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Abstract—In this paper we introduce a statistical method to also pressure, and temperature, for example [3], [4]. Bgld
build two-dimensional gas distribution maps (Kernel DM+V/W  gas distribution models is a very challenging task. One main
algorithm). In addition to gas sensor measurements, the propose reason is that in many realistic scenarios gas is disperged b

method also takes into account wind information by modeling .
the information content of the gas sensor measurements as aturbulent advection. Turbulent flow creates packets of gas t

bivariate Gaussian kernel whose shape depends on the measured0llow chaotic trajectories [5]. This results in a concentr
wind vector. We evaluate the method based on real measurementstion field that consists of fluctuating, intermittent patshef

in an outdoor environment obtained with a mobile robot that high concentration. In principle, CFD (Computational Blui
was equipped with gas sensors and an ultrasonic anemometerDynamiCS) models can be applied, which try to solve the

for wind measurements. As a measure of the model quality we vernin t of tions numerically. However. CED msdel
compute how well unseen measurements are predicted in terms gove g set of equations y- ’

of the data likelihood. The initial results are encouraging and areé computationally very expensive. They become intréetab
show a clear improvement of the proposed method compared to for sufficiently high resolution in typical real world settjs
the case where wind is not considered. and depend sensitively on accurate knowledge of the state of
the environment (boundary conditions), which is not avdéa
|. INTRODUCTION in practical situations. We propose an alternative apgrdac

Environmental monitoring is important to protect the pabligas distribution modelling. Instead of trying to solve thé&dl
and the environment from toxic contaminants and pathogethgnamics equations known from physics, we create a statisti
in the air. The EU (framework directive 1996/62/EC) has inmodel of the observed gas distribution, treating gas sensor
posed strict regulations on the concentration of many aido measurements as random variables.
environmental contaminants, including sulfur dioxiderboan An issue that has not been considered so far in statistical
monoxide, nitrogen dioxide, and volatile organic compayndgas distribution modelling is to include wind informatioman
which originate from vehicle emissions, power plants, efin building the gas distribution map. Due to the strong inflieenc
ies, and industrial and laboratory processes, to name bubfaadvective transport, local airflow is a very importantgrar
few. Typically these gases are being monitored by stationagter for gas dispersal. The major contribution of this papan
networks of sensors located in strategic positions thad fes  extension of the Kernel extrapolation method for distridmit
pollution values to a central station for data processifjgAl mapping (Kernel DM+V [4]) so that wind information is taken
mobile robot equipped with an “electronic-nose” (“m-ngse”into account during the creation of the map. In the proposed
can act as an autonomous wireless node in a monitoring sensethod, spatial integration of the point measurementsris ca
network. Due to their mobility, self-localization capatyil ried out by using a bivariate Gaussian kernel. The kernel can
and the ability to adaptively select sampling locationsisse be interpreted as modelling the information content abbet t
nodes carried by mobile robots offer a number of importastatistics of the gas distribution with respect to the paiht
advantages compared to stationary sensors, among othemsasurement. By correlating the shape of the kernel with
higher and adaptive monitoring resolution, source tragkinthe wind measurements we model the information content
first aid and cleanup of hazardous or radioactive waste, sitdepending on the direction and magnitude of the wind. Thus,
compensation for inactive sensors, and adaption to the dige proposed method incorporates the information provided
namic changes of the environment. Ideally, the environmeby wind measurements about where a sensed patch of gas is
tal monitoring function is integrated in an existing mobildikely to have come from and where it tend to move to.
robot application. An example is the EU project “DustBot” After a discussion of related work in Sec. I, the Kernel
that develops autonomous robots which simultaneouslyncle@M+V/W algorithm to include wind information when cre-
pedestrian areas and monitor the pollution levels [2]. ating gas distribution maps is introduced (Sec. IIl). Néke

Gas distribution modelling is the task of deriving a truthset-up of the monitoring experiments is described (Sec. V)
ful representation of the observed gas distribution from and an evaluate of the proposed approach in terms of the
set of spatially and temporally distributed measuremeffts redictive data likelihood is presented (Sec. V). We codelu
relevant variables, foremost gas concentration and wirtd lwith a summary and suggestions for future work (Sec. VI).



Il. RELATED WORK sensors and anemometer readings. The central idea of ker-

. . . nel extrapolation methods is to understand gas distributio
In natural environments, advective flow dominates gas dis-

persal compared to slow molecular diffusion. Since theaairfl mapping as a density estimation problem addressed using

we encounter is almost always turbulent, the gas distrjhutiConvml"tIon with a Gaussian kernel. The first step in the

becomes patchy and meandering [6]. Few publications on gfe{ orithm is th? compu;atlon of welghlé )’ which |ntumvely
distribution consider the influence of turbulent wind. Astati epresent the information content of a sensor measurement

et al. [7] propose a method for prediction the spatial patt at grid cellk:

distribution_ within a strget canyon. The methoq is based on wgk) (00) = N(|z; — x(k)|700). 1)

a Lagrangian stochastic particle model superimposed on a

velocity and turbulence field, which is assumed to be knowmhe weights are computed by evaluating a Gaussian kevnel
Statistical gas distribution modeling tries to avoid makinat the distance between the location of the measurementd

strong assumptions about the environmental conditionsi-Hothe centerz() of cell k. Using Eg. 1, weights,\*), weighted

ever, even under conditions that can be modeled by a stagionsensor readingcagk) -r;, and weighted variance contributions

random process, gas concentration has to be measuredJﬁl’ - 1; are integrated and stored in temporary grid maps:

a prolonged time (in the order of minutes) at each location .

in order to obtain a reliable measure of the concentratlt_)n ") () = szgk)(ao)’ )

mean [8]. Compared to the corresponding demand on sampling

density (in time and space), sampling will be always sparse

in realistic applications. In order to obtain nevertheless

truthful statistical representation of the gas distribntiseveral COR Z%( (CORE ®)

gas distribution modelling approaches have been propased i =t

the area of mobile olfaction. Again, analytical models have . n )

been used. Ishida et al. [8] apply a description of the time- V¥ (g0) = w; (00) - 7, (4)

averaged effect of turbulence as diffusion (eddy diffugjvi i=1

under the assumption of a stable uniform airflow field. Awhere

alternative are interpolation methods [3], [4], [9] thabyide 7= (ri — k) )2 (5)

a statistical representation of the gas distribution witho .

assuming a pre-defined functional form of the distributiori$ the variance contribution of readirigand*() is the mean

The approach presented in this paper is based on kerfegdiction of the celk(i) closest to the measurement paint

extrapolation which treats sensors measurements as randg@m the integrated weight map*) we compute a confidence

variables. As an extension of the Kernel DM+V algorithninap (k) which indicates high confidence for cells for which

in [4] we present the Kernel DM+V/W algorithm, which use large number of readings close to the center of the respecti

information about the local airflow in addition to gas sesso@rid cell is available. The confidence map is computed as

=1

n

measurements to compute a statistical gas distributioremod @ ® (og)

The kernel extrapolation methods have also been extended alF) (cp)=1—¢ o3 (6)
recently to scenarios where multiple odor sources are prese

[10] and to the three-dimensional case [11]. where o, is a scaling parameter that defines a soft margin

Most experiments in the domain of airbone chemical sendhich decides whether the confidence in the estimate for a
ing with mobile robots were carried out in small controlle@ell is high or low. By normalising with the integrated weigh
environments. In most of the cases, uniform strong airflo@'*’ and linear blending with a best guess for the case of low
fields were artificially created. Otherwise, small areasigér confidence, we finally obtain the map estimate of the mean
rooms were carefully chosen to have constant airflow [12]. fistribution-(*) and the corresponding variance matfy:

this paper, we present experiments with a gas-sensitivélenob R
robot in an outdoor scenario. ) (a9) = a(’ﬂW +{1 - a¥}7, (7)
[1l. KERNEL DM+V/W A LGORITHM v (k)
v ¥ (09) = a®) < + {1 — o}y, (8)

In this section we introduce the basic ideas of the Kernel Q)
DM+V/W algorithm, which is an extension of the algorithmThe second terms in these equations contain the best estimat
described in [4] that models the distribution mean and thehich is used for cells with a low confidence, i.e. for cells
corresponding variance. The general gas distribution imgppfor which we do not have sufficient information from nearby
problem addressed is to learn a predictive two dimensiormaladings, indicated by a low value of k). As the best guess
model p(r|x,x1.m,r1.n) for the gas reading: at location of the mean concentration we use the average over all
x, given the robot trajectory;., and the corresponding sensor readings. The estimatg; of the distribution variance
measurements;.,. To study how gas is dispersed in thén regions far from measurement points is computed as the
environment we consider measurements from metal oxideerage over all variance contributions.



A. Local Wind Integration V=0 vio o vio
Now we consider the case that information about the airfloy
is available and describe how wind information is integlate p=0 , pH0
into the gas distribution mapping process by adjusting th e N ,d
shape of the Gaussian kernel. As described in Section |
we can only obtain reliable wind information when the robot
is stopped. In this case the symmetric, univariate Gaussi: ) b 9
in Eq. 1 (see Fig.2.a) is replaced by an elliptic, bivariate
Gaussian with the semi-major axis stretched along the Wigg 2. Modification of the kernel shape. a) Zero wind or noofmfation
direction (see Fig.2.c). The bivariate normal distribotis about the wind: the contour of the normal distribution is aélglisymmetric.
governed by a mean vectpi(the point of measurement) and &) 4 eraiy, i e shape = setched procordro the wind,
2x2 covariance matrix. This covariance matrix is computed,gtated according to the wind direction.
according to an instantaneous estimate of the local airflow a
the sensor locatio as follows:

» To describe the length of the semi-major and semi-ming(. \yhich the local airflows can be assumed constant.
axis of the el!lpsec(, b).m terms of the kernel widtlr of An example that shows how a single gas sensor reading is
the symmetric Gaussan (see Eq._ 1) we set th‘? constralgfyolved onto a gridmap is given in Figure 1 for the case of
that the area of the ellipsis remains constant, i.e. a radially symmetric Gaussian kernel (blue dashed in the lef

703 = mab. (9) Part of the figure) and a wind re-shaped kernel (red solid line
For both cases, those cells that have a distance of less than 3
The semi-major axis is stretched out according to thefrom the point of measurement are indicated on the right side
wind intensity. We assume a linear dependency as  of Fig. 1 by a surrounding strong border. It is evident that a
different set of cells is affected by the same measuremeanht an
that the weights (Eq. 1) will be different.

By combining Eq.(9) and (10) we obtain the length of

the semi-minor axis:

a =00+ (10)

IV. EXPERIMENTAL SETUP
B oo An ATRV-JR robot equipped with a SICK LMS 200 laser
b= 1L+~[7|/o0 (11) range scanner (for localization) and an “electronic nosa% w

. . . used for the monitoring experiments (see Fig.3, top). The
The equations (10) and (11) describe the relation betwe: lectronic nose” comprised different Figaro 26xx gas sens

:Ee esﬂmgte of thetwlnd mte;ng sndTLhe elgenvetlluesg closed in an aluminum tube. These tubes are horizontally
Ee goyarlance m; trlxb(see '?' 't)' q etpﬁramefan” mounted at the front side of the robot and actively venti-
4-(9) is assumed to be constant and set heuristica Yitled through a fan that creates a constant airflow towards

}T'S ﬁaptir. . trix is rotated so that th the gas sensors. This lowers the effect of external airflow
+ rinally, the covariance matrix IS rotated so that the SemE. o j5yement of the robot on the sensor response and
major axis is aligned with the wind direction (see Fig.2.c

uarantees continuous exchange of gas in situations with ve
Y;'=R'SIR (12) low external airflow. In this work, we address the problem
of modeling the distribution from a single gas source. With
where R is the rotation matrix andy," is the inverse of respect to this task, the response of the different sensors i
the rotated covariance matrix. the electronic nose is highly redundant and thus it is sefiici
If no reliable information about the local airflow is availab to consider the response of a single sensor (here: TGS 2620)
(in our set-up this is when the robot is driving), the radiallonly.
symmetric Gaussian kernel with widi®, is applied, which  In order to measure the airflow, an ultrasonic anemometer
corresponds to the case when zero wind is measured. (Young 81000) was used, which has a range from 2 cm/s
The Kernel DM+V/W algorithm depends on four paramup to 40 m/s and a resolution of 1 cm/s. The placement of
eters: the zero-wind kernel width,, the cell sizec, the the anemometer had to be a compromise between the desire
confidence scaling parametss, and the stretching coefficientto measure the airflow as close to the gas sensors and as
~. The kernel width governs the amount of extrapolation amdisturbed as possible. In the presented experimentssit wa
individual readings and the cell size determines the réisolu mounted above the top of the robot in order to minimize the
at which different predictions can be made. The confidena&#luence of the fan of the “electronic nose”, the advective
scaling parameter defines a soft margin on the confidence #ew created by the heated metal oxide sensors, and the body
timate, which is used to decide whether sufficient infororati of the robot itself. The information content of the wind mea-
is available to estimate the concentration mean and vaiarstirements is decreased by the distance between the gas and
for a given grid cell. The stretching coefficient is related tthe wind sensor. It was one of the goals of this investigation
the certainty about the wind estimate and to the duratioa find out whether despite the large distance between gas and
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Fig. 1. Discretisation of the Gaussian kernel onto a gridt k&e: Model of the information content of a gas sensor mgdthe sampling location is
depicted in the center by a black) in the case of a radially symmetric Gaussian kernel and fiteiGaussian kernel, respectively. The blue dashed circle
represents the contour of the kernel in absence of wind amdetth solid line shows the elliptic contour of the kernel floe ttase of non-zero wind. Right
side: strongly affected cells are surrounded by a stronddsor

wind sensor the wind measurements still provide sufficieptinciple the proposed method can be extended to the case of

information to obtain better gas distribution maps. multiple different odor sources as described in [10]. Hipal
The robot software is based on the Player robot server [18]e assume perfect knowledge about the positipaf a sensor

a control interface that simplifies access to standard rolait the time of the measurement. To take into account the

sensors and actuators. uncertainty about the sensor position, the method in [1d]cco
The scenario selected for the gas distribution mappitig used.

experiments is an outdoor region of appréxx 8 m2 that

is a part of much bigger area. The gas source was a small V. RESULTS

cup filled with ethanol and it was placed on the floor roughly Knowledge of the exact gas source position and the cor-

in the mid_dle of the investigated area (see Fig_.3, bOttom)'_}elation with the maximum in the map has been considered
the_ experiments, the rob_ot followed a predefined SWeepiRg 5 way to evaluate gas distribution models. However, the
trajectory (repeated two times) covering the area of ISEre  aximum of a gas distribution does not necessarily have to

Along |_ts path, the _robot stopped at predefined pOSItIOIE%rrespond to the true location of the gas source. An altieena
(waypoints) and carried out a sequence of measurements

) . to evaluate to which degree a model captures the true
the spot for 30s. The robot was driven at a maximum speed Y g b

Scm/s in bet the st ™ for stopping th perties of the gas distribution is to evaluate how well
c/s In between the stops. 1he reason for stopping the 1o A5een measurements are predicted by the distributionlmode
at each waypoint to collect wind measurements is due to t

s . X X & do this we split the datasé? into disjoint setsD,.,.,, and
difficulty in compensating for the shaking of the anemomet%eml. We US€Djeurn to train the model and then compute

when the robot is moving. the likelihood of unseen measurements as the average vegati
In order to avoid calibration issues, we model the no[(-)g predictive density (NLPD) over the’ samples inDoya;
malised sensor responsge [0, 1] e

as:
R; — min{R;} 1
= . 13 _ 1 1) —
" max{R;} — min{R;} (13) NLPD = o DE log{p(r:ilz)} = (14)
S eva
We make the assumption that the sensor response is cause _ (ri — r(k(il)))Q

by a single target gas, i.e. we do not consider problemseetlat — > {logv*) 4+ 1~ Gy )+ log(2m).

v K3

to interferents or simultaneous mapping of multiple odoln's 2n ieDoyur



TABLE |
STATISTICAL EVALUATION

Anemometer

Trial Type Wilcoxon Signed Rank test, p valug
Drive&Stop 0.0234
Stop 0.0312

those parts of the data where the robot was stopped (Stop
trials). It is evident that the DM+V/W algorithm improvedeth
resulting gas distribution model (only one time it perfodne
worse than without considering wind information). The tesu

of a paired Wilcoxon signed-rank test confirm this obseorati

at a confidence level of 95% (see Table I).

A qualitative result is shown in Fig. 5 that shows three
gas distribution maps. In the top map the DM+V algorithm
without wind extension is used. The middle and bottom maps
are obtained using the proposed DM+V/W algorithm, with the
difference that in the bottom map, the wind measurements are
rotated by 90 degrees. In the right part of the map plots in
Fig. 5, the computed NLPD values are shown (obtained by
averaging over predictions of measurements from the second
part of the trial by a model learned from the first part, anevic
versa). In all three gas distribution maps the global maxmu
of the distribution mean is found in the proximity of the gas
source (which is indicated by a white). In examining the
top map, please note that there are two disjoint areas where
the concentration of gas is high. In the middle map, which
Fig. 3. The mobile robot “Rasmus” (top) and a snapshot duringlaon ~ Was obtained with the algorithm proposed in this paper, the
monitoring mission in the experimental environment (bottom). two areas are less disjoint and the modelled distribution of

the gas is more uniform. A possible intuitive explanation

for the improved NLPD value corresponding to this map is
Since we want to maximize the likelihood of the data poinif@t the expected plume structure is captured most clearly.
our goal is minimize the NLPD in Eq.(14). In order to'”. the botf[om map, where an error in the d.|rect|on of the
evaluate whether the Kernel DM+V/W algorithm improves th¥ind was introduced, two separate local maxima are formed
model, we have calculated the NLPD with and without wingnd the distribution does not exhibit a clear plume shape. A
correction in the outdoor scenarios described above. E¢ u§@mparison of the resulting map with the result shown in the
the first half of the dataset to learn the hyper parameters dhifidle of Fig. 5, emphasizes the importance of correct wind
the corresponding model and the second half to evaluate {Rfprmation for the proposed algorithm.
model, then the second half to learn and the first to evaluate.
Due to the difficulty of measuring wind precisely when the
robot is moving, we considered gas sensors and anemometebas distribution modelling with a mobile robot in an un-
readings only when the robot was stopped and only gas senswonitrolled environment is a challenging field of researdhisT
readings when the robot was driving. The value of the cedl sizs mainly due to the chaotic nature of the dispersed gas that
c and the kernel widtlr, were optimized by cross validationis affected by the turbulent nature of the wind. Utilizatioh
over Di...,. The parametety was empirically set to 1.0 and mobile robots to monitor pollution has a number of advanéage
the soft parameterq, was tied to the selected kernel widih reflected by an increasing interest in this field in the last

VI. CONCLUSION AND FUTURE WORK

usingoq = N(0, o). ten years. In this paper we introduce a statistical method to
The results are outlined in Figure 4. The bar-plots shobuild two-dimensional gas distribution maps that take® int
the absolute difference of the obtained NLPR(NLPD) = consideration the influence of wind in the dispersion of gas

(NLPDparyv — NLPDppyvyw)). Positive values corre- (Kernel DM+V with Wind = Kernel DM+V/W). The mapping
spond to an improved model when the method proposed in théghnique extends the Kernel DM+V algorithm by a bivariate
paper is used. The upper part of Fig. 4 shows results obtain@édussian weighting function to model the information pro-
from data sets that contain periods where the robot wasdyivivided by gas sensor measurements. The proposed method is
and periods where it was stopped (Drive&Stop trials). Thevaluated using a mobile robot equipped with an “e-nose”
bottom part shows results from data sets that contain ordpd an ultrasonic anemometer. Experiments in an outdoor



Il DMA+V/W better than DM+V

I DMAV/W worse than DM+V

Fig.
(NLPDpyyv — NLPDpyyvyw))- Positive values correspond an im-
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4. Top: Drive&Stop trials. Bottom: Stop trials. Bar-ploA\(NLPD) =

provement of the model using Kernel DM+V/W.

environment are presented and evaluated with respect to th
ability of the obtained model to predict unseen data. The
results are encouraging, showing a clear improvement whe

using the proposed method.
Future work will first aim at a set-up where the distance

between the wind and the gas sensors is smaller. We ai%g

investigate the possibility to learn the stretching cosffity
from the data. Another interesting extension is to integthe

proposed method with a 3D modelling approach based on d

acquired with gas sensors mounted at different heights.
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