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Abstract

The problem addressed in this thesis is discrimination of gases with an array
of partially selective gas sensors. Metal oxide gas sensors are the most com-
mon gas sensing technology since they have, compared to other gas sensing
technologies, a high sensitivity to the target compounds, a fast response time,
they show a good stability of the response over time and they are commercially
available. One of the most severe limitation of metal oxide gas sensors is the
scarce selectivity, that means that they do not respond only to the compound
for which they are optimized but also to other compounds. One way to en-
hance the selectivity of metal oxide gas sensors is to build an array of sensors
with different, and partially overlapping, selectivities and then analyze the re-
sponse of the array with a pattern recognition algorithm. The concept of an
array of partially selective gas sensors used together with a pattern recognition
algorithm is known as an electronic nose (e-nose).

In this thesis the attention is focused on e-nose applications related mo-
bile robotics. A mobile robot equipped with an e-nose can address tasks like
environmental monitoring, search and rescue operations or exploration of haz-
ardous areas. In e-noses mounted on mobile robots the sensing array is most
often directly exposed to the environment without the use of a sensing chamber.
This choice is often made because of constraints in weight, costs and because
the dynamic response obtained by the direct interaction of the sensors with
the gas plume contains valuable information. However, this setup introduces
additional challenges due to the gas dispersion that characterize natural envi-
ronments. Turbulent and chaotic gas dispersal causes the array of sensors to be
exposed to rapid changes in concentration that cause the sensor response to be
highly dynamic and to seldom reach a steady state. Therefore the discrimina-
tion of gases has to be performed on features extracted from the dynamics of
the signal. The problem is further complicated by variations in temperature and
humidity, physical variables to which metal oxide gas sensors are crossensitive.
For these reasons the problem of discrimination of gases when an array of sen-
sors is directly exposed to the environment is different from when the array of
sensors is in a controlled chamber.



This thesis is a compilation of papers whose contributions are two folded.
On one side new algorithms for discrimination of gases with an array of sensors
directly exposed to the environment are presented. On the other side, innova-
tive experimental setups are proposed. These experimental setups enable the
collection of high quality data that allow a better insight in the problem of dis-
crimination of gases with mobile robots equipped with an e-nose. The algorith-
mic contributions start with the design and validation of a gas discrimination
algorithm for gas sensors array directly exposed to the environment. The algo-
rithm is then further developed in order to be able to run online on a robot,
thereby enabling the possibility of creating an olfactory driven path-planning
strategy. Additional contributions aim at maximizing the generalization capa-
bilities of the gas discrimination algorithm with respect to variations in the
environmental conditions. First an approach in which the odor discrimination
is performed by an ensemble of linear classifiers is considered. Then a feature
selection method that aims at finding a feature set that is insensitive to varia-
tions in environmental conditions is designed. Finally, a further contribution in
this thesis is the design of a pattern recognition algorithm for identification of
bacteria from blood vials. In this case the array of gas sensors was deployed in
a controlled sensing chamber.
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Chapter 1
Introduction

The ability to monitor and identify gases is required in a variety of applications
ranging from air pollution monitoring, food and beverage quality assessment,
medical diagnosis, exploration of hazardous areas and search and rescue opera-
tions. Various technologies for gas sensing are available and the gas sensors can
be deployed in many different setups in order to fulfill the application depen-
dent requirements. For applications like food quality assessment and medical
diagnosis, where the accurate analysis of a small amount of gas is the main
challenge, gas sensors are often placed in a sensing chamber isolated from the
outside environment in order to try to minimize interfering factors and enhance
the robustness and accuracy of the measurement process. Instead, for applica-
tions like air pollution monitoring or inspection of hazardous areas where the
main challenges are the localization of a source of pollution or the creation of a
map of the gas distribution, gas sensors are deployed either in a sensor network
that covers the area of interest or on a mobile platform that can transport them.
In this scenario gas sensors are most often directly exposed to the environment
they are analyzing and perform continuous measurements. This is mainly due
to the fact that sampling systems are bulky and many platforms would not be
able to transport them. Also, it is possible that the dynamic response of the
sensor when directly exposed to the environment contains information about
the nature of the plume. This information can be extracted in order to perform
parallel tasks such as gas source localization, but is otherwise unavailable if
the sensor is enclosed in a chamber. Moreover a setup with sensors that con-
tinuously sample the environment is more suited to meet time constraints that
arise in certain applications, for example when a robot continuously moves
and cannot stop for collecting gas samples. We refer at the setup where sen-
sors are placed in a measurement chamber isolated from the environment as
closed sampling system and at the setup where sensors are directly exposed to
the environment in order to continuously sample it as open sampling system.
Signals collected when an array of sensors is used in a closed sampling sys-
tem have different characteristics with respect to signals collected with an array
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in an open sampling system. Variables like the exposure of the sensors to the
analyte, temperature and humidity are controllable in the closed sampling sys-
tem setup while they can only be observed in the open sampling system. In a
closed sampling system the sensors are often exposed to a step in the concentra-
tion of the analyte, in order to be able to observe the dynamic behaviour of the
sensors to a fixed stimulus. Moreover variables like temperature and humidity,
to which many sensors are cross-sensitive, are stabilized in order to enhance the
repeatability of the measurement process. In an open sampling system the sen-
sors are instead exposed to fast changes in concentration due to the turbulent
nature of gas plumes in natural environment. Moreover temperature and hu-
midity changes might influence the sensors response. Given these differences in
the signal, the problems of gas identification and quantification look completely
different in these two setups.

The problem addressed in this Ph.D. thesis is the discrimination of gases
with an array of low cost compact gas sensors with particular attention to
applications that require an open sampling system. Most of the original contri-
butions presented in this thesis use metal oxide (MOX) gas sensors. MOX gas
sensors have a relatively large response time, and in most of applications they
are modelled as first order sensors. Normally 3-5 seconds are needed for the
sensor to stabilize on a value when exposed to a compound and few minutes
are needed in order to recover to the original value after the exposure. There-
fore the sensor response does not correspond to instantaneous gas concentra-
tion due to the dynamics introduced by the sensor itself. As a consequence,
in a highly dynamic and turbulent environment where a stable steady state is
normally not reached, the analysis of the transient phase is necessary. It of-
ten happens that multiple sensor responses are collected in a sequence without
the sensor recovering to the baseline state. Moreover changes in environmental
variables like temperature and humidity, to which most of the gas sensors are
cross-sensitive, introduce an additional degree of complexity in the problem.

Gas discrimination with an open sampling system has not been thoroughly
addressed in literature. Though this is a relevant problem since much of the
work done for other gas sensing applications would get benefit. For example
most of the works in gas sensing networks and mobile robotics olfaction have
been developed under the assumption of a single predefined analyte (most often
ethanol). This limits the applicability of these results in real scenarios where this
assumption is unrealistic. Mobile robotics olfaction is the sub-field of robotics
that deals with robots equipped with gas sensors and other sensing modali-
ties (often an anemometer) that make them able to monitor the presence and
dispersion of volatile chemicals. Typical tasks addressed by gas sensing robots
are gas source localization, gas plume tracking and source declaration and gas
distribution mapping. The capability of discriminating gases would enable to
extend these tasks to the presence of multiple, heterogeneous gas sources. With
gas discrimination capabilities a gas sensing robot would be able to perform gas
distribution mapping in presence of multiple different gas sources, to localize
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a specific gas source in presence of interfering gas sources and to track the gas
plume of a specific compound.

While achieving the aforementioned tasks is a long term objective of this
work, the specific objective in this thesis has been to make a first step towards
gas discrimination with a mobile robot by analyzing the problem of identifica-
tion using an open sampling system. These investigations have been done pri-
marily on the robotic platform and secondarily in controlled conditions. The
specific contributions of this thesis are:

¢ Design and implementation of a gas discrimination algorithm with an
open sampling system. Analysis of the performance of the algorithm with
respect to variables like e.g. distance of the sensor array from the gas
source (PAPER II, PAPER V).

* Implementation of a discrimination algorithm that runs online on the
robot and provides inputs to a path planner that can therefore optimize
the movement of the robot with respect to gas discrimination (PAPER III).

e Demonstration of the influence of the movement of the robot and ex-
perimental setup on the collected signal. Formulation of a classification
and a feature selection strategy that enhances the performance of the gas
discrimination algorithm (PAPER IV, PaPER VII).

® Collection of large dataset in various conditions for studying of the prob-
lem of classification of odors with an open sampling system. The collected
data can be used also to study other problems like gas source localization
or gas distribution mapping (PAPER I, PAPER VI, PAPER VIII, PAPER X).

e Design of an algorithm for rapid identification of bacteria from blood
vials through an electronic nose (PAPER IX).

1.1 The Structure of this Thesis

The structure of the thesis is as follows:

Chapter 2 Gives a general introduction on the field of machine olfaction. The
first part of the chapter describes the functional parts of an electronic
nose, while the second part presents some of the most relevant applica-
tions of the electronic nose. This chapter is purely based on bibliography.

Chapter 3 Presents the problem of gas discrimination with particular focus on
the analysis of the dynamic response of an array of gas sensors. The first
part of the chapter presents different techniques for extracting features
that capture the dynamics of a signal collected with a gas sensor. Then, a
case study in which the electronic nose is used for identifying bacteria in
blood vials is presented. The last part of the chapter shifts the attention on
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the analysis of a signal collected with a gas sensor array directly exposed
to the environment.

Chapter 4 Introduces the topic of gas discrimination in the context of mobile
robotics olfaction. The contributions related to mobile robotics olfaction
are presented in detail in this chapter. The chapter concludes with an
overview of related topics in mobile robotics olfaction.



Chapter 2
Machine Olfaction and
Electronic Nose

The concept of electronic nose (e-nose) has been introduced in the early 1980’
[1]. In the beginning the ambition of the e-nose research community has been
to mimic human olfaction and while this ambition remains, 30 years later we
find that the applications whereby artificial olfaction has mostly contributed are
those where the e-nose technology acts as a complementary sense to the human
nose. For example e-noses can detect explosives [2] or air contaminants like
CO [3] that are undetectable by human nose. Rock et al. in [4] use a metaphor
in order to compare an electronic nose and a human nose. They say that the
comparison of an electronic nose with a human nose is in the best case like
the comparison of an eye of a bee with a human eye. Both the eye of a bee
and the eye of a human are sensors for electromagnetic waves. What makes
them different is the spectrum of frequencies that they can detect. Indeed the
eye of a bee is blind for a part of the visible spectrum (wavelengths close to
red) but it is sensitive for ultraviolet wavelengths. This can cause a completely
different perception of the same entity. Figure 2.1 gives an example of how a
flower is perceived when ultraviolet light is added to the image through the
use of a UV filter compared to when only visible wavelengths are considered.
The “bulls-eye” with stripes is visible only in the ultraviolet spectrum, while it is
completely transparent in the visible spectrum. The correlation between human
odour impressions and electronic nose measurements is hard to achieve and
it makes sense only in limited and well defined scenarios. Therefore the term
electronic nose might be misleading and it is important to always keep in mind
the differences between the electronic and the biologic aspects of olfaction.
In this thesis the term electronic nose is used not because of the relation to
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(a) Visible Light (b) UV Light

Figure 2.1: Picture of an Oenothera biennis L. with a normal camera 2.1(a) and with a
camera with a UV filter 2.1(b). Notice that UV light does not have a color and therefore
the attention should be focused rather on the difference in the patterns than in the colors.

biological olfaction but rather because the signal to be analyzed is a fingerprint
of a volatile chemical compound'.

Most of the research in the electronic nose field has focused on discrimina-
tion and quantification of gases. With respect to classical analytic techniques
that aim at identifying and quantifying every compound of a given sample, the
electronic nose extracts instead a signature of the sample that can be used to
identify it but provides little or no information about the components of the
gas mixture that composes the sample. Despite this lack of power with respect
to traditional techniques the electronic nose technology, due to its ease of use
and low cost, has obtained interest in areas ranging from medical diagnosis
to food and beverage quality assurance, detection of explosives, environmen-
tal monitoring and industrial process monitoring [4]. It is expected that such
a wide range of applications results in the development of a multitude of dif-
ferent solutions for all the functional parts of an electronic nose, namely the
sensor array, the sampling system and the pattern recognition algorithm. Sec-
tions 2.1, 2.2 and 2.3 will give a brief overview of the most common solu-
tions adopted for these functional parts, paying particular attention to the ones
relevant for robotics applications. A summary of the applications where the
electronic nose has been most successful is given in Section 2.4.

2.1 The Sensor Array

Chemical sensing is a process that aims at getting an insight about the chemical
composition of a system. In this process an electrical signal results from the in-
teraction of the chemical species in the system and the sensor. There are various

n this thesis the term gas discrimination is used instead of the term odour discrimination in
order to stress the fact that we are detecting volatile chemical substances. These substances might
be odourless, i.e. not perceivable by human olfaction.
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Figure 2.2: Electrical schema of a MOX gas sensor.

families of sensors based on different transduction principles. The most com-
mon are thermal sensors, mass sensors, electrochemical sensors, potentiometric
sensors, amperometric sensors, conductometric sensors and optical sensors [5].
An exhaustive review of the different sensors technology is out of the scope of
this thesis and therefore only the two technologies that are used in the original
works presented in this thesis will be introduced: the metal oxide gas sensors
(conductometric family) and the MOSFET gas sensors (potentiometric family).

2.1.1 The Metal Oxide Gas Sensor

The metal oxide (MOX) gas sensors are by far the most widely used in elec-
tronic nose applications as well as in mobile robotics olfaction. The most promi-
nent reasons for this are that they are commercially available, they show good
stability over time, they have a relatively fast response and they have a higher
sensitivity than most other sensing technologies. MOX gas sensors are conduc-
tometric sensors, that means that a change in the conductance of the oxide is
measured when a gas interacts with the sensing surface. The change in conduc-
tance is usually linearly proportional to the logarithm of the concentration of
the gas [6]. There are two types of MOX sensors: n-type (Sn0,,Zn0O) which
respond to reducing gases like H,, CH4, CO, C,Hs, CoHsOH, (CH3),CHOH
or H,S and p-type (NiO,Co0O) which respond to oxidizing gases like O,, NO;,
and Cl, [5]. The action of a MOX sensor results from chemosorption and re-
dox reactions at the surface. Since the rate of such reactions is dependent on
the temperature, it is clear that the temperature of the sensing surface consider-
ably affects the sensor characteristics [6]. Typical temperatures for the sensing
surface of MOX sensors lie between 300°C and 500°C. Selectivity is obtained
either by doping the sensing surface with different additives or by setting dif-
ferent operating temperature. It has also been demonstrated that introducing
a dynamic operating temperature further enhances the selectivity of the sen-
sor [6].
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Figure 2.2 shows a schematic of a MOX sensor. Ry and Rs are respectively
the heater and the sensor resistances, while Ry is the load resistance that is
applied in series to Rg in order to be able to read it. Vi is the voltage applied
to the heating resistance and it is proportional to the operating temperature,
Ve is the reference voltage for the measurement, while V| is the voltage drop
on R;. In order to calculate the value of the sensor resistance (inverse of the
sensor conductance - the quantity that changes when the sensor responds) the
following formula is applied:

Ve-Vi

R
S Vi

x Ry (2.1)

2.1.2 The MOSFET Gas Sensor

The MOSFET sensor is a metal-insulator-semiconductor device introduced by
Lundstrom et al. in 1975 [7]. Its structure is shown in Figure 2.3. When certain
molecules in the gas phase reacts at the catalytic surface (indicated as selective
layer in Figure 2.3), certain products of the reactions may polarize and adsorb
at the metal surface. Some products like H, might diffuse through the catalytic
metal and form dipoles at the metal-insulator interface. The polarized species
at the insulator surface and polarized hydrogen atoms at the metal-insulator
interface form a dipole layer, which adds to the electric field between the metal
and the semiconductor. This change in the electric field causes a change in the
work functions of the metal and oxide layers and this translates in a change
of the threshold voltage of the MOSFET. In practice, the sensor response is
measured as the change in the voltage applied to the gate of the MOSFET
required in order to keep a constant current through the transistor.

Figure 2.4 displays the response of 3 MOX gas sensors and 3 MOSFET
gas sensors contained in the sensor array of the NST 3220 Emission Analyzer,

Gate [ Is
| SELECTIVE LAYER | %y,
INSULATOR _
Source n = Drain
p - Si

Figure 2.3: Electrical schema of a MOSFET gas sensor.
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Figure 2.4: Sensor response collected with 6 of the sensors of the array present in the
NST emission analyzer when exposed to the volatile products of the metabolism of
Pasteurella multocida. The sensors starting with the prefix FE are MOSFET sensors,
while the ones starting with the MO prefix are metal-oxide sensors. The sample has been
collected using a three-phase sampling technique where the baseline has been collected
for 10 seconds, then the headspace of the vial containing the infected blood has been
sampled for 30 seconds and finally the array has been exposed for 260 seconds to dry
air in order to recover the initial state.

Applied Sensors, Linkoping. The NST 3220 Emission Analyzer has a closed
sampling system.

The main advantages of MOX sensors are the fast response and recovery
times and the limited price, while the disadvantages are the limited number
of detectable substances, the scarce selectivity and the high operating temper-
ature that results in large power consumption. MOSFET sensors are small,
cheap, CMOS integrable but they suffer from large baseline drift due to the
large dependency of the response on humidity and especially temperature. For
this reason MOSFET sensors are mainly suitable for use in controlled environ-
ments [8].

2.2 The Sampling System

The handling and delivery system determines the modality in which the array
of sensor is exposed to the gas to be analyzed. The choice of an appropriate
sampling system can significantly enhance the capability and reliability of an
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electronic nose. Various techniques like sample flow system, preconcentrator
systems, GC column, static system and open sampling system have been pro-
posed in literature. In a sample flow system the sensors are placed in the gas
flow and normally the three phase sampling strategy is adopted. This strategy,
which consists in exposing the sensors array to a step in concentration of the
analyte after being exposed to a reference gas, is very popular since it allows
to collect a dynamic response of the sensor in addition to the steady state [9].
It has been demonstrated that the dynamics of the sensor response contains
useful information for gas discrimination and quantification purposes [10]. A
preconcentrator tube is often used when the sensitivity of the sensor is too low
to meet the requirements of the application considered. In a preconcentrator,
first the tube accumulates the vapor and then a heat pulse is applied to the
tube to desorb the concentrated vapor, and therefore a higher concentration is
obtained [11]. In other applications the most problematic aspect might be that
the required selectivity is difficult to reach only with an array of gas sensors. In
this case Zampolli et al. [12] proposed a hybrid system in which the array of
sensors is located at the end of a micromachined GC column. The separation
obtained by the GC column significantly enhances the selectivity of the sensor
array. In a static system the steady state response of a sensor exposed to a gas
at constant concentration is measured.

The systems mentioned above are considered closed systems, since the sen-
sors are in a chamber and therefore the exposure of the sensors to the samples
can be accurately controlled. In some applications where a rapid concentration
change should be captured or where a complete sampling system is too bulky,
expensive or energy consuming the sensors are directly exposed to the gas in a
so called open sampling system. In mobile robotic olfaction literature most of
the mobile robots have been equipped with gas sensors with an open sampling
system [13]. In the mobile robotics related work presented in this thesis the
array of sensors has been used with an open sampling system.

2.3 The Pattern Recognition Algorithm

Gas sensors suffer from a number of shortcomings like lack of selectivity, long
and short term drift, nonlinearities in the response, and slow response and re-
covery time. These limitations, together with the variability associated with the
sampling system and the small amount of data that is often available due to
economical reasons, contribute to make the problem of classifying and then
further quantifying chemical substances with an electronic nose a difficult one.
Therefore, much work has been done in order to design appropriate pattern
recognition algorithms for gas discrimination and quantification with electronic
noses [10, 14].

The pattern recognition algorithm for electronic noses can be subdivided in
two distinct families: the biologically inspired algorithms and the statistically
based pattern recognition algorithms. Biologically inspired algorithms try to
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formulate mathematical models of the olfactory pathways that process the sig-
nals coming from the olfactory receptors. Given the impressive olfactory ability
of many animals, it can be speculated that understanding the biological olfac-
tory system could be beneficial for the development of electronic noses. There-
fore, when biologists understand new computational principles underlying ol-
faction, different processing stages in the olfactory pathway are mathematically
modelled and applied to gas sensors data [14]. Since the works presented in this
thesis will be based on statistically based pattern recognition algorithm, the de-
scription of biologically inspired algorithms is out of the scope of this thesis,
but a good review of the biologically inspired olfactory models can be found
at [15], while a more recent model of the olfactory system of insects can be
found at [16].

Statistically based pattern recognition algorithms are related to classic mul-
tivariate analysis and they often consists of four phases namely signal condi-
tioning, feature extraction, dimensionality reduction and classification or re-
gression.

Signal Conditioning Signal conditioning is a broad term that defines a series of
operations performed on the raw sensor data in order to increase the signal-to-
noise ratio of the signal before extracting features and design a pattern recog-
nition model.

One of the most serious limitations of gas sensors is the drift problem, that
can be observed as variation in the sensor response when exposed to identi-
cal vapors under identical conditions. A very common preprocessing technique
to cope with this problem is baseline manipulation. This means that before
exposing the array of sensors to the target gas, the array is exposed to a ref-
erence gas and the response of the array is recorded (baseline value). Once the
baseline value is available one of three baseline correction methods is normally
applied: differential (baseline value subtracted from sensor response), relative
(ratio between the sensor response and the baseline value) and fractional (sub-
tract the baseline value from the sensor response and then divide by the baseline
value) [17]. The choice of the baseline correction technique depends mostly on
the transduction principle used by the sensors in the array. Scaling or normaliza-
tion techniques can be used in order to ensure that sensor response amplitudes
are comparable (no sensor overwhelms the others because the amplitude of its
response is much larger) and to limit the effect of concentration changes in case
of a gas discrimination problem.

Feature Extraction Feature extraction is the procedure of extracting parame-
ters that are descriptive of the sensor array response. This can be seen as a first
step of reducing the dimensionality of the learning problem. Feature extraction
techniques for arrays of gas sensors can be subdivided in two families: steady
state features, that use only the steady state phase of the sensor response, and
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transient features, that use the whole dynamics of the sensor response. Various
works in literature advocate the superiority of transient based features on static
features [18, 19]. Given the central importance of features that capture the
dynamics of the sensor response, especially for electronic noses with an open
sampling system we defer the detail description of this topic to Chapter 3.

Dimensionality Reduction The small amount of data that is often available
together with the fact that the responses of the gas sensors in an array are
highly correlated can create problems related with high dimensionality and re-
dundancy. If redundant or noisy information is not removed before trying to
learn a model, the problem of the Curse of Dimensionality [20] may arise. This
refers to the fact that for high-dimensional spaces it is difficult to collect enough
samples to attain a high enough density in order to obtain a valid estimate for
a function or a discriminant. The most common way of dealing with this prob-
lem is to reduce the dimensionality of the feature space by either projecting the
original N dimensional space into a M dimensional one where M < N (feature
projection), or selecting M out of the N original features (feature selection).

The most commonly used techniques for feature projection are Principal
Component Analysis (PCA) and Linear Discriminant Analysis (LDA). PCA is
an unsupervised technique that finds the directions that capture most of the
variance contained in the original data, while LDA is a supervised technique
that finds the directions that minimize the average distance among points be-
longing to the same class while maximizing the average distance among the
centroids of different classes [17]. PCA is often used as a visualization tool for
representing high dimensional spaces in 2-3 dimension that capture the most of
the variance in the data. Given the high correlation in the responses of different
gas sensors, usually the first 2-3 principal components can capture more than
90% of the variance in the data, and therefore PCA is a valuable tool for ex-
ploratory analysis of data collected with gas sensors. An interesting approach
for exploiting the directions found by PCA for reducing the dimensionality of
an array of gas sensors is presented in [21].

Feature selection methods proposed in literature fall into two main cate-
gories, the filter approaches and the wrapper approaches [22]. The filter based
methods produce a ranking of the features based on an optimality criterion and
then select the first M features in the ranking, where M can be arbitrarily cho-
sen. Wrapper methods instead use the prediction performance of a given classi-
fier to assess the relative usefulness of subsets of variables. Since the number of
possible feature subsets of N features is 2N, an exhaustive search is unfeasible
even for small N. Therefore wrapper algorithms use a search heuristic to per-
form a partial exploration of the feature subsets space. An example of feature
selection applied to an electronic nose is presented in [23].
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Classification/Regression The last step of the pattern recognition algorithm
is building a model that will be able to efficiently solve the problem of gas
discrimination or quantification. Usually the gas discrimination problem is for-
malized as a classification problem, where the objective is to create a decision
rule which optimally partitions the data space into regions that will be assigned
to the different classes. In cases where it is needed to have a confidence measure
on the decision, models that can provide an estimation of the posterior prob-
ability are preferred. An extensive review of statistically based classifiers used
in electronic noses can be found at [14]. Probably the most commonly used
classifier for electronic nose applications is the multi layer perceptron (MLP),
an artificial neural network [24]. Another widely used classifier is the K Near-
est Neighbor (KNN). The KNN is a nonparametric density estimation model
that can be used both for classification and for regression problems [25]. Re-
cently, the attention has been moved to kernel methods and in particular to
the Support Vector Machine (SVM) [26]. The SVM has many appealing char-
acteristics with respect to other classification methods, of which probably the
most relevant is that the SVM is formulated as a convex optimization problem.
This implies the fact that the error function that is minimized during training
has only one minimum (global) and moreover the training algorithm can be
executed much faster than for example the backpropagation algorithm that is
often used to train MLPs. For what concerns gas quantification, the problem
can be formalized either as a regression problem or a classification problem. In
the first case the concentration will be treated as a real valued variable while in
the second case the concentration is discretized into intervals and each interval
is considered as a separate class. The most widely used regression methods for
gas quantification are multiple linear regression (MLR) and partial least squares
(PLS) [27].

2.4 Applications of the Electronic Nose

In this section a brief description of the most important applications of the
electronic nose in the areas of medical diagnosis, food and beverage, and envi-
ronmental monitoring will be given. Concerning robotic applications the dis-
cussion is deferred to Chapter 4. The purpose of this section is not to give a
complete review of applications of electronic noses but to mention the works
that are either relevant for this thesis or they try to connect the field of elec-
tronic nose with other, more established, fields like analytical chemistry. For an
exhaustive review please refer to [4, 28, 29, 30].

2.4.1 Medical Diagnosis

In ancient times smell was an important sense for diagnosing diseases. Accord-
ing to the Greek physician Hippocrates (ca. 460 BC - ca. 370 BC) “You can
learn a lot just by smelling your patients with the unaided nose”. However,
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modern diagnostics techniques do not rely any more on the olfactory percep-
tion of the physician but they are based on physical, chemical and biological
analysis. Human olfactory perception is indeed highly subjective and therefore
not suitable as a diagnosis method according to modern criteria. However, a
non-intrusive device that could perform a fast analysis of volatile compounds
generated by infections or metabolic diseases would be valuable. An electronic
nose could be for example used as a complement for laboratory analysis, that
are often very time consuming and expensive. Probably the most successful
medical application of the e-nose is presented by Persaud et. al. in [31], where
an array of conducting polymer gas sensors is used to monitor urinary tract
infections (UTT) and bacterial vaginosis (BV). In this study HS-GC-MS is used
to identify acetic acid as a marker for both UTI and BV, then an array of con-
ducting polymer sensors calibrated on the detection of acetic acid is developed.
Finally a pattern recognition algorithm is developed in order to interpret the
response of the array. This study is particularly interesting since it links classic
analytical chemistry techniques with electronic noses. The validity of this study
is confirmed by the FDA approval for the use of the devices developed in this
study as aids to clinical diagnosis in the USA.

Another quite developed medical application of the electronic nose is the
identification of bacteria from bacteria cultures. Bacteria cultures are an in-
vitro isolated system whose analysis is easier and much more repeatable than
other setups that have to be in contact with the patient like breath analysis for
example. The most relevant works dealing with bacteria identification in blood
cultures with an e-nose are [32, 33, 34]. More recently the project Mednose,
a collaboration between Orebro University and Orebro University Hospital in
the Novamedtech framework, aims at the development of a fully fledged in-
strument for rapid bacteria identification that complements traditional bacteria
identification techniques based on bacteria cultures (PAPER IX). One relevant
specification of this project is that the developed prototype has to fulfill the
tests for obtaining the CE Mark approval for In Vitro Diagnostics (IVD) de-
vices and can therefore be used in a hospital as a tool for diagnosis support.
Details about the algorithm developed in this project are given in Section 3.1.4.

2.4.2 Food Quality Monitoring

Electronic noses have been proposed in the food and beverage industry for ad-
dressing applications like inspection of the nature and quality of ingredients,
supervision of the manufacturing process and spoilage detection of foodstuff.
Probably the most studied deterioration process with an electronic nose is fish
spoilage. The biochemical processes that take place after the death of the fish
and specific volatiles that are produced by these processes are well known. The
main responsible for the spoilage of fish is the growth of microorganisms [35],
which is dependent on extrinsic and intrinsic factors. The most relevant ex-
trinsic factors are temperature and composition of the atmosphere, while the
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fish species is what determines the most relevant intrinsic factors (poikilotherm
nature, aquatic environment, post mortem pH of the flesh, concentration of
non-protein nitrogen and trimethylamine oxide). Therefore, the spoilage of dif-
ferent fish species in different storage conditions is dominated by different mi-
croorganisms, primarily Vibrionaceae, Shewanella putefaciens, Pseudomonas
spp., Photobacterium phosphoreum, Lactobacillus spp. and Carnobacterium
spp [35]. As already pointed out in the previous section, the different microor-
ganisms produce different metabolites. The difference in the metabolites is re-
flected in changes in the sensor response of an appropriate array of sensors [28].

2.4.3 Environmental Monitoring

In the last decades, given the increase in awareness of the negative effects of pol-
lution on human health and quality of the environment, environmental mon-
itoring has become more and more important. The electronic nose has often
been proposed as a cheap alternative to analytical chemistry techniques to de-
tect pollutants in the ambient atmosphere or in the headspace of water [4].
Other projects, more closely related to the content of this thesis, aim at collect-
ing gas measurements to create a gas distribution map or find the source of a
gas plume [30].

For what concerns air pollution monitoring, the substances that are com-
monly measured by air pollution stations in town are NO,, suspended partic-
ulate matter (SPM), Oy, SO, and CO. Currently, pollution monitoring stations
installed in towns are mounting very expensive gas analyzers and therefore
their number is limited. This implies that the resolution of the measurement is
sparse, hindering the accuracy of the mapping/source localization process. This
limitation can be overcome by a network of cheap and reliable sensors. Maruo
et. al. presented a work where the NO, distribution in Sapporo is monitored
with an optical sensor [36]. A network of 10 sensor nodes has been placed
around the intersection of two main roads, and the variations in the temporal
and spatial variations in the NO, concentration are analyzed on a hourly basis.
In [37] the concentration of NO, in the area of the Tokyo Institute of Tech-
nology has been monitored with semiconductor gas sensors. The sensor nodes
were equipped also with a temperature and humidity sensor in order to measure
these variables and to compensate for their effect on the sensor response.

Mobile robots equipped with gas sensors can provide an enhancement in the
performance of sensor networks for environmental monitoring. Indeed, two
of the main limitations of sensor networks are the coarse spatial resolution
and the non-adaptive sensors placement. These limitations can be overcome
if the sensors are mounted on a mobile robot (PAPER VI). Moreover mobile
robots with gas sensing capabilities could also be able to track a gas plume to
its source and then perform an appropriate action for repairing the damage.
The discussion about mobile robots with olfactory capabilities is deferred to
Chapter 4.
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2.5 Discussion

This chapter is by no means a comprehensive review of the field of machine
olfaction. The first part of this chapter gives an introduction of the functional
parts of an electronic nose. The aim of this part is introducing the aspects that
constitute the basis of the original contributions presented in the next chapters.

The second part of the chapter presents the applications of artificial olfac-
tion that, in the opinion of the author, can have the highest impact. The works
presented in this section have been selected because they try to connect the
research in electronic nose with other, more established fields, like analytical
chemistry. This, in the opinion of the author constitutes a step forward with
respect to works in which a dataset of electronic nose responses are collected
and then a machine learning algorithm is applied in order to discover some
pattern or correlation in the dataset, without understanding the mechanisms
underlying the process under examination. Indeed only by understanding the
physical and chemical processes underlying a certain phenomenon or at least by
having a clear idea of the chemical compounds relevant for the specific applica-
tion one can be sure that the solution proposed is really capturing the essence
of the problem. Otherwise there is always the risk that the results observed are
due to contingent factors that are not taken into account. In the opinion of the
author purely machine learning based approaches are a good proof of concept
that the electronic nose is a suitable instrument for addressing a certain ap-
plication. Then, once the proof of concept has been successfully obtained, the
attention should be moved towards explaining the phenomena that caused the
correlations that have been observed.



Chapter 3
Towards Open Sampling
Systems

This chapter addresses the problem of discrimination of gases through the anal-
ysis of the dynamics of the response of an array of gas sensors. At first a brief
summary of the methods for extracting features that can capture the dynam-
ics of a signal collected with a closed sampling system is presented. At the end
of the summary, the only contribution of this thesis that deals with a closed
sampling system, the identification of bacteria in blood vials using an electronic
nose, is presented as a case study. Then, an investigation of the properties of
the signal collected with an open sampling system in controlled conditions is
presented. The chapter is concluded with a discussion on the results obtained
in the investigation.

Recall, the main goal of this thesis is to develop gas discrimination algo-
rithms for e-noses that have an open sampling system, with particular interest
to mobile robotics olfaction applications. Before starting the technical discus-
sion of the problem it is beneficial to make some qualitative considerations
about the differences between a signal collected with a closed sampling system
(three-phase sampling strategy) and a signal collected with an open sampling
system. A signal collected with an e-nose mounted on a mobile robot and a
signal collected with the same e-nose in a small chamber using the three-phase
strategy are displayed in Figure 3.1. The e-nose is an array of § MOX gas
sensors. The robot on which the e-nose is mounted performed a sweeping tra-
jectory in a large room where a cup filled with ethanol was placed. More details
about this experimental setup are given in Section 4.1.

The first difference between the two signals is that, given the open sampling
system, the signal collected with the robot does not have the three phases typ-
ical of a signal collected by an e-nose with a closed sampling system. This is
because there is no step in the concentration of the analyte induced by a sam-
pling mechanism but the changes in concentration are due to the turbulence
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Figure 3.1: Response of a sensor array composed by 5 metal oxide gas sensors. In sub-
figure (a) the sensors are in a small chamber and the three phase sampling strategy is
used. In subfigure (b) the sensors are mounted on a mobile robot and are placed in an
actively ventilated tube. Adapted from PAPER V.

and advection of the airflow that transports the gas in environments character-
ized by a high Reynolds number. These changes in concentration have a much
faster dynamics than the metal oxide gas sensors themselves and therefore the
gas sensor response never reaches a steady state. For this reason, an algorithm
for performing gas discrimination or quantification in such a setup has to be
able to extract information from the dynamics of the sensor response since a
steady state in the response is never observed. The lack of a controlled exposure
of the sensor array to the target gases, that in closed sampling systems allows
segmenting the signal into three phases, introduces the additional complication
of not having any trivial segmentation of the signal into different phases. In
most of the articles on which this thesis is based, this problem is addressed
by a segmentation policy that is based on the assumption that every patch of
gas that hits the sensor array causes a peak in the response. The segmentation
algorithm, together with the other parts of the gas discrimination algorithms
are described in Chapter 4. Algorithms that can perform gas discrimination
on the early phase of the transient are beneficial also for electronic noses with
closed sampling systems [38], especially if quick gas discrimination is desirable.
Indeed, if the initial transient phase contains enough discriminatory informa-
tion, the lengthy acquisition time needed for the sensor to reach the steady state
can be avoided. Indeed, even for metal oxide gas sensors that have a relatively
quick response, a measurement cycle (response + recovery of the sensors to ini-
tial state) takes at least five minutes to be completed. If a gas can be identified in
the early phase of a response then the sample can be removed before the steady
state is reached, causing a speedup also in the recovery phase.

This chapter begins with a brief review of the general problem of analysis
of the dynamic response of an array of gas sensors in a closed sampling system
(Section 3.1). Section 3.1.4 presents the results of a study where an electronic



3.1. DYNAMIC FEATURE EXTRACTION IN THE PRESENCE OF STEADY
STATE 19

nose with a closed sampling system uses static as well as dynamic information
to improve the identification of bacteria in blood samples. Section 3.2 moves
the discussion to the investigation of the properties of a signal collected with an
open sampling system under controlled conditions. Section 3.3 concludes the
chapter with a discussion on the results concerning gas discrimination with an
open sampling system.

3.1 Dynamic Feature Extraction in the Presence of
Steady State

A sensor response can be seen as time series of length N. The problem of gas
discrimination/quantification can therefore be seen as a classification/regression
problem in an N dimensional space, where every sensor response is represented
by a point. In most of the cases, the number of sensor responses M available for
analyzing the problem of interest is much smaller than N. From a geometrical
point of view we have M points in an N dimensional space and, given that
M << N, the density of points is very low. It is well known that the estimation
of a function (discriminant or regression) in a high dimensional space (or in a
space with a very low density of points) is a difficult problem and therefore the
dimensionality of the space have to be reduced before applying any machine
learning algorithm. The most common methodology to cope with this problem
is to extract features from the signal that can capture the information that
is relevant for successfully performing the function estimation task. Only few
features are extracted from a sensor response and therefore the dimensionality
of the space where the estimation is performed is drastically reduced.

There are in general three approaches for compressing the information con-
tained in a sensor response in order to capture the dynamic of the signal: sub-
sampling procedures, extraction of ad-hoc transient parameters and extraction
of model based parameters. In the literature there are various works that com-
pare these different feature extraction methods and, in the opinion of the au-
thor, the most significative are [39, 19, 25]. It is important to notice that a
further step of dimensionality reduction might be needed. Indeed not all the
features extracted from all sensors might carry useful information or many of
the feature might be highly correlated. This additional dimensionality reduc-
tion step is normally carried out either by projecting the samples on a lower
dimensional space (feature extraction) or by selecting a subset of the available
feature (feature selection). A feature selection technique for gas discrimination
in mobile robotics application has been developed in PAPER VII. Details about
the contribution and feature selection techniques in general are presented in
Chapter 4, which is dedicated to the mobile robotics related contribution.
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Figure 3.2: Response of the sensor MO110 of the NST 3220 Emission Analyzer (Ap-
plied Sensors) when exposed to the volatile metabolite of Escherichia Coli. The original
response has been sampled at the frequency of 2 Hz. The stem plot shows a subsampling
where every fifteenth has been kept. Notice that for graphical reasons only the first 200 s
of the total response (260 s) have been plotted.

3.1.1 Subsampling Procedures

Probably the most straightforward way to capture the dynamics of a sensor re-
sponse is to sub-sample the sensor response. In this case the dynamic informa-
tion is represented implicitly in the correlation of the sensor values at different
times. This technique can be seen as an extension of the static feature extrac-
tion techniques that just consider the sample (or an average of some samples)
at the end of the gas exposure phase. Figure 3.2 gives a graphical interpreta-
tion of this technique. It should be noted that in certain sensor technologies
like metal-oxide gas sensors, the transient in the gas exposure phase is much
faster than the one in the recovery phase. Therefore the subsampling should be
more fine-grained in the gas exposure phase than in the recovery phase. Indeed,
observing Figure 3.2 where a uniform subsampling strategy has been used, it
is quite straightforward to notice how only one sample in the steep part of
the transient in the gas exposure phase has been kept, compared to at least six
samples in the steep part of the transient in the recovery phase.

3.1.2 Ad-hoc Transient Parameters

A wide range of heuristic parameters might be extracted from the response
of a gas sensor. Figure 3.3 depicts three of the most common: the maximum
value of the sensor response, the maximum value of the derivative of the sensor
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Figure 3.3: Response of the sensor MO110 of the NST 3220 Emission Analyzer (Ap-
plied Sensors) when exposed to the volatile metabolite of Escherichia Coli. The original
response has been sampled at the frequency of 2 Hz. Three ad-hoc features are depicted:
the maximum value of the response, the maximum value of the derivative and the inte-
gral of the response phase. Notice that for graphical reasons only the first 200 s of the
total response (260 s) have been plotted.

response and the integral of the sensor response in the gas exposition phase.
Other feature can be rise or decay time and derivatives or integrals of the signal
taken at different times. A list of the most common ad-hoc feature can be found
in [39].

More recently Martinelli et al. [40] proposed to extract features from the
phase plot of the sensor response. The phase plot they consider has the sensor
response and its derivative as state variables. A number of features like area
and higher-order moments are extracted from the phase plot.

It is particularly interesting the work presented by Muezzinoglu et al. in [38]
where they present a dynamic feature based on an exponential moving average
technique. This feature is particularly interesting since it is possible to modulate
the time at which the feature will be available through a parameter. The choice
of this value is a tradeoff between the speed in the availability of the feature and
the information content. Another interesting aspect is that this feature shows a
good correlation with the steady state response of the sensor, and therefore it
can be argued it has similar information content.
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3.1.3 Model Based Parameters

A third way to capture the dynamic information contained in the response of a
gas sensor is to fit an analytical model to it and then use the parameters of the
model as features. Many types of models have been proposed, ranging from
autoregressive models, to polynomial, multi-exponential, sinusoidal (Fourier
expansion) and wavelets. Given the exponential nature of the transient response
of a gas sensor, the multi exponential models are the most often used. Indeed
the sum of exponential functions represents the different reactions that take
place when the gas is sampled and absorbed by the sensing surface. In the
multi exponential model, the response is modeled by a sum of K exponential
functions that can be expressed by the following formula:

K
f(t) =) Aie V™ (3.1)
i=1

The task of modelling a time series with the sum of exponential functions
is an ill-conditioned problem. Indeed, unlike the sinusoidal functions used in
Fourier analysis or most of the families of functions used in wavelet analysis,
exponential functions do not provide an orthogonal expansion. This implies
that the problem of the determination of the coefficients {Ai, ti,i = 1...K} of
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Figure 3.4: Response of the sensor MO110 of the NST 3220 Emission Analyzer (Ap-
plied Sensors) when exposed to the volatile metabolite of Escherichia Coli. The original
response has been sampled at the frequency of 2 Hz. The dashed lines show two expo-
nential models fitted respectively to the sampling and to the recovery phase of the signal.
Notice that for graphical reasons only the first 200 s of the total response (260 s) have
been plotted.
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the model from a finite time and finite precision time series does not have a
unique solution. Moreover, an additional problem is the determination of the
number of exponential models K to be used in the fit. An extensive analysis
of the problem of fitting a multi exponential model to the response of a gas
sensor can be found at [18]. Figure 3.4 displays the fit of an exponential model
to the response of a metal oxide gas sensor. It can be noticed how the fit of a
single exponential (K = 1 - both for the response and for the decay phase) is
not perfect and therefore, for obtaining better feature extraction the number of
exponential used in the fit should be increased.

3.1.4 Case Study: Bacteria Identification with an Electronic
Nose

Sepsis, also known as blood poisoning or septicemia, is caused by the presence
of micro-organisms in the blood such as bacteria. With the current techniques
used in hospitals, based on bacteria culturing, the identification of the bac-
terium causing the infection is a lengthy procedure that takes up to 4-5 days. An
early diagnosis would allow the usage of antibiotics tailored on the identified
bacteria from the first stages of the treatment instead of wide spectrum antibi-
otics that weakens the immunitary system of the patient. This would translate
in a better treatment in terms of shortened hospitalization time and, in the most
severe cases of sepsis, in saving human lives.

The project Mednose (Novamedtech framework), is a collaboration be-
tween Orebro University and Orebro University Hospital and aims at devel-
oping an electronic nose for the fast identification of the bacterium causing
sepsis. The work presented in PAPER IX describes the details about the pat-
tern recognition algorithm developed for discriminating 10 different bacteria
(selected by microbiologists at Orebro University Hospital as main responsible
for Sepsis) using a general purpose electronic nose (NST Emission Analyzer,
Applied Sensors, Linkoping). A prototype of an electronic nose tailored on the
bacteria identification problem is currently under development. The proposed
algorithm can be summarized in five steps:

Feature Extraction The feature extracted are the static response of the sensor
and the average derivative of the first 3 seconds of the response. These
two features capture both the static and the dynamic information of the
signal.

Dimensionality reduction In order to reduce the dimensionality of the feature
space the linear discriminant analysis (LDA) is used.

Classification The classification algorithm that has been considered in this work
is the Support Vector Machine (SVM) [41]. The SVM is a popular kernel
based algorithm that projects the data into a high dimensional space in
which the problem is solved using a maximum margin linear classifier.
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The linear decision boundaries in the high dimensional feature space are
in general non linear decision boundaries in the original feature space.
One of the most important properties of support vector machines is that
the estimation of the model parameters is a convex optimization prob-
lem and therefore any local solution is also a global optimum. Many
variations of the original model of SVM have been proposed, both for
classification and regression problems. The model used in this work is
the soft margin SVM with Gaussian kernel. The SVM is by definition a
binary classifier, though it is possible to extend it to the multiclass case
using different approaches. In this work the one-versus-one approach is
used.

Posterior Probability Estimation An estimation of the posterior probability for
a sample belonging to each of the classes considered is obtained by fitting
a sigmoid to every pairwise decision hyperplane found by the SVM clas-
sifier. These pairwise coupled posterior probabilities are then ensembled
using the second method proposed in [42] in order to get a multiclass
posterior probability.

Ensembling Decisions The estimation of the posterior probability from ten con-
secutive measurements of the same sample are treated as a random sam-
ple. A decision is taken only if there is a class whose average of the pos-
terior probability across the ten samples is significantly superior than all
the other ten.

The sampling cycle used in this work, as in most e-nose based systems, is
composed by three phases: baseline acquisition, odour sampling and recovery
to initial state. In the baseline acquisition phase the sensor array is exposed to
a reference gas (air in this case) for 10 seconds and the value of the sensors
is recorded. During the odour sampling phases the headspace in the analysis
bottle is injected into the sensor chamber for 30 seconds. After this, the sensors
are exposed again to the reference gas for 260 seconds in order for the sensors
to recover the value they had during the baseline acquisition phase. The total
length of the sampling cycle is five minutes. The sampling cycle is repeated ten
times in a row and we refer to a series of ten consecutive sampling cycles as a
measurement. A measurement sequence is composed by one measurement for
every type of bacteria. The whole data set is composed by 12 measurement
sequences, 6 done with a first batch of bacteria cultures and six done with a
second batch one week later. Blood samples within a batch came from the same
source and different sources were used between batches.

The proposed algorithm has been validated with a 12-fold cross validation
on the collected data set. In every fold, one sequence of measurements have
been left out and used for testing the algorithm trained with the remaining
eleven sequences. Table 3.1 shows the performances obtained in the twelve
measurement sessions. It is evident how measurement sessions 1 and 7 obtain
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| # Session || Response Features | Response and Derivative Features

1 73% 69%
2 91% 99%
3 93% 98%
4 100% 100%
S 100% 100%
6 100% 100%
7 65% 64%
8 88% 97%
9 97 % 100%
10 100% 100%
11 98% 99%
12 97% 96%

Table 3.1: Classification accuracy for the twelve measurement sessions
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Figure 3.5: Graphical interpretation of the two feature extraction methods used in this

work. Taken from PAPER IX.

a performance much worse than the other sessions. This can be explained by
the fact that these two sessions are the ones recorded in the beginning of the
two experiment batches. Therefore, we can suppose that this degradation of
performance can be due to interference in the measuring system, like humidity
deposited on the sensors surface, the sensors were not fully warmed or stagnant
air was present in the sampling system. For this reason session 1 and 7 are

removed from the subsequent analysis.
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Figure 3.6: Performance of the classification algorithm with a varying rejection thresh-
old. The upper figure shows the error rate and the lower figure the rejection rate. The
dashed lines represent the performance obtained by the algorithm that uses only the
response based features, while the solid lines represent the performance obtained by the
algorithm that uses both the response and derivative based features. These results have
been obtained using a leave one out cross validation. Taken from PAPER IX.

As already mentioned, two features are extracted, from the dynamic re-
sponse of every sensor: the static response of the sensor and the average deriva-
tive of the first 3 seconds of the response. Figure 3.5 displays a graphical inter-
pretation of the two features. Given that the time interval on which the deriva-
tive is averaged is fixed (3 s), this feature is directly proportional to the value of
the sensor after 3 seconds. Therefore the use of these two features is equivalent
to perform a subsampling strategy sampling the sensor response after 3 and 30
seconds of exposure to the sample. Figure 3.6 displays the results obtained by
the classification algorithm in case only the steady state value is used and in
case both the features are considered. It can be observed how the addition of
the derivative based features diminishes the error to roughly its third part over
the entire rejection threshold spectrum without increasing the rejection rate.
This is yet another confirmation that the dynamic characteristics of the signal
contain useful information for the discrimination of gases.

Figure 3.7 shows how the errors are spread across measurement cycles. It
can be observed how the number of errors made during the first measuring cycle
is larger than the errors in the other cycles. This can be due to the fact that the
purging procedure of the nose at the end of a measuring cycle is not perfect
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Figure 3.7: Number of errors committed by the classification algorithm in the different
measuring cycles for the data set where sequences 1 and 7 have been removed. It is
evident how the first measurement cycle is more subject to erroneous decisions. Taken
from PAPER IX.

and therefore some leftover from the previous sampling cycle is still there. This
effect is particularly evident in the first measuring cycle since the bacteria that
was smelled in the cycle before was different.

Results from ensembling the decisions for the data set without sequence 1
and 7 are shown in Figure 3.8. It is important to notice how neglecting the
first cycle improves the performance of the ensemble. This confirms that the
first cycle contains additional noise with respect to the subsequent cycles. Fig-
ure 3.8 displays only the rejection rate since the error is constantly zero. After
only 4 sampling cycles perfect discrimination is obtained as both the error and
rejection rate are zero. More details and results can be found in Parer IX.

3.2 Investigation of the Signal Dynamics for
E-Noses with an Open Sampling System

To the knowledge of the author, the first paper addressing gas discrimination
with an open sampling system is [43]. In this work an array of 4 metal oxide gas
sensors is mounted on a mobile robot whose task is to navigate to a specific gas
source. The feature extraction technique proposed in this work is the Discrete
Wavelet Transform (DWT). The authors claim that only 4 seconds of exposure
of the array to the target analyte are sufficient in order to perform reliable
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Figure 3.8: Performance of the ensembled classification algorithm with a varying number
of measuring cycles for the data set where sequences 1 and 7 have been removed. Only
the rejection rate is shown since the error is constantly zero. The dashed lines represent
the performance obtained by the algorithm that uses all the measuring cycles, while
the solid lines represent the performance obtained by the algorithm that neglects the
first measurement cycle. Notice that the dashed line starts from cycle two and the solid
line from cycle three. This is because at least two samples are needed to calculate an
uncertainty. Taken from PAPER IX.

identification. Though, the work presented in that paper is not very detailed
and contains some clear mistakes. For example the resistance of a n-type metal
oxide gas sensor decreases when exposed to some reducible gas, while from
one of the figures displayed it seems the opposite. Moreover, the experimental
setup and the data processing algorithm are not described in detail. Therefore
the validity of the results presented is not clear.

Martinez et. al. in 2006 [44] propose a biomimetic robot for tracking a spe-
cific gas plume. This paper addresses both the problem of navigation towards
a gas source and gas discrimination in order to be able to navigate towards a
specific source. The navigation system is based on the comparison of the signals
collected by two spatially separated e-noses places at either side of the robot.
The odor discrimination algorithm is based on a spiking neural network using
a synchronization coding scheme. The spiking neural network is a biologically
inspired computational model that falls out of the scope of this thesis, for more
details refer for example to [45]. The methods presented in this paper for gas
discrimination and plume tracking are interesting but the experimental setup
seems inadequate to demonstrate the claims. Indeed the arena is small com-
pared to the dimension of the robot (the width of the arena is only 4 times
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Figure 3.9: Sensor response obtained for the experiment in which the gas source emits
steps of increasing intensity of ethanol. The sensor response is defined as the instan-
taneous sensor resistance divided by the value of the resistance measured during the
baseline acquisition. Taken from PAPER VIIIL.

the width of the robot) and the two tasks of gas discrimination and gas plume
tracking are examined in two different experiments. Therefore it is never really
demonstrated that the robot can track a specific gas plume until its source.

In [46] the rapid fluctuations in the concentration of the analyte due to tur-
bulence were reproduced using the gas generator described in [47]. An array
of 4 QCM sensors is used to discriminate muscat and apple flavors. The sig-
nal processing is carried out using standard techniques like short time Fourier
transform (feature extraction), and learning vector quantization (classification).

The work presented in [46] is of particular interest for this thesis since it
inspired the experimental setup described in PAPER VIIL. This setup enables a
ground truth on the compound (and its concentration) that is interacting with
the sensors in a specific moment. In this way it would be possible to get a
deeper insight in the behaviour of the sensors when exposed to abrupt changes
of compound/concentration. In this setup the experiments are carried out in a
Sm x5 mx2mroom where an artificial airflow of approximately 0.1 m/s
is induced. The airflow is created using two arrays of four fans (standard mi-
croprocessor cooling fans), one placed on the floor and one on the wall. The
gas source is an odour blender, a device described in [48] that can mix up to
13 odour components from arbitrary recipes using PWM modulated solenoid
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valves. This odour blender enables abrupt switches of compound and concen-
tration allowing the generation of rapidly changing controlled signals. The out-
let of the olfactory blender is placed on the floor 0.5 m upwind with respect
to an array of 11 metal oxide gas sensors and a photo ionization detector (pp-
bRAE2000, RAESystems). The purpose of the photo ionization detector is to
obtain calibrated measurements in the proximity of the metal oxide gas sensor
array. These calibrated measurements serve as ground truth for concentration
estimation algorithms. Moreover the controlled airflow and the fixed distance
of the sensor array from the gas source enable an exact estimation on which
substance is hitting the sensor array at every instant. These two facts provide a
ground truth on the compound (and its concentration) that is causing the sen-
sor response. The two compounds selected for these experiments are ethanol
and 2-propanol. These two substances have been chosen since they are both
heavier than air (they form a plume at ground level) and they have a saturated
vapor pressure in the same order of magnitude. Having a similar saturated va-
por pressure is relevant because the odour blender samples the vials containing
the compounds directly from the headspace and this implies that a similar sat-
urated vapor pressure would translate in similar concentration emitted by the
odour blender for the two substances. This strengthens the fact that a success-
ful gas discrimination is possible due to the real selectivity of our sensor array
and not to differences in the concentration of the two compounds. In order to
create a database that allows to study the dynamic behaviour of the sensors
when consecutively exposed to different analytes, two different gas emitting
strategies have been used. In the first strategy only one analyte is used at the
time. The gas source emits clean air for two minutes and the signal of sensors
during this period is assumed as baseline. Then for two additional minutes the
compound (ethanol or 2-propanol) is emitted at 20% of gas source strength.
After which the gas source will emit clean air for 2 minutes. This schema is
repeated with source strength 40%, 60%, 80% and 100%. In the second strat-
egy the gas source emits clean air for the first 2 minutes as in the previous
strategy. However, rather than continuing to switch between air and a target
analyte, the source switches between the two target analytes, namely ethanol
and 2-propanol, every 2 minutes. A total of 10 switches between the two an-
alytes is performed. The intensity of the source is chosen randomly in among
20%, 40%, 60%, 80%, 100%. At the end of the experiment the source emits
clean air for 2 minutes. A graphical representation of the gas source intensity
together with the response of the sensors array for the two emitting strategies
is displayed in Figure 3.9 and 3.10.

Analyzing Figures 3.9 and 3.10 it is possible to observe how the sensors, due
to the rapid changes in concentration generated by turbulence, never reach a
steady state in the same way they do in controlled sampling systems (chamber
or flow system). Though, we can observe that after an initial transient phase
that takes place when the gas source changes either the analyte or the intensity
of emission, the response of the sensor fluctuates around a value. Therefore
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Figure 3.10: Sensor response obtained for the experiment in which the gas source emits
ethanol and 2-propanol in alternation with random intensity. The sensor response is
defined as the instantaneous sensor resistance divided by the value of the resistance
measured during the baseline acquisition. Taken from PaPER VIIIL.

it is interesting to compare the discrimination ability of these two “states” in
the signal: signals which are in transient due to switching between analyte,
and signals which have fluctuations around a base value after the transient due
to switching has occurred. In order to analyze this aspect we calculate how
long the sensors take to stabilize around a new value after an intensity/analyte
change. An exponential function is fitted to every segment of signal in which
the gas source emits an analyte with constant intensity (two minutes) and a time
constant T is estimated. The transient in between two substances or intensities
is considered concluded after a time constant T of the slowest sensor has passed
(after the switch).

Figure 3.11 shows a PCA plot of all the samples that have been collected
after the response of the sensor array has stabilized around a new value. It is
possible to notice that the responses collected when the array is exposed to the
3 compounds considered are still well clustered, despite that the turbulence in-
troduces oscillations in the response. This is an indication that, once the sensor
has passed the transient phase due to a substance or source intensity change, the
fluctuations in the signal due to turbulence do not necessarily prevent the ana-
lyte from being identified. In this condition a static system, i.e. a system whose
decision at time t depends only on the sensor response at time t, would pro-
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Figure 3.11: Samples collected when the transient due to a substance switch is over.
Taken from Paper VIII.

vide satisfactory identification performances. For what concerns the transient
phase (the time elapsed from the substance switch is less than 1) the situation
looks different, as can been seen in Figure 3.12. In this case the clusters overlap
significantly, indicating that identification with a static system would be prob-
lematic. However, dividing the samples according to the substance from which

*air
* ethanol
* 2-propanol

2nd Principal Component (0.10)

1st Principal Component (0.85)

Figure 3.12: Samples collected during the transient due to a substance switch. Taken
from Paper VIII.
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Figure 3.13: PCA plot of the transients divided according to the substance they start
from. Taken from Paprer VIIL

the transient starts changing the situation as shown in Figure 3.13, and a PCA
analysis with the first two components suggest good discrimination ability.

In order to verify the applicability of the results to an array of sensors
mounted on a mobile robot a series of experiments has been carried out in
the same room. The mobile robot experiments are described in PAPER X.

3.3 Discussion

Probably one of the most crucial aspects of research in electronic noses with
an open sampling system is the design of the experiments. Technical difficulties
in designing experiments that enable to study and develop systems for airborne
chemical monitoring are due to various reasons.

One reason is that the dispersion of chemicals in natural environment is dif-
ficult to observe since most chemicals produce an invisible plume. Plus, given
the chaotic dispersal of a gas in natural environment, the plume is also difficult
to predict in a generic setting. Moreover, environmental conditions are often
very variable and therefore experiments are hard to repeat. Thus it is difficult
to obtain a ground truth that can be used to validate experimental results. In
order to overcome this limitation, often experiments are carried out under con-
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trolled conditions that enable to obtain a ground truth that simplifies the anal-
ysis of the experimental data. Another advantage of controlling experimental
conditions is that the repeatability of the experiments is increased. On the other
hand, it is hard to predict how the results obtained in experiments carried out
under controlled conditions extend to uncontrolled environments. Experiments
performed with uncontrolled environmental conditions are interesting because
they for sure constitute a good benchmark for the system to be developed. In-
deed the ultimate goal of research in electronic noses with an open sampling
system is to produce systems that can be deployed in a multitude of settings
where environmental conditions are not controllable (e.g. environmental moni-
toring in towns). The experimental setup in often a result of a tradeoff between
controlled experimental conditions, that enable deep insight in the data and
ease of analysis, and uncontrolled experimental conditions, that enable the col-
lection of data that are more similar to the one that the final system would have
to cope with.

This tradeoff has been central in the design of the experiments presented in
this thesis. From a chronological perspective, first a series of experiments with a
gas sensing robot has been carried out (described in detail in Section 4.1). These
experiments have been conducted in different environments under uncontrolled
conditions. After developing the algorithms presented in Chapter 4, the experi-
ments under controlled environmental conditions have been performed. Those
experiments enabled the observation of the sensor response when the sensors
array is exposed to abrupt changes in analyte and/or concentration. Abrupt
changes of analyte interacting with the sensors surface might occur in case the
sensors are deployed in a location where more than one gas source is present.
Therefore the ability of coping with this situation is useful for addressing tasks
like multiple gas source localization or gas distribution mapping in presence of
multiple heterogeneous gas sources. Another important observation enabled by
the controlled experimental setup is that the discrimination problem becomes
much simpler when the sensors have been exposed for long enough time to an
analyte, despite turbulence does not allow the sensor response to stabilize on
one level. In the experiments under controlled conditions this long exposure
could be achieved by introducing a stable unidirectional airflow, but in envi-
ronments where the airflow is uncontrolled this long exposure time cannot be
guaranteed. Therefore, it may be important to perform the identification when
the sensor is in the transient phase that occurs just after the exposure of the
sensor to a substance, even if the sensor have been previously exposed to a dif-
ferent compound without possibility of recovery between the two exposures.



Chapter 4
Mobile Robotics Olfaction

This chapter presents the contributions of this thesis related to mobile robotics
olfaction. The attention is therefore moved from the analysis of the problem of
discrimination of gases with an open sampling system per se, to the implications
of having the e-nose mounted on a mobile robot. At first the experimental setup
that has been used to collect data is presented, then the algorithmic contribu-
tions are analyzed in detail. At last a brief panoramic of related research topics
in mobile robotics olfaction is given, with particular attention to the problem
of gas distribution mapping since one of the contributions of this thesis is in
that field.

Gas sensing with mobile robots is a relatively recent research area that
started in the beginning of the 1990s. Chemical sensing capabilities would al-
low mobile robots to acquire functionalities that cannot be obtained with other
sensing modalities. Robots with olfactory capabilities can for example monitor
polluted areas (PAPER I), detect gas leaks or find explosives [49].

The tasks that have been addressed by research in mobile robotics olfaction
are mainly three: gas source localization, gas distribution mapping and trail
guidance. The works that address gas source localization can be further cate-
gorized with respect to the approach, either gas plume tracing and gas source
declaration or gas distribution model based source localization or the sensing
modalities available, either with or without using local wind airflow informa-
tion. To the knowledge of the author the latest review of the field is [13]. In
2008, Kowadlo and Russell presented another review [50], but in this case the
scope is limited gas source localization methods.

One of the key challenges for chemical sensing robots is to determine the
way in which the gas is dispersed. The Reynolds number is a dimensionless
number that can be used to characterize different flow regimes. It gives a mea-
sure of the ratio of inertial forces to viscous forces and consequently quantifies
the relative importance of these two types of forces for given flow conditions.
At low Reynolds numbers, where viscous forces are dominant, the flow regime
will be laminar and it will be characterized by a smooth fluid motion, while at

35
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high Reynolds number, where inertial forces dominate, turbulent flow occurs
which tends to produce random eddies, vortices and other flow instabilities.
Gas dispersal in turbulent airflow occurs mainly through advection caused by
the fluid flow itself. That is the reason why many gas sensing robots have been
equipped with an anemometer that can provide local information on the air-
flow. Given these considerations, it is understandable how a robot that has to
be able to successfully localize a gas source or produce a gas distribution map
has to be designed taking in consideration the environment in which it will be
deployed.

Together with the difficulties introduced by chaotic gas dispersal, additional
challenges are introduced by the sensing device. MOX gas sensors are the most
common sensor technology in mobile robotics olfaction because they have a rel-
atively fast response and recovery time, a high sensitivity, a good stability over
time and they are commercially available. It is important to notice that, despite
MOX based sensor have faster dynamics than other gas sensing devices, the
dynamics of MOX sensors is still too slow to be able to capture fluctuations in
concentration due to turbulent airflow. This fact, together with cross-sensitivity
to temperature and humidity, prevents from interpreting the sensor readings as
true gas concentration readings. Another significant drawback of MOX sensors
is the lack of selectivity. This makes the gas discrimination problem non-trivial.

Gas discrimination with mobile robots is still a relatively unexplored field.
Indeed only a handful of works address it [43, 44, 51]. As already mentioned in
Chapter 3, when the array of sensors is deployed in an open sampling system,
as is the case with most of olfactive mobile robots, the dynamics induced by the
turbulent airflow is too fast for allowing the sensor to reach a steady state. In
this chapter, we will move our attention from the analysis of the discrimination
of gases with an open sampling system per se, to the contribution related to
the fact that the array of sensors is installed on a mobile robot. Section 4.1 de-
scribes the experimental setup that has been designed to study the problem of
gas discrimination with mobile robots. Following Sections focus the attention
on algorithmic contributions. In particular Section 4.2 presents the gas discrim-
ination algorithm, Section 4.3 describes how the gas discrimination algorithm
can provide input to the robot’s path planner in order to optimize the gas dis-
crimination performance. Section 4.4 presents a feature selection algorithm for
optimizing the generalization performance of the gas discrimination algorithm
with respect to varying environmental conditions. The chapter is concluded by
Section 4.5 that provides a quick overview of other research topics in mobile
robotics olfaction.

4.1 The Experimental Setup

In the papers (PAPER I, PAPER II, PAPER III, PAPER IV, PAPER V, PAPER VI, PAPER
VII) the experimental setup using a mobile olfactory robot is the same. The
robot used is an ATRV-]JR all terrain robot equipped with the Player Robot
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Model Gases Detected Quantity
Figaro TGS 2600 Hydrogen, Carbon Monoxide 2

Figaro TGS 2602 Ammonia, Hydrogen Sulfide, VOC 1
(volatile organic compound)

Figaro TGS 2611 Methane 1
Figaro TGS 2620 Organic Solvents 1

Table 4.1: Gas sensors used in the electronic nose.

Device Interface [52]. Player provides both the interface to the sensors and the
actuators, and high level algorithms to address robotic tasks such as localiza-
tion (amcl driver) and navigation (vfh and wavefront drivers). Apart from a
laser range scanner (SICK LMS 200) used for localization and navigation, the
robot is equipped with an electronic nose and an anemometer. The electronic
nose is an actively ventilated aluminum tube containing an array of five metal
oxide gas sensors, mounted in front of the robot at a height of 0.1 m on the
ground. Table 4.1 lists the sensors included in the array and their target com-
pounds.

avg
wind speed

6cm/s avg

wind speed
6cm/s

Arbitrary Unit

%0 500
Time (s)

(a) E-W sweeping (b) N-S sweeping

Figure 4.1: Upper: Example run where the analyte was respectively ethanol (a) or iso-
propyl (b). When the robot sweeps N-S it continuously enters and exits the plume, while
when it sweeps E-W it stays in the plume for longer time. The arrow shows the aver-
age direction and magnitude of the wind flow. The square indicates the position of the
source. The solid line is the trajectory of the robot. The circles are locations in which a
sensor response was obtained. Lower: sensor readings collected during the run. Adapted
from PAPER II.
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In PapPER I the e-nose was mounted at 0.34 m above the ground and the
sensor TGS 4161 (electrochemical sensor for CO, detection) was included in
the array. In the experiments on which all the rest of the publications are based,
the TGS4161 sensor has been removed since it did not show any sensitivity to
the analytes considered in the experiments. Moreover, the position of the nose
has been lowered because the three compounds of interest, namely ethanol,
acetone and isopropyl are heavier than air and therefore form a plume close
to the ground. By positioning the nose 0.1 m above the ground the number of
“gas hits” was increased.

Experiments have been performed in three different locations using four
moving strategies which attempt to vary the interaction of the robot with a pos-
sible plume. In all experiments the robot was moving with a speed of 0.05 m/s.
The gas source was a cup full of the analyte placed on the ground. The first loca-
tion that has been considered is a large closed room in which the robot followed
a sweeping trajectory with two orthogonal orientations that are named N-S and

Anemometer

(a) The robot with the electronic nose and
the anemometer

(b) The robot in the large room (c) The robot in the courtyard

Figure 4.2: The robot and snapshots from two experimental runs in different locations.
Adapted from PaPER VIIL.



4.2. ALGORITHMS FOR TRANSIENT BASED GAS DISCRIMINATION 39

E-W. Figure 4.1 provides a graphical representation of the two paths followed
by the robot together with the signal collected during two experimental runs.

The second set of experiments has been carried out in a small classroom
whose door has been left open. In this environment the robot performed two
different types of spiral path: a spiral without any stops from the beginning
to the end of the experiment and a spiral with stops when a gas is detected, at
which point the robot stands static until enough information is obtained to per-
form a classification (more details about these moving strategies are provided in
Section 4.3). The rooms were ventilated after each experimental run in order to
avoid gas accumulation. The last experimental location was a courtyard with
an uneven grass surface. In this case the robot performed a spiral movement
stopping when a gas is detected similar to the one performed in the classroom.

Figure 4.2 shows a picture of the robot and two snapshots of the robot in
action, once in the large room and once in the courtyard. Table 4.2 summa-
rizes the five different experimental configurations. The experiments have been
repeated multiple times (more than 100) with three different target substances.
It is important to notice that during one experimental run multiple responses
were collected. When the signals are segmented with the algorithm illustrated
in Figure 4.3, we obtain a total of 592 responses evenly distributed among the
three classes.

Baseline

ds/dt > -THR D ds/dt >= THR_ R

ds/dt >= THR R

ds/dt <= -THR D

Figure 4.3: Finite State Machine that illustrates the segmentation algorithm. The first
derivative is denoted as ds/dt and the threshold for the rise and decay are THR_R and
THR_D respectively. Two different thresholds are needed since the rise and decay phase
have a different time constant. Taken from PaPEr III.
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4.2 Algorithms for Transient Based Gas
Discrimination

As already mentioned in Section 3.2, a gas discrimination algorithm for an e-
nose with an open sampling system has to be able to perform the identification
on the transient phase of the signal. Indeed without a closed sampling system
the exposure of the sensor array to the analyte cannot be controlled. Therefore
instead of being exposed to a step in concentration under controlled tempera-
ture and humidity (three-phase sampling strategy), as most commonly happens
for e-noses with a closed sampling system, the sensor array would be exposed
to continuous changes in concentration due to the turbulent nature of airflow
carrying the analyte to the sensors. In this setup it becomes relevant to identify
the parts of the signal that contain the information for performing the identifi-
cation. The approach that has been used in the works presented in this thesis is
to segment the responses due to patches of gas that hit the sensors. The basic
observation is that when a patch of gas hits the sensors it causes a response,
and a simple approach based on the first derivative of the signal can isolate the
responses due to the gas patches. The segmentation algorithm can be efficiently
explained with the finite state machine in Figure 4.3. A complete response to a
patch is considered to be the ensemble of a consecutive rise and decay phase.

Once the segmentation is performed, different feature extraction methods
(FFT, DWT, and polynomial curve fitting), baseline manipulation techniques
(differential, fractional, relative) and normalization techniques (vector normal-
ization, vector autoscaling, dimension autoscaling) are used. In PAPER V a fac-
tor analysis using multiway ANOVA is performed in order to evaluate which
of these techniques (or combination of techniques) performs best on the data
collected with the mobile robot.

An additional comment is needed on the segmentation policy. The proposed
approach is based on the observation that when a patch of gas hits the sensors
it causes a response, and a simple approach based on the first derivative of the
signal can isolate the responses due to the gas patches. However, this policy
of isolating gas patches is not optimal since it is not guaranteed that all the
gas patches contain enough information to be correctly identified. Therefore
the gas discrimination algorithm presented in PAPER II and PapER III provides
not only a decision but also an estimation of the posterior probability of each
sample belonging to the classes of interest. This posterior probability can be
used as a confidence measure on the classification outcome. For example it is
possible to introduce a threshold that, if not met by the maximum of the poste-
rior probabilities, the sample is rejected and not classified. The model used for
estimating the posterior probabilities is the Relevance Vector Machine (RVM).
For what concerns the intermediate parts of the algorithm, namely baseline
preprocessing, feature extraction and data normalization, standard techniques
were used and therefore their discussion is deferred to the papers in attachment.
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More interesting at this point is an analysis of the implications of introducing
a posterior probability estimation together with a rejection threshold, and fur-
thermore a closer look on which responses are more difficult to be classified.
As a first analysis of the classification performance (PAPER II), a leave-one-
out cross validation is performed. The results are shown in Figure 4.4. This
graph displays the classification error rate and the rejection rate for different
values of the rejection threshold. We can observe how the error rate decreases
for increasing rejection thresholds. This means that the calculation of the poste-
rior probabilities is meaningful since raising the rejection threshold we discard
more erroneously classified samples than correct ones. Another observation is
that the DWT based features outperform the FFT based ones. Indeed, a lower
classification error is obtained for every rejection threshold maintaining ap-
proximately the same rejection rate. This means that the DWT provides a de-
scription of the signal that contains more discriminatory information than the
FFT. A more interesting aspect is to analyze how the classification performance
varies with the distance between where the sensors response is collected and the
gas source. Figure 4.5 shows a scatter plot of the correctly classified responses
for varying rejection threshold for the RVM classifier. The scatter plots give
a spatial representation of the classification performance where the location
of the gas source is marked by the square. Correctly classified responses are

02r : — — —
0.15F : ~ ' —DFT

Error Rate

Posterior probability threshold

0.7
0.6
o)
® 0.5
[any

“=<DWT|

k=l
S 0.3

0.1

0.4

Posterior probability threshold

Figure 4.4: Classification and rejection rate of the classifier with a varying rejection
threshold. The dashed line represents a classifier trained with DWT based features, while
the solid line represents a classifier trained with FFT based features. Taken from PAPER
1L
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Figure 4.5: Scatter plot of the sensor responses classified with the RVM. The circles
represent correctly classified responses, while the triangles are the errors. The distances
on the axes are expressed in meters. The data depicted in this figure have been collected
in the large room environment using two different sweeping strategies (Experimental
setup 1 and 2 according to Table 4.2). Taken from PAPER V.

indicated by the smaller circles whereas incorrectly classified responses are in-
dicated by red triangles. Note that successful classification is not only obtained
in close proximity to the source but also at distances of approximately 4 meters
from the source. Another interesting feature to note is that the misclassified re-
sponses are not necessarily concentrated far from the location of the gas source.
This suggests that it is not only possible to use an open sampling system but
also to use this method in an open environment where the position of the gas
source is not known in advance.

In order to gain insight into how the characteristics of the transient affect
classification performance, two measures 'y and ) are extracted. These measures
are defined as:
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Figure 4.6: Left: The histogram of the correctly classified samples with respect to 7y.
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Paper II.
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The first measure y captures the distance of the transient from the baseline
response. Here, 1 represents the mean of all the values of all sensors at read-
ing n for a particular transient. N is the total number of readings in a transient
and S is the total number of sensors. The second measure 1 is based on the
amplitude of the transients calculated by the difference of the minimum and
the maximum value of w,,. Therefore in Figure 4.6 the histogram can be used
to depict the correct classifications (seen on the left-hand figure) and incorrect
classification (right), with the value of vy on the x-axis. Here, incorrect clas-
sifications primarily occur on transients close to the baseline (i.e. lower mean
values).

In Figure 4.7 a histogram is used to depict the correct classifications and
incorrect classifications with value 11 shown on the x-axis. Transients which
have higher amplitudes, where the sensors have had longer exposure to a gas,
are classified correctly.
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Figure 4.7: Left: The histogram of the correctly classified samples with respect to 1.
Right: The histogram of the incorrectly classified samples with respect to 1. Taken from
Paper II.

Combining these two results we can see that errors are concentrated in tran-
sients which have a small amplitude and are close to the baseline. To achieve
good classification, we prefer either a transient with high amplitude or smaller
transients that occur in sequence after one another without a complete recovery.
It is important to note that these results are validated with the assumption that
only one gas is present, but they can be related to the ones presented in PAPER
VIII. The scenario presented in PAPER VIII is more general since the sensors are
exposed to different analytes without the possibility to recover in between the
two exposures. However, despite this different assumption, both results con-
firm the fact that samples collected when the sensors have been exposed to a
compound for long enough time are easier to classify. Though, achieving a long
exposition time of the sensors to the analyte is not a trivial problem. Therefore,
the interest in being able to discriminate gases in the first phase of the transient
due to the sudden exposure to an analyte or to a compound switch is still intact.

4.3 Olactory driven Path Planning

Mobile robots can be valuable instruments for environmental monitoring or
inspection of dangerous areas. Particularly in cases where hazardous contam-
inants are involved, mobile robots can play an important role in assessing the
presence of dangerous substances, identifying their character, quantifying their
concentration and localizing the source of the substance. Chemical and air-
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Figure 4.8: Software architecture of the exploration system. Taken from PAPER III.

flow sensors, the sensing modalities that have been mostly used for addressing
exploration tasks, take point measurements. This means that, unlike range sen-
sors, the variable of interest can be measured only at the location of the sensor.
Therefore the mobile robot serves an important role to bring the sensor sys-
tem to an area where good measurements can be obtained. From now on the
attention will be focused on the task of gas discrimination, i.e. determining
which compound, among a pool of known compounds, is polluting the area
of interest. We assume that only one compound is present at the time. PAPER
III presents a set of works that aims at exploiting the capability of the robot
of performing gas discrimination online in order to provide to the path plan-
ner information that can optimize the exploration and translate into a quicker
and more robust identification of the polluting substance. Figure 4.8 displays a
block diagram of the software structure designed for this purpose. This struc-
ture has been inspired by the results described in PAPER II. There it was noted
that, with respect to classification performance, it is beneficial that the robot
stays in the gas plume as long as possible (at least until enough confidence on
the gas discrimination is obtained). Therefore the classification algorithm has
been implemented in order to run online while the exploration is being per-
formed and provide information to the path planning algorithm. In particular
the robot starts performing a spiral trajectory that covers the area of inspection
until the segmentation module of the classification algorithm detects a response
from the gas sensor. At this point the robot stops and collects a whole response
being inside the plume. Then a classification is performed and in case high con-
fidence is obtained (posterior probability of one of the classes greater than 0.95)
then the exploration is declared finished and the robot goes back to the dock-
ing position. Otherwise the exploration is continued until the next response is
collected.

Two algorithms for continuing the exploration have been proposed: in the
first case the robot continues to follow the predefined spiral trajectory (Fig-
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Figure 4.9: Olfaction driven path planning strategies. Taken from PAPER III.

ure 4.9(a)), while in the second case the robot navigates perpendicular to the
wind in order to try to reacquire the gas plume (Figure 4.9(b)). For details about
these two algorithms refer to PAPER III. Both these strategies have demonstrated
to be beneficial with respect to both the exploration time (by allowing an in-
complete exploration is quite obvious that the exploration time is reduced) and
the classification performance. Though, the efficiency of the strategy in which
the robot travels perpendicular to the wind is still to be proven. Indeed, since in
a indoor environment the local wind information is chaotic there can be large
differences in the direction and intensity of the wind in neighbouring points.
Therefore the trajectory followed by the robot when traveling perpendicular to
the wind is characterized by some randomness. Consequently, before ascertain-
ing the efficacy of the algorithm, a deeper study and analysis of a navigation
strategy given the wind information is needed in future study. Nevertheless, the
basic ingredients for achieving gas discrimination in an online context whilst
actively exploring the environment have been developed in this work.

4.4 Feature Selection for Gas Discrimination with
Mobile Robots

At this point, we have collected a dataset of gas sensor responses generated by
three different compounds, in five different experimental conditions. Experi-
mental conditions differ for either the robot moving strategy or the experimen-
tal location. Table 4.2 summarized the performed experimental runs.

In Paper IV it was observed that the experimental conditions heavily in-
fluence the signal collected by the mobile robot. In that work, after the seg-
mentation algorithm presented in Section 4.2, a second order polynomial was
fitted to the each sensor response. The coefficients of the fitted polynomial were
considered as features to be fed to the subsequent parts of the algorithm. Fig-
ure 4.10 shows the LDA projection of the responses collected in the experiment
listed in Table 4.2. LDA is a supervised dimensionality reduction method that
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Figure 4.10: LDA projections of the collected data set. Taken from PAPER IV.

minimizes the average distance among points belonging to the same class while
maximizing the distance among the centers of different classes. In particular
Figure 4.10(a) displays the LDA considering the compound as a target label
while Figure 4.10(b) displays the LDA considering the experimental condition
as a target label.

It is noticeable how the clusters formed for the robot movement label are
more separated and compact than those formed by the compound label. This
suggests a classification algorithm that, implicitly, first recognizes the robot
movement and then the compound. Once the robot movement has been rec-
ognized the classification becomes much easier, as we can see from Figure 4.11
that displays the LDA with respect to the compounds when the responses col-
lected with the three different movements are considered separately. This algo-
rithm was implemented as an ensemble of linear classifiers that obtained a 89%

Experimental  Location Moving Number
Setup Strategy of Runs

1 Large Room Sweep N-S 15

2 Large Room Sweep E-W 15

3 Classroom Spiral 18

4 Classroom  Spiral with Stops 72

5 Courtyard  Spiral with Stops 16

Table 4.2: Summary of the experimental conditions in which the data have been col-
lected.
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ments. Taken from PAPER IV.

of correct classifications. As a term of comparison we used a SVM with RBF
kernel working on the whole dataset that obtained 75% correct classification.

These results form the basis of the work presented in PAPER VII. Indeed the
solution of first recognizing the exploration condition and then the compound
is suboptimal. For discrimination on a mobile robot to be generic, it is necessary
to find a set of features which are independent of the experimental setup. In this
way, we can enable the possibility to train a mobile robot on a specific gas in
one environment and deploy the robot in another environment having different
properties and/or having different interaction with the plume. These features
acquire particular importance when the robot has to be deployed for a search
and rescue operation or for exploration in an unknown environment. The gen-
eral approach we consider in this paper for dealing with the above problem is
to extract features from the sensor signals and select features that show reg-
ularity across the experimental setups while providing enough discrimination
between different analytes. The measure chosen to formulate this concept is the
mutual information. Mutual information has its origin in information theory
and provides a measure of mutual dependence of two random variables. The
mutual information, I(X,Y), in between two random variables X and Y can be
calculated according to the following formula:

P(X,Y)

J Poxmtos s

Mutual information is lower bounded by the value zero, obtained in case
the two variables are independent and upper bounded by the entropy of one
of the two random variables in case they are coincident. In PAPER VII mutual
information is used as an index to measure the dependency between a feature
and either the compound label or the experimental setup label. The dependency
between a feature and the compound label can be considered a measure of its
discriminative power and therefore it is a positive feature, while the dependency
between a feature and the experimental setup label can be considered a measure
of the variability of a feature across different experimental condition, which is

I(X,Y) = J axdy (4.4)

Y
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something we want to penalize. Two feature selection approaches, one filter
and one wrapper have been proposed.

In the filter approach each feature f is ranked according to the following
score:

I(f,S)«
I(f, C)

where S is the experimental setups vector, C is the analyte labels vector, I
is the mutual information between two random variables and « is a parameter
that modulates the relative importance of the two factors. The best features in
the set have the smallest values for y. It is important to notice that for « = 0, the
expression degenerates to y(f) = I(f; C)~! and therefore we would select the
features with the highest mutual information with respect to the class vector,
that is equivalent to the traditional information theoretic ranking criterion. For
increasing values of « we tend to prefer features that do not carry any informa-
tion about the experimental setup and therefore are more robust to changes in
the environment or in the moving strategy of the robot. The joint and marginal
distributions (P(f; C),P(f;S),P(f),P(C) and P(S)) used in the calculation of the
mutual information are estimated using histogram techniques.

In the wrapper approach we propose a modification to the Backward Elim-
ination algorithm. Indeed one of the weak points of the Backward Elimination
algorithm is that many features would be good candidates for elimination since
the performance of the subsets of the remaining features does not drastically
change. Rather than perform an uninformed choice on which feature to elim-
inate (since they are equivalent with respect to our criterion), we isolate the
features which obtain a comparable classification accuracy. These features are
then ranked according to the mutual information with respect to the experi-
mental setup and the highest ranked feature is permanently eliminated. Techni-
cal details of the algorithm can be found in Paper VII.

The algorithms proposed have been evaluated performing a 5-fold cross val-
idation where every fold has been formed by taking all the samples collected
in a specific experimental setup. This evaluation scheme has been chosen in or-
der to analyze the ability of the system to generalize and perform well in an
unknown experimental setup. Figure 4.12 gives the classification performance
obtained selecting features with the proposed filter approach with « = 10 and
with & = 0 (based only on the mutual information between the features and
the labels). The optimal value of « has been iteratively evaluated. The error
bars display the average performance across the 5 folds together with the stan-
dard deviation. We can notice that the proposed filter clearly outperforms the
filter based solely on the mutual information with the classes. Moreover the
proposed approach obtains in average a smaller standard deviation for the per-
formance across the fold. This is important because it shows how the feature
subsets obtained with the proposed filter are more robust with respect to varia-
tions in the data. Figure 4.13 shows the classification performance obtained by

(4.5)

Y(f) =
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Figure 4.12: Error bars displaying average and standard deviation of the performance of
the classifier obtained selecting the features using the filter approach. The lines represent
the performance of the proposed approach with « = 10 and « = 0. Notice that « = 0 is a
filter based only on the mutual information between each feature and the labels vector.
Taken from PAPER VII.

the proposed wrapper approach compared with a wrapper that in case of ties
selects to eliminate the first feature in the list. In the proposed approach fea-
tures are considered equally ranked if the classification performance differs by
less than € = 0,2% (given that we have 592 samples, each sample contributes
for 0,16%). Also in this case we can see how the proposed approach outper-
forms the traditional one both with a higher average performance and with a
lower standard deviation for the performance across the folds.

Comparing the performances of the two proposed approaches we can no-
tice that the number of features yielding the best classification performance is
9-10. Also, the wrapper outperforms the filter both for average classification
performance and small variance in between the folds. This has to be expected
since the wrapper approach scores the features according to the performance of
the target classifier (in contrast with the filter approach that uses a score that is
independent from the classifier). The main drawback of the wrapper approach
is that it is computationally more expensive since it requires a training of the
classifier for every feature subset to be evaluated.
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Figure 4.13: Error bars displaying average and standard deviation of the performance of
the classifier obtained selecting the features using the wrapper approach. The solid line
represents the performance of the proposed approach while the dashed line represents
the performance of a wrapper that eliminates the feature that when removed obtains
the highest classification performance. In case of a tie the wrapper eliminates the first
feature of the list. Taken from PAPER VIIL.

To further analyze the results it is also possible to examine the regularity
between the ranking of the features across the different sensors and the coeffi-
cients of the model (a second order polynomial in this case) that we fit to the
sensor response. By analyzing the rankings obtained by the groups as random
variables it is possible to get some insight on how a specific sensor/coefficient
contributes to the classification task. PAPER VII contains the details of this anal-
ysis.

4.5 Related Topics in Mobile Robotics Olfaction

Most of the works in mobile robotics olfaction have been developed under
the assumption of a single predefined analyte. The capability of discriminating
gases would enable to extend those results to scenarios in which more than
one compound is present. For example a gas sensing robot would be able to
perform gas distribution mapping in presence of multiple different gas sources,



52 CHAPTER 4. MOBILE ROBOTICS OLFACTION

to localize a specific gas source in presence of interfering gas sources or to
follow a specific chemical trail. This section gives a brief overview of the works
that would benefit from the introduction of gas discrimination capabilities.

Some early works start appearing in the beginning of the 1990s. These
works focus on gradient following strategies for gas plume tracing. The appli-
cability and reproducibility of the results obtained is unclear since no explicit
description of the environmental condition is given. Indeed these works start
from the assumption that gas disperses due to diffusion leading to a stable and
smooth chemical concentration. For ground robots this assumption is unrealis-
tic since natural environment is dominated by turbulent flow and therefore no
smooth concentration gradient to follow is available. Therefore in the next sec-
tions we will focus our attention on later works that paid more attention to the
description of the environmental conditions and therefore to the actual com-
plexity of gas dispersal. Section 4.5.1 presents works related to gas distribution
mapping, Section 4.5.2 deals with gas source localization and Section 4.5.3
gives an overview on works dealing with chemical trail tracing.

4.5.1 Gas Distribution Mapping

Gas distribution mapping is the task of deriving a truthful representation of
the observed gas distribution from a set of spatially and temporally distributed
measurements of relevant variables, foremost gas concentration, but also wind
and temperature, for example. Building gas distribution models is a very chal-
lenging task since many realistic scenarios are characterized by a high Reynolds
number and therefore gas disperses by turbulent advection. This results in a
concentration field that consists of fluctuating, intermittent patches of high con-
centration. Given this consideration, an exact description of the gas distribution
is an intractable problem, though it is possible to describe turbulent gas distri-
bution on average under certain assumptions [53]. It is important to notice
that the maps obtained in most of the works that can be found in literature
that use metal oxide gas sensors, are obtained from the raw sensor response
and thus cannot be directly interpreted as concentration maps. Indeed metal
oxide gas sensors are cross sensitive to temperature and humidity and have a
slow response time (much slower than what would be needed to be able to fol-
low the fluctuations in concentration due to turbulence). For these reasons their
readings cannot be directly interpreted as concentration measurements. Thus,
the preferred solution in most of the works in literature is to calculate a gas
distribution map instead of a true gas concentration map.

Probably the most straightforward method to create a time-averaged gas
distribution model is to perform measurements for a prolonged time with a
grid of gas sensors deployed on the area to inspect [54]. The main advantage
of performing simultaneous measurements with a grid of stationary sensors is
the reduced time needed to obtain measurements over the area of inspection,
while the main drawbacks are the need for calibration to match the sensitivity
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of the different sensors, the lack of flexibility in the sensor positioning and the
increasing cost with the size of the area to cover.

Instead of using a grid of sensors, gas measurements can also be performed
in succession by placing a sensor on a mobile platform. This approach is par-
ticularly appealing in case of a gas source with constant delivery and stable
environmental conditions. Mounting a sensor on a mobile platform has sev-
eral advantages, of which the most relevant are the flexibility and adaptiveness
of the sensor position, the possibility of tracing a gas plume, the possibility to
adapt to changes in the environment and the possibility of exploring an un-
known area (installing a sensor network in advance in disaster area is unfeasi-
ble). The main drawback is the impossibility to get simultaneous measurement
at different places. This limitation implies to assume stable environmental con-
ditions for being able to perform gas distribution mapping or at least the need
of a mechanism to discover any change to the environment in order to under-
stand that part of the measurement are out of date and therefore need to be
discarded.

After having examined the main modalities for data acquisition, the atten-
tion is focused on the algorithmic aspect of gas distribution mapping focusing
mainly on the algorithms developed for small scale gas distribution mapping
with mobile robots. Two approaches are predominant: the model based and
the statistical based. Model based algorithms infer the parameters of an an-
alytical model from the measurements. The application of truthful fluid dy-
namics model is often unfeasible in practical situations (lack of boundary con-
ditions and computationally too expensive). Therefore rather unrealistic sim-
plifications have to be applied to the models in order to remove part of the
complexity. For example, the gas distribution model used in [54] makes the as-
sumption of an unidirectional wind field where the time-averaged wind speed
is constant and the wind turbulence is isotropic and homogeneous.

Statistical based algorithms try instead to learn a predictive model of a mea-
surement z at the query location x

Pz | %, X1:m5Z1:n) (4.6)

given a set of measurements zq., taken at locations xq.,,. Probably the sim-
plest method for small scale statistical based gas distribution map is presented
in [55]. In this work the gas distribution map was obtained applying bi-cubic
and triangle-based cubic interpolation. The main problem with these interpo-
lation methods is that there is no means of “averaging out” instantaneous re-
sponse fluctuations since every measurement appear independently in the gas
distribution map and thus the representation tends to get more and more jagged
while new measurements are added. Another approach proposed by Hayes et
al. [56] is to calculate a 2D gas histogram where “gas hits”, that is sensor
readings above a threshold, are accumulated. The main weak points of this al-
gorithm are that the information gathered from the sensor is reduced to binary
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“hits” and all the information contained in the average sensor readings is dis-
carded. Moreover this method requires perfectly even coverage of the area of
interest. Lilienthal and Duckett presented a kernel extrapolation distribution
mapping (“Kernel DM”) that can be seen as an extension of the histogram
method. The concentration field is represented in the form of a grid map. Spa-
tial integration is carried out by convolving sensor readings and modelling the
information content of the point measurements with a Gaussian kernel [57].
The kernel can be seen as a model of the information content of a measurement
about the average concentration with respect to the point of measurement. In-
tuitively, the information content decreases with increasing distance from the
point of measurement. This algorithm does not require perfectly even coverage
of the area of inspection but, due to the slow sensor dynamic of MOX sensors,
either one has to consider only measurements when the robot stands still or the
robot path has to average out the distortion component due to the direction of
the movement (in this case the distribution will be more stretched and blurred
but not deformed).

An interesting extension (PAPER VI) of the “Kernel DM” algorithm is the
“Kernel DM+V? that, together with the mean of the distribution, it estimates
also the variance. Two main points make the estimation of the variance par-
ticularly interesting. First, studies in literature propose that the maximum of
the variance map is a more accurate predictor of the location of the gas source
than the maximum in the distribution mean map. Second, and probably more
interesting, the estimated variance provides a tool for evaluating the obtained
model by measuring how well unseen measurements are predicted. The score
calculated for this purpose is the negative log predictive density (NLPD) that
is the average negative log likelihood assuming a Gaussian posterior. Evaluat-
ing a distribution model has always been problematic in the field of gas dis-
tribution mapping. Indeed, considering the fact that is very difficult to obtain
ground truth measurement, gas distribution models have often been evaluated
with their capability to infer hidden parameters like the gas source location
or independently measured mean concentrations. However, an estimator of the
prediction capability of the model is a more principled tool for evaluating and
comparing different models. Moreover such a measure, not only allows a bet-
ter ground truth evaluation, but enables as well the learning of the parameter
model (kernel size) from the data. The details on the estimation of the model
and the NLPD are in PAPER VL.

Recent developments of the “Kernel DM+V” algorithm from Reggente and
Lilienthal extend the algorithm to estimate a 3D map [58] and to include in the
mapping process information coming from an anemometer placed in proximity
of the gas sensors [59]. The wind information is integrated by giving the kernel
an elliptical shape and modifying the orientation of the ellipse according to the
wind direction.
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4.5.2 Gas Source Localization

Gas source localization is by far the most studied problem in mobile robotics
olfaction. Many taxonomies of the gas source localization methods are possible
depending on:

¢ Environmental conditions: laminar airflow, turbulence dominated envi-
ronment with strong unidirectional airflow, turbulence dominated en-
vironment with weak chaotic airflow, diffusion dominated environment
(e.g. underground [60]).

e Sensor modalities: the robot is equipped only with gas sensors or with
other sensor modalities that can provide useful information for localizing
the gas source. The most commonly used sensor modalities are an airflow
sensor (anemometer) or cameras that can help the robot in recognizing
the gas source in case some prior information on shape/colour of the gas
source is available.

* Biologically inspired or statistical based search strategies.
¢ Plume model based strategies or model free strategies.

e Single robot or multiple robot strategies.

To make a complete review of the research area of gas source localization
is out of the scope of this thesis. For this reason the attention will be focused
on works that were published after the two comprehensive studies published
in 2006 and 2008 [13, 50]. Before starting the discussion it is important to
notice that localizing a gas source does not necessarily imply moving towards
it. Indeed the robot might, instead of moving towards the gas source, travel
towards locations where a measurement could provide valuable information
for reducing the uncertainty on the source position (and this does not always
coincide with traveling towards the gas source).

Probably, the most influential and revolutionary article in the field of gas
source localization is [61]. This paper introduces Infotaxis as a search strat-
egy for a chemical source in a chaotic environment. In contraposition with
Chemotaxis and Anemotaxis two of the most common strategies for searching
a chemical source, Infotaxis does not use any local concentration gradient or
local airflow information. This is a big theoretical advantage above the afore-
mentioned methods, since in turbulent environments the signal-to-noise ratio
for these two variables is very low. The concept at the basis of Infotaxis is en-
tropy, the central concept of information theory. Infotaxis interprets a sequence
of gas “hits” separated by voids where the concentration gas is below the limit
of detection, as a message transmitted by the source to the searcher with strong
noise due to the chaotic nature of turbulent environment. The decoding of the
message can be interpreted as calculating the posterior probability distribution
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of the unknown location of the source. Entropy is a quantity that measures how
spread out a probability distribution is, and goes to zero when the probability
distribution takes only one value. In case this probability distribution models
the unknown location of a gas source and its entropy is zero, it means that the
location of the gas source is known exactly. Since the searcher estimates the
probability distribution of the location of the gas source from the data he has
available (the history of the gas encounters), the goal is to try to collect infor-
mation that provide the largest decrease of entropy, i.e. the biggest amount of
information on the location of the gas source. In [61] it is also observed how
infotactic trajectories feature “zigzagging” and “casting” movements similar to
those observed in the flight of moths, that has being the source of inspiration
for many other algorithms developed for gas plume tracking. In [61] only sim-
ulated experiments are presented, but Moraud and Martinez in [62] provide an
experimental validation of infotaxis with real robots that successfully localize,
a heat source (the transport mechanism of heat is very similar to the one of
chemicals in environments where advection clearly dominates over diffusion,
but temperature sensors have a faster dynamics than chemical sensors).

Lochmatter et al. presented systematic evaluation and comparison of three
bioinspired algorithms for plume tracking described in the literature, namely
the casting, surge-spiral and surge-cast algorithms. The comparison is carried
out both in simulation [63], with experiments carried out in a wind tunnel with
real robots [64] and even theoretically under simplifying assumptions [65]. The
algorithms are compared in terms of success rate and distance overhead when
tracking the plume up to the source. Overall, the algorithms based on upwind
surge yield significantly better performance than pure casting. Interesting ex-
tensions of these evaluations are presented in [66], where the algorithms are
evaluated in presence of obstacles and in [67], where the performance of the
same three algorithms is evaluated in the context of a non-cooperating multi-
robot system.

4.5.3 Chemical Trail Following

Stigmergy is a mechanism that allows the coordination of actions within the
same agent or across different agents by means of traces left in the environ-
ment. A well known example is given by ants that mark the path to a source
of food with a chemical trail [68]. Chemical markings are particularly suited to
store temporal information due to their naturally fading intensity. For exam-
ple chemical marking could be used as a barrier for signaling areas that have
already been wiped to an autonomous cleaning robot.

In contrast to the task of following a gas plume, the effect of turbulence and
airflow advection is considerably reduced in the case of trail following because
the distance between the sensor and the source is small. In the experimental
work published in this area the height of the gas sensors on the ground was
in the order of 10 mm [13]. According to [70], chemical trails placed on the
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floor are covered by a layer of laminar airflow. Though, this layer is so thin
that state of the art robots cannot perform gas measurements in this region.
However the proximity of the sensors to the gas source (the trail) causes a
pretty large concentration difference between the situation where the sensors
are on the trail and when the sensors are outside. This is normally not the case
in experiments where a gas plume has to be traced and a distant gas source has
to be localized. In [69] it has been proposed a device, depicted in Figure 4.14, to
further enhance the concentration gradient encountered between the trail and
non-trail region. This device draws air from the floor to the sensor inlet and
blows air in the opposite direction around the sensor inlet in order to create
an “air curtain”. However, the efficacy of this device has been questioned by
Larionova et al. in [71], and it is currently unclear whether the different results
have been obtained because of small differences in the implementation of the
air curtain or to differences in the tasks considered (detecting a narrow trail
in [69] versus a comparatively wide area in [71]).

All other works in the area focus mainly on designing an algorithm that
implements a trail following strategy. Particular attention is devoted to enhance
the robustness against gaps or imperfection in the trail or faulty sensor readings.
Most of the works assume the presence of two gas sensors which sample the
analyte in the proximity of the ground [70, 72, 73]. In [71] a strategy based on

Fresh To pump Fresh
Air Air

NP4

.‘ Sgnassor
r
/TN

Floor

Figure 4.14: Device for creating an air curtain. The flux of fresh air is represented by
blue lines, while the flux of air to be analyzed by the gas sensor is represented by red
lines. The curtain of fresh air is blown towards the floor around the air that is drawn to
the sensor. Adapted from [69].
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a single gas sensor is presented. An in-depth description of these algorithms is
out of the scope of this work and therefore the interested reader is can find a
good comparative description in [13].



Chapter 5
Conclusions

In this thesis we analyzed the problem of gas discrimination with an array
of partially selective gas sensors, paying particular attention to applications
where the sensors are mounted on a mobile robot. In robotics applications
the gas sensors are usually installed in an open sampling system because an
open sampling system is cheap, light and easy to carry, and mostly because the
sensors needs to be directly exposed to the environment since the dynamics of
the interaction between the sensors and the gas plume, that cannot be captured
with a closed sampling system, contains valuable information for example like
the distance of the gas source.

In mobile robotics olfaction research, the experimental process is crucial.
Indeed only a careful design and an accurate description of the experimental
setup can give a good applicability to the result of this kind of research. Indeed,
depending on the considered environment the olfactory device can have com-
pletely different requirements. Design of experiments to study mobile robotics
olfaction is one of the contributions of this thesis. Experiments for mobile
robotics olfaction are technically challenging to design because phenomena re-
lated to gas dispersion are difficult to observe and control. Therefore mobile
robotics olfaction experiments are often the result of a tradeoff between two
different requisites: having an experimental setup that is as close to the deploy-
ment environment of the system as possible and having a setup where many of
the variables are controlled and therefore it enables a deeper understanding of
the experimental data. In the work described in this thesis, experiments have
been at first carried out in various environments, both indoor and outdoor,
without introducing any modification aimed at controlling the airflow or other
environmental variables. These experiments provide a good test bed for algo-
rithms that are supposed to work in a general setting and not only in simplified
environments. On the other hand these experiments, due to the complexity of
the phenomena that govern gas distribution, provide only a limited insight on
the collected data. For this reason it is particularly hard to get a ground truth
on what is happening at the sensor level since the airflow that carries the gas is
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chaotic and is hard to predict where the gas patches would “hit” the sensors.
In order to obtain data that enables a better ground truth, a series of experi-
ments where the airflow and the gas source emissions are controlled have been
designed. Probably a combined observation of the data collected according to
the two different philosophies would enable a step forward in the design of an
olfactory mobile robot.

Focusing the attention on the algorithmic contributions of this thesis, the
main point of interest have been the problems related to the discrimination
of gases when the e-nose is deployed on a mobile platform. Discrimination of
gases with an e-nose having an open sampling system is a relatively unexplored
field and it presents different challenges with respect to discrimination of gases
when the sensor array is contained in a closed sampling system. When an array
of sensors is deployed in an open sampling system it is exposed to a turbulent
airflow that carries the gases to be analyzed. Therefore the sensor response is
influenced both by the environment where the robot is deployed and by the
movement of the robot. Indeed these two factors determine the way an odor
plume is formed and the way the robot interacts with the plume. In this the-
sis, first it is proposed a gas discrimination algorithm for e-noses with an open
sampling system. The classification results are then analyzed in order to try to
understand how to improve the quality of the collected data by optimizing the
movement of the robot. For the sake of correct gas discrimination, it was ob-
served that being in the proximity of a gas source would not help. Instead, a
moving strategy that can keep the robot inside the gas plume for enough time
to get sufficient exposure of the array of sensors to the gas would help in col-
lecting sensor responses that are easier to classify. This has been accomplished
by running the gas classification algorithm online and designing two olfactory
driven path planning strategies.

After having performed more than hundred experimental runs in different
locations and with the robot moving according to different trajectories, a large
database of sensor responses was available. Analyzing the database, it became
clear that experimental location and the movement strategy of the robot in-
fluence the characteristics of the collected signal. The first approach proposed
to cope with this is to build an ensemble of classifiers in which first, the ex-
perimental setup is identified and the compound is identified only in a second
moment. This solution is suboptimal in the sense that it supposes that the robot
will be deployed in an already known environment. Therefore this result has
been improved by proposing a feature selection algorithm that selects a fea-
ture set that not only has discrimination capability but is also regular across
different experimental setups.

An additional contribution presented in this thesis is related to the use of
the electronic nose for medical diagnosis. The electronic nose is proven as an
appropriate instrument for identify ten different kinds of bacteria from blood
samples. Robustness and accuracy in the identification is achieved by extracting
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features that can capture the dynamics of the signal and by ensembling the
classification of multiple consecutive sampling cycles.

Future research will center around the integration of the gas discrimination
algorithms presented in this thesis with algorithms for gas source localization,
gas distribution mapping or gas plume tracking. This will enable the robot to
address tasks like localization of a specific gas source, create a distribution map
of multiple gases and track a specific gas plume in presence of interfering gas
plumes.
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