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Abstract— In this paper we introduce a statistical method to
build two-dimensional gas distribution maps (Kernel DM+V/W
algorithm). In addition to gas sensor measurements, the proposed
method also takes into account wind information by modeling
the information content of the gas sensor measurements as a
bivariate Gaussian kernel whose shape depends on the measured
wind vector. We evaluate the method based on real measurements
in an outdoor environment obtained with a mobile robot that
was equipped with gas sensors and an ultrasonic anemometer
for wind measurements. As a measure of the model quality we
compute how well unseen measurements are predicted in terms
of the data likelihood. The initial results are encouraging and
show a clear improvement of the proposed method compared to
the case where wind is not considered.

I. INTRODUCTION

Environmental monitoring is important to protect the public
and the environment from toxic contaminants and pathogens
in the air. The EU (framework directive 1996/62/EC) has im-
posed strict regulations on the concentration of many airborne
environmental contaminants, including sulfur dioxide, carbon
monoxide, nitrogen dioxide, and volatile organic compounds,
which originate from vehicle emissions, power plants, refiner-
ies, and industrial and laboratory processes, to name but a
few. Typically these gases are being monitored by stationary
networks of sensors located in strategic positions that send the
pollution values to a central station for data processing [1]. A
mobile robot equipped with an “electronic-nose” (“m-nose”)
can act as an autonomous wireless node in a monitoring sensor
network. Due to their mobility, self-localization capability
and the ability to adaptively select sampling locations, sensor
nodes carried by mobile robots offer a number of important
advantages compared to stationary sensors, among others:
higher and adaptive monitoring resolution, source tracking,
first aid and cleanup of hazardous or radioactive waste sites,
compensation for inactive sensors, and adaption to the dy-
namic changes of the environment. Ideally, the environmen-
tal monitoring function is integrated in an existing mobile
robot application. An example is the EU project “DustBot”
that develops autonomous robots which simultaneously clean
pedestrian areas and monitor the pollution levels [2].

Gas distribution modelling is the task of deriving a truth-
ful representation of the observed gas distribution from a
set of spatially and temporally distributed measurements of
relevant variables, foremost gas concentration and wind but

also pressure, and temperature, for example [3], [4]. Building
gas distribution models is a very challenging task. One main
reason is that in many realistic scenarios gas is dispersed by
turbulent advection. Turbulent flow creates packets of gas that
follow chaotic trajectories [5]. This results in a concentra-
tion field that consists of fluctuating, intermittent patches of
high concentration. In principle, CFD (Computational Fluid
Dynamics) models can be applied, which try to solve the
governing set of equations numerically. However, CFD models
are computationally very expensive. They become intractable
for sufficiently high resolution in typical real world settings
and depend sensitively on accurate knowledge of the state of
the environment (boundary conditions), which is not available
in practical situations. We propose an alternative approach to
gas distribution modelling. Instead of trying to solve the fluid
dynamics equations known from physics, we create a statistical
model of the observed gas distribution, treating gas sensor
measurements as random variables.

An issue that has not been considered so far in statistical
gas distribution modelling is to include wind information when
building the gas distribution map. Due to the strong influence
of advective transport, local airflow is a very important param-
eter for gas dispersal. The major contribution of this paperis an
extension of the Kernel extrapolation method for distribution
mapping (Kernel DM+V [4]) so that wind information is taken
into account during the creation of the map. In the proposed
method, spatial integration of the point measurements is car-
ried out by using a bivariate Gaussian kernel. The kernel can
be interpreted as modelling the information content about the
statistics of the gas distribution with respect to the pointof
measurement. By correlating the shape of the kernel with
the wind measurements we model the information content
depending on the direction and magnitude of the wind. Thus,
the proposed method incorporates the information provided
by wind measurements about where a sensed patch of gas is
likely to have come from and where it tend to move to.

After a discussion of related work in Sec. II, the Kernel
DM+V/W algorithm to include wind information when cre-
ating gas distribution maps is introduced (Sec. III). Next,the
set-up of the monitoring experiments is described (Sec. IV)
and an evaluate of the proposed approach in terms of the
predictive data likelihood is presented (Sec. V). We conclude
with a summary and suggestions for future work (Sec. VI).



II. RELATED WORK

In natural environments, advective flow dominates gas dis-
persal compared to slow molecular diffusion. Since the airflow
we encounter is almost always turbulent, the gas distribution
becomes patchy and meandering [6]. Few publications on gas
distribution consider the influence of turbulent wind. Addison
et al. [7] propose a method for prediction the spatial pollutant
distribution within a street canyon. The method is based on
a Lagrangian stochastic particle model superimposed on a
velocity and turbulence field, which is assumed to be known.

Statistical gas distribution modeling tries to avoid making
strong assumptions about the environmental conditions. How-
ever, even under conditions that can be modeled by a stationary
random process, gas concentration has to be measured for
a prolonged time (in the order of minutes) at each location
in order to obtain a reliable measure of the concentration
mean [8]. Compared to the corresponding demand on sampling
density (in time and space), sampling will be always sparse
in realistic applications. In order to obtain neverthelessa
truthful statistical representation of the gas distribution, several
gas distribution modelling approaches have been proposed in
the area of mobile olfaction. Again, analytical models have
been used. Ishida et al. [8] apply a description of the time-
averaged effect of turbulence as diffusion (eddy diffusivity)
under the assumption of a stable uniform airflow field. An
alternative are interpolation methods [3], [4], [9] that provide
a statistical representation of the gas distribution without
assuming a pre-defined functional form of the distribution.
The approach presented in this paper is based on kernel
extrapolation which treats sensors measurements as random
variables. As an extension of the Kernel DM+V algorithm
in [4] we present the Kernel DM+V/W algorithm, which uses
information about the local airflow in addition to gas sensors
measurements to compute a statistical gas distribution model.
The kernel extrapolation methods have also been extended
recently to scenarios where multiple odor sources are present
[10] and to the three-dimensional case [11].

Most experiments in the domain of airbone chemical sens-
ing with mobile robots were carried out in small controlled
environments. In most of the cases, uniform strong airflow
fields were artificially created. Otherwise, small areas in larger
rooms were carefully chosen to have constant airflow [12]. In
this paper, we present experiments with a gas-sensitive mobile
robot in an outdoor scenario.

III. K ERNEL DM+V/W A LGORITHM

In this section we introduce the basic ideas of the Kernel
DM+V/W algorithm, which is an extension of the algorithm
described in [4] that models the distribution mean and the
corresponding variance. The general gas distribution mapping
problem addressed is to learn a predictive two dimensional
model p(r|x,x1:n, r1:n) for the gas readingr at location
x, given the robot trajectoryx1:n and the corresponding
measurementsr1:n. To study how gas is dispersed in the
environment we consider measurements from metal oxide

sensors and anemometer readings. The central idea of ker-
nel extrapolation methods is to understand gas distribution
mapping as a density estimation problem addressed using
convolution with a Gaussian kernel. The first step in the
algorithm is the computation of weightsω(k)

i , which intuitively
represent the information content of a sensor measurementi
at grid cellk:

ω
(k)
i (σ0) = N (|xi − x(k)|, σ0). (1)

The weights are computed by evaluating a Gaussian kernelN
at the distance between the location of the measurementxi and
the centerx(k) of cell k. Using Eq. 1, weightsω(k)

i , weighted
sensor readingsω(k)

i · ri, and weighted variance contributions
ω

(k)
i · τi are integrated and stored in temporary grid maps:

Ω(k)(σ0) =

n∑

i=1

ω
(k)
i (σ0), (2)

R(k)(σ0) =

n∑

i=1

ω
(k)
i (σ0) · ri, (3)

V (k)(σ0) =

n∑

i=1

ω
(k)
i (σ0) · τi, (4)

where
τi = (ri − rk(i))2 (5)

is the variance contribution of readingi andrk(i) is the mean
prediction of the cellk(i) closest to the measurement pointxi.
From the integrated weight mapΩ(k) we compute a confidence
mapα(k) which indicates high confidence for cells for which
a large number of readings close to the center of the respective
grid cell is available. The confidence map is computed as

α(k)(σ0) = 1 − e
−

(Ω)(k)(σ0)

σ2
Ω (6)

where σΩ is a scaling parameter that defines a soft margin
which decides whether the confidence in the estimate for a
cell is high or low. By normalising with the integrated weights
Ω(k) and linear blending with a best guess for the case of low
confidence, we finally obtain the map estimate of the mean
distributionr(k) and the corresponding variance mapv(k):

r(k)(σ0) = α(k) R
(k)

Ω(k)
+ {1 − α(k)}r, (7)

v(k)(σ0) = α(k) V
(k)

Ω(k)
+ {1 − α(k)}vtot. (8)

The second terms in these equations contain the best estimate,
which is used for cells with a low confidence, i.e. for cells
for which we do not have sufficient information from nearby
readings, indicated by a low value ofα(k). As the best guess
of the mean concentrationr we use the average over all
sensor readings. The estimatevtot of the distribution variance
in regions far from measurement points is computed as the
average over all variance contributions.



A. Local Wind Integration

Now we consider the case that information about the airflow
is available and describe how wind information is integrated
into the gas distribution mapping process by adjusting the
shape of the Gaussian kernel. As described in Section IV
we can only obtain reliable wind information when the robot
is stopped. In this case the symmetric, univariate Gaussian
in Eq. 1 (see Fig.2.a) is replaced by an elliptic, bivariate
Gaussian with the semi-major axis stretched along the wind
direction (see Fig.2.c). The bivariate normal distribution is
governed by a mean vectorµ (the point of measurement) and a
2×2 covariance matrixΣ. This covariance matrix is computed
according to an instantaneous estimate of the local airflow at
the sensor location−→v as follows:

• To describe the length of the semi-major and semi-minor
axis of the ellipse (a, b) in terms of the kernel widthσ0 of
the symmetric Gaussian (see Eq. 1) we set the constraint
that the area of the ellipsis remains constant, i.e.

πσ2
0 = πab. (9)

The semi-major axisa is stretched out according to the
wind intensity. We assume a linear dependency as

a = σ0 + γ|−→v |. (10)

By combining Eq.(9) and (10) we obtain the length of
the semi-minor axis:

b =
σ0

1 + γ|−→v |/σ0
. (11)

The equations (10) and (11) describe the relation between
the estimate of the wind intensity and the eigenvalues of
the covariance matrix (see Fig.2.b). The parameterγ in
Eq.(9) is assumed to be constant and set heuristically in
this paper.

• Finally, the covariance matrix is rotated so that the semi-
major axis is aligned with the wind direction (see Fig.2.c)

Σ−1
R = R−1Σ−1R (12)

where R is the rotation matrix andΣ−1
R is the inverse of

the rotated covariance matrix.

If no reliable information about the local airflow is available
(in our set-up this is when the robot is driving), the radially
symmetric Gaussian kernel with widthσ0 is applied, which
corresponds to the case when zero wind is measured.

The Kernel DM+V/W algorithm depends on four param-
eters: the zero-wind kernel widthσ0, the cell sizec, the
confidence scaling parameterσΩ, and the stretching coefficient
γ. The kernel width governs the amount of extrapolation on
individual readings and the cell size determines the resolution
at which different predictions can be made. The confidence
scaling parameter defines a soft margin on the confidence es-
timate, which is used to decide whether sufficient information
is available to estimate the concentration mean and variance
for a given grid cell. The stretching coefficient is related to
the certainty about the wind estimate and to the duration

Fig. 2. Modification of the kernel shape. a) Zero wind or no information
about the wind: the contour of the normal distribution is radially symmetric.
b) Wind intensity: the kernel shape is stretched proportionally to the wind
intensity. c) Wind intensity and direction: the bivariate Gaussian kernel is
rotated according to the wind direction.

over which the local airflow−→v can be assumed constant.
An example that shows how a single gas sensor reading is
convolved onto a gridmap is given in Figure 1 for the case of
a radially symmetric Gaussian kernel (blue dashed in the left
part of the figure) and a wind re-shaped kernel (red solid line).
For both cases, those cells that have a distance of less than 3σ
from the point of measurement are indicated on the right side
of Fig. 1 by a surrounding strong border. It is evident that a
different set of cells is affected by the same measurement and
that the weights (Eq. 1) will be different.

IV. EXPERIMENTAL SETUP

An ATRV-JR robot equipped with a SICK LMS 200 laser
range scanner (for localization) and an “electronic nose” was
used for the monitoring experiments (see Fig.3, top). The
“electronic nose” comprised different Figaro 26xx gas sensors
enclosed in an aluminum tube. These tubes are horizontally
mounted at the front side of the robot and actively venti-
lated through a fan that creates a constant airflow towards
the gas sensors. This lowers the effect of external airflow
or the movement of the robot on the sensor response and
guarantees continuous exchange of gas in situations with very
low external airflow. In this work, we address the problem
of modeling the distribution from a single gas source. With
respect to this task, the response of the different sensors in
the electronic nose is highly redundant and thus it is sufficient
to consider the response of a single sensor (here: TGS 2620)
only.

In order to measure the airflow, an ultrasonic anemometer
(Young 81000) was used, which has a range from 2 cm/s
up to 40 m/s and a resolution of 1 cm/s. The placement of
the anemometer had to be a compromise between the desire
to measure the airflow as close to the gas sensors and as
undisturbed as possible. In the presented experiments it was
mounted above the top of the robot in order to minimize the
influence of the fan of the “electronic nose”, the advective
flow created by the heated metal oxide sensors, and the body
of the robot itself. The information content of the wind mea-
surements is decreased by the distance between the gas and
the wind sensor. It was one of the goals of this investigation
to find out whether despite the large distance between gas and



Fig. 1. Discretisation of the Gaussian kernel onto a grid. Left side: Model of the information content of a gas sensor reading (the sampling location is
depicted in the center by a black⊗) in the case of a radially symmetric Gaussian kernel and bivariate Gaussian kernel, respectively. The blue dashed circle
represents the contour of the kernel in absence of wind and the red solid line shows the elliptic contour of the kernel for the case of non-zero wind. Right
side: strongly affected cells are surrounded by a strong border.

wind sensor the wind measurements still provide sufficient
information to obtain better gas distribution maps.

The robot software is based on the Player robot server [13],
a control interface that simplifies access to standard robot
sensors and actuators.

The scenario selected for the gas distribution mapping
experiments is an outdoor region of approx.8 × 8 m2 that
is a part of much bigger area. The gas source was a small
cup filled with ethanol and it was placed on the floor roughly
in the middle of the investigated area (see Fig.3, bottom). In
the experiments, the robot followed a predefined sweeping
trajectory (repeated two times) covering the area of interest.
Along its path, the robot stopped at predefined positions
(waypoints) and carried out a sequence of measurements on
the spot for 30s. The robot was driven at a maximum speed of
5cm/s in between the stops. The reason for stopping the robot
at each waypoint to collect wind measurements is due to the
difficulty in compensating for the shaking of the anemometer
when the robot is moving.

In order to avoid calibration issues, we model the nor-
malised sensor responseri ∈ [0, 1]

ri =
Ri − min{Rj}

max{Rj} − min{Rj}
. (13)

We make the assumption that the sensor response is caused
by a single target gas, i.e. we do not consider problems related
to interferents or simultaneous mapping of multiple odours. In

principle the proposed method can be extended to the case of
multiple different odor sources as described in [10]. Finally,
we assume perfect knowledge about the positionxi of a sensor
at the time of the measurement. To take into account the
uncertainty about the sensor position, the method in [14] could
be used.

V. RESULTS

Knowledge of the exact gas source position and the cor-
relation with the maximum in the map has been considered
as a way to evaluate gas distribution models. However, the
maximum of a gas distribution does not necessarily have to
correspond to the true location of the gas source. An alternative
way to evaluate to which degree a model captures the true
properties of the gas distribution is to evaluate how well
unseen measurements are predicted by the distribution model.
To do this we split the datasetD into disjoint setsDlearn and
Deval. We useDlearn to train the model and then compute
the likelihood of unseen measurements as the average negative
log predictive density (NLPD) over then′ samples inDeval

as:

NLPD = −
1

n′

∑

i∈Deval

log{p(ri|x)} = (14)

1

2n′

∑

i∈Deval

{log v(k(i)) +
(ri − r(k(i)))2

v(k(i))
} + log(2π).



Fig. 3. The mobile robot “Rasmus” (top) and a snapshot during a pollution
monitoring mission in the experimental environment (bottom).

Since we want to maximize the likelihood of the data points
our goal is minimize the NLPD in Eq.(14). In order to
evaluate whether the Kernel DM+V/W algorithm improves the
model, we have calculated the NLPD with and without wind
correction in the outdoor scenarios described above. Ee used
the first half of the dataset to learn the hyper parameters and
the corresponding model and the second half to evaluate the
model, then the second half to learn and the first to evaluate.
Due to the difficulty of measuring wind precisely when the
robot is moving, we considered gas sensors and anemometer
readings only when the robot was stopped and only gas sensor
readings when the robot was driving. The value of the cell size
c and the kernel widthσ0 were optimized by cross validation
over Dlearn. The parameterγ was empirically set to 1.0 and
the soft parameterσΩ was tied to the selected kernel widthσ0

usingσΩ = N (0, σ0).
The results are outlined in Figure 4. The bar-plots show

the absolute difference of the obtained NLPD(∆(NLPD) =
(NLPDDM+V − NLPDDM+V/W )). Positive values corre-
spond to an improved model when the method proposed in this
paper is used. The upper part of Fig. 4 shows results obtained
from data sets that contain periods where the robot was driving
and periods where it was stopped (Drive&Stop trials). The
bottom part shows results from data sets that contain only

TABLE I

STATISTICAL EVALUATION

Trial Type Wilcoxon Signed Rank test, p value
Drive&Stop 0.0234

Stop 0.0312

those parts of the data where the robot was stopped (Stop
trials). It is evident that the DM+V/W algorithm improved the
resulting gas distribution model (only one time it performed
worse than without considering wind information). The results
of a paired Wilcoxon signed-rank test confirm this observation
at a confidence level of 95% (see Table I).

A qualitative result is shown in Fig. 5 that shows three
gas distribution maps. In the top map the DM+V algorithm
without wind extension is used. The middle and bottom maps
are obtained using the proposed DM+V/W algorithm, with the
difference that in the bottom map, the wind measurements are
rotated by 90 degrees. In the right part of the map plots in
Fig. 5, the computed NLPD values are shown (obtained by
averaging over predictions of measurements from the second
part of the trial by a model learned from the first part, and vice
versa). In all three gas distribution maps the global maximum
of the distribution mean is found in the proximity of the gas
source (which is indicated by a white⊗). In examining the
top map, please note that there are two disjoint areas where
the concentration of gas is high. In the middle map, which
was obtained with the algorithm proposed in this paper, the
two areas are less disjoint and the modelled distribution of
the gas is more uniform. A possible intuitive explanation
for the improved NLPD value corresponding to this map is
that the expected plume structure is captured most clearly.
In the bottom map, where an error in the direction of the
wind was introduced, two separate local maxima are formed
and the distribution does not exhibit a clear plume shape. A
comparison of the resulting map with the result shown in the
middle of Fig. 5, emphasizes the importance of correct wind
information for the proposed algorithm.

VI. CONCLUSION AND FUTURE WORK

Gas distribution modelling with a mobile robot in an un-
controlled environment is a challenging field of research. This
is mainly due to the chaotic nature of the dispersed gas that
is affected by the turbulent nature of the wind. Utilizationof
mobile robots to monitor pollution has a number of advantages
reflected by an increasing interest in this field in the last
ten years. In this paper we introduce a statistical method to
build two-dimensional gas distribution maps that takes into
consideration the influence of wind in the dispersion of gas
(Kernel DM+V with Wind = Kernel DM+V/W). The mapping
technique extends the Kernel DM+V algorithm by a bivariate
Gaussian weighting function to model the information pro-
vided by gas sensor measurements. The proposed method is
evaluated using a mobile robot equipped with an “e-nose”
and an ultrasonic anemometer. Experiments in an outdoor



Fig. 4. Top: Drive&Stop trials. Bottom: Stop trials. Bar-plot: (∆(NLPD) =
(NLPDDM+V − NLPDDM+V/W )). Positive values correspond an im-
provement of the model using Kernel DM+V/W.

environment are presented and evaluated with respect to the
ability of the obtained model to predict unseen data. The
results are encouraging, showing a clear improvement when
using the proposed method.

Future work will first aim at a set-up where the distance
between the wind and the gas sensors is smaller. We also
investigate the possibility to learn the stretching coefficient γ
from the data. Another interesting extension is to integrate the
proposed method with a 3D modelling approach based on data
acquired with gas sensors mounted at different heights.
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