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Abstract— This paper describes an approach to estimate
maximum likelihood range data scans from a moving sensor
platform. Data from a vertically mounted rotating laser scanner
and odometry position estimates are fused to produce locally
consistent point clouds. An expectation maximization algorithm
is used to reduce the accumulated error after a full rotation
of the range finder. A configuration consisting of a SICK laser
scanner mounted on a rotational actuator is described and used
to evaluate the proposed approach.

I. INTRODUCTION

In the past robotic systems have been designed to operate
mostly in controlled and semi-structured environments. In
order to be able to perform higher-level tasks such as
mapping, path planning or navigation, a popular approach is
to equip the vehicle with a 2D laser range sensor. However,
the domain of application of autonomous robots is constantly
expanding to more complex, real-world environments. In
order to cope with the new challenges, an increasing number
of systems rely on three dimensional range data.

Various methods for obtaining consistent 3D range in-
formation have been used in the past. One approach is
to use two perpendicular laser range finders, one in the
horizontal and one in the vertical plane [1][2]. This technique
relies on using the horizontal scanner to perform localization
and the vertical to obtain range information. While the
approach performs well in planar and indoor environments,
it is difficult to extend to uneven terrain and has the major
drawback that 3D data cannot be obtained while the vehicle
is stationary. Another approach is to use a laser scanner
in conjunction with an actuator to either “tilt” the scanner
around a horizontal axis [3][4][5] or “spin” it around the
vertical axis [6]. These methods have been used to produce
dense point cloud data which can be utilized by higher level
algorithms to create consistent environment models [7]. One
problem with this technique is that the sensor platform has to
remain stationary for the duration of the scanning, resulting
in a stop-scan-go motion pattern. An increasingly popular
approach to 3D range data acquisition is to use special sensor
devices, like time of flight cameras[8]. While this technology
has a lot of potential, it is still in an early development
stage and does not yet provide the accuracy and illumination
invariance of typical laser devices.

The work presented in this paper attempts to provide
consistent point cloud data from a spinning SICK LMS200
laser range finder, while eliminating the constraint of halting
the robot during data acquisition. Some work in this direction
has already been done by Harrison et al. [9]. Their approach
is to use a rapidly tilting laser scanner and odometry position

data to produce a dense point cloud. Based on the assumption
that nearly vertical objects in the scan are in fact vertical, they
propose a Bayesian filtering technique to correct the inherent
errors in the estimated position of the vehicle. In contrast
to their approach, the algorithm presented here applies an
Expectation Maximization technique to estimate a maximum
likelihood point cloud.

This paper proceeds with Section II by describing the
physical sensor setup and the calibration routines. Next,
the core of the algorithms used is presented in Section III
along with a definition of the operational domain and a
discussion of possible limitations of the approach. Section
IV continues by defining the evaluation strategy and presents
the results obtained through the proposed approach. Finally,
the conclusions and future research directions of this work
are summarized in Section V.

II. SENSOR SETUP AND CALIBRATION
A. Physical Sensor Deployment and Experimental Vehicle

The data used for evaluating the proposed approach have
been collected using the robot “Alfred” (Figure 1). Alfred is a
custom built robot, developed in collaboration with Halmstad
University and Danaher Motion Inc. It is based on a Permobil
automatic wheelchair vehicle, enhanced with an on-board
motion controller and a standard Linux machine running a
player[10] server.
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Fig. 1. Left: Alfred robot and sensor setup. Right: Diagram of the laser-
actuator configuration

A SICK LMS200 laser scanner was mounted on the end
effector of an Amtec PowerCube actuator and the whole
setup was placed on top of the robot (Figure 1). This setup
allows for continuous rotation of the laser scanner along the
principal axis of the actuator, in this setup chosen to coincide



Dimension | Measured | Laser Estimation Error | o

Dy 3.400m 0.002m 0.003m

Dy 1.620m 0.012m 0.002m
TABLE I

AVERAGE ERROR AND STANDARD DEVIATION OF THE ROOM
DIMENSIONS OVER TEN RUNS

with the vertical axis of the robot centered reference system.
Thus in principle acquisition of points in a full 360 degree
field of view for a long time is possible. However, due to
occlusions from the robot chassis, the lower 35 degrees of
the laser FOV are ignored. The actuator used can spin at
a constant speed between 0.1 and 1.5 rad/s and provides
angular accuracy of 0.02 degrees. The laser scanner was set
up to operate at 75Hz over an RS422 serial interface. In
this mode the LMS provides 180 ranges with an angular
resolution of 1° and a maximum range of 8 meters with an
error of up to 15mm.

B. Sensor Calibration

The presented approach utilizes three types of sensor
data - robot pose, laser ranges and actuator orientation. The
internal parameters of the SICK laser scanner are calibrated
with high precision by the manufacturer and are usually not
subject to further calibration [11]. The observed error on
the PowerCube actuator was within the margins specified in
the product data sheet, thus no further internal calibration
was deemed necessary for this sensor as well. The odometry
position estimate relies on two wheel encoders whose read-
ings are fused through a differential drive motion model.
State estimates obtained in this manner are known to be
highly dependent on external parameters like wheel slippage
and uneven terrain. However, over short distances and small
changes in rotation, odometry can provide relatively precise
values. Thus an effort was made to obtain suitable values for
the encoder offsets, robot axle width and wheel radius. These
parameters were tuned by hand and adjusted over several
test runs in which the robot was commanded to either move
straight or perform a turn in place.

The last calibration routine performed aimed to estimate
the precise position of the laser scanner with respect to the
axis of rotation of the actuator (illustrated in Figure 1(right)).
In particular, the mirror offset d, along the beam direction
was estimated, while the offset perpendicular to the beam
direction was assumed to be zero. The method used is similar
to the one reported in [11], but adapted for a spinning laser
scanner. An empty room was measured by hand, then the
robot was placed inside and instructed to spin the actuator.
The offset d, was initially assumed to be zero and a 3D
point cloud was generated by applying equation 2 from the
next section. An efficient implementation of a RANSAC [12]
plane fitting algorithm was then used to extract walls from
the 3D laser data. The plane to plane distances D, gser
and Dyr,qser Were compared to the corresponding real world
room dimensions D, and D,,. The mirror offset d, was then
calculated as
Da:Laser - Dw + DyLaser - Dy

4

dy = ey

In this manner d, was estimated to be —2.5¢m. The cor-
rected dimensions of the room along with errors over ten
different scans are shown in Table I.

III. FILTERING APPROACH AND ALGORITHM
DESCRIPTION

A. General Approach

The algorithms presented in this section attempt to esti-
mate a consistent set of 3D range points from a moving robot.
Assume a sensor platform R is moving through an unknown
environment. A sequence of odometry state estimates z =
20..2¢ 18 available, where z; = {x;,y;,0;} is the estimated
2D position and orientation of the vehicle at time ¢;. Also
available are the actuator states a = «pg..c; and the laser
scans [ = ly..l; where a; is the orientation of the actuator
end effector at time ¢; and I; = {rg..rp,, Bo..0n} is the set of
ranges and corresponding bearings. Assuming perfect sensor
readings, the 3D point measured by range reading k at time
t; is obtained through (2).

T; cos Ok sin a; + 0;
Pir=1| vy | +rk | cosfrcosa; +6; 2)
0 sin O

The actuator and range measurements are assumed to be
random variables corrupted by Gaussian noise with variances
0. and o,., while the state measurements Z are assumed to be
corrupted by a multivariate Gaussian noise with covariance
matrix Cogom

Ozx Oz6
Oyy  Oyb 3)
Oz Oy 000

C’oalom = Oy

The random variables z, a and [ are assumed to be mutually
independent and thus so are their respective noise distribu-
tions. In the rest of this paper, the state vector zZ will also be
referred to as the robot path. In the case under consideration,
the robot path is usually short (on the order of a couple of
meters) and only refers to state measurements used to obtain
a single consistent point cloud.

As noted in the previous section, the most significant
source of error is the position estimate z. This problem can
be addressed by familiar filtering techniques from the SLAM
domain. The proposed approach uses Multilevel Relaxation
(MLR)[13] to estimate the maximum likelihood values for
the state vector z. MLR is a graph based optimization
algorithm with vertices (or frames) encoding robot state
values and edges (or relations) representing measurement
uncertainties. The approach proposed here creates n frames
from the corresponding odometry estimates. Consecutive
frames are linked by relations derived from the odometry
estimates and covariance matrix C), g, , resulting in a total of
n—1 edges in the graph. To obtain a well defined estimation
problem, at least one more relation must be added. This is
derived by registering the best-estimate 3D points from the
end of the robot path to the model points observed at the
beginning of the path. The general idea of the approach
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Figures 2(a) through 2(c) - a projection into the xy plane of the robot as it moves through the environment and measures distances. After points

are re-observed in 2(b) a maximum likelihood path is estimated and the error is minimized 2(c). In 2(d) sampled points from a typical scan, segmented

into ceiling, floor and object classes.

is illustrated in Figure 2 and formalized in Algorithm 1.
The major components of this algorithm are discussed in
the subsequent sections.

Algorithm 1
1: Start actuator rotation
2: while o + 60 < 27 4 € do
3 Calculate estimated position and covariance
4 Insert frame and relation in MLR graph
5 Insert points in spatial index
6: end while
7
8
9

: while # of matching points < 1 do

Propagate uncertainty to each point in the scan
Search spatial index for nearest neighbor within un-
certainty area

10:  Mark points as matching

11: end while

12: Register matching points, estimate position and uncer-

tainty
13: Perform Multilevel Relaxation

B. Estimating the Odometry Covariance

In order to estimate the covariance matrix C\ 4., the tech-
nique presented in [14] was adopted. Thus, the uncertainty
at time ¢; from a reference point in time ¢; (¢ < j) can be
calculated as:

Ci’j = chiyjfljir + JQC];LJ'JQT 4)
where J; is
1 0 —sinfj_idr — cosf;_1dy
Ji=1|1 0 cosbj_1dx— sind;_idy 5
0 0 1
and J5 is
cosfj_1 —sinbj_1 0O
Jy=| sinfj_; cosbj_1 O (6)
0 0 1

The covariance C;_;; is a measure of the uncertainty
between the two consecutive frames j — 1 and j. A good

estimate is to define C;_; ; as

Uzdd_j +Ucct6_j _ 0 _ 0
C]'_l,]' = O U'yddj + O’ytej B 0 B
0 0 (J’tddj 4+ (J’ttaj

(N
with d; as the euclidean distance between z;_; and z; and
9} as the respective angular increment. Thus, in line 4 of
Algorithm 1 the adjusted incremental covariance C7_, ; =
JoCj_1 ;J7 is used to specify the MLR relation, while in
the next section Cj ; is used to obtain point covariance.

C. Covariance Propagation to Range Points

The uncertainty in the robot state z;, the actuator a; and
laser [; can be propagated to obtain the covariance matrix of
a point P, obtained at time ¢;. Using equation (2) and error
propagation we obtain:

[Cos] O 0
Co=JCJT=J| 0 0aa 0 |J' (8
0 0 Orp

where C' is the 5x5 state covariance matrix and J is the
3x5 Jacobian of (2) evaluated at time t;
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)
where r is the range used to estimate the point coordinates,
ca €g cg are the cosines of the actuator orientation, laser
bearing and robot orientation, while s, sg and s are the
respective sines.

The so obtained covariance matrix is then used to test
whether a point P might have already been observed (line
9 in Algorithm 1). Two points p; and p; are considered
candidate matching points if the Mahalanobis distance £ =
(pi — pj)C,, (pi — p;)T is bellow a threshold value (£ =
0.15m used in this paper).
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Fig. 3. Point matching for an example scan. The points used for ICP
registration are marked in blue. Points collected at the end of the robot
path, but occluded at the beginning are ignored (marked in red).

D. Registration and Error Estimation

The candidate matching points from the previous section
are then used as input to an Iterative Closest Point (ICP)[15]
algorithm. The ICP algorithm is a widely used registration
method, which however is known to have some limitations.
Most notably, ICP is likely to fail in cases of small overlap
between candidate scans and featureless environments. The
first issue is particularly problematic when point clouds with
large viewpoint changes have to be registered. The method
of candidate point set selection presented in the previous
subsection addresses precisely this case. By considering only
points within a covariance ellipsoid, the expected inconsis-
tent and non-overlapping areas of the candidate point clouds
are minimized (as illustrated in Figure 3). Thus, ICP is
more likely to converge to an optimal solution, even with
a large viewpoint change. For the implementation evaluated
in Section IV the parameter p from Algorithm 1 was set
to 1000, while € was set to 0.1rad, resulting in compact
candidate point sets.

The transformation and match covariance obtained are
used to update the MLR graph structure. The path poses
used for matching are transformed using the best-fit trans-
formation obtained from ICP. The so obtained new positions
are then transformed to the reference system of the first path
point and these estimates are used to insert new relations to
the initial path point. In order to obtain the covariance matrix
needed to insert the final relations, a method similar to the
one proposed in [16] was used. Assuming a true model Y,
an estimated model Y and data observation M, we have

Y =MX +wY =MX (10)
where X and X are the model parameter vectors and w is
white Gaussian noise. Assuming a linear model function, the
error minimized by ICP is

EX)=( -MX)T(Y - MX) (11)

As shown in [16] the ICP match covariance can then be

calculated using:

1 —1
Cmatch = 02 (2H> (12)

where H is the hessian of the linearized error function
E(X ) and 02 is an unbiased estimate of the error variance.
The Multilevel Relaxation algorithm is then used to “dis-
tribute” the accumulated error over the poses z and obtain a
maximum likelihood estimate for the robot path. This step
is described in detail in [13], but essentially consists of
generalizing the graph into a series of increasingly abstract
levels, until it is possible to explicitly solve the estimation
problem. The solution obtained is then propagated down
from the top level of abstraction to obtain the maximum
likelihood solution to the original problem. Finally, a new
point set is generated using the corrected positions Z..

E. Theoretical Limitations

The presented approach has some theoretical limitations
that deserve mention. First and foremost, the part of the
environment scanned at the beginning of the path has to be
at least partially observable from the final viewpoint. This
constraint can be relaxed if matching is allowed for partial
paths - i.e. if the final relation is between the last frame and
an arbitrary previous frame, instead of the possibly occluded
starting frame. In such cases, the error will be minimized
only for the scan section in between the two matched poses.
In practice environment observability can only be a problem
if the robot makes sharp turns in cluttered environments.

The second limitation is that the algorithm is currently
operating with a 2D pose vector, thus rough terrain can be
problematic. This concern will be addressed in the future
by obtaining the other three state variables from an Inertial
Motion Unit (IMU) and solving a full 6DOF problem.
An update to the MLR relaxation algorithm will also be
necessary, as currently it is restricted to graph representations
of a 2D environment.

Finally, the maximum speed and turn rate of the robot
depend on the angular velocity of the actuator. Harrison et
al [9] make an argument that the Nyquist sampling theorem
can be applied to calculate the maximum speed of the vehicle
in their tilting laser setup. The rotating setup used here
imposes the same condition on the maximum turn rate of
the robot - namely the sampling frequency (actuator turn
rate) has to be at least double the signal frequency, thus
0 < % A theoretical constraint on the maximum speed is
difficult to compute, as it depends on the observability of the
environment as well. A strict upper bound however is that
the distance traveled by the robot should be less then the

. Lrangea
maximum laser range, thus roughly v < ==52<=

IV. PERFORMANCE EVALUATION

In order to evaluate the utility of the proposed filtering
approach, point clouds were collected in a controlled indoor
environment. The robot was put in an empty room and driven
to random goal points. An additional laser scanner mounted
in the front of the robot was used for collision avoidance.
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vehicle speed was limited to 0.2m/s

Three sets of data were collected under maximum vehicle
translational velocity of 0.1, 0.2 and 0.3m/s respectively.
The maximum rotational speed of the robot was set to
0.75rad/s and kept constant in all three experiments. The
actuator was rotated at a constant speed of 0.5rad/s to obtain
dense point clouds. As stated in section III-E, the theoretical
constraint for the platform’s turn rate under this actuator
velocity would be 0.25rad/s, or three times lower then the
one used. However, this maximal velocity is only reached
in rare occasions, when the vehicle sharply approaches an
obstacle and thus did not cause undersampling problems.

®

Sample point clouds (100k points) acquired by simple odometry interpolation in 4(a) and 4(c) and after filtering in figure 4(b) and 4(d). The

The robot was programmed to first acquire a scan of the
environment while remaining stationary and then move to
the next goal point. Thus, the measurements collected while
stationary are used to generate ground truth point clouds,
while the later data are used to evaluate the quality of the
proposed filtering approach.

The log files collected while the robot was moving were
used to generate two sets of point clouds - one with and one
without applying the described filtering technique. Initially,
the point clouds in the control data set were generated
after each 27 4 € absolute rotation of the laser scanner. An
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A point cloud generated after a 2w + € combined robot and
actuator rotation. Due to the robot motion, a part of the environment remains
unobserved.

example measurement produced in this manner is shown
in Figure 5. Evidently this method produced incomplete
measurements, with parts of the environment missing due
to viewpoint change. Therefore, the control measurements
were generated by not performing the correction step in the
proposed approach. A point cloud obtained in this manner is
shown in Figure 4(a). The inconsistencies introduced by the
error in the position estimate are more apparent in this case
and can easily be identified by looking at the top-left corner
of the picture. The corresponding filtered output points are
shown in Figure 4(b). As expected, the error in the point
positions is detected and distributed along the vehicle path
to produce a locally consistent measurement.

It is worth noting that the quality of the filtered point
cloud depends on the fidelity of the registration algorithm.
Naturally, in order to correct the errors in position, a con-
sistent transformation has to be obtained through ICP. In
cases of an environment poor on features (as the one used
here), sometimes not all errors can be corrected. For example
when correcting the point cloud in Figure 4(c), it is not
possible to accurately measure the error in the direction
parallel to the wall, as the candidate matching points all
belong to the wall plane and do not span the space along
the wall. The covariance matrix returned by ICP reflects
this issue by having a small variance perpendicular to the
wall and a much larger component along it. The expectation
maximization algorithm then detects the uncertainty of the
transformation and puts more trust in the odometry estimate
in this particular direction. The point cloud obtained through
the filtering approach is shown in Figure 4(d).

V. CONCLUSION

This paper presented an Expectation Maximization algo-
rithm to estimate maximum likelihood point clouds from a
moving vehicle. Data sets from an indoor environment were
collected and used to evaluate the quality of the point clouds
generated by the proposed filtering algorithm. The results
obtained attest to the feasibility of the presented approach
for semi-structured indoor environments. Further work will
focus on addressing some of the theoretical limitations of the
algorithm, especially the constraint to a planar motion space.
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