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Abstract

Mobile olfactory robots can be used in a number of relevaptieation areas where a better understanding of a
gas distribution is needed, such as environmental mongasind safety and security related fields. In this paper we
present a method to integrate the classification of odowgsther with gas distribution mapping. The resulting odour
map is then correlated with the spatial information coleéicfrom a laser range scanner to form a combined map.
Experiments are performed using a mobile robot in large amdadlified indoor and outdoor environments. Multiple
odour sources are used and are identified using only trarisfenmation from the gas sensor response. The resulting
multi level map can be used as a intuitive representatiomefcbllected odour data for a human user.

I. INTRODUCTION

The combination of gas sensors on mobile robots is usefubfoumber of application areas within safety,
security and environmental inspection. Instead of usingdms, a robot can be dispatched to areas of contaminous
odours for inspection, or can provide continuous monih an area with quantative characterization of specific
odours. In this paper, we address the integration of ga®ee®to a mobile robot for environmental inspection.
The main contribution resides in the combination of a nundfgechniques in both static electronic olfaction and
mobile robotics to create an odour map. The odour map shosvsghtial layout of the environment, the presence
of multiple gases and how these gases are distributed. Albéimsor information is collected using a mobile robot
equipped with an electronic nose, laser range finder, anchbauof additional modalities to assist in navigation
and interaction with its users. Such a system is intendectoded in applications where a user is working closely
with the robotic system in order to gain deeper insight itite dlistribution of gases in various environments. An
important additional contribution of this paper is the ddesation of large, unstructured and even partially outdoo

environments.
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Fig. 1. Sancho, the service robot. a) The original versioSaricho for delivery applications. b) Partial view of theabfbcusing on the two
electronic noses mounted on Sancho for our experimentsach E-nose is composed of four gas sensors, a fan that psozidenstant air

flow, and a retractable plastic tube (not shown in the pi§tthat directs the air flow to the sensors.

A. Related Work

The field of mobile olfaction currently has a number of keyeaash directions including trail following [23],
localization of odour plume origin [10], [5] and mapping oflaur distributions [12], [24]. Both 2-dimensional
and 3-dimensional environments have been considered wihemajority of experimental setups use single odour
sources. The majority of the mobile olfactory platforms tise TGS gas sensors [6] as the main gas detection
modality. Other type of sensors used include QMB and corlgigtolymer sensors [16]. For experiments which
consider trail following and navigation to the odour soubgechemotaxis, restricted and controlled environments
have been used. However, work considering gas distributtiapping and odour classification [18] have considered
unmodified environments for experimentation. This follaveecent trend to promote mobile olfactory robots for a
number of real applications such as environmental momigofi9] and mine detection [2]. In order for olfactory
robots to move towards this goal, it is essential to not owiysider realistic environments, but also to use the full
capability of current robotic research such as self loatilitn and mapping, and also consider the entire olfactory
problem which includes both detection and identificatiomdburs. Additional related work relevant to the methods

applied in this paper are present in the technical sections.

B. Olfactory robot

Our experiments have been conducted using a service roftgd cSancho, which is intended to work within

human environments as, for example, a conference or fair(kes Figure 1a). It is constructed upon a pioneer 3DX



mobile base whose structure has been devised to contairetfserial system. The sensorial systems includes a
radial laser scanner, a set of 10 infrared sensors, a colotorined camera, and a pair of electronic noses placed at
a low position in the frontal part of the robot (see Figure. ) devices of Sancho are managed by a Pentium IV
laptop computer at 2.4GHz with wireless communication tttatnect Sancho to remote servers or to the internet,
enabling, for instance, remote users to command and toalaht robot.

Located on the front of Sancho approximately 11 cm from therflare two electronic noses based on TGS
Figaro technology. Each e-nose consists of four TGS self$@S 2600 (x2), 2620, 2602). Four sensors are placed
in a circular formation on a plastic backing (see Figure Ttie sensors are then placed inside a retractable plastic
tube sealed with a CPU fan that provides a constant airflow tiié tube (see Figure 1b). The two e-noses are
separated at a distance of 14 cm (measured from the centee ofrtular backing). Each sensorg position with
respect to the center of the robot is denotedry, Py, P..

Readings from the gas sensors are collected by an on-botadadquisition system located on the frame of
the robot and a sampling frequency of 1.25 Hz was used. Poi@xperimentation, the sensor arrays for both
e-noses were heated for approximately 30 minutes reachimgedratures between 300-500, needed for proper
operation. Metal oxide sensors exhibit some drawbackshaating. Namely the low selectivity, the comparatively
high power consumption (caused by the heating device) anelak @urability. Furthermore, metal oxide sensors are
subject to a long response time and an even longer decay oveever, this type of gas sensor is most often used
for mobile noses because it is inexpensive, highly semsiind relatively unaffected by changing environmental
conditions like room temperature or humidity.

The software processing to create the odour maps consigivefal components. The identification component
used to classify specific odourous types is described ini@®ed¢t. The computation of the gas distribution is
described in Section IIl, and the method used to combinesthesthods together with the laser range information
is described in Section IV. Finally, experimental resut®wing the performance of the robot and the respective

algorithms is given in Section V.

II. CLASSIFICATION OF ODOURS USINGTRANSIENT RESPONSE

Applications which deal with odour classification on stasigstems have primarily considered a three phase
sampling procedure, often extracting information abow #teady state response of the sensors. Input to the
classification algorithm is then a comparison between alinasand the steady state. Including recovery, a three-
phase sampling can take anywhere from 2-5 minutes for a T@Sose

The challenge of odour classification with a mobile robot tamdves either towards or away from an odour
source is that the concentration of an odourant is not cohsidso given the latency present in the sensor response
prior to a steady state, it is not possible to rely on the pdaerto deduce the concentration as was presented in
[22]. Figure 2 shows a typical response from the electron®enon Sancho, when patrolling an environment with
an odour source. Here, it is reasonable to assume that vigileobot is moving and current concentration values

are unknown, the sensors are in a state of transition. figtion of an odour using only the transient information
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Fig. 2. Readings from the eight TGS sensors. Here the robstm@ving in an inward spiral motion towards the center of arroén ethanol

odour source consisted of a small cup filled with ethanol wasted in the center.

in a signal, has been addressed previously for a number ti¢ sfactronic nose systems [7], [3], [20]. Of these
methods, discrete wavelet transform (DWT) applied to tlamgrent has shown to improve the classification of a
signal that also includes steady state and recovery infimmand to training signals consisting only of transients.
To classify the signals collected from the robot as showniguffe 2, we first establish a training set consisting
of transients for each odour character. The training dataliscted with the electronic nose placed a fixed distance
from the odour source (approximately 20 cm) sampling theuodor a short period of time (between 20-30
seconds). The e-nose sampled each odour at 1.25 Hz, whicked throughout all experiments even with the
robot. The training data set consists@of 1... N, odour fingerprints. Each fingerprint consistssof= 1... N,
sensor transients. Each sensor transients consists=of . .. V; readings. The raw sensor response for senstr,
odouro at timet is denoted by, s(¢,). Using the signal shown in Figure 4, a differential and fiawl baseline

manipulation is performed according to equation 1 to obfair.

Ro,s(tn) - To,s(tn) - To,s(tl)- (1)

The input signals to the training algorithm are decompostalfeatures using a set of discrete wavelet transforms
formulated by Debauchies. The discrete wavelet transfaeates a time scale representation of a digital signal
using digital filtering techniques. It does so by analysihg signals at different frequency bands with different
resolutions thereby decomposing the signal into a coargeogjmation and detial information. In terms of the gas
sensors, this has been expressed as the decomposition toditisents response according to the different rates of
absorption caused by different odourants [4]. Ed&h is passed through a series of high pass filtgfs,[) to

analyse the high frequencies, and low pass filtéfs,{) to analyse the lower frequencies according to:

Yiow k] =D Ro o[tn]h[2k — t,]. 2



Yhigh [k] = Z Ro,s[tn]g[2k - tn]- (3)

Each iteration through a high pass and low pass filter reptesane level of decomposition. After the first
level, decomposition is performed on the output of the lowspfilter, subsequently downsampling by a factor of
2 from the previous level as illustrated in Figure 3. The otitpf the high pass filter corresponds to the detail
level coefficients as frequencies most prominent in theimagsignal will appear as high amplitudes in that region
including those particular frequencies. The resultinguess are gathered by concatenating the detail coefficients

DL, for each level followed by the approximation coefficieds,. Therefore eaclR, s iS expressed as:

RY,=[DLy...DLy,,AC ... ACy,]. (4)

Where N,, is the decompositon level. The total wavelet coefficients dach odour are first inputted into
principal component analysis (PCA) and classified using #iflass support vector machine classifier (SVM).
The multi-class SVM classifier is trained based on the birmargport vector machine formulation and L2-soft
margin penalization of misclassifications. The quadratigpamming task is optimized by the Mitchell-Demyanov-

Malozemov algorithm using a gaussian kernel function.
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Fig. 3. The subband coding algorithm used to determine thesl@tcoefficients for input to the SVM.

A. Training Performance

To evaluate how well the system trains using only the tramsieformation, we have sampled three odours,

ethanol, acetone and plain air. These substances are thdraggest substances for the experiments presented in
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Fig. 5. Principal Component Analysis of the inpR;VXS, Acetone is indicated in red, Ethanol is indicated in greed gplain air is indicated

in blue.

Section V, where the classification results to new samplgaieed when the robot is moving are presented. To train
the system, data is collected with the electronic nose {ghkter used on the robot) placed a fixed distance from
the odour source (approximately 20 cm) sampling the odouafshort period of time (between 30-40 seconds).
The e-nose sampled each odour at 1.25 Hz, also consistemttidt sampling time later used with the robot.
Approximately 50 transients of each odour where collecidte PCA results obtained after a DWT is shown in
Figure 5.

The output of the SVN stabilizes after 200 iterations withlassification error of 7.5 %, where most of the

misclassification is between the Ethanol and Acetone as rstiowhe confusion matrix in Table II-A.

Ill. GAS DISTRIBUTION MAPPING

To be able to visualize the distribution of a particular gagecompound, the classification algorithm is integrated
with a gas concentration mapping (GDM) algorithm. Gas catreéion mapping is a relatively new field in the

area of olfactory robots, with some progress made with bimtles robots and multiple robots [11], [8], [19]. The



TABLE |

CONFUSIONMATRIX FOR CLASSIFICATION PERFORMANCE OFSVM.

Substance| Ethanol Acetone  Air

Ethanol 35 0 0
Acetone 12 54 0
Air 0 0 60

|
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Fig. 6. Discretisation of the Gaussian weighting functiarioothe grid. Left side: For each grid cell within a cutoff el R ., (represented

by a circle) around the point of measuremeht the displacemenfgi’j) is calculated. The corresponding distances are indicaiedhe 13

affected cells by the vertical lines drawn in the upper péne weightSw(Z’]) are determined for all grid cells by applying a Gaussian fionc

(0 = 1/3R o). Right side: An example of a completed gas distribution meggesenting a 3m x 4m area, the weights are indicated byrsjsad
of grey (dark shadings correspond to high weights). A seamidur and inverse shading scheme is used for concentratibres exceeding
80%. A dotted line indicates the path of the robot.

algorithm applied here is based on the algorithm presenggd4 and further developped by the authors in [13].

Due to fundamental differences between range sensing wilsex scanner and gas sensing with metal oxide
sensors, traditional mapping techniques such as Bayesi@mation cannot be applied to the gas distribution
mapping problem in the same way as to estimate an occupaitcyngip.

The main differences are, first, that the sensor readingsoti@liow to derive the instantaneous concentration
levels directly. Metal oxide gas sensors are known to recsiesvly after the target gas is removed (15 to 70 seconds
[1]) and therefore perform temporal integration impligitSecond, a snapshot of the gas distribution at a given
instant contains little information about the distributiat another time due to the chaotic nature of turbulent gas
transport. Turbulence generally dominates the disperfsghs. As a consequence the instantaneous concentration
field of a target gas released from a small static source isaatichdistribution of intermittent patches with peak
concentration values that are generally an order of magmihigher compared to the time-averaged values [21].
Third, in contrast to a typical range-finder sensor, a simyasurement from a gas sensor provides information
about a very small area because it represents only thearadt the sensor’s surface. Another consequence of the
peculiarities of gas transport and gas sensing is that thesgasor measurements do contain only little information

about the current sensor location with respect to the timegaged gas distribution.



In order to estimate a grid map that represents the timeageerrelative concentration of a detected gas, we use
the kernel extrapolation gas distribution mapping methmcbduced by Lilienthal and Duckett [14]. The main idea
is to interpret the gas sensor measurements as noisy safrgies time-constant distribution. This implies that
the gas distribution in fact exhibits time-constant stuues, an assumption that is often fulfilled in unventilatad a
unpopulated indoor environments [24]. It is important tdenthat the noise is caused by the large fluctuations of
the instantaneous gas distribution while the electroniseon individual gas sensor readings is negligible [9].

The kernel extrapolation gas distribution mapping methad cope to a certain degree with the temporal and
spatial integration of successive readings that metaleogias sensors perform implicitly due to their slow response
and long recovery time [15]. In order to obtain a faithful regentation of gas distribution despite the slow sensor
dynamics (“memory effect”), the robot’s path needs to futfie requirement that the directional component of the
distortion due to the memory effect is averaged out. This lmamcheived by driving the robot through the same
coordinate from different directions.

The algorithm introduces the kernel widthas a selectable parameter, corresponding to the size oégfnenrof
extrapolation around each measurement. This parametgrsathe user to decide between a faster or more accurate
map building process. Its value has to be set large enoughtéinosufficient coverage according to the path of the
robot. Conversely, this means that for a larger kernel walfaster convergence can be achieved while preserving
less detail of the gas distribution in the map. Consequgtitly selected value of the kernel widthrepresents a
trade-off between the need for sufficient coverage and thretaipreserve fine details of the mapped structures.

Parameter selection and the impact of sensor dynamics secasdied in more detail in [15].

Sep-by-Sep Explanation of Kernel Based Gas Distribution Mapping

The sensor readings are convolved using the univariate tmertsional Gaussian function

f(#) = —e 5. (5)

Then, the following steps are performed:

« In the first step the normalised readingsare determined from the raw sensor readifysas

Rt - len
Rmaw - Rmin’

using the minimum and maximun®R(,;,, Rma.) value of a given sensor.

T =

(6)

« Then, for each grid cell(z, j) within a cutoff radiusR.,, around the point; where the measurement was

taken at timet, the displacemertft(i’j) from the grid cell's centrer (“Y) is calculated as
500 = 700) — g, )
« Now the weightingw!"? for all the grid cells(4, j) is determined as

f(gt(i’j)) : §§i,j) < Reo
0 : 5,§i’j) > Reo

wid) —

(8)
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Fig. 7. Overview of the method used to integrate the classifin algorithm with the GDM and finally the occupancy mape Bignal is passed
through a number of odour filters which identifies specific wdcharacter using transient response. The identified Isigma subsequently fed
into the GDM which generates an image representing the gashdition. Each image is then overlayed onto the spatiairination obtained

from the occupancy map.

o Next, two temporary values maintained per grid cell are tgdlavith this weighting: the total sum of the

weights

t
M, : Wt(z,J) _ ngfd)’ (9)
t/

and the total sum of weighted readings

t
M.y, s WRSD =3 rpufi?). (10)

t/
« Finally, if the total sum of the weightWt(i’j) exceeds the threshold valiE,,;,, the value of the grid cell is
set to

Cgi,j) _ WR(ti’j)/Wt(i’j) . Wt(i’j) > Win. (11)

An example that shows how a single reading is convolved onfo>a5 gridmap is given in Figure 6. First,
thirteen cells are found to have a distance of less than thafaadius from the point of measurement (Figure
6, left). These cells are indicated in the right side of Fegrby a surrounding strong border. The weightings for
these cells are then determined by evaluating the Gausgratidn for the displacement values. In this example,
the cutoff radius was chosen to be three times the widtfihe weights are represented by shadings of grey. Darker
shadings indicate higher weights, which correspond to @angr contribution of the measurement valyan the
calculation of the average concentration value for a palerccell. As an example, a gas distribution map is shown
in Figure 6 (Right).
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Fig. 8. Results from an inspection of an indoor room. Lefoveh the path taken from the robot overlayed on the occuparay. Middle:

i I,

An example of the GDM obtained from an acetone source. Rightexample of the GDM obtained from an ethanol source. Sopasition

is indicated by a circle. Position of the maximum conceitrais indicated by a cross.

TABLE I
CLASSIFICATION PERFORMANCE ANDGDM PERFORMANCE IN THEINDOOREXPERIMENTS.
Substance Trials | Classification Performance Distance to Maximum (cm)|
9 92.4%+ 9.8% 5.67 + 3.02
Ethanol
4 88.3% + 12.0% 7.85+ 2.02
13 96.2% + 5.67% 9.55+ 3.89
Acetone
5 94% + 4.8% 8.75+ 2.68

IV. COMBINATION OF THE MAPS

The GDM algorithm has been previously implemented with tssuanption of homogenous gas sensing types and
the presence of a single odour source. Under these assmsgiipation 6 can be used witty which normalizes
each of the sensor responses and correctly associates imgst@ded on the amplitude of the signal and the
position of the sensor with respect to the center of the rdbotwvever, if a heterogenous sensing array is used, the
normalization of each sensor response will generate a pressentation of the concentration value needed for the
GDM. This is due to the fact that sensors of different typextelifferently to the same odourant. So an TGS 2600
selective to alcohols will provide a strong reaction witlghhsignal amplitude while a sensor of type TGS 2602 will
provide little reaction at all. Therefore, in order to use tADM algorithm as specified above, the original signal is
first classified, collecting all sensor responses assatiate specific odour. The subsequent gas distribution map
is then only evaluated for similar sensing types. Figure mrmaarizes the approach used in this work to combine
the sensor modalities in a singular map. The original sigadirst processed through the odour filters, for each
trained odour. This is done by parsing the signal into temisi detected by a euclidean distance measure. The
transients are identified and the position (x,y) and rota{®) of the robot corresponding to the signal response in
the transient are stored. Signal responses between iédrtifinsients are associated to the odour id of the previous
transient.

After classification the signal is seperated according tthesensor. Similar sensor types are then collected and
used in the GDM (e.g. all TGS 2600). Note that each sensor hasgaie position on the robot with respect to the
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robot center. The sensor position with respect to the rdbetsignal response from the sensor and the corresponding
position of the robot in the environment are used as inpuh&oGDM. The GDM then combines the information
from the sensors and this is done for each odour type.

Finally, in order to relate the gas distribution map to sgaitnformation about the robot position and nearby
obstacles, a localization module based on adaptive Monle@article filter was used. In this work the map of the
environment is generated a priori using Rao-Blackwellipadicle filter to address the SLAM problem. The final
map is provided to the system and the localization module'metthe position and rotation estimate of the robot as
it inspects the area. The position estimates are used astmplie GDM and the laser data information and map
are merged together with the output of the GDM and classificanodule. An alternative method to using a map
generated a priori is to consider the SLAM problem in conjiomcwith the GDM process. This issue has been
considered further in detail in [13], however, for the puspm®f the experiments presented here and the validation

of the classification performance the map is presupposee ien a priori.

V. EXPERIMENTAL RESULTS
A. Indoor Experiments

In the first experiments, the robot is placed in a 3m x 4m indoom and performs a sweeping motion in the
room as shown in Figure 8 (Left). Two odour types were usedoascss, ethanol and acetone. In each trial only
one of the odour types were present at a time and placed apm@tely in the center of the room, marked by the
square in the figure. Half of the collected experiments wendopmed autonomously by the robot, while the other
half were performed with a human operator guiding the rohith & joystick. The purpose of the experiments are
to evaluate to following: the performance of the classifaratalgorithm to real data, the performance of the gas
distribution map and finally the flexibility of the system te teleoperated with a human present in the room. Table
Il summarizes the results from the experimental trials.

The classification performance is computed by testing tigerahm presented in Section 1l to new signals
collected by the robot. Only two odour filters are used, awet@and ethanol, the third trained odour of clean air is
not used since its presence is not considered to result invatid odour classification.

The performance criteria of the GDM is evaluated based orpthgrimity of the maximum odour concentration
and its correlation to the actual source position. It shdiglchoted that using this measure is not always accurate as
air currents may cause the maximum concentration to dofnfthe odour source, as remarked by [17]. However,
in the absence of a true ground truth measure, this estinagtbden adequate for the experiments. Furthermore, the
examination of whether this estimate changes with regards tuman operated sweep vs. an autonomous sweep
is indicative of the validity of the human operated inveatign. In Figure 8 a typical sweep is shown for both
different gas source types, with= 25¢m and using only TGS 2600 sensors.

The classification performance is relatively stable thiraug the different test runs and at varying distances from
the odour source. This can be attributed in part to the typefnvironment and the type of odour sources being

used. Since the robot in all cases is moving relatively siawlreduce the effect of the robot's movements on the
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gas distribution, an experimental sweep takes approxigndteto 40 minutes. Furthermore, the high volatility of

the gas sources cause the gas molecules to quickly digtribuhe indoor room.

B. Semi-Outdoor Experiments

Using the same sources, a second experiment was performeedanger and less structured environment with
both sources present at the same time but seperated by allatgece to minimize the effect of mixing. In Figure
9 (Left) the laser scan of a large partially indoor environtriecated at Malaga University, Malaga Spain was used.
This environment is composed of four connecting corriddie upper corridor is approximately 20 meters by 2.5
meters and is partially outdoor corridor used as a passagétveonnects to the lower corridor which is located
indoors via two smaller corridors (right and left) in the figuThe odour source positions are indicated by a small
circular region. The ethanol is placed in the indoor lowerridor and the acetone in the upper corridor. The path
of the robot, this time guided by a human operator, is indidan the right most figure.

The final gas distribution map is shown in the Figure 10 (Right distinguish between the two different sources,
two different shading colors are used for concentratiomeslexceeded 80% of the maximum signal amplitude.
The distance between the concentration maximum is 5.56 crthéoethanol source and 48.2 cm for the acetone
source. It is expected that since the acetone source ischlace partially outdoor environment, turbulent airflow
may have carried or displaced gaseous molecules from theestmcation causing not only the maximum measured
concentration to be far from the source location but also elmmiore dispersed plume to be present. For comparison,
in Figure 10 (Left), a gas distribution map is generated gisire entire signal without consideration of the odour
classification but only averaging the signals from the saemsar type. The main difference here is that the spread
of the acetone gas is much more prominent especially in cdegrato the ethanol source. This result is expected if
acetone signals generally produce a strong reaction for @@ 2600 sensor. Therefore, by using the classification
algorithm as presented in the scheme Figure 7 the maximuiceatration of each odour is equally represented in
the map as opposed to only capturing the maximum reactioheoentire signal. This facilitates the detection of
multiple odours despite a biased selectivity of the sensor.

Examining the classification performance is again anothatlenge given the presence of two odours and the
absence of knowledge about the particularities of odoutumngs and its effect on the response from the sensors. To
avoid mixing, the sources have been placed at a far distanoe éach other. The final classification performance
is presented in terms of the the distance of the robot to theahsource position. Table Ill, summarizes the
classification performance and shows that as the distance thhe source increases the classification performance
degrades. If one would test with the two sources closer hegethe SVM would need to be trained on different

possible mixtures of the odours.

VI. CONCLUSION

In this work we presented a robotic system which combinelsnigcies in static olfaction, and mobile robotics

to create a hollistic representation of an gas distributlat includes classification and spatial information. The
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Fig. 9. (Left) Occupancy Map of the long corridor experimerith source positions, acetone source is located in theruppeidor and the
ethanol source is located in the lower (indoor) corridoigt® Path of robot guided by the human user, a series of tvesgmeways connect

the lower and upper corridor to each other.

Fig. 10. The gas distribution map of the corridor and thedatgnap made. (Left) The presence of the two sources aretedicising different
coloring scheme, green represents the ethanol and redsegpsethe acetone source. Only concentrations exceedirgo8@he maximum for
each odour are displayed in color. (Right) No classificai®mperformed and therefore only one color is used to reptethenspread of the
odour. Without classification the Ethanol source is undpreasented.

experimental results shows that the robot performs equedly when operated autonomously as when operated
by a human user. Furthermore, the resulting maps obtaireethaiitively appealing and can easily be interpreted
by a non-expert user. Experiments were performed with redde results in large and unmodified environments,
this combined with the importance of including classificatinformation of an odour are significant contributions
towards real world applications for olfactory robots.
A number of remaining challenges are still worth noting.s#y;, classification of odour mixtures is still a

difficult problem particularly for systems which are not yipusly trained to detect the specific mixture. A better
understanding of the response from the gas sensors and tioupsr when used on a mobile robot is needed.

Another significant challenge is the problem of ground trenfiluation which although clearly present for the gas
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TABLE Il

CLASSIFICATION PERFORMANCE IN LONG CORRIDOR WITH TWO ODOUR SOURCES

Substance| 5-20 cm | 20-50 cm | 50-100 cm| 100-150 cm| 150-250 cm| 250-350 cm
Ethanol 100% 98.2% 98.2% 87.5% 85.5% 86.5%
Acetone 100 % 97.0 % 100 % 95.4 % 96.3% 93.2 %

distribution evaluation is also present for the classiitcaproblem. A possible direction for future work may be
to consider multiple robots working in the same environmént using different techniques for measuring gas
distribution. A secondary alternative may be to combin@imfation from different sensors, such as information
about how odours propagate around obstacles and wind iatamin order to verify the correlation to the gas

sensing results.
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