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6D Scan Registration using Depth-Interpolated Local Image Features

Henrik Andreasson ∗, Achim J. Lilienthal
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SE-70182 Örebro, Sweden

Abstract

This paper describes a novel registration approach that is based on a combination of visual and 3D range information.
To identify correspondences, local visual features obtained from images of a standard color camera are compared and
the depth of matching features (and their position covariance) is determined from the range measurements of a 3D laser
scanner. The matched depth-interpolated image features allows to apply registration with known correspondences.
We compare several ICP variants in this paper and suggest an extension that considers the spatial distance between
matching features to eliminate false correspondences. Experimental results are presented in both outdoor and indoor
environments. In addition to pair-wise registration, we also propose a global registration method that registers all
scan poses simultaneously.
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1. Introduction

Registration is the process of transforming data
into a consistent coordinate system. Since registra-
tion of scans (in this paper, a scan is understood to
be a data set recorded at a fixed position) is triv-
ial if the change between the measurement locations
is precisely known, the problem regresses to deter-
mining the change in pose between the scans. Scan
registration is thus the process of estimating the rel-
ative pose between scans considering their specific
features. It is a core component of many Simultane-
ous Localization and Mapping (SLAM) algorithms.

In contrast to a substantial amount of previous
publications, which consider input from a 2D laser
scanner and 2D poses, making the assumption of

∗ Corresponding author.
Email addresses: henrik.andreasson@oru.se (Henrik

Andreasson), achim.lilienthal@oru.se (Achim J.

Lilienthal).

planar motion, we address the general case of 6-
dimensional poses and consider input data, which
consist of 3D range data and visual information.

Since visual information is particularly suited to
solve the correspondence problem (data associa-
tion), vision-based systems have been applied as an
addition to laser scanning based SLAM approaches
for detecting loop closing. This general approach
was implemented for systems based on a 2D laser
scanner [1] and a 3D laser scanner [2]. When using
registration methods that rely on a relatively weak
criterion for correspondence, for example point to
point distance as in [3], a good initial estimate is
very important for the robustness of the system.
Here, we are using instead the strong correspon-
dences visual features can provide and thus the
initial estimate can be very poor. Indeed, it can be
argued for areas of reasonable size that an initial
estimate is not necessary at all [2]. Another ad-
vantage of considering visual information is that
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vision can enable solutions in highly cluttered en-
vironments where pure laser range scanner based
methods fail [4]. The benefits of using vision come
at almost no extra cost since a camera is much less
expensive than a 3D laser scanner.

In this paper, we present a registration method
that takes input from a perspective camera and a 3D
laser scanner (which was realized by a 2D laser scan-
ner mounted on nodding pan/tilt unit). The key idea
is to combine the strong visual correspondences with
the depth accuracy obtained from the laser scanner.
The remainder of this paper is organized as follows.
First, related work is presented in Sec. 2, followed
by a description of the proposed methods for pair-
wise (Sec. 3) and global registration (Sec. 4), and
the experimental setup (Sec. 5). Sec. 6 presents ex-
perimental results and followed by conclusions and
suggestions for future work in Sec. 7.

2. Related Work

The discriminative power of local visual features
was combined with a 3D laser scanner based SLAM
approach in Newman et al. [2]. In their work, SIFT
features [5] were used to detect loop closure events
and to obtain an initial estimate of the relative pose
between the two images, which correspond to the
loop closure, by determining the essential matrix.
Our approach also relies on local visual features and
we also implemented them using the SIFT algo-
rithm in this paper. However, using the data from
the laser scanner, our method associates depth val-
ues with those SIFT features for which matching
features were found and carries out registration us-
ing only these visually salient 3D points. Thus, in
contrast to the work by Newman et al., we do not
consider the full point cloud for registration.

While work that combines local image features
with 3D range data is sparse, there are several ap-
proaches to registration and SLAM that use either
vision or range data alone. Registration methods
that utilize 3D laser data are commonly based on
the ICP algorithm [6,7]. Another 3D laser based ap-
proach is the 3D-NDT method by Magnusson et
al. [8]. Common to all 3D laser based registration
methods is that they require a sufficiently accurate
initial estimate.

Research work in which visual information is in-
corporated directly into scan registration has, to the
best of our knowledge, been restricted to extensions
of the distance function that is minimized in ICP.

To estimate the relative pose between stereo cam-
era depth maps, Color ICP has been used [9], an
ICP variant which also incorporates the color as part
of the distance function. In [10], the standard ICP
method is combined with a constraint based on the
optical flow.

Registration using visual features alone does not
work in a straight forward manner. A particular
problem is to determine the scale [11]. One ap-
proach is to use a predefined pattern with known
geometrical properties as part of the first image [12].
However, unless an object with known geometrical
properties is shown again, such an approach would
encounter problems with scale drift. Another com-
monly used approach is to have multiple cameras
and to use triangulation to get a depth estimate for
each visual feature as, for example, in [13]. However,
generally speaking, the position of the features is not
known precisely enough for accurate registration.
To improve the estimate of each landmark position
the landmarks can be tracked over a sequence of
images [11], which however requires that the camera
poses are known. The simultaneous estimation of
the position of features and camera poses is directly
related to the SLAM problem. Many approaches
rely on initial pose estimates from odometry [14–17]
and update the position estimates of visual features
using Extended Kalman Filters (EKF) [12,16], or
Rao-Blackwellised Particle Filters (RBPF) [18,15],
for example. Alternatively, if only a limited num-
ber of successive frames is considered to search for
corresponding features this is the problem of visual
odometry [14].

Simultaneous registration of a set of scans (global
registration) can be formulated as a graph problem
where each node represents a robot scan pose and
an edge represents a constraint between the nodes.
SLAM methods which operate on this structure are
called graph-based or simply graph-SLAM. There
exists a variety of graph-based SLAM approaches.
One of the first examples using 2D data is the work
by Lu and Milios [19]. Olson et al. [20] use an ap-
proach based on stochastic gradient descent (SGD)
to optimize the global poses. In the work by Olson,
only 2D data were evaluated. Their approach can-
not be directly applied in 3D since they make the
assumption of linear angular subspaces, which does
not hold in the case of 3D data.The problem of linear
subspaces has been addressed by Grisetti et al. [21].
In their approach a variant of the gradient descent
method and a tree parametrization is applied to-
gether with incremental spherical linear interpola-
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tion (SLERP), to address the non-commutativity of
rotations in 3D.

An important observation is that, in approaches
which use vision only, typically, the uncertainty re-
garding the pose of visual features is high and that
this prevents using the feature poses directly for ac-
curate registration. By contrast the accuracy that
laser range scanners provide makes it unnecessary
to extract and track features in 3D laser data.

We propose in this paper a full 6D registration ap-
proach that does not require initial pose estimates.
By using interpolated range values from the laser
scanner to estimate the 3D position of local image
features (and their covariance), our approach also
avoids that image features have to be tracked over
a sequence of frames. To the best of our knowledge,
such a registration method has not been suggested
before. We also present an extension of our method
to the case of global registration.

Global registration is similar to graph-SLAM
in that it optimizes all relative poses, which cor-
respond to edges in the graph, simultaneously.
However, graph-based SLAM approaches typically
apply pair-wise scan matching and represent the
result as an edge in the graph together with an as-
signed covariance estimate. In global registration,
on the other hand, edges represent sets of matched
features and the optimization is performed by si-
multaneous registration of all connected scans to-
gether. An approach to simultaneous registration
of more than two scans was proposed by Biber et
al. [22] for the case of 2D laser range data.

3. DIFT registration

The proposed registration approach is based on
depth-interpolated image features (DIFT) and we
therefore termed it DIFT registration. The visual
feature descriptor and detector used in this paper is
SIFT developed by Lowe [5] but other local image
features could be used as well. The position and co-
variance in 3D for visual features are obtained from
the laser range measurements surrounding the vi-
sual feature location. For example, if the detected
feature is located on the planar surface of a poster,
the feature’s position covariance will be smaller (es-
pecially perpendicular to the surface) compared to
a feature that is located at a thin branch of a tree.

As stated in the previous section, most current ap-
proaches to scan registration depend on fairly accu-
rate initial pose estimates. In the proposed method,

correspondences are solely determined using highly
distinctive visual features and not from spatial dis-
tance alone. As a result, no initial pose estimates are
required.

Shortly the registration procedure can be de-
scribed as follows: first, SIFT features are computed
in the planar images recorded with the current scan
Sc (please remember that in this paper a scan de-
notes the 3D points from the laser range scanner and
a set of planar images) and compared to the SIFT
features found in the images belonging to another
scan Sp. Next, the depth values are estimated for all
matching feature pairs in Sp and Sc, using the clos-
est projected 3D laser point as described in Sec. 3.2.
The covariance of the visual features is computed
using the neighboring 3D points (Sec. 3.3). Pairs
of matching features are then used together with
the feature position covariance to obtain the final
relative pose estimate (see Sec. 3.6).

Please note that we do not model the errors in-
troduced by calibration inaccuracy nor the sensor
noise of the laser scanner, the wrist or the camera,
assuming that all these sources create only negligi-
ble errors.

In Sec. 4 we present the global registration ap-
proach. This approach utilizes image similarity to
determine the set of scans that are subsequently all
registered simultaneously.

3.1. Detecting Visual Correspondences

Given two images Ia and Ib, local visual features
are extracted using the SIFT algorithm [5] resulting
in two sets of features Fa and Fb, corresponding to
the two images. Each feature fi = {[X,Y ]i,Hi} in a
feature set F = {fi} comprises the position [X,Y ]i
in pixel coordinates and a histogram Hi containing
the SIFT descriptor.

The feature matching algorithm calculates the
Euclidean distance between each feature in image
Ia and all the features in image Ib. A potential
match is found if the smallest distance is less than
60% of the second smallest distance. This criterion
was found empirically and was also used in [23], for
example. It reduces the risk of falsely declaring cor-
respondence between SIFT features by excluding
cases where several almost equally well matching
alternatives exists. Please note that due to this rel-
ative matching criterion, feature matching is not a
symmetric operation. It is possible that a feature
fi ∈ Fa matches feature fj ∈ Fb but not the other
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way around. It is also possible that several features
in Fa match a certain feature in Fb. To handle this
issue, the feature with the highest similarity is se-
lected if more than one other matching candidate is
found.

The feature matching step results in a set of fea-
ture pairs Pa,b, with a total number Ma,b = |Pa,b| of
matched pairs. Since the number of extracted fea-
tures varies heavily depending on the image content,
we normalize the number of matches to the average
number of features in the two images and define a
similarity measure Sa,b ∈ [0, 1] as:

Sa,b =
Ma,b

1

2
(nFa

+ nFb
)

(1)

where nFa
= |Fa| and nFb

= |Fb| are the number
of features in Fa and Fb respectively. An alternative
to the normalization in Eq. 1 would be to normal-
ize the number of matches to the maximum number
of features in the images. We did, however, not ex-
perience problems with using the normalization in
Eq. 1.

3.2. Estimating Visual Feature Depth

The image data consist of a set of image pixels
Pj = (Xj , Yj , Cj), where Xj , Yj are the pixel coor-
dinates and Cj = (C1

j , C2
j , C3

j ) is a three-channel
color value. By projecting 3D point pi = [xi, yi, zi]
obtained from the laser scanner with the range ri,
onto the image plane, a projected laser range read-
ing Ri = (Xi, Yi, ri, (C

1
i , C2

i , C3
i )) is obtained, which

associates a range value ri with the coordinates and
the color of an image pixel.

The visual feature fi is located in the image at a
sub-pixel position [Xi, Yi] and we now want to assign
a depth estimate r∗i to the feature fi. This is the
vision-based interpolation problem that is addressed
in [24]. In this paper, we apply the simple Nearest
Range Reading method and assign the laser range
reading ri to the feature fi, which corresponds to
the projected laser range reading Ri that is closest
to [Xi, Yi]. From the estimated range r∗i and the
pixel coordinates [Xi, Yi], we finally obtain the 3D
position µfi

= (x, y, z) of the feature fi.

3.3. Estimating Visual Feature Position Covariance

To obtain the position covariance of each visual
feature point Cf , the closest projected laser point
p0 relative to the visual feature f in the image plane
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Fig. 1. Laser points used to estimate the position covariance

of an image feature (indicated by × in the figure). Circles
represent range readings. Filled dots p0..M represent range
readings used to compute the covariance estimate. The filled
dot p0 represents the laser point from which the depth of the
visual feature was determined. The horizontal lines indicate
2D laser range scanning planes and the vertical lines the tilt
movement of the wrist.

is used together with M surrounding laser points
p1..M , see Fig. 1. The covariance Cf is then calcu-
lated as

Cf =
1

M − 1

M∑

i=0

(pi − µ)2, (2)

where µ = 1

M

∑M

i=0
pi. In our experimental evalua-

tion we used M = 8, see Fig. 1.
The motivation for selecting the points to com-

pute the covariance estimate in image space is that
the bearing of visual features is typically more ac-
curate than their depth. In the image space, range
readings from the laser scanner that have a similar
bearing can be easily found. If the selection of the
points was done using the 3D points alone, issues
with depth discontinuities would have to be handled.

3.4. ICP

The iterative closest points (ICP) algorithm [3,25],
finds a rigid body transformation (R, t) between
two scan poses xp and xc by minimizing the follow-
ing function

J(R, t) =
N∑

i=1

||pc
i − Rp

p
i − t||2, (3)

where p
p
i and pc

i are corresponding points from scans
Sp and Sc. Corresponding point pairs are deter-
mined by searching for closest points using a dis-
tance metric that varies for different ICP variants.
Searching for closest points is the most time con-
suming part of the algorithm. A common approach
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to decrease the search time is to use a k-d tree. If
the correspondences are known, there exist various
closed-form solutions to obtain the rigid transfor-
mation that minimizes Eq. 3. We have adopted the
singular value decomposition method proposed by
Arun et al. [26]. In our approach, correspondences
are detected using visual features, thus an exhaus-
tive search in the spatial domain is not required. As
for all ICP methods we make the assumption that
the measurement noise is Gaussian and independent
and identically distributed.

3.5. Generalized Total Least Squares ICP

Generalized Total Least Squares ICP (GTLS-
ICP) has been proposed by San-Jose et al. [27]
as an extension of ICP. This method is similar to
standard ICP but considers the covariance of each
point. Instead of Eq. 3, GTLS-ICP minimizes the
following function:

J(R, t) =

N∑

i=1

(qi − pc
i )

T C−1
qi

(qi − pc
i ) +

N∑

i=1

(pc
i − qi)

T C−1

pc
i

(pc
i − qi), (4)

where qi = Rp
p
i + t. The covariance matrix Cqi

is
obtained by rotating the eigen vectors of the co-
variance matrix Cp

p

i
, Eq. 2, with the rotation ma-

trix R. However, there is no closed-form solution to
minimize this function and therefore the GTLS-ICP
function is minimized using an iterative optimiza-
tion method.

3.6. Trimmed ICP Extension

Since visual features are used to establish cor-
responding points, no further means of data asso-
ciation, (such as searching for closest data points
in ICP) is necessary. Although the SIFT features
were found to be very discriminative (see for exam-
ple [28]), there is of course still a risk that some of the
correspondences are not correct. To further decrease
the possibility of erroneous point associations, only a
set fraction of the correspondences with the smallest
spatial distance between the corresponding points is
used for registration. In the experiments presented
in this paper the fraction was set to 70%. Because
the relative pose estimate affects the spatial distance
between corresponding points, relative pose updates

a b
c d

e

f

g
h

i

j

Fig. 2. An example of a pose graph in 3D, seen from above.
Each sphere represents a scan pose (node) x and each line

represents an edge e.

are calculated repeatedly until a stopping criterion
is met. Any initial pose estimate can be used. In
our implementation we always start with an initially
identical pose. For the stopping criterion, we con-
sider the change of the sum of the squared distance
between the corresponding points compared to the
previous iteration. The optimization was stopped if
the difference was less than 10−6 m2.

In order to improve convergence, the initial es-
timate used in the trimmed GTLS-ICP method
(Tr. GTLS-ICP) was obtained from the trimmed
ICP method (Tr. ICP) to increase the convergence
rate. We did not observe convergence problems
using this approach.

4. Global Registration

In this section we present an extension of our
method that matches a set of multiple scans simulta-
neously. Visual features are used to determine which
scans are included in the registration process by sim-
ply thresholding the similarity measure Sa,b, Eq. 1.

The proposed approach, which is related to graph-
based SLAM methods, can be described as follows:
Given a set of n scans S1..n and their estimated poses
x1..n together with a set of extracted features FS1..n

,
an initial estimate of all poses can be calculated
by performing sequential registration, i.e. register-
ing each scan Si with the previous one Si−1. With
this approach, however, the errors will accumulate.
If the current scan Si can be registered to a previ-
ous scan Sj that is not its direct predecessor (i.e.
j < i−1), the uncertainty of the pose estimates can
be bounded. After each loop closing an additional
edge is therefore added to the edges between sub-
sequent scans so that we end up with n scan poses
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and m edges where m > n, i.e. we obtain an overes-
timated equation system. By adding more edges or
constraints, the pose of each node can be determined
more accurately since more measurements are incor-
porated (given that the certainty of the constraint is
estimated correctly). A pose graph containing both
scan poses x = [a, b, ..., i] and edges e can be seen
in Fig. 2. An edge that connects two nodes which
previously were separated by many edges generally
provides more information in terms of pose error re-
duction than an edge which connects two nodes that
are separated with few edges. For example, the edge
ei,b in Fig. 2 reduces the number of edges between
a to i to two, compared to nine if only successive
edges were used.

The problem of determining all the scan poses
simultaneously given the edge constraints can now
be defined as minimizing:

L(x1..n) =

n∑

i=0

n∑

j=i+1

V (i, j)J ′(Rxi
, txi

, Rxj
, txj

).(5)

V (i, j) is a binary variable that decides whether the
similarity measure Si,j is above a preselected thresh-
old and J ′ is the extension of the function J (ei-
ther Eq. 3 or Eq. 4) where each point cloud has
its own rotation and translation. The total num-
ber of summations needed in Eq. 5 is the number
of edges m. For the optimization of Eq. 5, we apply
the Fletcher-Reeves conjugate gradient optimiza-
tion method [29]. For this method the Hessian has to
be computed which was done numerically. All six di-
mensions were optimized, three for translation and
three for rotation. Euler angles were used to repre-
sent the rotation.

5. Experimental Setup

5.1. Hardware

For the experiments presented in this paper we
used the ActivMedia P3-AT robot “Tjorven” shown
in Fig. 3, equipped with a 2D laser ranger scan-
ner (SICK LMS 200) and a 1-MegaPixel (1280x960)
color CCD camera. The CCD camera and the laser
scanner are both mounted on a pan-tilt unit from
Amtec with a displacement between the optical axes
of approx. 0.2 m. The angular resolution of the laser
scanner was set to 0.25 degrees.

Fig. 3. Our mobile robot platform “Tjorven” equipped with

the sensors used in this paper: the SICK LMS 200 laser range

scanner and a color CCD camera both mounted on an Amtec

pan tilt unit. The close-up shows the displacement between

the camera and the laser which causes parallax errors.

5.2. Data Collection

For each scan pose, 3D range and image data were
collected as follows: First, three sweeps are carried
out with the laser scanner at -60, 0 and 60 degrees
relative to the robot orientation (horizontally). This
results in three separate sets of 3D points that can be
straightforwardly merged using the known positions
of the laser scanner during the three sweeps. During
each of these sweeps, the tilt of the laser scanner is
continuously shifted from -40 degrees (looking up)
to 30 degrees (looking down). After the three range
scan sweeps, seven camera images were recorded at
-90, -60, -30, 0, 30, 60, and 90 degrees relative to
the robot orientation (horizontally) and at a fixed
tilt angle of -5 degrees (looking up). A full data set
acquired at a single scan pose is visualized in Fig. 4.

5.3. Calibration

In our setup the displacement between the laser
scanner and the camera is fixed. It is necessary
to determine six external calibration parameters
(three for rotation and three for translation) once.
This is done by simultaneously optimizing the cal-
ibration parameters for several calibration scans.
The method we apply requires a special calibration
board, see Fig. 5, which is also used to determine
the internal calibration parameters of the camera.
The calibration board was framed with reflective
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Fig. 4. Top: Full data set acquired for a single scan pose comprising three sweeps with the laser scanner fused with color
information from seven camera images. The first four images (marked with dark arrows in the top figure) are shown at the
bottom.

Fig. 5. Calibration board used to determine the calibration

parameters of the camera, with a chess board texture and

reflective tape (gray border) to locate the board using re-

mission / intensity values from the laser scanner.

tape enabling to use the reflective (remission) values
from the laser scanner to automatically estimate
the 3D position of the chess board corners detected
in the image. The external parameters for the cam-
era are obtained by minimizing the sum of squared
distances (SSD) between the chess board corners
found in the image and the 3D position of the chess

board corners derived from the laser range readings.

6. Experimental Results

6.1. Indoor Experiment

A data set consisting of 22 scan poses, containing
66 laser scanner sweeps and 154 camera images was
collected as described in Sec. 5.2 in an indoor lab
environment. The first scan pose and the last scan
pose were recorded at a similar position. An example
of the final registration result can be seen in Fig. 6.

To evaluate the registration performance, we
register scans sequentially and add up the relative
poses. Then we perform a final registration of the
last scan with the first one and add the correspond-
ing pose as well. Finally, we compare the resulting
total relative pose estimate with the ground truth
that is t = (0, 0, 0) and R = I3×3 by construction.
This method works if the robot was driven along a
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Fig. 6. Result of sequential registration of 22 scan poses. The

visualized data comprise of 3 × 22 registered scans and the
corresponding colors from 7 × 22 camera images.

Fig. 7. Construction to obtain the ground truth for sequential
registration of scans (see description in the text). The thicker
arrow indicates the final registration with the first scan. Left:

case in which the robot path formed a loop. Right: case in
which the robot path does not form a loop.

round trip but not if the robot followed a straight
path and did not return to the initial pose. In the
latter case we create a virtual loop by “moving
forward” selecting every second scan and moving
backwards using the remaining scans, see Fig. 7.
The results of this evaluation show sensitively the
accuracy of the pairwise registration since even

small registration errors can heavily influence the
estimate of the final pose.

Table 1 presents a sequence of results in which
the number of correspondences was limited to a cer-
tain number N . The N correspondences used for
registration were selected randomly from the set of
matching image features and each registration ex-
periment was repeated 20 times. The table shows
the Euclidean pose error d (in meters) and the rota-
tional error α (in radians). These results show that
the performance of Tr. GTLS-ICP is better com-
pared to Tr. ICP, especially when there are fewer
corresponding matches and N is low.

Average execution times of Tr. ICP and Tr.
GTLS-ICP using the indoor data set and N = 30
are shown in Table 2. One can clearly see that the
closed form solution provides a superior perfor-
mance. The results in Table 2 were obtained with
un-optimized source code on a Pentium 4 with
2GHz and 512 MB of RAM.

If standard ICP with Euclidean distance is used
with all the 3D laser points, the sequential registra-
tion results in a distance error of 7.10 meters and
an angular error of 2.17 radians. This result was ob-
tained using the same initial estimate (that the two
scans are located at the same pose) as in the other
registration experiments presented in this paper. It
is clear that due to the low quality of the initial pose
estimate the standard ICP method performs very
bad.

Table 1
Registration results given in meters and radians using the
trimmed registration versions using the indoor data set

Tr. ICP Tr. GTLS-ICP

N d ± σd α ± σα d ± σd α ± σα

10 4.60±5.16 1.52±1.86 3.59±4.87 1.11±1.32

15 0.83±1.04 0.34±0.74 0.71±1.16 0.32±0.79

20 1.09±1.91 0.57±1.32 0.54±0.89 0.28±0.84

30 0.32±0.26 0.07±0.04 0.20±0.10 0.05±0.02

40 0.23±0.13 0.04±0.02 0.20±0.09 0.03±0.02

60 0.16±0.08 0.03±0.02 0.16±0.06 0.02±0.01

Table 2

Execution time for the registration alone with pre-calculated
correspondences (without calculating the feature descriptors,
covariances etc.) using the indoor data set with N = 30.

method time

Tr. ICP 0.0022 s±0.0005 s

Tr. GTLS-ICP 19.0 s±13.13 s
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Fig. 8. Comparison of the pose edge graphs seen from the

side (see also Table 3). Since the robot was driven indoor on

a flat surface, the nodes should appear on a straight line in a

side view. Please note the scale of the z-axis (height) that was
stretched to emphasize the differences between the presented
results. Top: sequential pair-wise registration. Bottom: global
registration.

Global Registration

The same indoor data set was used to evaluate
the global registration method presented in Sec. 4.
For the global registration evaluation Tr. ICP-GTLS
was used.

Qualitative results are obtained by calculating the
planarity of the estimated poses x1..22. Since the
data were collected indoors the ground truth as-
sumption is that all poses should be lying in a plane,
see Fig. 8. This plane P is obtained from the two
largest eigen vectors λ1,2 calculated from the covari-
ance matrix C of all poses. Using the plane P, we
compute the mean squared error (MSE) from the
distance of each pose estimate x to the plane P and
the MSE of the angle between the plane normal and
the yaw rotation axis of each pose estimate. The re-
sults in Table 3 show the expected improved accu-
racy of global registration.

Table 3
Comparison of the planarity and angle difference between
the plane normal and the yaw axis of the estimated poses
(smaller MSE is better) between sequential pair-wise reg-
istration and global registration (d - distance error and α -
angular error).

successive registration global registration

MSE d 1.172 · 10−3 m 0.187 · 10−3 m

MSE α 1.370 · 10−3 rad 0.366 · 10−3 rad

6.2. Outdoor Experiment

An outdoor data set consisting of 32 scan poses
was collected close to a building. The ground truth
was obtained as explained in the previous section
(see Fig. 7, right). Results are shown in Table 4 and
in Figs. 9 and 10.

Looking at Fig. 10, for example, the left wall ap-
pears much clearer when using Tr. GTLS-ICP indi-
cating that the registration results are better. Also
the lamp post appears to be duplicated when using
Tr. ICP but not with Tr. GTLS-ICP. If the depth
variance is high, the Tr. GTLS-ICP method predom-
inantly uses the bearing of the feature rather than
the actually estimated feature position. An overall
error of 0.63 meters on average as it is obtained for
N = 90 is a very good result considering the chal-
lenging outdoor environment and the fact that sub-
sequent scans were taken quite far apart (approx. 3
m).

Table 4
Registration results given in meters and radians using the
trimmed registration versions on the outdoor data set.

Tr. ICP Tr. GTLS-ICP

N d ± σd α ± σα d ± σd α ± σα

10 26.06±26.76 0.98±0.78 15.81±10.97 0.53±0.29

15 10.91±7.24 0.35±0.35 6.39±4.53 0.20±0.10

20 6.40±2.32 0.24±0.13 4.26±3.19 0.12±0.09

30 4.86±2.48 0.17±0.10 2.66±1.60 0.09±0.04

40 4.48±3.24 0.17±0.18 1.84±1.32 0.06±0.03

60 3.67±1.87 0.17±0.05 1.01±0.68 0.04±0.02

90 3.42±1.24 0.17±0.07 0.63±0.24 0.04±0.02

7. Conclusions

In this paper we have proposed a registration
method that uses visual features to handle the cor-
respondence problem. The method integrates both
vision and 3D range data from a laser scanner and
does not rely on any initial estimate for registra-
tion. The range data are used to obtain depth esti-
mates and a covariance estimate for the extracted
visual features. A global registration method was
presented which illustrate the usefulness of com-
bining visual features with depth estimates from
a laser range scanner. The evaluation results show
the general applicability of the proposed approach,
which allows for registration without an initial
pose estimate. Our results demonstrate further the
importance of including the position covariance
estimate into the registration process, especially if
few correspondences are available or under outdoor
conditions where the uncertainty of each feature
position is typically larger than indoors.
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Fig. 9. An outdoor registration result using Tr. GTLS-ICP

and unlimited N , visualized with 1.5 million colored laser
range readings.
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