is possible to avoid unreachable joint configurations [Her-
sch and Billard, 2006], this will lead to a trajectory which will not follow the
demonstration. Either the robot performs the task in a way that is possible
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because of joint constraints but not as demonstrated, or it can ask for more
information from the teacher.

In a simple environment where the task is known and a set of predefined
skills is available, PbD can be applied with some effort. This was demonstrated
in section 3.3. However, the generalization capabilities of such a method are
limited and will require new demonstrations even for a slightly modified task.
To generalize the learned skill the next-state-planner was used for trajectory
generation from arbitrary positions in the experiments in chapter 4. We have
shown that this method can generate executable robot trajectories based on
current and past human demonstrations despite morphological differences. To
illustrate the trajectory planner’s ability to generalize, several experiments were
performed, using an industrial robot arm that executes various reaching mo-
tions and performs power grasping with a three-fingered hand.

We have also discussed the possibility to learn reaching motions by using re-
inforcement learning. Our experiment showed that providing a demonstration
speeds up Dyna-Q learning, but the environment was simplistic and would re-
quire a function approximation of the state space to make a realistic scenario.
However, reinforcement learning can also be applied on a different level where
it can decide what action (i.e., skill) to use in different points in hand-state
space. We applied reinforcement learning in hand-state space and used fuzzy
models–constructed from demonstration–as actions to learn a Q-function for
each state to select (or suppress) models. In this way, the demonstrated models
which perform well on the robot are re-modelled as robot actions. Then, these
actions are incorporated into the robot’s own movement repertoire and thereby
increased the number of skills which the robot can perform.

The experiments in this thesis only concern reaching motions and pick-and-
place tasks. Reaching motions are one of the most basic skills, thus, it is im-
portant that the robot can learn them for different types of objects, in different
task-contexts and can generalize this knowledge. If we exclude object manip-
ulation, such as clicking a button or flipping through the pages of a book, the
pick-and-place task is probably the most common task to perform in our daily
activities. To perform other tasks such as stacking objects or insert an object
into another requires pick-and-place. For future work it is important to enable
the system to learn other types of tasks. To include a wider spectrum of skills,
future work should investigate rhythmic motions, since they are different in na-
ture from the discrete reaching motions. Another shortcoming is the absence of
obstacle avoidance ability, which we discuss in the future work section next.

The main contributions in this thesis can be summarized as follows:

1. A model free mapping from human positions to robot positioning. The
advantage is to learn the mapping, instead of defining it.

2. Fuzzy modeling for encoding a skill, as a function of time: time clus-
tering, and distance: distance clustering. Fuzzy modeling provides simple
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and compact trajectory encoding with the advantage of preserving of dy-
namical properties.

3. A next-state-planner execute the time clustered trajectories. The planner
handles the differences in configuration in relation to the object and mor-
phological differences, thus contributes in the handling of the correspon-
dence problem.

4. The notion of hand-states have been applied to PbD, where it provides
the benefit of easy synchronization of reaching with grasping.

5. By using skills as actions in a reinforcement learning framework, the
learning is made practical since the search space is reduced with a lim-
ited set of good performing actions. This provides a major advantage
over classical reinforcement learning.

6.2 Future Work

Currently, artificial learning-by-imitation systems are restricted to very specific
tasks. Using the task learning approach (see section 2.4) the demonstration be-
comes very hard to interpret when it violates the assumptions. Analogously, in
the trajectory learning approach (see section 2.4) the trajectory must be gen-
eralized, stored and most importantly–put into context of a task. To link or
merge these two concepts is a topic for future work.

On a smaller scale, the future work can be separated into three categories:
Sensing, Execution of Grasptype and Learning.

Sensing Incorporating the robot’s own perception into the loop will enable the
robot to learn from its own experience. This direction for future research
will include perception in the learning process, for example, to recognize
and track objects, and to identify their affordances. In this way, the robot
would not need to rely blindly on human demonstrations and would be
able to work in non-static environments.

Execution of Grasptype To test the hand-state approach on different types of
objects–with different affordances–will provide knowledge on how well
the approach scale to different grasp types. Of special interest are preci-
sion grasps where high accuracy is needed.

Learning More experimental data will test our hypothesis on using the Eu-
clidean distance to the object as a state variable; e.g., circular motions
will need additional variables. Furthermore, the variable that determines
the dynamics of the next-state-planner should be learned from experi-
mental data, instead of predefined, to be able to generate trajectories.



Appendix A

Appendix A: Robotics

Refresher

This chapter will cover the basics of kinematics, dynamics and related subjects
as to what sensors and actuators to include in a robot application. As a base
for writing this chapter, the introductory books by Craig [2005], Niku [2001],
Sciavicco and Siciliano [1996] and Selig [1992] were used, with some inspi-
ration from Buss [2003, chapter 10]. The examples throughout this chapter
were made with the help of the robotic toolbox provided by Corke [1996] for
Matlab.

The world of manipulators can be regarded as quite different from that of
mobile robots: the mobile robot’s odometry is generally not so good while the
manipulator has a very precise knowledge of its position and orientation. On
the other hand mobile robots are often equipped with several sensors perceiving
information on the surrounding world, while the manipulator is often “blind”
apart from the force-torque sensor. Consequently, they will face different prob-
lems while acting in a dynamic environment.

A.1 Kinematical Structure

First of all, let us see how a manipulator is mechanically designed and how
this design can be expressed by parameters and equations. The kinematical
structure refers to how to calculate a position of the end-point and to get the
manipulator to the desired configuration. Dynamic properties, such as weight,
inertia etc., are not considered as part of the kinematics.

A manipulator has one or more links. Links are connected by joints. All
links are assumed to be rigid bodies, and all joints described by one degree of
freedom (DOF). If a joint has more than one DOF, it is straight forward to
think of it as several links with a length of zero connected with joints of one
DOF. The most commonly used way to describe a manipulator is to use the
following parameters:
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���� ����������
Figure A.1: The manipulator to the left shows an open loop chain, while the manipulator
to the right has closed chain structure.

a the length of one link,
α the twist between two links,
θ the rotation between two links, is variable on a revolute joint,
d the offset distance between two joints, is variable on a prismatic joint

which are called the Denavit-Hartenberg link parameters (also known as DH
representation), introduced by Hartenberg and Denavit [1955], and can be con-
sidered a de facto standard.

Almost any serial kinematical structure can be described using the Denavit-
Hartenberg parameters. A very common structure of a manipulator is a serial
design, where links are connected in a series. Other possible structures are quite
common, but will only be mentioned here in brief.

A.1.1 Open and Closed Kinematic Chains

There are two design directions for manipulators; an open kinematic chain, that
is when all links are in a series; or a closed chain, when both ends of two links
are connected to a third link. Figure A.1 shows two examples of manipulators
with the two different structures. The main reason for using the closed-chain
structure is that the manipulator will be less flexible (more stiff) in the links,
implying a higher degree of accuracy.

A.1.2 Rotational and Translational Joints

For the expression of rotations and translations, homogeneous transformation
matrices are commonly used. Usually a joint on a robotic manipulator is of
one of two different types, namely revolute or prismatic. A revolute joint is
a joint which rotates about an angle θ between link n and link n + 1, while
the prismatic joint is a sliding joint that affects the link length, that is the DH-
parameter a of link n.

The transformation matrix, denoted by T, is the result of consecutive mul-
tiplications of the rotational and translational matrices:
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Tn = A1A2A2 . . . An (A.1)

of n links and A are homogeneous rotational and translational matrices.
To express the orientation in Cartesian space, denoted by R

3, three vectors
are needed, one for each axis. For this purpose the vectors N, O and A are
introduced to represent the orientational part of T. For the translational part,
only one vector, called P, is needed, which is a conventional translation in space
and only affects the position, not the orientation. The orientational part, on the
other hand, is not that simple due to the fact that there is more than one way
of representing an orientation (to be precise there are 24 different conventions
listed by Craig [2005, appendix B]).

When combining rotation and translation they become a transformation,
expressed by the homogeneous matrix:

T =









nx ox ax px

ny oy ay py

nz oz az pz

0 0 0 1









(A.2)

The last row in the matrix is introduced due to formal reasons to facilitate
matrix multiplications.

There are two different approaches to make arbitrary rotations in R
3; arou-

nd a fixed frame or around consecutive frames. Starting with the approach
with consecutive frames, called Z-Y-Z Euler angles (illustrated to the right in
figure A.2): start by applying the first rotation α to the starting frame A, then
a second rotation β is applied to the resulting frame B ′, yielding a new frame
B ′′, where the last rotation γ, is applied resulting in the last frame B. Written
as a series of consecutive matrix multiplications:

A
B RZ′Y ′Z′(α, β, γ) = A

B′RZ(α) B′

B′′RY(β) B′′

B RZ(γ) (A.3)

where B ′ and B ′′ are the intermediate frames between A and B. This is equal to

RZ′Y ′Z′(α, β, γ) = (RZ(α) RY(β)) RZ(γ) (A.4)

where the leftmost operation is the first.
The other way is to apply all three rotations from a fixed frame (the starting

frame), like the following:

RXYZ(γ, β, α) = RZ(α) RY(β) RX(γ) (A.5)
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where the rotation around X comes first, followed by rotations around Y and Z

consecutively (the rightmost operation is the first). Since all rotations are made
from a fixed frame no intermediate frames are needed like with the Euler angles.
This way of representing rotations is usually called Roll, Pitch and Yaw (RPY)
angles illustrated to the left in figure A.2.

A.1.3 Forward and Inverse Kinematics

The last link of a manipulator is called the end-effector, and is usually a tool,
for example a gripper, screwdriver, welding torch etc. This tool has a center
point, called the Tool Centre Point or TCP, see figure A.3. From now on the
name end-effector will be used, even though it could be the TCP.

Usually the end-effector point is one of the two points that are of interest
in manipulating. The second is the base of the manipulator, also called the base
frame. The calculation between these two points is called kinematics and is the
tools for answering the questions “where is the end-effector with this configu-
ration?” and “what configuration gives this end-effector position?”. These two
questions are the forward and inverse kinematics, respectively.

The examples in this section will be made using a 2 DOFs serial manipulator
with two revolute joints. This is enough to present complete examples, avoiding
rigorous and bloated formulas that will result from higher DOF manipulators.

Forward Kinematics

Normally when working with manipulators, the position and orientation of
the end-effector is of more interest than the individual joints. From a given set
of joint angles, it is straight forward to calculate the position and orientation
of the end-effector using quite simple trigonometric functions, given a serial
structure of rigid body where all link parameters are known.

A vector of n joint angles θ will be denoted by Θ. For a set of joint angles
Θ = [θ1, θ2, . . . θn] the end-effector coordinates x = [x, y, z, α, β, γ] are found
with the help of the forward kinematics, also known as direct kinematics, of
the robot arm. This can generally be described as:

x = f(Θ) (A.6)

where fk(Θ) is the function executing the forward kinematic mapping.
A two link planar manipulator (that means the DH-parameters α and d are

zero) and rotational joints will make up a simple example. Both links have the
length 1.0 units, which means the DH-parameters l1 and l2 are both 1.0 unit
each. When θ1 and θ2 are zero the manipulator is aligned with the x-axis, the
resulting end-effector position will then be in l1 + l2 = 2.0. Since the arm is
planar, rotations can be expressed by a 3× 3 matrix,
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Figure A.2: Here two rotations are shown in three steps, from top to bottom, one in each
column. In the first column, the first frame, the first rotation γ is applied around the X-
axis. Then the second rotation β is applied around the Y-axis, that is fixed. The final
rotation α is then made around the fixed Z-axis. In the second column the rotations are
applied around consecutive frames. In the first the rotation α is applied around the Z-
axis (z1). In the next frame a new coordinate frame is shown with the same orientation
as the last resulting rotation, where next rotation β is applied around y1 axis in the
new frame. In the last frame, the last rotation γ is applied around z2 axis, in the latest
resulting frame.
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TCP

Figure A.3: The manipulators Tool Centre Point, TCP.

Ron(θn) =





cos θn − sin θn 0
sin θn cos θn 0

0 0 1





where n is the n:th joint. Translations are also described by a 3× 3 matrix,

Trn(ln) =





1 0 ln
0 1 0
0 0 1





Using the arm in figure A.4 showing the manipulator in the configuration
θ1 = 36.87 [deg] and θ2 = −36.87 [deg], results in the following rotational
and translational matrices:

Ro1(36.87deg) =





0.80 −0.60 0.00
0.60 0.80 0.00
0.00 0.00 1.00





Ro2(−36.87deg) =





0.80 0.60 0.00
−0.60 0.80 0.00

0.00 0.00 1.00





Tr1,2(1.00) =





1.00 0.00 1.00
0.00 1.00 0.00
0.00 0.00 1.00





where Ro are the rotational matrices and Tr represents the translational matrix
describing the link lengths. From figure A.4, first apply the rotation Ro1, then
translation Tr1 followed by rotation Roa and translation Tr2. This is:

T = Ro1Tr1Ro2Tr2
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where the leftmost operation is the first, resulting in:

Tr =





1.00 0.00 1.80
0.00 1.00 0.60
0.00 0.00 1.00





which position and orient the TCP (see the TCP in figure A.4).
The above example used a transformation matrix T which is equivalent to

0Tn in equation A.1 that corresponds to the forward kinematic calculation in
equation A.6. This transformation from the base to the end-effector is usually
expressed as:

0Tn = fk(θn) (A.7)

where Tn is the transformation matrix, n denotes the number of DOFs and the
superscript zero means the base frame.

For a general motion a manipulator requires 6 DOF, which commonly
means 3 DOF to position the end-effector and 3 to orient the end-effector. Since
this makes arbitrary positions and orientations possible, this is why 6 DOF is
a common configuration among industrial manipulators. But it is not always
necessary to have 6 DOF. For example, a pick-and-place manipulator can work
with 3 DOF, or even less, depending on the task.

Inverse Kinematics

In most cases it is desired to place the end-effector at a desired position and
orientation in the work space, which means that joint values resulting in such
a position and orientation have to be calculated. For a 6 DOF manipulator the
work space usually means a Cartesian space, which is also intuitive and con-
venient to use for example in planning. This leads us to the inverse kinematics
problem. From a given point the positions of each joint is generally described
by:

Θ = f−1(x) (A.8)

where Θ is the vector of joint angles and x is the work space.
For most manipulators the inverse kinematic problem can be solved analyt-

ically. However there is no general inverse kinematic solution for all manipula-
tors that can be computed with a “one step analytical calculation”, which also
meets real-time requirements. For solving these calculations, there is a specific
solution for each manipulator that also can take special cases into account.

The general solution to the inverse kinematic can normally be computed
numerically by iteratively applying the inverse (or pseudo-inverse) of the ma-
nipulator’s Jacobian:
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l1

y0

θ2

l2

θ1

x0

T

Figure A.4: A simple planar manipula-
tor. Simple trigonometry can be used to
calculate the end-effector position.

π
20 − 

−π −π

1st joint

2nd joint

Figure A.5: The desired arc shaped
path, that the manipulator’s end-effector
should follow at constant velocity, after
it has accelerated.

Θ̇ = J−1ẋ (A.9)

where J−1 denotes the inverted Jacobian. This however is not a fast technique,
and can not take special cases into account. For more details on the Jacobian,
see section A.3.

A.2 Singularities

If a position in work-space should be tracked, a mapping from work-space to
joint-space is required, but at certain points this mapping is not possible. An
example will serve as an illustration. Consider a 2 DOF manipulator with two
revolute joints that follows a specified trajectory, that is a specified path with
a specified velocity. This trajectory is an arc shaped path and the manipulator
should track this trajectory “over its head”, see to figure A.5. The x position
should go from 1 to −1 and the z position from 0 to 0 via 1. It is also required
to perform this tracking at a certain time, that is why it is called a trajectory.
The first joint has a range from −π to π and the range of the second joint is 0 to
π
2 . In figure A.6 the topmost graph shows the end-effector’s position in x and z

as a function of time. In the second graph in figure A.6, when the second joint
reaches π

2 at time 1.0, the first joint immediately (that means at zero time) goes
from 0 to π. To keep track of its trajectory, this must be done before the second
joint can start going back from π

2 to 0. The third graph shows the velocities
needed to perform this motion. It is intuitive to see that for real manipulators
this is not possible due to the velocity at time 1.0, because then this point is
singular.

The word singularity means that there is a singular point in the mapping
from ẋ→ Θ̇. This is the case when in the differential the inverse solution
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Figure A.6: The plot at the top shows the end-effector trajectory in Cartesian space. In
the middle plot the joint position is shown for both joints, and the bottom plots shows
the velocities. Note the first joint’s velocity at time 1.0 in the bottom plot.

Θ̇ = J−1(Θ)ẋ (A.10)

does not exist. Specifically, in the singular point the determinant of J goes to
zero

det(J)→ 0 (A.11)

which results in infinite joint velocities.
The above example shows one of the problems a singularity may cause. In

addition there are two other reasons to avoid singularities; there may exist an
infinite number of solutions for the inverse kinematic problem and secondly, the
number of possible movements from a singular point may be reduced. Think
of a completely outstretched arm which only can reach just a few of the sur-
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rounding points. Taking these problems into account, it is generally the case
that singularities, or even to come close to them, should be avoided.

A.3 Jacobian

Mapping differential motions or velocities (motions or velocities of small mag-
nitude) in joint space to motions or velocities in Cartesian space, is done by a
transformation matrix. This matrix is called the Jacobian matrix and is simi-
lar to the forward kinematic transformation matrix, where the static vector of
joint positions is transformed to a position and orientation matrix.

The differential vector represents the motion of a manipulator in joint space,
denoted by Θ̇, and the corresponding differential motion in Cartesian space is
represented by ẋ. Then the Jacobian mapping in a compact matrix form is
expressed by a linear mapping:

ẋ = JΘ̇ (A.12)

where J is the Jacobian. The elements on the Jacobian are dependent of the joint
variables, which means that motions in both joint space and Cartesian space
are differential. Hence the Jacobian is a time dependent matrix. The mapping
can be expressed more explicitly by introducing the vectors [dx, dy, dz]T and
[δx, δy, δz]T representing the differential translational motions and rotational
motions respectively. Let the joint variables [dθ1, dθ2, . . . , dθ6]

T represent a
small motion of a 6 DOF manipulator. Equation A.12 written with these vec-
tors then become:
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(A.13)

Going back to a more compact form that is valid for the general case, that
means any number of DOF of the manipulator, and also include the time de-
pendency, each vector and the Jacobian matrix can be expressed as:

δx = [dx, dy, dz, δx, δy, δz]T (A.14)
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J(Θ) =

















Manipulator ′s

Jacobian

















(A.15)

δΘ = [dθ1, dθ2, . . . dθn ]T (A.16)

Here Θ represents the joint positions, δΘ and δx the differential motions in
joint space and Cartesian space respectively, J(Θ) represents the Jacobian de-
pendent of Θ and n is the number of DOF. Using the general notation from
equation A.14 to A.16 in the form of equation A.12 yields:

δx = J(Θ)δΘ (A.17)

Since the Jacobian is a matrix of partial derivatives of functions of Θ, equa-
tion A.17 can be rewritten to:

δx =
∂f

∂Θ
δΘ (A.18)

where f would be:

x = fk(Θ)

which is the forward kinematic equation A.6. Each function ∂f
∂Θ

that is being
derived has a number of variables, one for each degree of freedom (in previous
equation A.13 six were used). To be more general the number of joints is de-
noted n, the notation q is used, instead of Θ, representing both revolute and
prismatic joints. The Cartesian space is represented by m components, where
1 6 m 6 6. The forward kinematic equation is then calculated with respect to
each joint:

xj = fj(q) (A.19)

where xj = [x, y, z, α, β, γ], q = [q1, q2, · · · , qn] and fj = [f1, f2, · · · , fm]. Cal-
culating the differential change of x of the differential change in q using equa-
tion A.19 gives:
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δx1 =
∂f1
∂q1

δq1 +
∂f1
∂q2

δq2 + · · ·+ ∂f1
∂qn

δqn,

δx2 =
∂f2
∂q1

δq1 +
∂f2
∂q2

δq2 + · · ·+ ∂f2
∂qn

δqn,
...

δxm =
∂fm

∂q1
δq1 +

∂fm

∂q2
δq2 + · · ·+ ∂fm

∂qn
δqn

(A.20)

Putting equation A.20 in matrix form results in the following:
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(A.21)

which is an explicit expression for each element of the Jacobian.

A.3.1 Inverse Jacobian

For mapping small differential velocities and motions in Cartesian space into
velocities or motions in joint space it is necessary to compute the inverted Jaco-
bian. Starting from equation A.12, the inverted Jacobian J−1 is derived from:

ẋ = JΘ̇

J−1ẋ = J−1JΘ̇→

Θ̇ = J−1ẋ (A.22)

One problem with this mapping arises from the fact that the Jacobian can have
an arbitrary number of columns, each corresponding to one joint. The result
might be a non-squared matrix, that is not directly invertible. In such cases
the pseudo inverse Jacobian, denoted J+, can be used instead. However, if the
inverse does not exist, this technique does not work, and in general it is com-
putationally heavy to perform matrix inversion.

Depending on the Jacobian’s configuration, there are two ways to compute
the pseudo inverse. Let the Jacobian be an m×n matrix, that is a manipulator
with n joints, where m 6= n, then the pseudo inverted Jacobian is:
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J+ = JT (JJT )−1, if m < n (A.23)

J+ = (JT J)−1JT , if m > n (A.24)

where equation A.23 is valid when the manipulator has more DOF than is
required for the task. The other case, when the manipulator has less DOF than
is required for the task, equation A.24 is valid.

A.4 Trajectory Planning and Generation

A path can be distinguished from a trajectory by determine whether the time
parameter is of importance or not. If a certain point on a path has to be met at
a specific time the desired motion is called a trajectory, otherwise it is called a
path.

To perform a motion an initial point ts and a goal point tf are specified,
which can be done in joint space or in Cartesian space. When moving the end-
effector from the initial point to the goal point, the manipulator’s controller
needs to plan this motion. The most intuitive way to go from point A to point
B is to follow a straight line in Cartesian space. However a straight line in
Cartesian space rarely means a straight line in joint space. In addition a motion
is also often desired to be smooth, which means that the first two derivatives
exist.

A simple example is a two link planar manipulator with both links of length
1 (the same as previously shown in figure A.4). A straight line path from the
initial point ts = [1.3 −1.0] to the goal point tf = [1.7 1.0] is made in Cartesian
space, as in figure A.7 A. The resulting motion in joint space is a non-linear
curve, seen in figure A.7 B. If the same motion was planned as a linear motion
in joint space, figure A.7 D, the path of the end-effector will follow a non-linear
path in Cartesian space, shown in figure A.7 C.

In order to draw a straight line path in Cartesian space, from an arbitrary
point A to an arbitrary point B, the path must be divided into several small
segments. When the segments are made small enough the previously described
Jacobian can be applied to make these small changes, since the Jacobian is a
differential mapping applicable to differences both in positions and velocities.

When performing trajectory planning in Cartesian space a number of prob-
lems are introduced, namely:

Intermediate points Some of the intermediate points on the path are unreach-
able, see figure A.8 A.

Different solutions In cases when all points on a path are reachable but from
different configurations, which means that the path as a whole can not be
followed, see figure A.8 B.
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Figure A.7: The trajectory shown in A is a straight line in Cartesian space, but non-linear
in joint space (figure B). In figure D the trajectory planning is made linear in joint space,
and results in a curved trajectory in Cartesian space.

Singularities Close to singularities the joint velocity become undesirably high,
see figure A.8 C. In section A.2 this were discussed, also compare to fig-
ure A.6.

Applications that require a specified trajectory in Cartesian space, for ex-
ample arc welding, can not be planned in joint space. Therefore restrictions
have to be taken into account when planning a trajectory in Cartesian space.
In many other applications it can be suitable to plan the path in joint space.

A.4.1 Polynomial Trajectory Planning

To follow a path in Cartesian space, for example a straight line motion, many
points must be specified at the desired resolution. However, in most cases a path
or trajectory is specified with more than just an initial point and a goal point,
but rather than specifying “all” points (as for a straight line) a few important
intermediate points are selected. These points are called via points, and provide
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Figure A.8: Figure A shows a path where the points inside the dashed circle are unreach-
able. In figure B all points on the path are reachable, but since a different configuration
is required in the start position A than in the goal position B the planner can not follow
the specified path. Figure C shows a similar problem, where points close to a singularity
will cause high joint rates, indicated by the dashed figure.

a parametric description of a trajectory. To make use of these via points poly-
nomials can be used, also known as cubic polynomial, which generate smooth
trajectories. Polynomials are only applicable to trajectories in joint space and
not in Cartesian space, since they specify the joint coordinates and not the
Cartesian coordinates. A third order polynomial is:

θ(t) = c0 + c1t + c2t
2 + c3t

3 (A.25)

with the first and second derivatives:

θ̇(t) = c1 + 2c2t + 3c3t
2 (A.26)

θ̈(t) = 2c2 + 6c3t (A.27)

Usually in most motions the following is known: 1) the starting position,
2) the end position, 3) the initial velocity and, 4) the velocity at the end of the
movement. This can be described by:

θ(ts) = θs

θ(tf) = θf

θ̇(ts) = 0
θ̇(tf) = 0

(A.28)

where ts is the starting time, tf is the end time, θs the starting position, θf the
goal position and assuming the start and goal velocities to be zero. Putting these
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Figure A.9: At time 1.0 the acceleration is 0. This trajectory is made with a 7:th order
polynomial.

four assumptions into the polynomial in A.25 and A.26 yields the following
equations:

θ(ts) = c0 = θs

θ(tf) = c0 + c1tf + c2t
2
f + c3t

3
f = θf

θ̇(ts) = c1 = 0
θ̇(tf) = c1 + 2c2tf + 3c3t

2
f = 0

(A.29)

Knowing the parameters θ(ts), θ(tf), θ̇(ts) and θ̇(tf) in advance one can solve
the four unknown elements c0 . . . c3.

The assumptions that the initial and final velocities are zero are true for
many motions, but is not the general case. If a start and/or goal position is
desired to be a via point where the motion is indented to continue, it is possible
to set the velocity arbitrarily. In order to specify the acceleration the third order
polynomial is extended to a fifth order polynomial, with the corresponding first
and second derivatives:
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Figure A.10: Example paths produced by two different commands using ABB’s pro-
gramming language RAPID. The left is a straight line path (MoveL), and the right is a
circular path (MoveC). Both paths are shown in Cartesian space.

θ(t) = c0 + c1t + c2t
2 + c3t

3 + c4t
4 + c5t

5 (A.30)

θ̇(t) = c1 + 2c2t + 3c3t
2 + 4c4t

3 + 5c5t
4 (A.31)

θ̈(t) = 2c2 + 6c3t + 12c4t
2 + 20c5t

3 (A.32)

Having second order derivatives that are continuous will generate smooth tra-
jectories, which will relieve the mechanics from unnecessary stress. By using
polynomials of high order it is also possible to incorporate constraints into
the equations. However, higher order polynomials mean higher computational
requirements which is an unwanted property when doing real-time calcula-
tions. Instead of using higher order polynomials, it is better to combine several
polynomials of lower order. Many other techniques can be applied instead of
polynomials, such as splines, but no further details will be presented here.

As an example of trajectory generation a joint space trajectory is specified
(shown in figure A.9), from −π

2 via 0.0 to π
2 , with the velocity set to 1.0 at the

via point and the via point should be reached at time 1.0 s.

A.4.2 Trajectory Planning in Cartesian Space

For industrial manipulators trajectory planning in Cartesian space is usually a
part of the programming language. The programmer specifies the points using
commands like:MoveL The robot moves the TCP from the current position, to the destination

in a straight (linear) line in Cartesian space. This motion is shown to the
left in figure A.10.MoveC Moves the TCP from the current position, through a desired point, to a
destination in a circular movement in Cartesian space. The arc shape of
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the circular movement is determined by the desired point and the desti-
nation. This motion is shown to the right in figure A.10.MoveJ The robot moves the end-effector to specified point, all joint movement
reaches the destination at the same time. This movement is not a straight
line in Cartesian space. Compare this to figure A.7, where joints’ motions
are linear but the TCP moves in an arc.

The above commands are from the RAPID programming language (see the
manual from ABB Robotics) which all moves the tool mounted on the manip-
ulator in different ways, but all motions are specified in Cartesian space. The
programmer does not have to bother about converting the motion into joint
space, the system takes care of this.

A.5 Robot Control

From the trajectory planning and generation in the previous section, the de-
sired values of each joint were obtained, in this section referred to as θd. Since
the manipulator like any other machine is affected by internal and external
disturbances and dynamics, the desired joint value and the actual joint value
will differ and produce an error, e = θ − θd. This means a control system is
needed. Like dynamics, control is in itself a scientific field, and below, some
basic control mechanisms used in robotics are presented.

Control of the robotic manipulator can either be applied to joint space or in
Cartesian space. Joint space control is the one used in industrial robots today,
mostly using an independent-joint PID controller [Craig, 2005, chapter 9]. But
there are several different ways of controlling a manipulator; an overview is
presented by An et al. [1988, chapter 1]. The three most commonly used are:

• independent-joint proportional-differential (PID) control,

• feedforward-control, and

• computed torque control,

of which the first, independent-joint PID control, is the most popular. The pro-
portional gain, P in PID, is an error minimization gain term that removes a
portion of the error. The derivative component D has a damping effect, and
inhibits overshooting, that is, if the error is minimized too much (increasing
in the other direction). Finally, I refers to the integral term, which cancels the
steady state error, that is when the system reaches an equilibrium point [Åström
and Hägglund, 1995, chapter 3]. Feedforward means that a prediction of the
future control value is made (possibly by an internal model).
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A.5.1 Position Control

Positional control, that is when the controller tries to keep the manipulator
in the desired position. In the independent-joint PD control each joint is con-
trolled individually, hence the name, and the control actions are completely
independent of each other. However the name can be misleading because the
joint motions are highly coupled. The torque, τ, is given by:

τ = Kp(Θ − Θd) + KvΘ̇ (A.33)

where the error, e = Θ − Θd, between the desired value, Θd and the true value
Θ, together with the velocity Θ̇ sets the torque. The two gain diagonals ma-
trices Kp and Kv are constant, and represents the positional and velocity gain
respectively.

A.5.2 Trajectory Following

If the desired velocity is introduced, that is Θ̇d, the system becomes time depen-
dent. The basic PD control law can easily be extended to velocity error, that is
ė = Θ̇ − Θ̇d, forming the equation:

τ = Kp(Θ − Θd) + Kv(Θ̇ − Θ̇d) (A.34)

Furthermore, this can be extended to also have an integral part, finally arriving
at the earlier mentioned independent-joint PID controller:

τ = Kp(Θ − Θd) + Ki

∫t

(Θ − Θd) dt + Kv(Θ̇ − Θ̇d) (A.35)

where the middle term is the integrated error over time.
If there is a model of the manipulator, it can be beneficial to incorporate

this into the controller. Using the PD-control law (equation A.34) and extend-
ing it with the model of the manipulator makes it a model-based feedforward
controller, described by An et al. [1988] and Craig [2005], yield the equation:

τ = R̂−1(Θd, Θ̇d, Θ̈d) + Kp(Θ − Θd) + Kv(Θ̇ − Θ̇d) (A.36)

where R̂−1(Θd, Θ̇d, Θ̈d) is the dynamic model of the robot. The torque is com-
puted as a function of the desired path, and can be computed off-line in advance
if the path is known.
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