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Abstract Inthis paper, we consider the problem of learning two-disiemal spatial models
of gas distributions. To build models of gas distributiohattcan be used to accurately
predict the gas concentration at query locations is a ahgilhg task due to the chaotic nature
of gas dispersal. We formulate this task as a regressiorigmmolio deal with the specific
properties of gas distributions, we propose a sparse Gaugsbcess mixture model, which
allows us to accurately represent the smooth backgroundlsigd the areas with patches of
high concentrations. We furthermore integrate the speasi€in of the training data into an
EM procedure that we apply for learning the mixture compdési@nd the gating function.
Our approach has been implemented and tested using datesatded with a real mobile
robot equipped with an electronic nose. The experimentdstrate that our technique is
well-suited for predicting gas concentrations at new guecgtions and that it outperforms
alternative and previously proposed methods in robotics.
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1 Introduction

The problem of modeling gas distributions has importantiegtions in industry, science,
and every-day life. Mobile robots equipped with gas sensarsbe deployed for pollution
monitoring in public areagDustBot, 2008, surveillance of industrial facilities producing
harmful gases, or inspection of contaminated areas witsoue missions.

Although humans have a comparably good odor sensor allawidgstinguish between
around 10 000 odors, it is hard for us to build spatial repreg®ns of sensed gas distri-
butions. Building gas distribution maps is a challengirgkti principle due to the chaotic
nature of gas dispersal and because only point measureofayas concentration are avail-
able. The complex interaction of gas with its surroundirgggdominated by two physical
effects. First, on a comparably large timescdi&usionmixes the gas with the surrounding
atmosphere achieving a homogeneous mixture of both in tigerlan. Second, turbulent air
flow fragments the gas emanating from a source into intezntitatchesof high concen-
tration with steep gradients at their ed§R®berts and Webster, 200X his chaotic system
of localized patches of gas makes the modeling problem adredin addition, gas sensors
provide information about a small spatial region only sigas sensor measurements require
direct interaction between the sensor surface and the mleketo be analyzed. This makes
gas sensing different to perceiving the environment witteopopular robotic sensors like
laser range finders, with which a larger area can be measirsadlyl

Fig. 1 illustrates actual gas concentration measurementgded with a mobile robot
along a corridor containing a single gas source. The digtdh consists of a rather smooth
“background” signal and several peaks, which indicate lggé concentrations. The chal-
lenge in gas distribution mapping is to model this backgtbsignal while being able to
cover also the areas of high concentration and their sharpdavies.

From a probabilistic point of view, the task of modeling a géstribution can be de-
scribed as finding a model that best explains the obsengtind that is able to accurately
predict new ones. A suitable measure for evaluating models@r comparing alternative
ones is to consider thgredictive data likelihoof anindependent test sethis measure
compares each test data point (which is not contained irrdlirrig set) with a predictive
distribution estimated by the model. For this, it does nguie insight into the model in-
ternals and it does not depend on any explicit notion of modeiplexity or the number of
model parameters as, for example, the Bayesian Inform&titbarion (BIC). The predictive
data likelihood is therefore the measure of choice for eatatg especially nonparametric
models. As a drawback, one needs a sufficiently large amdutsta to be able to separate
out a test set without risking that the training set becornesstmall to capture the sought-
after distribution. The gas mapping application comes waittabundance of available data,
such that the predictive test set likelihood constitutestaist measure for model accuracy.

Simple spatial averaging, which represents a straight€ot approach to the model-
ing problem, disregards the different nature of the baalgdoconcentration and the peaks
resulting from areas of high gas concentrations and, trasewaes only limited prediction
accuracy. On the other hand, precise physical simulatidineoas dynamics in the environ-
ment would require immense computational resources asasgifecise knowledge about
the physical conditions, which is not known in most pradtszenarios.

To achieve a balance between model accuracy and efficiercireat gas distribution
mapping as a supervised regression problem. We derive fcsohy means of a sparse
mixture model of Gaussian proces$€eesp, 200Dthat is able to handle both physical phe-
nomena highlighted above. Formally, we interpret gas semsasurements obtained from
static sensors or from a mobile robot as noisy samples froomex¢onstant distribution.



10
8 .
@ L .
5 ° S S .
g 4 I S
5 2 - - - *
: ! IQE P
!.,,[t.s-:-*,
; H ‘l l
15
ym 2 5 10
x [m]

Fig. 1 Gas concentration measurements acquired by a mobile robobimidar. The distribution consists of
a rather smooth “background” signal and several peaks, whdibate high gas concentrations.

This implies that the gas distribution in fact exhibits adhtonstant structure, an assump-
tion that is often made in unventilated and un-populatedanénvironment§Wandelet al.,
2004.

While existing approaches to gas distribution mappinghsscaveraginfishidaet al,
1998, Purnamadijaja and Russell, 2005, Rylal, 2004 or kernel extrapolatiofLilien-
thal and Duckett, 2004epresent the average concentration per location onlygixture
model actually allows us to do both, computing the mean gasexdration as well as the
multi-modal, predictive densities. We further obtain a enaccurate estimate of the gas con-
centration by distinguishing explicitly different compamts of the distribution, particularly
a “background” component where the concentration variesosinty and a second compo-
nent that corresponds to the area in which localized patwhgas occur. In a scenario with
a constant, uniform airflow, the latter mixture componeptresents the gas pluni®iurlis
et al, 1997.

As a by-product, we present a generic algorithm that lea®® anixture model and at
the same time reduces the number of used training data poiotger to achieve an efficient
representation even for large data sets. We demonstratpamniments carried out with real
mobile robots that our model has a lower mean squared ertbadmigher data likelihood
on test data sets than other existing methods for gas distibmodeling. Thus, it allows
to predict gas concentration at query locations more atelyra

This article is organized as follows. After introducing amixture model in Sec. 2,
we propose our method for learning the model components &ata and for achieving a
sparse approximation in Sec. 3. We then present experitrrestdts involving real mobile
platforms in Sec. 4 and discuss related work in Sec. 5.

2 A Mixture Model for GasDistributions

The general gas distribution mapping problem given a sebo€entration measurements
y1.n, @cquired at locations.,, is to learn a predictive modely« | x«,X1.n,y1:n) fOr gas
concentrationg.. at a query locatior... We approach this problem in a nonparametric way,
i.e., not assuming a parametric form of the underlying fiomcf (-) in y = f(x) + ¢, using
the Gaussian process modRasmussen and Williams, 200& this Bayesian approach to
the non-linear regression problem, one places a prior osghee of functiong(f) using



the following definition: A Gaussian process is a collect@frrandom variables, any of
which have a joint Gaussian distribution. More formallywié assume thaf(x;, f;)}i—;
with f; = f(x;) are samples from a Gaussian process and défine(f, ..., f,)', we
have

f~N(p,K), peR"KeR"™". @

For simplicity of notation, we can assume= 0, since the expectation is a linear operator
and, thus, for any deterministic mean functierix), the Gaussian process ovgi(x) :=
f(x) — m(x) has zero mean.

The interesting part of the model is indeed the covarianceixnK. It is specified by
[K]i; == cov(f;, f;) = k(xs,x;) using acovariance functiori: which defines the covari-
ance of any two function valudy;, f;} sampled from the process given their input vectors
{x;,x;} as parameters. Intuitively, the covariance function djgschowsimilar two func-
tion valuesf(x;) and f(x;) are depending only on the corresponding inputs. The stedndar
choice fork is the squared exponential covariance function

2
1|x; — x5
ksp(xi,x;) = a)2c exp <_2l€2]|> , (2)

where the so-calleléngth-scaleparameter defines the global smoothness of the function
aﬂdchQc denotes the amplitude (or signal variance) parameter.eThasameters, along with
the global noise variance? that is assumed for the noise component, are known as the
hyperparametersf the process. They are denoteddas (o4, ¢, on).

Given aseD = {(x;,y;) };—; of training data wherg; R are the inputs ang; € R
the targets, the goal in regression is to predict targetegaju € R at a new input poink..
Let X = [x1;...;xxs] " be then x d matrix of the inputs an&.. be defined analogously
for multiple test data points. In the GP model, any finite detaonples is jointly Gaussian
distributed

3] = (o Lo 5] ®

wherek(X, X) refers to the covariance matrix built by evaluating the ciavece function
k(-,-) for all pairs of all row vectorgx;, x;) of X. To make predictions &X., we obtain
the predictive mean

and the (noise-free) predictive variance
V(X)) = k(Xs, Xi) — k(Xx, X) [k(X, X) + 07211] EX, XL (5)

wherel is the identity matrix. The corresponding (noisy) predietvariance for an obser-
vationy, can be obtained by adding the noise terfto the individual components of
VI (X))

The standard GP model recapitulated above has two majdatiorns in our problem
domain. First, the computational complexity is high, sit@e&ompute the predictive vari-
ance given in Eq. (5), one needs to invert the mak(iX, X) + o2 1. This introduces a
complexity of©(n?®) wheren is the number of training examples. As a result, an important



issue for GP-based solutions to practical problems is theatéon of this complexity. This
can, as we will show in Sec. 3, be achieved by artificially ling the training data set in a
way that introduces small loss in the data likelihood whilthe same time minimizing the
runtime. As a second limitation, the standard GP model geegauni-modaldistribution
per input locationx. This assumption hardly fits our application domain in whéckela-
tively smooth “background” signal is typicallyixedwith medium- and high-concentration
“packets” of gas. In the following, we address this issue byivihg a mixture modelof
Gaussian processes.

2.1 Mixtures of Gaussian Process Models

The GP mixture moddITresp, 200Dconstitutes a locally weighted sum of several Gaussian
process models. For simplicity of notation, we considehuiit loss of generality the case
of single predictions onlyx instead ofX.). Let{GP,...,GP,,} be a set oin Gaussian
processes representing the individual mixture componésts”(z(x«) = ) be the proba-
bility that x.. is associated with theth component of the mixture. Lg% (x.) be the mean
prediction ofGP; atx.. The likelihood of observing. is thus given by

m

h(xe) = plys [ %) = D Plz(x) = NG (g x4, (6)

=1

where we defineV;(y; x) as the Gaussian density function with me&x) and variance
V[f;(x)] + o2 evaluated ay. One can sample from such a mixture by first sampling the
mixture component according 8(z(x«) = i) and then sampling from the corresponding
Gaussian. For some applications such as information+texploration missions, it is prac-
tical to estimate the mean and variance for this multi-madatiel. The meaf[h(x«)] of

the mixture model is given by

m

h(xs) = E[h(x:)] = Y P(2(xx) = i) fi() (@)

i=1

and the corresponding variance is computed as

Vlh(xa)] = D2 Plexi) = i) (VIfi(xa)] + (i(xe) = hlx:))*) - ®
i=1

2.2 The Choice of the Covariance Function

The covariance function in a Gaussian Process as well agimixture model is a crucial
component as it encodes knowledge about the function toappate. It specifies the de-
pendency between two function valugs;), f(x;) and this dependency is computed only
based on the corresponding inputs.

The standard choice for covariance function is the squaxpdresntial (SE) shown in
Eq. (2), however, there are several other possibilitiesfmd a covariance function. In this
paper, we also analyze how the choice of the covarianceiumaffects the quality of the
gas distribution model. In detail, we analyze the squargmbeential and two instances of
the Magérn covariance function.
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Fig. 2 Example plots of the squared exponential covariance fum¢tift) and the Maérn 3/2 covariance
function (right), each plotted for varying hyperparameters

In case of the Marn covariance function, we consider the so-called ‘&at3/2” and
“Matérn 5/2” functions among the class of Mat kernels. They are given by

V3|xi,%; V3%, x;
kMatB/Q(Xivxj)_OJ% <1 ! ZL il exp I lL il 9)
and
V5|[x;, x; 5|, x4 |2 V5|[x;,
k‘ 315/2( i ]) ?‘ (1 || l’L ]|| H ;)lz_]H e || li jH . (10)

As for the case of the SE covariance function, the parandeétehe length-scale that defines
the global smoothness of the functigsrandafc denotes the amplitude (or signal variance)
parameter. ‘

Fig. 2 shows 2d-plots of these covariance functions ilatstg the assumed dependency
between data points of the function to model depending onlghe distance of the inputs.

When comparing the properties of the individual covaridmeetions, the SE function is
a rather smooth one and, therefore, leads to a comparabhgssmoothing of the function
approximation. This, however, might contradict the natofeyas distribution as well as
other physical phenomena. Therefore, we also consider HieriMicovariance function that
typically produces rougher estimates and thus might beibstited for the problem studied
in this paper. Among the two Matn kernels used in this paper, the Biat 5/2 is smoother
than the Mairn 3/2.

3 Learning the Model from Data

Given atraining seD = {(x;,y;)}j=; of gas concentration measuremegjtaind the corre-
sponding sensing locatiors, the task is to jointly learn the assignmeiit ;) of data points

to mixture components and, given this assignment, the itha@l regression modelgP;.
Tresp[200d describes an approach based on Expectation Maximizatieh) {& solving
this task. We take his approach, but also seek to minimizauh#er of training data points
to achieve a computationally tractable model even for largi@ing data set®. This is of
major importance in our application, since typical gas emi@tion data sets easily exceed
n = 1000 data points and the standard GP model (see Sec. 2) is of aubiglexity O (n?).



Different solutions have been proposed for lowering thigarbound, such as dividing the
input space into different regions and solving these probléndividually or by deriving
sparse approximations for the whole space. Sparsd &Rsla and Bartlett, 2000, Snelson
and Ghahramani, 200base a reduced set of inputs to approximate the full GP modiés. T
new set can be either a subset of the original inp8tsola and Bartlett, 200®r a set of

r new pseudo-inputESnelson and Ghahramani, 200&ehich are obtained using an opti-
mization procedure. This reduces the complexity flom?) to O (nr?) with < n, which

in practice results in a nearly linear complexity.

We apply a method similar to sparse GPs and select a subsetofiginal inputs. In the
remainder of this section, we describe a greedy forwareetieh algorithm integrated into
the EM-learning procedure which achieves a sparse mixtadeirby selecting a subset of
the original inputs. while also maximizing the cross vdiida data likelihood.

3.1 Initializing the Mixture Components

In a first step, we subsampltg data points and learn a standard GP for this set (including
the optimization of the hyperparameters). This magiel constitutes the first mixture com-
ponent. To improve the estimate of gas concentration insattest are poorly modeled by
this initial model, we learn an “error model”, termé&® », that captures the absolute dif-
ferences between a set of target values and the predictfai®a We then sample points
according toGP 5 and use them to initialize the next mixture component. I8 ty, the
new mixture is initialized with the data points that are ppapproximated by the first one
and a hyperparameter optimization is performed. This m®cerepeated until the desired
number of model components is reached. For typical gas nmgdstenarios, we found that
two mixture components are sufficient to achieve good reshitour experiments, the con-
verged mixture models nicely reflect the bimodal nature o diatributions, having one
smooth “background” component and a layer of locally cotreged structures.

It should be mentioned, that depending on the actual daggertior model (“error GP”)
might has to be evaluated at all— n, inputs which would lead to large computational
overhead. Instead, we actually average multiple spatiddige measurements and evaluate
only at uniformly sampled locations. This is clearly an apgmation but only used for the
error model of our approach. We, however, did not encountaslems using this strategy
which is actually used only for initialization.

3.2 lterative Learning via Expectation-Maximization

The Expectation Maximization (EM) algorithm can be usedidtam a maximum likelihood

estimate when hidden and observable variables need to ineatsd. It consists of two

steps, the so-called estimation (E) step and the maxiroizél¥) step which are executed
alternately.

In the E-step, we estimate the probabil®yz(x;) = ¢) that data poingj corresponds
to model component This is done by computing the likelihood of each data painttfie
model components individually. Thus, the né\e(x ;) = i) is computed given the previous
estimate as

P(2(x;) = 1) N;i(y;;%x;)

PEGG) = DS o) = N (%))

(11)




In the M-step, we update the components of our mixture maoidgk is achieved by
integrating the probability that a data point belongs to @ehcomponent into the individual
GP learning steps (see alStresp, 200§). This is achieved by modifying Eq. (4) to

_ -1
Fi(Xs) = k(Xs, X) [k(x,x) . } v, (12)

where®’ is a matrix with
(13)

and zeros in the off-diagonal elements. Eq. (5) is updatedrdingly. The matrix¥’ al-
lows us to consider the probabilities that the individugluts belong to the corresponding
components. Figuratively speaking, the contribution ofialikely data point to a model is
reduced by increasing the data point specific noise ternmelfassignment probability, on
the other hand, is one, ondf, remains and the point is fully included as in the standard GP
model.

Learning a GP model also involves the estimation of its hypemeterd = {o¢,£,0n }.
To estimate them fogP;, we first apply a variant of the hyperparameter heuristicduse
by Snelson and Ghahramd20064 in their open-source implementation. We extended it
to incorporate the correspondence probabifity:(x;) = 4) into this initial guess

l— max P(z(x;) = 1) [|x; — x|| (14)
2. i1 P(2(x5) =) (y; — E[y))?

; ST Px;) = 1) (19)
GTQL — ia? , (16)

wherex refers to the weighted mean of the inputs, eaghaving a weight of?(z(x;) = 4).

To optimize the hyperparameters based on this initial eg&mone could apply, for ex-
ample, Rasmussen’s conjugate-gradient—based applBasmussen, 2006n our experi-
ments, however, this approach lead to overfitting problemdsige therefore resorted to cross
validation-based optimization. Concretely, we repegtedmple hyperparameters and eval-
uate the model accuracy according to Sec. 3.2 on a sepaltia&tican set. As a hyperparam-
eter sampling strategy, we draw in each even iteration efsinpling new hyperparameters
from an uninformed prior and in each odd iteration, we imprthe current best parameters
0’ by sampling from a Gaussian with meah The standard deviation of that Gaussian is
decreased with the iteration number.

In our experiments, this rather straight forward strateggverged quickly after a few
iterations (approx. 50 iterations, see Fig. 11 for an exaMote that there are more so-
phisticated strategies, for example simulated annediivag,can be used instead. However,
we selected a simpler approach since it provided satisfactsults and can be implemented
with five lines of code.

3.3 Learning the Gating Function

In our mixture model, the gating function defines for eaclagaint the probability of being
assigned to the individual mixture components. The EM diigor learns the assignment



probabilities for the used training inputs, maximizing the cross validation data likelihood.
To generalize these assignments to the whole input spat@itica proper gatingunction),
we place another GP prior on the gating variables. Congretel learn a gating GP for each
component that uses the; as inputs and the(x;) obtained from the EM algorithm as
targets. Letf?(x) be the prediction of for GP;. Given this set ofn GPs, we can compute
the correspondence probability for a new test pginas

oy elfEx)
PR =0 = S ep( 5 0c)) )

3.4 Summary

This section briefly summarizes our approach for learnirgg@P mixture model. First,
we initialize the mixture components which are individugP<s This done by randomly
sampling data point for the first component. Then, an erroris3Barned to estimate the
prediction error. The data points for the subsequent coeois then sampled based on
the error GP. Second, the we apply the expectation maximizalgorithm to optimize
the mixture components and to estimate the hidden mixfasg@ssignment variables. In
each iteration of the EM, the hyperparameters for the miéxtemponents are iteratively
optimized. Finally, the gating function is learned usingiaghe GP framework. The gating
function models the class assignments for the whole inpatesd_earning is done based on
separated training and test sets.

3.5 lllustrating Example

To visualize our approach, we now give a simple, one-dinmgradiexample. The left dia-
gram of Fig. 3 shows simulated data points, of which most warapled uniformly from
the interval[2 : 2.5] and some are distributed with a larger spread at two distiettions.
The same diagram also shows a standard GP model learnedsaethivhich is not able
to explain the data well. The right diagram of the figure shg#s,, i.e. the resulting er-
ror model, which characterizes the local deviations of thueleh predictions from the data
points. Based on this model, a second mixture componenitiglimed and used as input to
the EM algorithm.

The individual diagrams in Fig. 4 illustrate the iteratiaishe EM algorithm (to be read
from left to right and from top to bottom). They depict the ta@mmponents of the mixture
model. The learned gating function after convergence oétperithm is depicted in the left
diagram of Fig. 5. The right diagram in the same figure giveditial GP mixture model. It
is clearly visible that the mixture model better represémits data set than the standard GP
model, which assumes a smooth, uni-modal process (sedtl@lgram of Fig. 3).

4 Experimental Results

We carried out pollution monitoring experiments in a realrd setting, in which a mobile

robot followed a predefined sweeping trajectory coverimggtea of interest. Along its path,
the robot was stopped for several seconds, 10 s (outdoaisj@s (indoors), at predefined
points to acquire measurements. The spacing between thhegiits was set to values
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Dataset GP GP GP GPMavg | GPMavg | GPM avg
(SE) | (Mat3/2) | (Mat5/2) (SE) (Mat3/2) | (Mat5/2)
3-rooms || -1.22 -1.25 -1.27 -1.50 -1.51 -1.52
corridor || -0.98 -1.06 -0.98 -1.58 -1.58 -1.60
outdoor || -1.11 -1.17 -1.22 -1.72 -1.88 -1.85

Table 1 Average negative log likelihoods of test data points fofedént approaches. The results of the
comparison between the GP and the GP mixture model with comésgmp covariance functions shown in
this table differ significantly (10 repetitiona, = 5%).

Dataset [ GP [ GPMavg | GPM |

3-rooms || -1.22 -1.50 -1.54
corridor -0.98 -1.58 -1.60
outdoor || -1.11 -1.72 -1.80

Table2 Comparison between standard GP (GP), the GP mixture modelwethging (GPM avg) according
to Eq. (8) and Eg. (7), and the GP mixture model with multi-modairetes (GPM) based on 10 repetitions
(here using the SE covariance function).

between 0.5m to 2.0 m depending on the topology of the availsace, see Fig. 6. In

the experiments, the sweeping motion was performed twicgpposite directions which

allows us to use the second visit for evaluating our prealisti Due to the slow response
of the gas sensors and in order to avoid disturbance to theigabution created by the

robot itself, the robot was driven at a maximum speed of 5 émisetween the stops. The
gas source was a small cup filled with ethanol and in the exyents, the robot approached
the cup up to a distance of approximatively 0.1 m.

The robot was equipped with a SICK laser range scanner usg@ad$e correction, with
an electronic nose, and an anemometer. The electronicmadégaro TGS 2620 gas sensor
enclosed in an aluminum tube. This tube was mounted ho&ilgrat the front side of the
robot. The electronic nose is actively ventilated throudérethat creates a constant airflow
towards the gas sensor. This lowers the effect of exterrféwiand the movement of the
robot on the sensor response.

Note that in this work, we concentrate only on the gas comagah measurements and
do not consider the pose uncertainty of the vehicle. One pply @ane of the various SLAM
systems available to account for the uncertainty in thetrslpose[Frese, 2006, Grisetit
al., 2007, Lilienthalet al., 2007.

4.1 Inspected Environments

Three environments with different properties were setbdte the pollution monitoring
experiments. The first experiment, tern@gdooms was carried out in an enclosed indoor
area that consists of three rooms which are separated byiglgyotruding walls in between
them. The area covered by the robot is approximatelgn x 6 m. There is little exchange

of air with the “outer world” in this environment. The gas soelwas placed in the central
room and all three rooms were monitored by the robot. Thersktmration was a part of

a corridor with open ends and a high ceiling. The area covered by thectaly of the
robot is approximately4 m x 2 m. The gas source was placed on the floor in the middle
of the investigated corridor segment. Finally,artdoorscenario was considered. Here, the
experiments were carried out in &m x 8 m region that is part of a much bigger open area.



Fig. 6 Pictures of the robot inspecting three different environtees well as the corresponding sweeping
trajectories.
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Fig. 7 Color schema for the gas concentrations visualizations|@datefault). Gas distribution measure-
ments are always normalized between 0 and 1 given the currenf seservations used for learning the
model.

We used the raw sensor readings in all three environmentsiagg sets and applied
our approach to learn the gas distribution models. The noloeed through the environment
twice. We used the first run for learning the model and thersgome for evaluating it. To
benchmark our results, we compare against gas distribotmfels learned using (a) stan-
dard GP regression, (b) a grid-based interpolation apprcawd (c) kernel extrapolation.
For the Gaussian process regression, we furthermore antigznfluence of different co-
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GPM mean (3D view)

GPM mean (2D view)
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Fig. 8 The3-roomsdataset with one ethanol gas source in the central room. Tm structure itself is not
visualized here. In all plots, blue represents low, yelleflects medium, and red refers to high values. See
Fig. 7 for the color encoding. The unit of the x- and y-axis idene
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variance functions in the obtained results. For the viga#ibns, we always used the default
Matlab color scheme depicted also in Fig. 7 and normalizedyts concentration measure-
ments obtained to values between zero and one.

4.2 Evaluation

Fig. 8 shows the learned models for tleoomdataset. The left plot in the first row illus-
trates the mean prediction for the standard GP on the sulbsdrirpining set that defines
the first mixture component. The right diagram depicts thergeP representing the differ-
ences between the initial prediction and a set of obsemnatiBased on the error GP, a new
mixture component is initialized and the EM algorithm isr@t out. The means of the two
mixture components after convergence are shown in theibgjtam of the second row and
the learned gating function is visualized in the adjaceagdim on the right. The left dia-
gram in the third row shows the mean prediction of the finaltarexmodel. As can be seen,
the model consists of a smooth “background” distributiod apeak of gas concentration—
close to the gas source—with a sharp boundary. In contrakigpthe standard GP (right
diagram in the third row) learned using the same data is p@enooth for this dataset, es-
pecially in proximity to the gas source. For both models dtpgared exponential covariance
function has been used here.

Table 1 summarizes the negative log likelihoods of the tesh gsecond part of the
dataset, which was not used for training) given our mixtucdet (GPM) as well as the
standard GP model (GP). As can be seen, our GPM method cutparthe standard GP
model in all settings. A t-test on 10 repeated learning r@vealed that these results are
significant ¢ = 5%). Two reasons for the increased model accuracy of GPM staindard
GPs can be seen in the 2D plots in the last two rows of Fig. 8t,Fis already mentioned
before, the standard GP overly smoothes the area close gatheource and, second, its
variance estimates around the source are too low (sincdathiGPs assume a constant
noise rate for the whole domain). The table furthermoreyaeal the results obtained with
different covariance functions. The Mg kernels perform on average slightly better than
the squared exponential function. This is probably the besause the Matn kernels are
less smooth which is in line with the nature of the problemradsed in this paper. In
Table 2, we provide two likelihoods for our model, the oneegiin Eq. (6) (called “GPM”
in the table) and the one computed based on the averagedtmedipecified in Eq. (7) and
Eq. (8) (called “GPM avg”).

Fig. 9 visualizes the final results for therridor experiment for the GPM model (means
of the mixture components in the left diagram and the prediaincertainty on the right).
The raw dataset from this experiment is plotted in Fig. 1.His experiment, the area of
high gas concentration was also mapped comparably acawydite standard GP, but again
the variance close to the area of high gas concentration ezasrhall. This can seen by
comparing the images in the right column of Fig. 9, which shiogvstandard GP results for
different covariance functions in the top three rows andtierGPM below.

By carefully inspecting the results (best viewed in colone can see slight differences
resulting from the covariance functions. The squared egptal function yields smoother
results than the Méatn kernels which can be seen on the border around the arésghof
concentrations. The results measured by means of the NLRIputed based on separated
test sets over multiple runs illustrate that the GPM modelays outperformed the standard
model (see tables). Furthermore, the &tatkernels seem to be slightly better suited to
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model gas distributions since they are less smooth comgaréte squared exponential
function.

Similar results are also obtained in thetdoordataset. Mean and variance predictions of
the different GP mixture models with different covarianaedtions are provided in Fig. 10.
The corresponding result of the standard GP including atpédtillustrates the evolution of
the negative log likelihood (NLPD) during sampling of thepeyparameters for the standard
GP model and mixture GP model (SE covariance) is given inHig.

In all our experiments, we limited the number of data pointshie reduced input set
to n; = 100. The datasets itself contained between 2 500 and 3 588urements so our
model was able to make accurate predictions with less thaof3be data. Matrices of that
size can be easily inverted. As a result the overall comjautaitne for learning our model
including cross validation is around 1 minute for all datashown above running Matlab
on a standard laptop computer without explicitly optimizede.

Finally, we compared the mean estimates of our mixture mtudtéfle results obtained
with the method of Lilienthal and Duckd2004 as well as with an often used approach that
uses a grid in combination with linear interpolation likg Ryk et al,, 2004. The results of
this comparison in terms of the MSE measure are shown in Bighd can be seen from the
diagram, our method outperforms both alternative methods.

4.3 Distribution Modeling in an Easy Setup

We also tested our gas distribution modeling algorithm veittsmoother” data set. The
electronic nose on the mobile robot is also equipped witmgpeFature sensor and we used
the temperature measurements as input to the gas distnibutbideling algorithm proposed
in this paper. Even so, the obtained measurements were tetupemeasurements instead
of gas concentration measurements, our approach can kéydapplied.

The measurements were recorded along a random sweepigargjin a corridor. The
data set indicates a roughly linear gradient in the tempezatistribution. In this situation,
we expect that our mixture model should perform similar careg to the standard GP
approach or the kernel extrapolation technique since tielsr techniques are also well
suited to model such a function.

We therefore carried out the modeling task based on the textyse datasets with the
different approaches. Our expectation was actually matgleefectly in this setting. Both
mixture components of our method actually converged to@ppratively the same solution
and this model is more or less identical to the one generatebebstandard GP approach
as well as to the kernel extrapolation method. All three apphes yield nearly identical
results differing by less than 1%. This holds for the MSE ad a&for the NLPD (for GP
and GPM), see Fig. 13. Obviously, the standard GP has a lowaputational load than
the mixture approach and thus is preferable if the desightiressystem can ensure that no
mixture components are needed to model the data.

5 Related Work

A common approach to creating representations for timeageel concentration fields is to
acquire measurements using a fixed grid of gas sensors oweg aériod of time. Equidis-

tant gas sensor locations can be used to directly measuragmthe average concentration
values according to a given grid approximation of the emvinent. This approach was taken
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Fig. 9 Models learned from concentration data recorded inctireidor environment. The gas source was
placed at the location (10, 3). We evaluated the standardn@fh& our mixture model all using the different
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native techniques in three real-world setting. The barsvishe mean squared error of predicted compared to
the measured concentration on a test set, averaged overd.0 run
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Fig. 13 Experimental comparison of the GP mixture model (GPM), the stah@P model (GP), and kernel
extrapolation in a simple setting. Top: As expected, allétapproaches perform more or less equal. Bottom:

Model learned by the GPM approach (all approaches produigbtitsimilar estimates). The unit of the x-
and y-axis in the plots in the bottom row is meter.

by Ishidaet al. [1999§—additionally considering partially simultaneous measuents. A
similar method was used iiPurnamadijaja and Russell, 2@0But instead of the average
concentration, thpeakconcentration observed during a sampling period of 20 s was ¢
sidered to create the map.

Consecutive measurements with a single sensor and timaging over 2 minutes for
each sensor location were used by Rylal. [2004 to create a map of the distribution of
ethanol. Methods, which aim at determining a map of the imateeous gas distribution
from successive concentration measurements, rely on ghemmion of a time-constant
distribution profile, i.e. on uniform delivery and removéltie gas to be analyzed as well as
on stable environmental conditions. Thus, the experimei®yk et al. were performed in
a wind tunnel with a constant airflow and a homogeneous gasaolo make predictions
about locations outside of the directly observed regioms,same authors apply bi-cubic
interpolation in the case of equidistant measurements régntbte-based cubic filtering in
the case, in which the measurement points are not equathjbdited. A problem with such
interpolation methods is that there is no means of “averpgint” instantaneous response
fluctuations at measurement locations. Even if responsgesare measured close to each
other, they will appear independently in the gas distridoutinap with interpolated values
in between. Consequently, interpolation-based maps tehddome more and more jagged
the more new measurements are adddienthal et al., 2004 .

Histogram-based methods approximate the continuoushdistm of gas concentration
by means of binning according to regular grids. Hagesl. [2007 for instance suggest
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using two-dimensional histograms over the number of “odts” eceived in the corre-
sponding area. “Odor hits” are counted whenever the regpens! of a gas sensor exceeds
a defined threshold. In addition to the dependency of the gaisbdition map on the se-
lected threshold, a disadvantage of processing binaryrirdton only is that useful infor-
mation contained in the (continuous) sensor readings ¢adied. Further disadvantages of
histogram-based methods for gas distribution modelingtae dependency on a properly
chosen bin size and the lack of generalization across bibheywnd the inspection area.

Gas distribution mapping based on kernel extrapolationbeaseen as an extension of
the histogram-based approach. The idea was introducedliepthial and Ducketi2004.

In this model, spatial integration is carried out by conwtodvsensor readings and mod-
eling the information content of the point measurement$ witGaussian kernel. As dis-
cussed irlLilienthal et al, 2004, this method is related to nonparametric estimation us-
ing Parzen windows. The complexity of model-free approadiee converging to a sta-
ble representation—either in terms of time consumptiorherriumber of sensors—scales
guadratically with the size of the environment.

A model-based approach to estimate concentration mapsdesdescribed by Mar-
queset al. [2009. In this approach, the work space is discretized into a 2gdles grid
and the concentration in each cell is represented by a stgigble. Using an advection-
diffusion model of chemical transport, a reduced order Kalrfilter is applied in order to
estimate the state variables corresponding to the grid.c&dlcording to the assumption of a
non-turbulent transport model, the experimental run priesewas carried out in an indoor
environment with artificially introduced laminar airflow epprox. 1.5 m/s. Model-based
approaches have also been applied to infer the parametarsasfalytical gas distribution
model from the measuremeriishidaet al, 1994. They naturally depend on the charac-
teristics of the assumed model. Complex numerical modedsan the simulation of fluid
dynamics are computationally expensive and require ateureowledge of the state of the
environment (boundary conditions) which are typically aadilable in practice. Simpler an-
alytical models, on the other hand, often make rather uist&amodel assumptions which
hardly fit the real situation. Model-based approaches algon well-calibrated gas sensors
and an established understanding of the sensor-envirdrinteraction.

The Kalman filter approach by Marquesal.[2005 provides an estimate of the predic-
tive uncertainty. A related approach is the work by Blaetal.[2009 in which a Kalman
filter is used for sequential Bayesian estimation on a 2-d.dristead of the advection-
diffusion model, a stationary distribution is assumed ie ldtter work. It is important to
note that the covariance obtained from these two approasties covariance of the mean,
which can only decrease as new observations are procedsed.tBe predictive variance
computed with the algorithm proposed in this paper can aidejbte real variability of the
measurements at each location, its performance in ternteaierage negative log likeli-
hood is substantially better than with the approach by Biatal.[2009 (personal commu-
nication). We believe that this is also true for the mappiggathm by Marquegt al.[2009
although the two methods cannot be compared directly dueststtong assumptions on the
environmental conditions by Marquet al.

In contrast to the above-mentioned approaches, we applyssiza process-based mix-
ture model to the problem of learning probabilistic gasriistion maps. The history of
the idea behind the Gaussian process approach to regregimback to Wiendd964,
Kolmogoroff [1941], O’Hagan[197d, and others (sefRasmussen and Williams, 2006,
Sec. 2.9). For a detailed and quantitative comparison of GPs witkraéttive approaches
such as neural networks, we refef Rasmussen, 1996GPs allow us to model the depen-
dencies between measurements by means of a covariancefuridiey enable us to make
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predictions at locations not observed so far and do not aalyige the mean gas distribution
but also the predictive uncertainty. Our mixture model igifarmore able to model sharp
boundaries around areas of high gas concentration. Tedlynige build on Tresp’s mixture
model of GP experts (sd@&resp, 2000) better deal with the varying properties in the data.
Extensions of this technique using infinite mixtures haverberoposed by Rasmussen and
Ghahraman[2004 and Meeds and Osindef@8004. Other model extensions that aim at
increasing the expressiveness of Gaussian processedeanely., heteroscedastic GPs for
modeling input-dependent noiblee et al,, 2005, Kerstingt al,, 2007, Snelson and Ghahra-
mani, 2006, nonstationary GPs for modeling input-dependent smossimaciorek and
Schervish, 2003, Plagemaenal., 2008, Schmidt and O’Hagan, 200®r special covari-
ance functions for non-vectorial inputBriessenset al,, 2006, Collins and Duffy, 2042
Compared to the latter extensions to the standard GP mdeeinixture model approach
can be seen as the natural choice for the gas-mapping task, thie distribution of data
points is multi-modal. Future work, however, could incledguantitative comparison of the
alternative approaches or aim at integrating several afthe

The work presented here extends our previous RSS’2008 p&faahnis®t al, 2004.
First, we investigated the use of different covariance fiams in the GP model for gas distri-
bution mapping. This showed that there are better choi@asttie previously used squared
exponential covariance function. Second, we extendeddberenental section providing a
larger set of experiments. We furthermore identified anduattad a scenario which is well
designed for the standard GP approach and evaluated tlegrparfce of our proposed mix-
ture model. It turned out that in such a situations, desidoethe standard GP, our approach
performs equally well.

6 Conclusion

We considered the problem of modeling gas distributionsnfsensor measurements by
means of sparse Gaussian process mixture models. Gause@s§es are an attractive
modeling technique in this context since they do not onlyjat® a gas concentration esti-
mate for each point in the space but also the predictive teiogy. Our approach learns a
GP mixture model and simultaneously decreases the congnabtomplexity by reducing
the training set in order to achieve an efficient represemtaven for a large number of ob-
servations. The mixture model allows us to explicitly digtiish the different components
of the spatial gas distribution, namely areas of high gaseomation from the smoothly
varying background signal. This improves the accuracy efgdis concentration prediction.

Our method has been implemented and tested using gas sersorted on a real robot.
With our method, we obtain gas distribution models thatdsetkplain the sensor data com-
pared to techniques such as the standard GP regressionsfolisgabution mapping. Our
approach and the one of Lilienthal and Duc@®04 provide similar mean gas concen-
tration estimates, their approach as well as the majoriteatiniques in the field, however,
lack the ability of also estimating the corresponding prtdé uncertainties.
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