
Evaluating the Performance of TEWA Systems

Örebro Studies in Technology 40

Fredrik Johansson

Evaluating the Performance of TEWA Systems

© Fredrik Johansson, 2010

Title: Evaluating Evaluating the Performance of TEWA Systems

Publisher: Örebro University 2010
www.publications.oru.se

trycksaker@oru.se

Printer: Intellecta Infolog, Kållered 10/2010

issn 1650-8580
isbn 978-91-7668-761-1

Abstract

It is in military engagements the task of the air defense to protect valuable assets
such as air bases from being destroyed by hostile aircrafts and missiles. In order
to fulfill this mission, the defenders are equipped with sensors and firing units.
To infer whether a target is hostile and threatening or not is far from a trivial
task. This is dealt with in a threat evaluation process, in which the targets are
ranked based upon their estimated level of threat posed to the defended assets.
Once the degree of threat has been estimated, the problem of weapon allocation
comes into the picture. Given that a number of threatening targets have been
identified, the defenders need to decide on whether any firing units shall be al-
located to the targets, and if so, which firing unit to engage which target. To
complicate matters, the outcomes of such engagements are usually stochastic.
Moreover, there are often tight time constraints on how fast the threat evalu-
ation and weapon allocation processes need to be executed. There are already
today a large number of threat evaluation and weapon allocation (TEWA) sys-
tems in use, i.e. decision support systems aiding military decision makers with
the threat evaluation and weapon allocation processes. However, despite the
critical role of such systems, it is not clear how to evaluate the performance of
the systems and their algorithms. Hence, the work in thesis is focused on the
development and evaluation of TEWA systems, and the algorithms for threat
evaluation and weapon allocation being part of such systems. A number of al-
gorithms for threat evaluation and static weapon allocation are suggested and
implemented, and testbeds for facilitating the evaluation of these are developed.
Experimental results show that the use of particle swarm optimization is suit-
able for real-time target-based weapon allocation in situations involving up to
approximately ten targets and ten firing units, while it for larger problem sizes
gives better results to make use of an enhanced greedy maximum marginal re-
turn algorithm, or a genetic algorithm seeded with the solution returned by the
greedy algorithm.

Keywords: air defense, information fusion, performance evaluation, threat eval-
uation, TEWA, weapon allocation

i

Acknowledgments

First of all, I would like to express my gratitude to Göran Falkman. You have
been a great support during my years as a PhD-student, and I could not have
wished for a better supervisor. Thanks also to my co-supervisors Lars Niklasson
and Lars Karlsson.

I would also like to take the opportunity to thank for all the feedback and
detailed comments on the draft of this thesis that I have received from Håkan
Warston and my external reviewer Egils Sviestins. Your comments have been
very appreciated and have helped me to improve the quality of the thesis signif-
icantly. I am also grateful to Martin Smedberg and Thomas Kronhamn. All of
you have provided much knowledge to this project, not least from an industrial
perspective. Thanks also to Saab AB for the support.

Many thanks to my colleagues at University of Skövde: Christoffer Brax and
Richard Laxhammar for being my room mates in the "Aquarium", and Anders
Dahlbom, Alexander Karlsson, Maria Nilsson, Maria Riveiro, Tove Helldin,
Ronnie Johansson and Joeri van Laere for many fruitful and funny discussions
over lunches and coffee breaks. I will certainly miss you guys when moving
to Stockholm. A special thanks to all the members in the GSA group and the
information fusion research program.

There are also many people outside the academic environment that have
supported me in a number of ways, not least by providing an invaluable source
of (positive) distraction from the doctoral studies. I would like to thank many
of the members in Skövde Taekwon-do Club, you all know who you are. A
special thanks to my friend Daniel Dongo with whom I have spent a lot of
hours in the gym, the Do Jang, and everywhere else.

I would also like to show my gratitude to my family. My parents for al-
ways believing in and supporting me, and my sister for being my first teacher
in mathematics (strict but loving) and participating in my (not so scientific)
kitchen experiments when being younger. Thanks to my nieces Clara, Ella, and
Maja for just being wonderful. Last, but certainly not least, I would like to
thank my loved Marie for your patience during the writing of this thesis, and
for always being there for me.

iii

Contents

1 Introduction 1
1.1 Aims and Objectives . 3
1.2 Research Methodology . 5
1.3 Scientific Contribution . 6
1.4 Publications . 8
1.5 Delimitations . 13
1.6 Thesis Outline . 14

2 Background 15
2.1 Information Fusion . 15
2.2 Air Defense . 21
2.3 Uncertainty Management . 29
2.4 Optimization . 36

3 Threat Evaluation and Weapon Allocation 43
3.1 Formalization . 43
3.2 Parameters and Algorithms for Threat Evaluation 51
3.3 Algorithms for Static Weapon Allocation 61
3.4 Discussion . 67
3.5 Summary . 69

4 Algorithms for Real-Time TEWA 71
4.1 Algorithms for Real-Time Threat Evaluation 71
4.2 Algorithms for Real-Time Weapon Allocation 76
4.3 Discussion . 91
4.4 Summary . 93

5 Performance Evaluation 95
5.1 Performance Evaluation and Information Fusion 95
5.2 Evaluating Threat Evaluation Algorithms 96
5.3 Evaluating Weapon Allocation Algorithms 99

v

vi CONTENTS

5.4 Evaluating TEWA Systems . 102
5.5 Discussion . 106
5.6 Summary . 107

6 Testbeds for Performance Evaluation 109
6.1 STEWARD . 109
6.2 SWARD . 113
6.3 Discussion . 120
6.4 Summary . 121

7 Experiments 123
7.1 Comparison of Threat Evaluation Algorithms 123
7.2 Comparison of Weapon Allocation Algorithms 128
7.3 Discussion . 144
7.4 Summary . 146

8 Conclusions and Future Work 149
8.1 Contributions . 149
8.2 Future Work . 155
8.3 Generalization to Other Research Areas 157

A Bayesian Network for Threat Evaluation 159

List of Publications

I. Johansson, F. and Falkman, G. (2010) Real-time allocation of defensive
resources to rockets, artillery, and mortars. Proceedings of the 13th Inter-
national Conference on Information Fusion, Edinburgh, United Kingdom,
July 2010.

II. Johansson, F. and Falkman, G. (2010) SWARD: System for weapon alloca-
tion research & development. Proceedings of the 13th International Con-
ference on Information Fusion, Edinburgh, United Kingdom, July 2010.

III. Johansson F. and Falkman G. (2010) A suite of metaheuristic algorithms
for static weapon-target allocation. In Arabnia, H. R., Hashemi, R. R.,
and Solo, A. M. G. (Eds.): Proceedings of the 2010 International Confer-
ence on Genetic and Evolutionary Methods, pp. 132–138, CSREA Press.

IV. Johansson F. and Falkman G. (2009) An empirical investigation of the
static weapon-target allocation problem. In Johansson, R., van Laere, J.,
and Mellin, J. (Eds.): Proceedings of the 3rd Skövde Workshop on Infor-
mation Fusion Topics, Skövde Studies in Informatics 2009:3, pp. 63–67.

V. Johansson F. and Falkman, G. (2009) Performance evaluation of TEWA
systems for improved decision support. In Torra, V., Narukawa, Y., and
Inuiguchi, M. (Eds.): Proceedings of the 6th International Conference on
Modeling Decisions for Artificial Intelligence, Lecture Notes in Artificial
Intelligence 5861, pp. 205–216, Springer-Verlag, Berlin Heidelberg.

VI. Johansson, F. and Falkman, G. (2009) A testbed based on survivability
for comparing threat evaluation algorithms. In Mott, S., Buford, J. F.,
Jakobson, G., and Mendenhall, M. J. (Eds.): Proceedings of SPIE, Vol.
7352 (Intelligent Sensing, Situation Management, Impact Assessment, and
Cyber-Sensing), Orlando, USA, April 2009.

VII. Johansson, F. and Falkman, G. (2008) A survivability-based testbed for
comparing threat evaluation algorithms. In Boström, H., Johansson, R.,
and van Laere, J. (Eds.): Proceedings of the 2nd Skövde Workshop on

vii

viii CONTENTS

Information Fusion Topics, Skövde Studies in Informatics 2008:1, pp 22–
24.

VIII. Johansson, F. and Falkman, G. (2008) A comparison between two ap-
proaches to threat evaluation in an air defense scenario. In Torra, V. and
Narukawa, Y. (Eds.): Proceedings of the 5th International Conference on
Modeling Decisions for Artificial Intelligence, Lecture Notes in Artificial
Intelligence 5285, pp. 110–121, Springer-Verlag, Berlin Heidelberg.

IX. Niklasson, L., Riveiro, M., Johansson, F., Dahlbom, A., Falkman, G.,
Ziemke, T., Brax, C., Kronhamn, T., Smedberg, M., Warston, H. and Gus-
tavsson, P. (2008) Extending the scope of Situation Analysis. Proceedings
of the 11th International Conference on Information Fusion, Cologne,
Germany, July 2008.

X. Johansson, F. and Falkman G. (2008) A Bayesian network approach to
threat evaluation with application to an air defense scenario. Proceedings
of the 11th International Conference on Information Fusion, Cologne,
Germany, July 2008.

XI. Riveiro, M., Johansson, F., Falkman G. and Ziemke, T (2008) Supporting
Maritime Situation Awareness Using Self Organizing Maps and Gaussian
Mixture Models. In Holst, A., Kreuger, P., and Funk, P. (Eds.): Tenth Scan-
dinavian Conference on Artificial Intelligence. Proceedings of SCAI 2008.
Frontiers in Artificial Intelligence and Applications 173, pp. 84–91, IOS
Press.

XII. Johansson, F. and Falkman, G. (2007) Detection of vessel anomalies — a
Bayesian network approach. Proceedings of the 3rd International Confer-
ence on Intelligent Sensors, Sensor Networks and Information Processing,
Melbourne, Australia, December 2007.

XIII. Niklasson, L., Riveiro, M., Johansson, F., Dahlbom, A., Falkman, G.,
Ziemke, T., Brax, C., Kronhamn, T., Smedberg, M., Warston, H. and Gus-
tavsson, P. (2007) A Unified Situation Analysis Model for Human and
Machine Situation Awareness. In Koschke, R., Herzog, O., Rödiger, K.-
H., and Ronthaler, M. (Eds.): Trends, Solutions, Applications. Proceedings
of SDF 2007. Lecture Notes in Informatics P-109, pp. 105–110, Köllen
Druck & Verlag.

XIV. Johansson, F. and Falkman, G. (2006) Implementation and integration
of a Bayesian Network for prediction of tactical intention into a ground
target simulator. Proceedings of the 9th International Conference on In-
formation Fusion, Florence, Italy, July 2006.

List of Figures

2.1 The JDL model . 17
2.2 The OODA loop . 20
2.3 Situation awareness and decision making 21
2.4 Overview of TEWA functionality 23
2.5 Example of GUI for threat evaluation 28
2.6 Example of a Bayesian network 30
2.7 Example of inference in a fuzzy inference system 36
2.8 Genetic algorithm flowchart . 39
2.9 Particle swarm optimization algorithm flowchart 41

3.1 Illustration of threat values and target values 45
3.2 Illustration of closest point of approach (CPA) 53
3.3 Illustration of artificial neural network for threat evaluation . . 60

4.1 Bayesian network for threat evaluation 73
4.2 Inference with the Bayesian network 74
4.3 Membership functions for the fuzzy inference system 76
4.4 Graph representation of the static weapon allocation problem . 85
4.5 Illustration of the one-point crossover operator 89

5.1 Evaluation of threat evaluation algorithms 98
5.2 Comparison of weapon allocation algorithm performance 100
5.3 Use of simulations for evaluating TEWA systems 105

6.1 Overview of STEWARD . 111
6.2 Illustration of STEWARD’s GUI 112
6.3 Class diagram describing SWARD 115
6.4 The abstract WAAlgorithm class 117
6.5 Screenshot of SWARD’s GUI . 119

7.1 Illustration of the test scenario. 124
7.2 Threat values for different targets 125

ix

x LIST OF FIGURES

7.3 Average rank on target-based problem instances 137
7.4 Average rank on asset-based problem instances 137
7.5 Solution quality as a function of time on target-based problem

instances . 142
7.6 Solution quality as a function of time on asset-based problem

instances . 142

List of Tables

2.1 Surveillance radar performance 24
2.2 Weapon systems characteristics 27

3.1 Classes of parameters for threat evaluation. 55
3.2 List of parameters for threat evaluation 56
3.3 Algorithmic approaches to threat evaluation. 60
3.4 Algorithmic approaches to the static weapon allocation problem. 66

4.1 Conditional probability table for Threat. 74

6.1 Simplified example of a mission in STAGE. 110

7.1 Results for the tested TEWA configurations 127
7.2 Computation time for target-based exhaustive search 131
7.3 Computation time for asset-based exhaustive search 131
7.4 Deviation from optimal solution on target-based scenarios . . . 134
7.5 Deviation from optimal solution on asset-based scenarios 134
7.6 Results on target-based problem instances where |T| = 10 136
7.7 Results on target-based problem instances where |T| = 20 136
7.8 Results on target-based problem instances where |T| = 30 138
7.9 Results on asset-based problem instances where |T| = 10 138
7.10 Results on asset-based problem instances where |T| = 20 138
7.11 Results on asset-based problem instances where |T| = 30 139
7.12 Results on target-based instances of size (|T| = 20,|W| = 20) . . 143
7.13 Results on asset-based instances of size (|T| = 20,|W| = 20) . . 143

A.1 Conditional probability table for Target type. 159
A.2 Conditional probability table for Weapon range. 159
A.3 Conditional probability table for Speed. 160
A.4 Conditional probability table for Capability. 160
A.5 Conditional probability table for Intent. 160
A.6 Conditional probability table for Threat. 160

xi

xii LIST OF TABLES

A.7 Conditional probability table for Distance. 161
A.8 Conditional probability table for TBH 161

List of Algorithms

3.1 Rule-based algorithm for threat evaluation 58
4.1 Exhaustive search algorithm for target-based weapon allocation 78
4.2 Exhaustive search algorithm for asset-based weapon allocation . 80
4.3 Maximum marginal return algorithm 81
4.4 Enhanced maximum marginal return algorithm 82
4.5 Random search algorithm for target-based weapon allocation . 83
4.6 Combination of maximum marginal return and local search . . 84
4.7 Ant colony optimization algorithm 86
4.8 Genetic algorithm . 88
4.9 Particle swarm optimization algorithm 90

xiii

Chapter 1
Introduction

On July 3 1988, in the Strait of Hormuz, the US Navy Cruiser USS Vincennes
launches two missiles against what is supposed to be a hostile Iranian Air Force
F-14 military aircraft in attack mode. USS Vincennes is at the same time en-
gaged in a surface battle with an Iranian vessel (Smith et al., 2004). The aircraft
is shot down, and later turns out to be the passenger airliner Iran Air Flight
655. As a result of the erroneous decision to open fire against the aircraft, 290
civilian people were killed (Fisher and Kingma, 2001). During the second Gulf
war, nearly fifteen years later, US Army Patriot air defense units are involved in
fratricide incidents where coalition aircrafts on two occasions are misclassified
as hostile missiles. This results in the shoot down of a British Royal Air Force
Tornado GR4 on March 22 2003, and a US Navy F/A-18 Hornet on April 2
the same year. These two fratricide incidents resulted in the killing of a total of
three crew members (British Ministry of Defence, 2004; Defense Science Board
Task Force, 2005).

The tragic incidents described above highlight the severe consequences that
can follow from erroneous decision making in case of stressful air defense sit-
uations. Various investigations into these incidents have been undertaken by
analysts and scholars, in which different causes to the incidents have been sug-
gested. In the disaster with Iran Air Flight 655, factors such as an inexperienced
crew with poor reaction to combat, lack of time, insufficient data quality, and
failure of the battle management system (Fisher and Kingma, 2001) have been
suggested as main factors contributing to the decision that brought so many
people to their deaths, while e.g. classification criteria, rules of engagement,
crew training, and malfunction of the system for identification were contribut-
ing factors in the fratricide incidents during the second Gulf war (British Min-
istry of Defence, 2004). Although part of the problem in the incidents men-
tioned above, the computerized support from air defense systems is invaluable
for human air defense operators, due to the complex nature of the situations in
which they have to take decisions. The decisions have to be taken under severe
time pressure, based on imperfect data and information stemming from hetero-

1

2 CHAPTER 1. INTRODUCTION

geneous sensors (Paradis et al., 2005; Benaskeur et al., 2008). As stated in Kott
et al. (1999):

“Military decision makers face an immediate need for assistance
in the job of transforming enormous amounts of low-level data,
incomplete, uncoordinated and uncertain, into a few aggregated,
understandable and actionable elements of information.”

The tasks performed by air defense decision makers can be characterized as cog-
nitively challenging already under normal conditions, and often become con-
siderably harder as the tempo increases (Liebhaber and Feher, 2002a). For this
reason, they are in large-scale, time-critical air defense situations in need of
support with assessing whether there are any threatening hostile targets nearby
(Tweedale and Nguyen, 2003), and if so, what actions or countermeasures that
should be taken (Jorgensen and Strub, 1979; Brander and Bennet, 1991). Previ-
ous studies have shown that experienced operators are competent in responding
quite efficiently to sequential threats, but that they in complex tactical situ-
ations involving multiple threats tend to come up with suboptimal solutions
based solely on intuition and rules of thumb (Benaskeur et al., 2008). Such
solutions are not guaranteed to give satisfactory results (Frini et al., 2008).
Moreover, it is not unlikely that the decision makers will make fatal errors
in such situations, due to the high level of stress and the complexity of the
environment (Beaumont, 2004). Since air defense decision making has severe,
and often catastrophic consequences if errors are made (Liebhaber and Feher,
2002a), the need for computerized support becomes crucial.

In this thesis, we deal with the development and evaluation of algorithms
for so called threat evaluation and weapon allocation (TEWA) systems. These
are computerized systems supporting human air defense decision makers with
the processes of threat evaluation and weapon allocation. Informally, the pur-
pose of threat evaluation is to determine the level of threat posed by detected air
targets to defended assets such as air bases and power plants, while the purpose
of weapon allocation is to (if necessary) allocate available firing units to threat-
ening targets, in order to protect the defended assets. Military decision support
systems such as TEWA systems are very much desired by decision makers hav-
ing to make proper decision on the battlefield (Lee et al., 2002c; Beaumont,
2004). Most available research related to TEWA systems focuses solely on ei-
ther the threat evaluation or weapon allocation process, with an overwhelming
majority on the latter. Additionally, a majority of available research on threat
evaluation is to be found in the research area of information fusion, while wea-
pon allocation traditionally is studied within the field of operations research.
An integrated view on threat evaluation and weapon allocation is rarely taken,
despite that there are strong interdependencies between the two, in that the
target values generated in the threat evaluation process have a large impact on
the result of the weapon allocation process. As an example, a target obtain-
ing a certain target value may have many firing units allocated to it, while it

1.1. AIMS AND OBJECTIVES 3

may not be assigned any firing units at all in the case of a slightly lower target
value. Moreover, the real-time requirements on the threat evaluation and wea-
pon allocation algorithms that are part of a TEWA system are seldom taken
into consideration, although the criticality of the real-time aspects is one of
the major characteristics of real-world air defense situations (Allouche, 2006;
Huaiping et al., 2006). As described in Joint Chiefs of Staff (2007), air defense
operations require streamlined decision making processes, due to their time-
sensitive nature. These requirements heavily influence what type of algorithms
that are suitable for threat evaluation and weapon allocation. Nevertheless, the
real-time aspects of this kind of decision problems have not traditionally been
in focus of the operations research community (Séguin et al., 1997).

Due to the critical role of TEWA systems, the evaluation of such systems and
their threat evaluation and weapon allocation algorithms becomes very impor-
tant. Despite this, very little open research on performance evaluation of threat
evaluation and weapon allocation algorithms exists, and the current level of
evaluation provided in literature is too simplistic considering the consequences
it can give to engage a non-hostile target, or to engage a hostile target too late.
The performance of threat evaluation algorithms is rarely discussed at all, and
if so, the target values (i.e. the estimated levels of threat posed by the detected
air targets) produced by the suggested algorithms are only compared to expert
knowledge on one or a few cases. The performance of weapon allocation algo-
rithms is more often investigated, but as discussed above, the real-time aspects
are often neglected. Thus, there is a need for research on evaluation of TEWA
systems and the real-time performance of the threat evaluation and weapon
allocation algorithms being part of such a system.

1.1 Aims and Objectives

In this dissertation, suitable algorithms for real-time threat evaluation and wea-
pon allocation are investigated. Moreover, we also consider the problem of
evaluation of such algorithms, as well as the TEWA systems to which the algo-
rithms belong. Almost all existing research focus solely on either threat evalua-
tion or weapon allocation, so one intended role of this thesis is also to provide
an integrated view on threat evaluation and weapon allocation, filling the gap
between the research fields of information fusion and operations research. The
main research aim that will be addressed in this dissertation is:

Aim: To investigate the performance of real-time threat evaluation and weapon
allocation algorithms, and the TEWA systems of which such algorithms
are central parts.

In order to fulfill this aim, a number of objectives can be identified. These
objectives are listed below, together with a short description of each objective:

4 CHAPTER 1. INTRODUCTION

O1. Review and analyze existing algorithms and methods for threat evalua-
tion and weapon allocation.

A small number of algorithms for threat evaluation have been suggested
in open literature, while considerably more algorithms have been devel-
oped for the problem of weapon allocation. By reviewing and analyzing
existing literature on threat evaluation and weapon allocation algorithms,
a more complete picture of the research problem can be created. Studying
threat evaluation and weapon allocation algorithms together also leads
to a more integrated view on threat evaluation and weapon allocation.

O2. Suggest and implement algorithms for real-time threat evaluation and
weapon allocation.

Based on the outcome from the first objective, a smaller subset of promis-
ing algorithms for threat evaluation and weapon allocation, respectively,
can be identified. By analyzing and adapting some of these, algorithms
suitable for real-time use are developed.

O3. Suggest methods for evaluating the performance of TEWA systems, and
the threat evaluation and weapon allocation algorithms being part of such
systems.

The methodology (which at least in open literature) is used today for eval-
uating the performance of threat evaluation algorithms is rudimentary, if
the algorithms are evaluated at all. In the case of evaluation of weapon
allocation algorithms it is more straightforward how algorithms can be
evaluated, since there exists an objective function value which can be used
for comparison. However, as we will see, there are problems associated
with this kind of evaluation as well. Therefore, methods for systematic
evaluation of TEWA systems and their components have to be proposed.

O4. Develop testbeds for performance evaluation.

In order to demonstrate the usefulness of the suggested methods for per-
formance evaluation of TEWA systems, and to facilitate the evaluation
of threat evaluation and weapon allocation algorithms, testbeds need to
be developed. Such testbeds make it easier to systematically compare the
performance of different algorithms, leading to better and more robust
evaluations.

O5. Evaluate the performance of the developed algorithms.

The purpose of this objective is to compare how the developed algorithms
compare relative to other algorithms under various real-time constraints,
and to provide concrete guidelines for what type of algorithms to use for
different classes of situations.

1.2. RESEARCH METHODOLOGY 5

The reviews of existing algorithms provide insights into which type of algo-
rithms that can be suitable for threat evaluation and weapon allocation, and
by implementing these, suggested methods for performance evaluation can be
applied for comparing the (real-time) performance of the implemented algo-
rithms. Hence, the fulfillment of all of the objectives makes it possible to reach
the research aim put forward above.

1.2 Research Methodology

In order to fulfill the aim put forward in section 1.1, appropriate research meth-
ods need to be identified and used for the identified objectives.

The first objective, i.e. the review of existing algorithms and methods for
threat evaluation and weapon allocation is addressed by performing two liter-
ature surveys (Dawson, 2000). In the first survey, the open literature on threat
evaluation is reviewed, where most of the available literature is to be found
in the research field of information fusion. The second survey summarizes the
substantial work that has been published on static weapon allocation (of which
most material can be found in literature related to military operations research).

For fulfilling the second objective, promising algorithms are identified and
implemented, hence, the research methodology made use of is implementation
(Berndtsson et al., 2002). This is also used for objective four, in which the
suggested methods for evaluating TEWA systems and their threat evaluation
and weapon allocation algorithms (the result from objective three) is realized
in testbed implementations.

When evaluating and comparing the developed algorithms, i.e. objective
five, a quantitative method is used. The performance of the developed weapon
allocation algorithms is in a number of empirical experiments (Cohen, 1995)
compared using a large number of problem instances of various size, on which
the objective function values of the solutions produced by the different algo-
rithms are evaluated. For small problem sizes, such comparisons are comple-
mented with information regarding the produced solutions’ deviation from the
optimal solution. When evaluating the threat evaluation algorithms, the used
quantitative measures are complemented with a more qualitative analysis, since
there is a lack of realistic scenarios that can be used for providing robust quan-
titative numbers, and since there is no “physical” value the estimated threat
values can be compared to.

The developed algorithms for threat evaluation have been presented and
discussed with former air defense officers currently working within the defense
industry (some of them working with TEWA systems). They have also been
shown the suggested and developed methodology for evaluating TEWA sys-
tems and their embedded threat evaluation and weapon allocation algorithms
using computer-based simulations, as well as provided valuable input to it. Ad-
ditionally, a visit to the Swedish Armed Forces’ Air Defence Regiment has been
made, in which threat evaluation and weapon allocation in practice has been

6 CHAPTER 1. INTRODUCTION

discussed. Moreover, experts from Saab Electronic Defence Systems have been
part of the author’s research group and have regularly been giving feedback on
new ideas, developed algorithms, evaluation methodology, etc.

1.3 Scientific Contribution

In this dissertation, a number of scientific contributions have been achieved.
These contributions are outlined below, organized according to the areas of
threat evaluation, weapon allocation, and TEWA systems. The first set of con-
tributions is related to threat evaluation:

• Formalization of the threat evaluation process (section 3.1).

As highlighted by Roux and van Vuuren (2007), threat evaluation is in
the context of (ground-based) air defense a poorly defined process. The
provided formalization of the threat evaluation process is an attempt to
make this process more clearly defined, which is useful when discussing
and developing algorithms for threat evaluation.

• A literature review of existing literature on parameters and algorithms
suitable for threat evaluation (section 3.2).

Various parameters have earlier been suggested for threat evaluation, but
we are here summarizing these and classify them into the categories of ca-
pability, intent, and proximity parameters. Moreover, the algorithms that
have been proposed for threat evaluation in open literature are reviewed.
To the best of the authors’ knowledge, no such review has earlier been
undertaken. This review is mainly contributing to the research field of
information fusion.

• Development of a Bayesian network for threat evaluation, and implemen-
tation of a fuzzy logic approach adapted from Liang (2006) (section 4.1).

These implementations show how a subset of the reviewed parameters for
threat evaluation can be used to estimate the level of threat posed by a
target to a defended asset. This adds to research on high-level information
fusion and military decision support.

The second set of contributions regards static weapon allocation:

• A literature review of existing algorithms for static weapon allocation
(section 3.3).

Various reviews have earlier been made on algorithms and methods for
static weapon allocation, but most of these were made decades ago so
that they focus on analytical approaches and do not cover more recent
computer-based heuristic (i.e. approximate) techniques. Some more re-
cent surveys do exist (see Malcolm (2004) and Huaiping et al. (2006)),

1.3. SCIENTIFIC CONTRIBUTION 7

but these are far from exhaustive. Hence, this review complements earlier
research on static weapon allocation and should be of value for the field
of military operations research.

• Development of the open source testbed SWARD (System for Weapon
Allocation Research and Development) for evaluation of static weapon
allocation algorithms (section 6.2).

SWARD makes it possible to in easily repeatable experiments benchmark
static weapon allocation algorithms on a large number of problem in-
stances. This allows for an increased understanding of which weapon
allocation algorithms to be used for which kinds of air defense situations.

• Development of a particle swarm optimization algorithm and a genetic
algorithm for static weapon allocation, and implementation of these as
well as other weapon allocation algorithms into SWARD (section 4.2 and
6.2).

Neither the use of genetic algorithms, particle swarm optimization, nor
the other implemented algorithms for weapon allocation is completely
novel, but the release of source code for the implementations allow for
other researchers to test exactly the same algorithms. A typical problem
is otherwise that a lot of details for weapon allocation algorithms are not
revealed in published articles, making it hard for researchers to reimple-
ment other researchers’ algorithms.

• Evaluation of the real-time performance of all the implemented algo-
rithms for static weapon allocation, where the results indicate what kind
of algorithms that are suitable for air defense scenarios of various size
(section 7.2).

Effects of tight real-time constraints on tested algorithms for static wea-
pon allocation are earlier not known, and the results from the experi-
ments give new insights to which algorithms to use for particular types of
air defense situations. These results can also be generalized to all kinds of
resource allocation problems involving tight real-time constraints.

The third set of contributions concerns evaluation of TEWA systems. This kind
of evaluation can also be used to evaluate the threat evaluation and weapon
allocation algorithms being part of the TEWA system:

• Suggestion of a methodology for evaluating TEWA systems using simula-
tions, in which a survivability metric is used (section 5.4).

Although a simple idea, the measuring of survivability of defended assets
and the weapon resource usage in computer-based simulations provides
a way to systematically compare the performance of different TEWA sys-
tem configurations. This kind of evaluation makes it possible for devel-
opers of TEWA systems to in an early stage evaluate the performance

8 CHAPTER 1. INTRODUCTION

of developed systems, and to find weaknesses on particular types of air
defense scenarios.

• Development of the testbed STEWARD (System for Threat Evaluation
and Weapon Allocation Research and Development), implementing the
suggested methodology (section 6.1).

STEWARD is a prototype testbed acting as a proof-of-concept of the
proposed simulation-based methodology. STEWARD is connected to the
simulation engine STAGE Scenario, in which air defense scenarios are cre-
ated. The testbed demonstrates how the survivability and resource usage
can be measured in dynamic scenarios.

Summarizing the contributions, literature surveys have been made, in which the
open literature on threat evaluation and static weapon allocation are reviewed.
By reviewing threat evaluation algorithms and weapon allocation algorithms
together, a view on the interdependences between the threat evaluation and
weapon allocation processes is provided. The review of threat evaluation al-
gorithms has also resulted in a formalization of the threat evaluation process.
Algorithms have been developed for threat evaluation as well as static weapon
allocation. A number of weapon allocation algorithms (many of them meta-
heuristics inspired by biological phenomena) have been implemented into the
developed open source testbed SWARD, in which it has been evaluated how
they perform under real-time conditions. SWARD facilitates the use of stan-
dardized problem instances and repeatability, making it possible for various re-
searchers to benchmark novel algorithms against reported experimental results
for other algorithms. Evaluation of threat evaluation algorithms and TEWA
systems is even harder than the evaluation of weapon allocation algorithms,
since there are no objective function values that can be used for comparisons.
In order to handle this problem, a survivability criterion is put forward, mea-
suring the survivability of defended assets. By connecting a simulation engine
to modules consisting of algorithms for threat evaluation and weapon alloca-
tion, it becomes possible to measure the effectiveness of the threat evaluation
and weapon allocation algorithms. This opens up for more systematic com-
parisons of threat evaluation algorithms and TEWA systems, and this idea has
been implemented into the testbed STEWARD.

1.4 Publications

The following publication list provides a short summary of the author’s pub-
lications, and a description of how these contribute to the dissertation. The
publications are divided into those of high relevance for the thesis, and those of
lower relevance. Within these categories, the publications are listed in chrono-
logical ordering.

1.4. PUBLICATIONS 9

Publications of high relevance

1. Johansson, F. and Falkman G. (2008) A Bayesian network approach to
threat evaluation with application to an air defense scenario. Proceedings
of the 11th International Conference on Information Fusion, Cologne,
Germany, July 2008.

This paper gives a formal description of the threat evaluation process
from an air defense perspective. Existing literature on threat evaluation is
reviewed, resulting in a summary of parameters suggested for threat eval-
uation. We also review what kind of algorithms that have been suggested
for threat evaluation in available literature. Based on the literature review,
a Bayesian network for threat evaluation is presented. The suggested al-
gorithm for threat evaluation is tested on a small scenario created in the
scenario generator STAGE Scenario. The paper contributes to objective 1
and 2.

2. Johansson, F. and Falkman, G. (2008) A comparison between two ap-
proaches to threat evaluation in an air defense scenario. In Torra, V. and
Narukawa, Y. (Eds.): Proceedings of the 5th International Conference on
Modeling Decisions for Artificial Intelligence, Lecture Notes in Artificial
Intelligence 5285, pp. 110–121, Springer-Verlag, Berlin Heidelberg.

In this paper, the Bayesian network algorithm for threat evaluation pre-
sented earlier is compared to a fuzzy logic algorithm. The outputted target
values from the algorithms on a basic air defense scenario are compared
to each other, as well as to human expert knowledge. Moreover, more
general characteristics of the algorithms are compared, such as smooth-
ness of calculated target values and ability to handle uncertain data. It
is also within this paper the problem of comparing threat evaluation al-
gorithms is identified. The paper contributes to objective 2, and to some
degree to objective 3 and 5.

3. Johansson, F. and Falkman, G. (2008) A survivability-based testbed for
comparing threat evaluation algorithms. In Boström, H., Johansson, R.,
and van Laere, J. (Eds.): Proceedings of the 2nd Skövde Workshop on
Information Fusion Topics, Skövde Studies in Informatics 2008:1, pp 22–
24.

The idea of using a survivability metric and computer-based simulations
for evaluating threat evaluation algorithms is introduced in this work.
Hence, this publication concerns objective 3.

4. Johansson, F. and Falkman, G. (2009) A testbed based on survivability
for comparing threat evaluation algorithms. In S. Mott, J. F. Buford, G.
Jakobson, M. J. Mendenhall (Eds.): Proceedings of SPIE, Vol. 7352 (In-
telligent Sensing, Situation Management, Impact Assessment, and Cyber-
Sensing), Orlando, USA, April 2009.

10 CHAPTER 1. INTRODUCTION

Here, different ways to assess the performance of threat evaluation algo-
rithms are discussed. In specific, an implemented testbed (a first version
of STEWARD) is described, in which threat evaluation algorithms can be
compared to each other, based on the survivability criterion introduced
in the earlier publication. Survivability is measured by running the threat
evaluation algorithms on simulated scenarios and using the resulting tar-
get values as input to a weapon allocation module. Depending on how
well the threat evaluation is performed, the ability to eliminate the incom-
ing targets will vary (and thereby also the survivability of the defended
assets). Obtained results for two different threat evaluation algorithms
(the Bayesian network and the fuzzy logic algorithm) are presented and
analyzed. The paper contributes to objective 3, 4, and 5.

5. Johansson F. and Falkman, G. (2009) Performance evaluation of TEWA
systems for improved decision support. In Torra, V., Narukawa, Y., and
Inuiguchi, M. (Eds.): Proceedings of the 6th International Conference on
Modeling Decisions for Artificial Intelligence, Lecture Notes in Artificial
Intelligence 5861, pp. 205–216, Springer-Verlag, Berlin Heidelberg.

The survivability criterion described above is in this publication extended
upon to take resource usage into consideration. Experiments are run
where we simulate a high-intensity scenario a large number of times to
demonstrate the ability to compare the effectiveness of different TEWA
system configurations. Simulations show that small changes in threshold
settings can have a large effect on the resulting survivability. The paper
contributes to objective 3, 4, and 5.

6. Johansson F. and Falkman G. (2009) An empirical investigation of the
static weapon-target allocation problem. In Johansson, R., van Laere, J.,
and Mellin, J. (Eds.): Proceedings of the 3rd Skövde Workshop on Infor-
mation Fusion Topics, Skövde Studies in Informatics 2009:3, pp. 63–67.

Here, we introduce the real-time requirements on weapon allocation. We
empirically investigate how large static weapon allocation problems can
be before they become unsolvable in real-time using exhaustive search. A
genetic algorithm to be used for problem sizes of larger size is developed.
Moreover, the performance of the genetic algorithm is compared to that
a of a simple random search algorithm, and it is shown that the genetic
algorithm outperforms random search on the problem instances tested.
The paper contributes to objective 2 and 5.

7. Johansson F. and Falkman G. (2010) A suite of metaheuristic algorithms
for static weapon-target allocation. In Arabnia, H. R., Hashemi, R. R.,
and Solo, A. M. G. (Eds.): Proceedings of the 2010 International Confer-
ence on Genetic and Evolutionary Methods, pp. 132–138, CSREA Press.

1.4. PUBLICATIONS 11

Here, three metaheuristic algorithms for static target-based weapon al-
location are presented: ant colony optimization, genetic algorithms, and
particle swarm optimization. For the particle swarm optimization algo-
rithm, problems such as how to construct discrete allocations from the
continuous swarm updates, and how to handle premature convergence
and particles flying outside the bounds of the search space are discussed.
The algorithms are tested on problem sizes varying in size from ten tar-
gets and ten firing units up to thirty targets and thirty firing units. This
paper contributes to objective 2 and 5.

8. Johansson, F. and Falkman, G. (2010) SWARD: System for weapon allo-
cation research & development. Proceedings of the 13th International
Conference on Information Fusion, Edinburgh, United Kingdom, July
2010.

In this paper, the developed testbed SWARD is presented in detail. SWARD
has been released under an open source (BSD) license and supports the
use of standardized datasets, in order to allow for more systematic per-
formance evaluation of static target-based and asset-based weapon allo-
cation algorithms. The paper contributes to objective 4 and 5.

9. Johansson, F. and Falkman, G. (2010) Real-time allocation of defensive
resources to rockets, artillery, and mortars. Proceedings of the 13th In-
ternational Conference on Information Fusion, Edinburgh, United King-
dom, July 2010.

This paper (receiving an honourable mention in the category of best stu-
dent paper) presents results from experiments in which SWARD has been
used to test the real-time performance of modified versions of the genetic
algorithm and the particle swarm optimization algorithm for static asset-
based weapon allocation. We also test to approximate the static asset-
based problem with its target-based counterpart, and thereafter use the
maximum marginal return algorithm on the resulting target-based opti-
mization problem. The paper contributes to objective 4 and 5.

Publications of less relevance

1. Johansson, F. and Falkman, G. (2006) Implementation and integration
of a Bayesian Network for prediction of tactical intention into a ground
target simulator. Proceedings of the 9th International Conference on In-
formation Fusion, Florence, Italy, July 2006.

In this paper, a Bayesian network for prediction of enemy intent is devel-
oped, based on knowledge elicited from military experts at Swedish Army
Combat School and the former Ericsson Microwave Systems (nowadays
the business unit Electronic Defence Systems at Saab AB). The model is
intended for ground combat, but is of interest here since it shares some of

12 CHAPTER 1. INTRODUCTION

the parameters used for threat evaluation in this thesis. Intent is together
with capability the main factors for determining the level of threat posed
by targets to defended assets. For this reason, intent recognition becomes
important for the threat evaluation process.

2. Niklasson, L., Riveiro, M., Johansson, F., Dahlbom, A., Falkman, G.,
Ziemke, T., Brax, C., Kronhamn, T., Smedberg, M., Warston, H. and
Gustavsson, P. (2007) A Unified Situation Analysis Model for Human
and Machine Situation Awareness. In Koschke, R., Herzog, O., Rödiger,
K.-H., and Ronthaler, M. (Eds.): Trends, Solutions, Applications. Pro-
ceedings of SDF 2007. Lecture Notes in Informatics P-109, pp 105–110,
Köllen Druck & Verlag.

This is a joint publication, written by some of the members in our re-
search group for getting a common view on information fusion, decision
support, situation awareness, etc. We present (SAM)2, a model for situa-
tion analysis unifying the technological view on information fusion given
by the JDL model with the view given by Endsley on how human decision
makers obtain situation awareness. The model is intended for highlight-
ing important issues with semi-automated decision support systems, such
as human-computer interaction and information exchange between dif-
ferent fusion levels. These problems are relevant for TEWA systems, in
which there must be an interaction between human and machine. The
paper contributes to the background of the thesis.

3. Johansson, F. and Falkman, G. (2007) Detection of vessel anomalies —
a Bayesian network approach. Proceedings of the 3rd International Con-
ference on Intelligent Sensors, Sensor Networks and Information Pro-
cessing, Melbourne, Australia, December 2007.

In this paper, a data mining approach based on Bayesian networks for
detecting anomalous vessel behavior is presented. This approach is differ-
ent from traditional statistical approaches for anomaly detection in that
it allows for the incorporation of human expert knowledge and transpar-
ent models. Anomaly detection is relevant for threat assessment, since it
can help focusing on entities deviating from normal behavior. Such tech-
niques can therefore be used in a preprocessing step to a threat evaluation
process, but also in military operations other than war.

4. Riveiro, M., Johansson, F., Falkman G. and Ziemke, T (2008) Supporting
Maritime Situation Awareness Using Self Organizing Maps and Gaussian
Mixture Models. In Holst, A., Kreuger, P., and Funk, P. (Eds.): Tenth
Scandinavian Conference on Artificial Intelligence. Proceedings of SCAI
2008. Frontiers in Artificial Intelligence and Applications 173, pp 84–91,
IOS Press.

1.5. DELIMITATIONS 13

As the previous paper, this publication is concerned with the problem of
identifying anomalous vessel behavior. The main difference between the
two publications is in the choice of method for anomaly detection. In this
paper, clustering of the training data is performed using a self organizing
map. The weights of the individual model vectors in the self organizing
map are together with the dispersion of training data around the model
vectors used for creating a Gaussian mixture model, which in its turn is
used for calculating the likelihood of new vessel observations.

5. Niklasson, L., Riveiro, M., Johansson, F., Dahlbom, A., Falkman, G.,
Ziemke, T., Brax, C., Kronhamn, T., Smedberg, M., Warston, H. and
Gustavsson, P. (2008) Extending the scope of Situation Analysis. Pro-
ceedings of the 11th International Conference on Information Fusion,
Cologne, Germany, July 2008.

This is another joint publication from the author’s research group, and
basically is an extended version of the (SAM)2-paper described above.

1.5 Delimitations

It should be made clear that the optimization problem studied in this thesis is a
static weapon allocation problem. Consequently, it is assumed that all weapon
systems (firing units) should be allocated to targets simultaneously. In a real-
world air defense situation, the decision of which weapon system to allocate to
which target needs to be complemented with scheduling of when to engage a
target. This is done in a separate scheduling process which is not part of this
thesis. However, the fact that we here restrict our focus to static weapon alloca-
tion does not mean that the developed algorithms cannot be used for dynamic
scenarios, since algorithms for static weapon allocation can be considered to be
very important subroutines to solve the dynamic weapon allocation problem
(Ahuja et al., 2007). Examples of how static weapon allocation algorithms can
be used for dynamically evolving scenarios are shown in this thesis.

We are in the weapon allocation process only taking into account the al-
location of so called hard-kill defensive resources (weapons used to intercept
targets and actively destroy them through direct impact or explosive detona-
tion) to targets. Hence, we are not dealing with soft-kill resources such as the
use of chaff and radar jammers. Although very interesting and usable in their
own right, allocation of such resources cannot easily be modeled using the for-
mulations of static weapon allocation used in this thesis.

In the presented literature surveys, only the open (i.e. unclassified) literature
is reviewed, due to obvious reasons. This means that better (classified) method-
ologies for evaluating TEWA systems and the threat evaluation and weapon
algorithms being part of such systems may exist, but none that the author of
this thesis is aware of.

14 CHAPTER 1. INTRODUCTION

1.6 Thesis Outline

This dissertation is organized as follows: after this introductory chapter, it con-
tinues with chapter 2, describing background information regarding air de-
fense, information fusion, uncertainty management, and optimization that will
be used throughout this thesis. In chapter 3, a formal presentation of the threat
evaluation and weapon allocation processes is given. Moreover, a survey of
the existing open literature on threat evaluation and weapon allocation is pre-
sented. Based on the findings, a number of algorithms for real-time threat eval-
uation and weapon allocation have been implemented. Detailed descriptions of
these algorithms are presented in chapter 4. In chapter 5, the problem of per-
formance evaluation of algorithms for threat evaluation and weapon allocation
is discussed. Suitable methods for performance evaluation of threat evaluation
and weapon allocation, as well as complete TEWA systems, are suggested, and
these have been implemented into the testbeds STEWARD and SWARD, which
are presented in chapter 6. The suggested algorithms have been implemented
into the developed testbeds, and experiments in which the testbeds are used to
compare the performance of the developed algorithms are presented in chapter
7. Finally, the thesis is concluded in chapter 8, together with a discussion on
future work.

Chapter 2
Background

This chapter gives a background to the subject of this thesis and introduces
fundamental concepts that are needed. In section 2.1, the information fusion
domain is described, highlighting the need for supporting decision makers with
the fusion of data and information from many heterogeneous sources in order
to allow for good and timely decision making. Section 2.2 introduces the reader
to the air defense domain, which is the core application for the work presented
in this thesis. An important aspect of the air defense domain is that the sen-
sor observations on which the decision making are based often are associated
with a certain amount of uncertainty. For this reason, different approaches to
uncertainty management that will be used throughout the thesis are introduced
in section 2.3. A large portion of the work in the thesis concerns the allocation
of firing units to threatening targets, which can be formalized as an optimiza-
tion problem. Consequently, a brief introduction to optimization is given in
in section 2.4, together with a presentation of different kinds of metaheuristic
approaches to optimization.

2.1 Information Fusion

The technological development during the last decades has resulted in that our
world is constantly flooded with data and information from various sensors.
Information that can be highly relevant for decision makers are to be found
in the bit streams of sensor observations, but it becomes increasingly difficult
to find the pieces of useful information within the rest. This information age
problem is illustrated in the following quote, due to Naisbitt (1982):

“We are drowning in information but starved for knowledge.”

In other words, instead of being able to make better and more informed deci-
sions thanks to the extra information, it is often the case that decision makers
become overloaded with information that potentially are of no use to the cur-
rent decision to be made. Connected to this information overload problem is

15

16 CHAPTER 2. BACKGROUND

the question of how to combine different pieces of information, stemming from
different sources or points in time. Problems like these are dealt with in the
research field of information fusion.

Information fusion, sometimes also referred to as data fusion1, is often used
to combine data from multiple sensors and related information in order to
make inferences that may not be possible to do by using a single, independent
sensor (Hall and Llinas, 2001). In most cases, these inferences are made in order
to support decision making. The newest widely accepted definition of fusion,
proposed in Steinberg et al. (1999) is as follows:

“Data fusion is the process of combining data or information to
estimate or predict entity states.”

In many cases, the objective of information fusion is to estimate or predict
physical states of entities over some past, current or future time period (Stein-
berg et al., 1999). Such traditional applications of information fusion are for
example involving the tracking of the position of air targets (see e.g. Koch
(2007)) and estimation of target identity (Schuck et al., 2009). The objective
may however also be to estimate and predict more abstract states, such as rela-
tions among entities or the intention of entities (Johansson and Falkman, 2006;
Bell et al., 2002). This is an example of what in thesis will be referred to as high-
level information fusion. The above definition of data fusion is quite broad, in
order to make it general and not restrict its application to the defense domain.
However, a more defense-focused definition from the initial Joint Directors of
Laboratories (JDL) data fusion lexicon will be used here, since it more clearly
and explicitly specifies what is of interest within the work presented in this the-
sis, i.e. timely assessments of situations and threats. According to Liggins et al.
(2009), data fusion is in that view:

“a process dealing with the association, correlation, and combina-
tion of data and information from single and multiple sources to
achieve refined position and identity estimates, and complete and
timely assessments of situations and threats, and their significance.
The process is characterized by continuous refinements of its es-
timates and assessments, and the evaluation of the need for addi-
tional sources, or modification of the process itself, to achieve im-
proved results.”

2.1.1 The JDL Model

By far the most used model for describing the fusion processes and functions
is the model developed in 1988 by the data fusion group of the Joint Directors

1Traditionally, the name data fusion has been most used, but as the annual fusion conference as
well as a number of well-known journals use the name information fusion, the latter has become
more widely used in recent years. In this thesis, the terms are used interchangeably.

2.1. INFORMATION FUSION 17

Human-
computer
interface

National

Distributed

Local

INTEL
EW

SONAR
.
.

RADAR

Level 0 processing

Sub-object
assessment

Level 1 processing

Object
assessment

Level 2 processing

Situation
assessment

Level 3 processing

Impact
assessment

Level 4 processing

Process
refinement

Database
management

system

Figure 2.1: The JDL model (1998 year’s revision, adapted from (Steinberg et al., 1999))

of Laboratories. This model is known as the JDL data fusion process model,
or for short, the JDL model. The JDL model was developed in order to de-
scribe the different fusion processes that exist, and to assist in communication
regarding fusion applications (Hall and McMullen, 2004). The model has been
revised a number of times, and we will here use the terminology suggested in
Steinberg et al. (1999), since it in the author’s view makes most sense and is
most commonly used.

The JDL model is divided into different levels, as can be seen in figure 2.1. It
should be noted, however, that the creators of the model never intended to im-
ply a process flow or a hierarchy between levels. A hierarchical sequence of the
levels often take place, but there is nothing in the model as such that constrains
the subprocesses to take place in sequential ordering (Liggins et al., 2009). A
list of the fusion processes identified in the JDL model follows, together with a
short description of each level:

• Level 0: Sub-Object Assessment

At level 0, physical access is provided to the data obtained from sensors,
either as raw bits or as a signal. The task on this level is mainly to prepro-
cess data by correcting biases and standardizing the input before the data
is fused with other data. The sub-object assessment processes are often
performed within the individual sensors (Liggins et al., 2009). Examples
of preprocessing that are dealt with on this level are signal processing,
feature extraction, and filtering of data.

• Level 1: Object Assessment

Level 1 fusion, referred to as object assessment (or sometimes entity as-
sessment) is dealing with the combination of data from different sensor
observations, in order to estimate and predict entity states (e.g. position,
velocity, and other object attributes). Object assessment processing is of-
ten partitioned into three different problem categories: data correlation,
state vector estimation (typically for target tracking), and estimation of a

18 CHAPTER 2. BACKGROUND

target’s identity (Hall and Steinberg, 2000; Hall and McMullen, 2004).
Current approaches to object assessment are dominated by estimation
techniques such as Kalman filters (Kalman, 1960), multiple-hypothesis
tracking (Blackman, 2004), particle filters (Gustafsson et al., 2002; Aru-
lampalam et al., 2001) and joint probabilistic data association filters
(Vermaak et al., 2005) for target tracking problems, while the problem
of identity estimation generally is performed using feature-based pattern
recognition approaches, such as artificial neural networks (Hall and Stein-
berg, 2000). Identify estimation is further described in section 2.2.2.

• Level 2: Situation Assessment

Situation assessment concerns the estimation and prediction of relations
among entities and their relationships to the environment, in order to in-
terpret the current situation. The process involves recognition of patterns,
context-based reasoning, and understanding of temporal, spatial, causal,
and functional relationships (Hall and Steinberg, 2000). Key functions in
level 2 fusion are object aggregation, i.e. aggregation of entities into larger
groups (Looney and Liang, 2003), force aggregation (Schubert, 2003),
and multi-perspective assessment (i.e. to see a situation from both a neu-
tral point of view, an own point of view, and from an adversarial point of
view) (Hall and McMullen, 2004).

Techniques for situation assessment are in general drawn from the field
of pattern recognition (e.g. decision trees (Quinlan, 1986) and neural net-
works (Looney and Liang, 2003)) or the field of automated reasoning
(e.g. blackboard systems, expert systems, and case-based reasoning) (Hall
and McMullen, 2004).

• Level 3: Impact Assessment

Level 3 fusion is according to Steinberg et al. (1999) concerned with the
estimation and prediction of effects on situations of planned actions. Ex-
amples of this can be to draw inferences about potential threats (Roy
et al., 2002), critical vulnerabilities (Falzon, 2006), and probable courses
of action (Pawlowski et al., 2002; Bell et al., 2002). In fact, the original
name for this level was threat assessment, showing the importance of the
estimation of threat on this level. This name has however been changed
to impact assessment in revisited versions of the JDL model, in order to
broaden the concept to non-military domains (Liggins et al., 2009).

A special challenge for level 3 processing is to determine enemy intent.
This problem can be modeled using a variety of techniques when there
exists a well-known enemy doctrine (see e.g. Suzić (2006) and Amori
(1992)), but such doctrines are not often fully known (Fu et al., 2003).
Another problem on this level is to model how the participants of a con-
flict situation interacts with each other, and how they adapt to each oth-
ers actions. Research on game theory has been undertaken to address this

2.1. INFORMATION FUSION 19

issue, but it still has shortcomings when it comes to applying it to realis-
tic situation descriptions (Brynielsson, 2006; Hall and Steinberg, 2000).
Other techniques for level 3 processing are drawn from the same field as
for the level 2 processing, i.e. pattern recognition and automated reason-
ing (Hall and McMullen, 2004).

The threat evaluation and weapon allocation processes that are central
for this thesis can according to Roux and van Vuuren (2007) both be
classified as level 3 fusion processes.

• Level 4: Process Refinement

Process refinement is a metaprocess monitoring the overall information
fusion process to assess and improve the performance of the ongoing fu-
sion via planning and control. That is, it seeks to optimize the ongoing fu-
sion process in order to produce better fusion products, such as improved
position, velocity, and identity estimates (Hall and McMullen, 2004). An
important example of process refinement is sensor management (Xiong
and Svensson, 2002), in which the use of sensors and sensor platforms is
planned and managed, e.g. based on identified intelligence requirements.

According to Liggins et al. (2009), the object assessment level is the most ma-
ture area of information fusion. There exists a number of prototypes for the
more immature levels of situation and impact assessment, however, only a few
robust and operational systems (Liggins et al., 2009). It should however be
mentioned that a lot of operational TEWA systems are deployed and opera-
tional already today. In the view of Steinberg (2009), level 3 fusion is a formally
ill-defined and underdeveloped discipline of information fusion, but still very
important for military and intelligence applications.

2.1.2 The OODA Loop

According to Nilsson (2008), the most accepted and most used decision mak-
ing process model within the field of information fusion is the Observe-Orient-
Decide-Act loop (often simply referred to as the OODA loop). This loop is
illustrated in figure 2.2. Originally, the OODA loop was developed by the mili-
tary strategist Colonel John Boyd in order to explain why American F-86 Sabre
aviators were so successful in the Korean war, compared to their adversaries
(Brehmer, 2005). In his analysis, Boyd found out that an explanation for the
superior performance of the American aviators and their fighter aircrafts was
that they were able to more quickly and accurately Observe their environment
(detect enemy aircrafts), Orient themselves (by pointing their aircraft toward
the enemy), Decide on what to do next, and to Act upon the taken decision
(e.g. to press the trigger in order to shoot down their adversary). Hence, the
proposed explanation for the superiority was that the American fighter pilots
were able to get inside their opponent’s decision cycle/OODA loop. Since its

20 CHAPTER 2. BACKGROUND

Observe Decide

Orient

Act

Figure 2.2: Illustration of Boyd’s OODA loop.

original introduction, the simple OODA loop has become an important model
in both business and military strategy (Richards, 2004). The importance of get-
ting inside the adversary’s OODA loop (i.e. to be able to go through the various
stages in the loop more quickly and accurately than the opponent) is for exam-
ple highlighted within maneuver warfare. In air defense situations, the speed
and effectiveness of the execution of the defenders’ OODA loop is of crucial
importance, as discussed in section 2.2.

2.1.3 Decision Making and Situation Awareness

As identified earlier, it is often important for military decision makers to be
able to make good decisions quickly. An important concept that has emerged
in human decision making and which often is used within the field of informa-
tion fusion is that of situation awareness (Endsley, 1988). According to Roux
and van Vuuren (2007), situation awareness provides a primary basis for subse-
quent decision making in complex and dynamic environments. Endsley (1988)
has defined situation awareness as:

“the perception of the elements in the environment within a vol-
ume of time and space, the comprehension of their meaning and
the projection of their status in the near future.”

This definition highlights that there are three levels of situation awareness,
where the level of situation awareness depends on the level of information
refinement (Brynielsson, 2006). Separating these levels, perception indicates a
basic perception of important data, comprehension encompasses how people
interpret the data by combining data and information and transferring it into
knowledge, and projection denotes peoples’ ability to predict future events and
their implications (Endsley, 1995). Hence, the levels of situation awareness are
closely related to levels 1–3 in the JDL model, as observed by e.g. Niklasson
et al. (2008) and Lambert (2009).

2.2. AIR DEFENSE 21

Situation analysis

Decision making

Situation awareness

Orient

Dec
ideAct

Obse
rve

Figure 2.3: Illustration of the connection between situation analysis, situation aware-
ness, and decision making (adapted from (Roy, 2001)).

Situation awareness is according to Roy (2001) the decision maker’s mental
model of the state of the environment and the main precursor to the decision
making process. This is illustrated in figure 2.3, together with its relation to
Boyd’s OODA loop. Information fusion mainly concerns what in figure 2.3
is referred to as situation analysis, i.e. the Observe and Orient phases of the
OODA loop. Hence, information fusion is fundamental for obtaining a high
degree of situation awareness quickly and thereby make appropriate decisions.
Information fusion is therefore considered to be the core technology under-
lying decision support systems used in applications in which large amounts of
real-time information can be expected (Brynielsson, 2006). Nevertheless, to cre-
ate a situation awareness is anything but easy. For the human decision maker
it is challenging due to information overload and the uncertain and incom-
plete nature of the received data and information, but it is also challenging for
computer-based systems due to the need of interpreting the information.

2.2 Air Defense

As should be clear from section 2.1, central themes for this thesis are infor-
mation fusion and decision making. However, it is not decision making and
information fusion in any domain that is of interest here, rather, the focus is
solely on air defense applications. According to Joint Chiefs of Staff (2007),
the concept of air defense includes:

“defensive measures designed to destroy attacking aircraft or mis-
siles in the atmosphere, or to nullify or reduce the effectiveness of
such attack”.

22 CHAPTER 2. BACKGROUND

The importance of air defense is anything but new. Anti-balloon artillery was
used already under the American Civil War, and the first aircraft ever downed
in combat fell to ground fire as early as 19122 (Werrell, 2005). However, to-
day’s air defense weapon systems are far more technologically advanced than
the modified artillery pieces used during the initial years. With the advent of
radar came the possibility to detect aircrafts before they could be seen visually,
allowing for much earlier warnings, especially by night. Later on, it also became
possible to use radar for fire guidance. Moreover, old anti-aircraft guns have to
a large extent been replaced by modern weapon systems such as surface-to-
air missiles (SAMs), as well as high-speed Gatling guns3 for terminal defense
against fast-moving missiles. At the same time, the technological development
on the attacker’s side has been enormous too. Modern air defense units are not
only facing threats such as aircrafts with high maneuverability in all three di-
mensions, but should also be able to defend against advanced weapons such as
cruise missiles (CMs) and intercontinental ballistic missiles (ICBMs). Advances
in technology have lead to increased speed, increased maneuverability, and de-
creasing radar cross section of threatening targets, which in their turn have
lead to reductions in the available response time for the defense (Chalmers and
da Ponte, 1995). In certain types of air defense, targets of interest may also be
rockets, artillery, and mortars, commonly referred to as RAM. This type of air
defense is often needed for protection of e.g. military bases against insurgent at-
tacks in for example military international peace-keeping or peace-forcing oper-
ations. Targets of interest for more traditional air defense are comprised of two
main elements: aircraft (manned and unmanned), and missiles (Joint Chiefs of
Staff, 2007). As the technology has improved, and due to increases in the num-
ber of available missile systems, the number of countries with both ballistic
missiles, cruise missiles, air-to-surface missiles (ASMs), and long-range missile
capabilities has increased and is likely to increase even more in the near future
(Joint Chiefs of Staff, 2007). Ballistic missiles are also often one of the weapons
of choice for developing countries, due to their relatively cost-efficiency.

The most common task of the air defense is to protect so called defended
assets against hostile targets. In order to protect the defended assets, surveil-
lance sensors and firing units4 are deployed. The defended assets are assets
which have been identified as strategically important, and can for example be
air bases, bridges, camps, command outposts, harbors, important supply lines,
population centers, and power plants. It can also be the air defense units them-
selves, since these are highly valuable assets which often constitute the only pro-
tection of the other defended assets against air targets (Cheong, 1985). Hence,

2The aviator Constantin was during the Balkan War making an aerial study of the Turkish lines
when killed by a rifle bullet fired from the ground (Roux and van Vuuren, 2008).

3This type of weapons are very common for the last layer of defense on naval crafts, on which
they are referred to as CIWS (pronounced as sea-whiz), which is an abbreviation for close-in wea-
pon system.

4The terms firing units and weapon systems are used interchangeably throughout the thesis.

2.2. AIR DEFENSE 23

the destruction of the defending air defense units make the remaining defended
assets easy targets for attacking forces.

There are many different functions that must be handled in military decision
support systems for air defense. The functions of (i) target detection, (ii) target
tracking, (iii) target identification, (iv) threat evaluation, and (v) weapons as-
signment (here referred to as weapon allocation) are in Benaskeur et al. (2007)
listed as being central for such systems. Additional to these functions, an im-
portant requirement on air defense systems is to have a good man-machine
interface (MMI) that enhances the operators’ situation awareness, since it in
the end most often is the human rather than the machine that needs to make
the decision of whether or not to engage a target. A view of how the various
parts of an air defense system are functionally related to each other is shown in
figure 2.4. Each function is described more thoroughly in section 2.2.1–2.2.5.

Target
detector 1

…

T
a

rg
e

t tra
c

kin
g

MMI

Target
ID

Threat evaluation

W
e

a
p

o
n

 a
llo

c
a

tio
n

Sensor management

Sensor management

Engagement

Target
detector n

Figure 2.4: Functional overview of an air defense system.

2.2.1 Target Detection and Tracking

In order to be able to evaluate the threat posed by targets to defended assets
and to identify suitable countermeasures, it is obvious that capabilities to detect
and track targets are needed. The quality of the estimated target information

24 CHAPTER 2. BACKGROUND

provided by available sensors play a crucial role for the outcome of the air
defense processes.

When observing the environment in order to detect targets, there are many
different kinds of sensors that can be used. The sensors that most often are
used in air defense systems are surveillance radars (sensors sending out elec-
tromagnetic waves that are reflected by physical objects), but also thermal (e.g.
infrared sensors) and optical sensors can be used (Roux and van Vuuren, 2008).
Different sensors have different characteristics and there is typically a trade-off
between the update rate, effective range, and range accuracy for a sensor. Typ-
ical specifications for 2D surveillance radars of various type are shown in table
2.1. As the name implies, a 2D radar works in two dimensions; range and az-
imuth. There are also 3D radars in use that in addition to range and azimuth
information provide elevation information.

Table 2.1: Performance of a typical surveillance radar (adapted from Roux and van
Vuuren (2008)).

Update rate Range Range accuracy

Short range ≤ 1 sec 0–50 km 5–20 m
Medium range 2–4 sec 50–200 km 20–100 m

Long range 10 sec ≥ 200 km 100–500 m

Much research has been devoted to the low-level information fusion prob-
lems of target detection and target tracking. The target detection capabilities
are obviously very dependent upon the choice of sensors and the quality of
these. Once a target has been detected, next step is to track it. Target tracking
basically is about estimating the current position and kinematics of a target, as
well as predicting these into the future. The target tracking is not dealt with in
the work presented here, but it is important to understand that target estimates
are imperfect, in that they are associated with uncertainty.

2.2.2 Target Identification

One important step in the target identification process concerns the transforma-
tion of a set of entity attributes such as speed, radar cross-section, shape, etc.
into a label describing the identity of the target (Hall and McMullen, 2004)
(e.g. fighter, bomber, or helicopter). Algorithms for accomplishing this are of-
ten based on pattern recognition techniques such as artificial neural networks
(Hall and McMullen, 2004) or the use of techniques such as Bayesian networks
and Dempster-Shafer theory (Schuck et al., 2009). Such an identification can
also help in determining the allegiance of the target, i.e. a classification such as

2.2. AIR DEFENSE 25

Friend, Neutral, or Hostile5. To determine the friendly or hostile character
of an unknown detected target is according to Joint Chiefs of Staff (2007) an
essential air defense problem, since accurate and timely identification enhances
the engagement of hostile aircrafts and missiles, as well as reduces the risk of
fratricide.

Several different recognized methods can be used for identification. Exam-
ples of such methods are the use of so called positive identification and proce-
dural identification (Joint Chiefs of Staff, 2007). What kind of method that is
required for classification, among other factors, depends on the rules of engage-
ment (ROE). The rules of engagement vary for different kinds of situations (e.g.
whether the ongoing mission is part of a full-scale war or a peacekeeping opera-
tion). They may also vary between different kinds of air defense. As an example,
the US Navy’s rules of engagement used during hostilities dictate that aircrafts
approaching aircraft carriers are assumed to be hostile, unless they are able to
prove that they are friendly, or at least non-threatening (US Congress, Office
of Technology Assessment, 1993). However, in the case of area air defense, the
area defenders typically assume that an unknown aircraft might be friendly,
unless there is positive evidence available showing that the target is indeed hos-
tile (US Congress, Office of Technology Assessment, 1993). The concepts of
positive identification and procedural identification are explained below:

• Positive Identification:

The positive identification is an identity that is derived from visual obser-
vation and/or electronic systems, which possibly also are combined with
other factors. What is meant by positive identification is that the iden-
tification is made based on the positive presence of evidence confirming
the identity. As an example of this, a correct response to an identification
friend or foe (IFF) interrogation system can be taken as positive evidence
that the interrogated target is friendly. However, the lack of response to
such an interrogation is not a positive evidence of the target being hostile.
In many situations, a positive identification is required by the rules of en-
gagements before an engagement decision is made (Joint Chiefs of Staff,
2007).

• Procedural Identification:

A procedural identification separates air targets in the airspace by the use
of factors such as geography, altitude, heading, and time (Joint Chiefs of
Staff, 2007). Normally, a combination of positive and procedural identity
(ID) is used to identify friendly and hostile targets. According to Lieb-
haber et al. (2002) and Smith et al. (2004), current air defense systems
(such as the Aegis combat system) make use of kinematics such as course,

5A complete list of possible allegiances for use in NATO systems can be found in the NATO
standard STANAG 1241.

26 CHAPTER 2. BACKGROUND

speed, and altitude, as well as tactical data (e.g. type of radar) when de-
termining a likely identity of aircraft contacts. The use of procedural ID
can be advantageous for some missions and scenarios, but is generally not
enough for engagement decisions (for this kind of decisions, a positive ID
is normally required).

Target identification is not a central topic of this dissertation, but is very
related to threat evaluation in that many of the parameters used for target
identification also are used for threat evaluation. Furthermore, only target clas-
sified as Hostile or Unknown are usually becoming subject to threat evaluation
(Roux and van Vuuren, 2007).

2.2.3 Threat Evaluation

Based upon information that can be derived from from the target tracking and
target identification processes, the high-level information fusion problem of
threat evaluation boils down to estimate the level of threat posed by detected air
targets to defended assets (Roy et al., 2002), represented as threat values. Such
threat values are aggregated into target values, specifying the total or average
threat posed by a target (for a further discussion of threat and target values,
see section 3.1). The calculated target values can be used to aid the human air
defense decision makers on to which targets to focus their attention, but also
to decide or suggest which (if any) targets that should become subject for wea-
pon allocation. Different target values will be calculated depending on which
algorithm that is used for threat evaluation, and depending on the parameter
settings. Parameters and algorithms that are suitable for threat evaluation are
discussed in more depth in chapter 3. That chapter also provides a more formal
description of the threat evaluation process.

2.2.4 Weapon Allocation

Weapon allocation can be defined as the reactive assignment of defensive wea-
pon resources to engage or counter identified threats (Paradis et al., 2005). In
order to protect their defended assets, the defense can use a number of dif-
ferent countermeasures. The two main classes of countermeasures that can be
identified are so called hard-kill and soft-kill resources. A hard-kill weapon is
used to intercept targets and actively destroy them through direct impact or
explosive detonation, while soft-kill resources use different techniques to de-
ceive or disorient the target so that it is not able to lock on the defended asset
it is aimed for (Benaskeur et al., 2008). To exemplify these kind of defensive
resources, there is on a typical frigate three kinds of hard-kill weapon systems
(Beaumont, 2004): surface-to-air missiles, medium caliber guns, and close-in
weapon systems. Typical characteristics for such weapon systems are shown in
table 2.2. Examples of soft-kill resources are chaff decoy launchers (that are

2.2. AIR DEFENSE 27

Table 2.2: Performance of typical weapon systems (Benaskeur et al., 2007).

Min range Max range Speed

Surface-to-air missiles ∼ 1.5 km ∼ 16 km ∼Mach 1
Medium caliber guns ∼ 1 km ∼ 5 km ∼ 850 m/s

Close-in weapon systems 0 km ∼ 2.5 km ∼ 1200 m/s

used to seduce or distract targets) and radar jammers (which are used to per-
turb the enemy’s radar) (Benaskeur et al., 2008). In this thesis, only hard-kill
resources are taken into consideration. Hence, the question to be answered by
the weapon allocation process studied here is which firing unit(s) to allocate
to which target(s). The weapon allocation process is described in much more
detail in chapter 3.

2.2.5 Man-Machine Interface

As stated in Hall and McMullen (2004):

“it is important to realize that ultimately, the output from a data
fusion system is aimed at supporting a human decision process”.

In the context of air defense, it is in anything but rare circumstances (an excep-
tion being terminal defense against anti-ship missiles) a human decision maker
and not an automated system that takes the final decision of whether a target
should be engaged by a firing unit or not, not least for legal issues. For this rea-
son, it is important that the system can help the decision maker with achieving
a situation awareness that can be used to make good and timely decisions. In
order for the system to be useful for decision support, the operators’ cognitive
demands have to be taken into consideration. The use of air defense systems for
decision support to human operators has in Morrison et al. (1997) been shown
to increase the operators’ situation awareness. However, human decision mak-
ers are unlikely to accept automated decisions without some explanation of the
line of reasoning used for arriving at the decision, and air defense systems need
to be designed with this in mind (Paradis et al., 2005).

In Liebhaber and Feher (2002a), guidelines for threat evaluation displays
for threat evaluation and weapon allocation (TEWA) systems are discussed.
According to their study, the threat evaluation part of a TEWA system should
be able to:

• compute and display target values,

• support explanation-based reasoning (so that the decision maker under-
stands the reason for the calculated target values),

28 CHAPTER 2. BACKGROUND

Figure 2.5: Graphical user interface displaying threat rating for a hooked track (from
Liebhaber and Feher (2002a)).

• generate a target priority list that has a good match to human-generated
lists.

It is also suggested that target values should be represented to the user using
verbal descriptions, rather than through using numerical information, since nu-
merical values imply a degree of precision that generally is not well anchored
(Liebhaber and Feher, 2002a). It is according to their study also of value to be
able to display a target value history, i.e. a view of how the target’s estimated
threat levels change over time. In figure 2.5 it is illustrated how many of these
guidelines can be implemented in a suitable graphical user interface. Another
important feature, suggested in Morrison et al. (1998) and Smith et al. (2004),
is the ability to show a historical plot of the tracks. For cluttered airspaces, it
is in St. John et al. (2004b,a) suggested that tactical displays should be declut-
tered through dimming the symbols of targets with low target values, in order
to help the decision maker to obtain a good situation awareness.

2.3. UNCERTAINTY MANAGEMENT 29

The interaction between man and machine is of peripheral interest for this
dissertation, but it should be noted that operators’ trust in the TEWA system is
crucial, and therefore the guidelines listed here need to be taken into account
when designing such systems. Furthermore, these aspects make black-box tech-
niques inappropriate for threat evaluation in most cases, since such techniques
hinder the decision maker’s understanding of the underlying reasoning mecha-
nisms.

2.3 Uncertainty Management

Informally, reasoning is in this context a process in which information re-
garding some unobserved aspect of a situation is inferred from information
regarding some observed parts of the situation (Bhatnagar and Kanal, 1992).
A problem that is faced within many situations in which reasoning should be
performed is that information is missing (i.e. that all relevant information is
not available), and that all available information is not necessarily relevant,
as discussed in section 2.1. Moreover, the available information is very often
uncertain and imprecise (or even incorrect).

There are a number of different techniques available for reasoning and in-
ference making in the presence of uncertain (and missing) information, e.g. cer-
tainty factors (Shortliffe and Buchanan, 1975), Dempster-Shafer theory (Shafer,
1976), Bayesian networks (Pearl, 1986), and fuzzy logic (Zadeh, 1983). In this
section, the two latter techniques will be presented, since this is what have been
used for making inferences in the work presented within this thesis. Section
2.3.1 introduces the concept of a Bayesian network, while the theory of fuzzy
logic and fuzzy inference systems is introduced in section 2.3.2.

2.3.1 Bayesian Networks

A Bayesian network (sometimes also referred to as a belief network) is a prob-
abilistic graphical model that characterizes a problem domain consisting of a
set of random variables U = {X1,...,Xn}. These variables are in the Bayesian
network represented as a set of corresponding nodes V in a directed acyclic
graph G = (V,E), where the set of edges E ⊆ V × V specifies (conditional)
independence and dependence relations that hold between variables within the
domain. Given the graph structure G, a joint probability distribution P over U
can be calculated from a set of local probability distributions associated with
each node6 Xi using the chain rule of Bayesian networks:

P (x1,...,xn) =
n∏

i=1

P (xi|pai), (2.1)

6Since the nodes in G are in one-to-one correspondence with the random variables in U, Xi is
used to denote both variables and their corresponding nodes.

30 CHAPTER 2. BACKGROUND

Alarm

Neighbour
Call

BurglaryEarthquake

Radio
Information

P(E=t)=0.001 P(B=t)=0.005

P(A=t|E=t,B=t)=0.99

P(A=t|E=t,B=f)=0.40

P(A=t|E=f,B=t)=0.90

P(A=t|E=f,B=f)=0.02

P(NC=t|A=t)=0.85

P(NC=t|A=f)=0.01

P(RI=t|E=t)=0.60

P(RI=t|E=f)=0.05

Figure 2.6: Example of a Bayesian network.

where the set of local probability distributions are the distributions in the prod-
uct of equation 2.1 (with pai we refer to an assignment of values to the parent
set PAi of node Xi, while xi is an assignment of a specific value to Xi). The
joint probability distribution can be seen as a function assigning a number in
the range [0,1] to each possible combination of states of variables describing the
domain. A strength of Bayesian networks is their ability to represent joint prob-
ability distributions in a compact manner, due to their encoding of conditional
independences between different attributes in the domain.

To illustrate the use of Bayesian networks, consider a problem domain con-
sisting of the random variables Alarm (A), Burglary (B), Earthquake (E),
Neighbour Call (NC), and Radio Information (RI). All of these variables
can take on the values true (t) or false (f). In our example (which is a mod-
ified version of an example originally presented by Pearl (1988)), we have a
burglar alarm installed in our house. The alarm is supposed to set off in case
of a burglary, but there is a small probability that the alarm can malfunction.
Moreover, there is a probability of false alarms, i.e. that the alarm sets off de-
spite that there is no ongoing burglary. The main reason for such false alarms
is in this example scenario that the alarm is set off due to minor earthquakes.
Such earthquakes tend to be reported in the radio news, and if the alarm is
sounding (due to an ongoing burglary, an earthquake, or any other reason) it
is likely that we will receive a phone call from our neighbor, telling us about
the sound of the alarm. This situation is illustrated in the Bayesian network
shown in figure 2.6. Its graph structure shows how the random variables are
related to each other (how to come up with an appropriate graph structure
will be discussed later on), and the numbers shown are the ones needed for
the local probability distributions, stored in so called conditional probabil-
ity tables (CPTs). Note that some values are omitted, since these easily can
be calculated by taking the complement to values found in the table (such as

2.3. UNCERTAINTY MANAGEMENT 31

P (B = F) = 1− P (B = T) = 0.995). In the shown graph structure, the parent
set of Alarm is {Burglary, Earthquake}. Likewise, the parent set of Burglary
is ∅ since there are no incoming directed edges to Burglary. As an example of
how joint probabilities can be obtained from the network, we can calculate the
full joint probability P (E = f,B = t,RI = f,A = t,NC = t). According to the
chain rule of Bayesian networks, this can be calculated as:

P (E = f)×. . .×P (NC = t|A = t) = 0.999×0.005×0.95×0.9×0.85≈ 0.00363

Similarly, all other full joint probabilities for this domain can be obtained in the
same manner from the Bayesian network. Hence, in this particular example, the
Bayesian network encodes all 25 = 32 full joint probabilities by storing only 10
values and the network structure. As we will see, all probabilities of interest for
this domain can be calculated using this Bayesian network.

Conditional Independence and D-Separation

A central concept for the theory of Bayesian networks is that of conditional
independence. For this reason, a formal definition of conditional independence
is given in definition 2.1, analogous to the definition given in Jensen (2001).

Definition 2.1. Let X = {X1,...,Xn}, Y = {Y1,...,Ym} and Z = {Z1,...,Zl} be
three sets of variables. We say that X is conditionally independent of Y given Z
(written as X ⊥⊥ Y|Z) if P (X,Y|Z) = P (X|Z)P (Y|Z) for every choice of values
x, y and z.

From equation 2.1 it follows that a random variable Xi is conditionally
independent of the set of all its non-descendants, given the set of all its parents
PAi. This is known as the Markov condition. Such a conditional independence
that can be identified in our example scenario is that: A ⊥⊥ RI|{E,B}, i.e.
given knowledge of the true state of the variables Earthquake and Burglary,
our belief in the alarm sounding will not change when obtaining information
via the radio of whether there is an earthquake or not. By symmetry this also
holds the other way around, i.e. information regarding the sound of the alarm
will not change our belief in receiving radio information about earthquakes in
our area, given that we know the state of Earthquake and Burglary.

There are often more conditional independences encoded in a Bayesian net-
work, since the Markov condition can entail other conditional independences.
Which conditional independences that holds for a certain network structure G
can be determined using the concept of d-separation. We will here explain the
concept of d-separation using a definition given in Pearl (2000):

Definition 2.2. A path p is d-separated (blocked) by a set of nodes Z if and only
if

1. p contains a chain i→ m→ j or a fork i← m→ j such that the middle
node m is in Z, or

32 CHAPTER 2. BACKGROUND

2. p contains an inverted fork i → m ← j such that the middle node m is
not in Z and such that no descendant of m is in Z.

A set Z d-separates a set X from a set Y if and only if Z blocks every path from
a node in X to a node in Y.

If two sets X and Y are d-separated by a third set Z, X and Y are condition-
ally independent given Z, i.e. X ⊥⊥ Y|Z. In the definition above, the terms chain,
fork, and inverted fork are used, but it is also common that these are referred to
as serial connections (head-to-tail meetings), diverging connections (tail-to-tail
meetings), and converging connections (head-to-head meetings), respectively.
In our example Bayesian network, B → A → NC is a chain, RI ← E → A
is a fork, and E → A ← B is an inverted fork. Hence, some independences
that can be identified using the concept of d-separation are that: NC ⊥⊥ RI|E
and E ⊥⊥ B|∅, i.e. that our belief in receiving a call from our neighbor is not
affected by radio information once we know the state of Earthquake, and
that Earthquake and Burglary are independent when no other information is
known.

Knowledge Elicitation

Creation of a Bayesian network involves three consecutive steps:

1. identification of important variables and their possible values,

2. identification of relationships between the identified variables,

3. elicitation of required quantitative conditional probability numbers.

The variables and their relationships correspond to the qualitative part of a
Bayesian network and are expressed in a directed acyclic graph, as explained
earlier. To identify the variables to be used is often quite straightforward. When
deciding on which values a variable should be able to take on, it is important
to remember that the states need to be mutually exclusive and exhaustive, i.e.
that a variable cannot take on two or more states at the same time, and that
all possible states are explicitly modeled. There are alternative ways to by hand
create the graphical structure of a Bayesian network, however, the most conve-
nient way is to draw an edge from a node X to a node Y if and only if X is a
direct cause of Y , where the resulting graph is referred to as a causal directed
acyclic graph (Neapolitan, 2003). If we mistakenly should draw an edge from a
node X to a node Y when X in fact only has an indirect causal influence on Y
through other random variables in the model, this unnecessarily increases the
size of the Bayesian network (and thereby making it less informative), however,
it is not too serious since the Markov condition still can be expected to hold
(Neapolitan, 2003). It is worse if a causal edge is missed since it then might
be conditional independence relations encoded in the Bayesian network that

2.3. UNCERTAINTY MANAGEMENT 33

does not hold in reality, violating the Markov condition. To elicit the quali-
tative part from domain experts is generally considered doable (nevertheless
often an iterative labor intensive task) while it most often is the elicitation of
the required (conditional) probabilities that is the main obstacle (Kjærulff and
Madsen, 2007). A guide to much of the existing literature on knowledge elici-
tation for Bayesian networks is given in Druzdzel and van der Gaag (2000).

Probabilistic Inference in Bayesian Networks

Once a Bayesian network has been constructed, it can be used for probabilis-
tic inference, i.e. to compute a posterior probability of interest conditional on
available observations. This can mathematically be seen as given a set of obser-
vations (evidence) z, a set of query variables X, and a set Y including all vari-
ables except the variables in X and Z perform the computation of the posterior
probability P (X|z). Given the full joint distribution encoded in the Bayesian
network it is in theory easy to compute the answer by summing out the hidden
(non-evidence) variables in Y as:

P (X|z) =

∑
y P (X,Y,z)∑

x,y P (X,Y,z)
. (2.2)

However, in this way the conditional independences encoded in the network
are not made use of, and the calculations can become intractable for large net-
works. Since the graph structure G encodes conditional independences, these
can be exploited to make probabilistic inference more efficient. Examples of
such algorithms are the variable elimination algorithm (Zhang and Poole, 1996)
and the junction tree algorithm (Lauritzen and Spiegelhalter, 1988). In the
Bayesian network for threat evaluation presented in chapter 4.1.1, the junc-
tion tree algorithm (also known as the join tree algorithm) has been used. In
this algorithm, the Bayesian network is converted into a secondary structure,
known as a junction tree, on which probabilities of interest are computed (see
Huang and Darwiche (1996) for a good presentation of the algorithm). Infer-
ence in general Bayesian networks has been shown to be NP-hard (Cooper,
1990). However, the computational complexity for the junction tree algorithm
(as well as many other algorithms for probabilistic inference in Bayesian net-
works) can be estimated prior to the actual inference making. Moreover, in
many practical applications a significant number of independences are present,
making exact probabilistic inference tractable in most cases.

2.3.2 Fuzzy Logic

Fuzzy logic is a multi-valued logic developed by Zadeh in the 1960’s with the
objective of representing some types of approximate information that could not
be represented by standard, crisp methods (Karray and de Silva, 2004). The use

34 CHAPTER 2. BACKGROUND

of fuzzy logic builds upon the concept of fuzzy sets, where a fuzzy set can be
seen as a generalization of a standard crisp set. In crisp set theory, members x
of the universal set X are either members or nonmembers of a set A ⊆ X. That
is, there is a discrimination function μA that for each x ∈ X assigns a value
μA(x), such that:

μA(x) =
{

1 if and only if x ∈ A,
0 if and only if x /∈ A.

(2.3)

Within fuzzy set theory this is generalized, so that the values assigned to x
fall within a specified range, indicating the element’s membership grade in the
(fuzzy) set in question (Klir and Folger, 1987). Larger values indicate a higher
degree of membership, while lower values indicate a lower degree of member-
ship. Hence, in fuzzy set theory there is a membership function

μA : X→ [0,1]. (2.4)

It must be noted that membership grades are not to be confused with probabil-
ities.

Operations on Fuzzy Sets

Classical crisp sets would not be very useful without operations such as inter-
section and union. The same holds true for fuzzy sets; we need the ability to
combine different fuzzy sets by applying operations on them. Here, the basic
operations of complement, union, and intersection on fuzzy sets are considered.

The complement A′ to a fuzzy set A ∈ X is in the work presented here a
fuzzy set whose membership function is given by:

μA′(x) = 1− μA(x), ∀x ∈ X. (2.5)

Other viable complement operators have been suggested in literature, but this
is the most frequently used. In order for a function to be acceptable as an
intersection operator, it must fulfill some basic requirements (cf. Kruse et al.
(1994); Karray and de Silva (2004)). A function
 fulfilling such requirements is
known as a t-norm. A t-norm which is widely used is
min. Consider two fuzzy
sets A and B, belonging to the same universe X. In this case, their intersection
can be defined as:

μA∩B(x) =
min[μA(x),μB(x)], ∀x ∈ X. (2.6)

In the same manner, a t-conorm is a function⊥ that fulfills certain requirements
for being a union operator. A widely used t-conorm is ⊥max, i.e.

μA∪B(x) = ⊥max[μA(x),μB(x)], ∀x ∈ X. (2.7)

This means that for intersection of two fuzzy sets, the minimum fuzzy set is
taken as the result, while for union, the maximum fuzzy set is taken as the
result. According to Kruse et al. (1994), these operators are very often used
when working with fuzzy sets, and are comfortable to work with arithmetically.

2.3. UNCERTAINTY MANAGEMENT 35

Inference Making Using Fuzzy Inference Rules

Implications are in fuzzy knowledge-based systems (fuzzy inference systems)
commonly represented by the use of fuzzy if-then rules (Karray and de Silva,
2004). Such rules are conditional statements as:

IF Speed == high AND Distance == close THEN Threat = high (1),

where the number within parentheses is the weight of the rule. A fuzzy infer-
ence system most often consists of several rules, and we will here describe the
Mamdani fuzzy inference system (Mamdani, 1976) which is most commonly
used. The Mamdani inference process consists of four steps:

1. Fuzzification

2. Rule evaluation

3. Aggregation

4. Defuzzification

As a first step in the Mamdani inference process, each crisp numerical input
is fuzzified over all qualifying fuzzy sets required by the rules, i.e. the degree
to which each part of the antecedent (the condition) of a rule is satisfied is
determined using the specified membership functions. In next step in the in-
ference process, the fuzzy intersection and/or union operators are applied to
rules with more than one premise in their antecedent. In this way, it is made
sure that all rules output a single value from their antecedent. As seen in the
fuzzy inference rule above, the consequent of a rule is a fuzzy set. This fuzzy
set is for each rule reshaped using the output from its antecedent on a specified
implication method (e.g. the min-operator, truncating the fuzzy set specified
by the consequent). Next, the output from all rules are combined into a single
fuzzy set, using an aggregation operator. The aggregation operator that usually
is used within fuzzy inference systems is the max-operator (Engelbrecht, 2002).
Finally, the resulting aggregated fuzzy set is defuzzified into a single crisp (i.e.
non-fuzzy) value, e.g. by calculating the centroid of the resulting fuzzy set. In
this way, fuzzy inference rules can be used for making inferences.

To exemplify the use of fuzzy inference rules and the fuzzy inference process,
consider a domain where we would like to determine how much tip to give,
based on the quality of the service and the quality of the food. Assume that we
come up with the following fuzzy inference rules:

IF Service == poor OR Food == rancid THEN Tip = low
IF Service == good THEN Tip = medium
IF Service == excellent OR Food == delicious THEN Tip = high.

In this example, no rule weights are assigned (i.e. they all have the default
weight 1.0). Before these rules can be used, the membership functions for Service,

36 CHAPTER 2. BACKGROUND

poor rancid low

good

medium

excellent delicious high

IF Service == poor OR Food == rancid THEN Tip = low

IF Service == good THEN Tip = medium

IF Service == excellent OR Food == delicious THEN Tip = high

Service = 3 Food = 8

16.7%

Figure 2.7: Example of inference in a fuzzy inference system (adapted from MathWorks
(2010)).

Food, and T ip have to be specified (these can be seen in figure 2.7). The quality
of the service and the quality of the food are both judged on a scale from 0 to
10, and based on these inputs, we would like our small fuzzy inference system
to decide on the tip (in percentage of the cost of the meal).

Figure 2.7 illustrates the used membership functions and the four different
steps in the fuzzy inference process, going from fuzzification of the crisp nu-
merical input (Service = 3, Food = 8) to the defuzzified output T ip = 16.7%
obtained by calculating the centroid from the resulting fuzzy set.

2.4 Optimization

An optimization problem can be described as the maximization or minimiza-
tion of a function of a number of decision variables x1, x2, . . . , xn, where the
function to be maximized or minimized is referred to as the objective function.
The objective function value F is a scalar quantity derived from the decision
variables as:

F = f(x) = f(x1, x2, . . . , xn). (2.8)

The decision variables are often subject to restrictions, referred to as con-
straints. An assignment of the decision variables fulfilling all the constraints
is known as a feasible solution. In this sense, optimization can be seen as the

2.4. OPTIMIZATION 37

problem of choosing the best feasible solution from a set of available alterna-
tives. A general constrained optimization problem can be written as (Antoniou
and Lu, 2007):

min F = f(x) (2.9)

subject to:

ai(x) = 0, for i = 1,2, . . . ,p

cj(x) ≥ 0, for j = 1,2, . . . ,q
(2.10)

In the case of the optimization problem being a maximization problem, such a
problem can be transformed into a minimization problem as:

max f(x) = −min[−f(x)]. (2.11)

An important well-known class of optimization problems is one where we
would like to minimize or maximize a linear function of decision variables, and
where all constraints are linear equations or linear inequalities. Such a problem
is known as a linear programming (LP) problem. Linear programming prob-
lems have the useful properties that the feasible region for such a problem is a
convex set and that there must be an extreme point of the feasible region that
is optimal, given that the linear programming problem has an optimal solu-
tion (Winston, 1997). Hence, we only need to search the finite set of extreme
points of the feasible region when searching for an optimal solution to a linear
programming problem. This is taken advantage of in the well-known simplex
algorithm invented by Dantzig, which can be used to rather quickly solve linear
programming problems of thousands of decision variables and constraints.

An optimization problem in which some or all of the decision variables
are restricted to be integral is known as an integer programming (IP) problem
(Winston, 1997). The two formulations of the static weapon allocation prob-
lem introduced in section 3.1 are examples of this class of problems. Combina-
torial optimization concerns the search of finding solutions in discrete problem
spaces (Papadimitriou and Steiglitz, 1998), and hence, integer programming
problems are also combinatorial optimization problems. Most combinatorial
optimization problems are hard to solve exactly, since all known exact ap-
proaches have worst-case computing times that grow exponentially with the
size of the problem instance at hand (Maffioli and Galbiati, 2000). It is strongly
believed that it is not possible to solve such NP-hard problems in polynomially
bounded computation time (Dorigo and Stützle, 2004), even though this still
has not been proved7. Due to the computational complexity, this kind of prob-
lems are often solved using heuristic algorithms, i.e. approximate algorithms
that are not guaranteed to return the optimal solution. Many such algorithms

7The question of whether P = NP or not has been called one of the seven most important
open questions in mathematics and the Clay Math Institute has offered a million-dollar prize for a
proof determining whether P = NP or not (Fortnow, 2009).

38 CHAPTER 2. BACKGROUND

are inspired by biological phenomena. Optimization problems occurring in na-
ture (such as adaptation to changes in the environment) are in practice differing
significantly from scientific optimization problems. Nevertheless, this does not
mean that it is meaningless to apply some of the clever mechanisms that can be
found in nature in various optimization algorithms. As stated in Wahde (2008):

“[...] in view of the amazing complexity of biological organisms,
and the perplexing ingenuity of some of the designs found by evo-
lution, there is sufficient motivation for developing optimization al-
gorithms based on natural evolution.”

Within the work presented in this thesis, three metaheuristic optimization al-
gorithms (i.e. high-level strategies which through adaptation can be applied to
different optimization problems) have been used. For this reason, the following
sections introduce the reader to genetic algorithms (section 2.4.1), ant colony
optimization (section 2.4.2), and particle swarm optimization algorithms (sec-
tion 2.4.3). More detailed descriptions of the algorithms are provided in section
4.2.

2.4.1 Genetic Algorithms

The concept of genetic algorithms was first introduced by Holland (1975). The
technique is an example of a so called evolutionary algorithm, which is inspired
by the processes of natural selection and evolution.

Initially, a genetic algorithm starts out with generating a (random) popula-
tion, consisting of a fixed size of individuals. An individual is encoded using
a chromosome (typically represented as a string) (Karray and de Silva, 2004),
consisting of a number of variables (genes), where each individual (also referred
to as phenotype) represents a candidate solution to the optimization problem
at hand. The range of values a gene can take on is within the theory of genetic
algorithms referred to as its alleles. A specific optimization problem can often
be encoded using different chromosome representations, e.g. binary or real-
number encoding schemes, and the choice of representation can have a large
effect on the success of applying a genetic algorithm (Wahde, 2008).

In order to evaluate how good a specific solution is, a fitness function is used
to measure its fitness. In the kind of optimization problems of interest here, the
fitness function is typically designed to be the objective function of the opti-
mization problem for maximization problems, or its inverse for minimization
problems.

There are three important genetic operators that need to be designed when
implementing a genetic algorithm: selection, crossover, and mutation. The se-
lection operator is used to select the individuals that are to participate in the re-
production process which gives birth to the next generation of individuals. Gen-
erally, the used selection operator is designed to probabilistically select good so-
lutions and remove bad solutions, based on their fitness function (Karray and

2.4. OPTIMIZATION 39

Initial population of
chromosomes

Initial fitness evaluation

Termination
criteria fulfilled?

Apply genetic operators

Create new population and
evaluate the new fitness

Terminate algorithm

No

Yes

Figure 2.8: Illustration of the overall process flow of a standard genetic algorithm
(adapted from Karray and de Silva (2004)).

de Silva, 2004). The two most common selection algorithms are roulette-wheel
selection and tournament selection (Wahde, 2008). In roulette-wheel selection,
the individuals are selected based on a fitness-proportional procedure, while
tournament selection picks two (or more) individuals at random, selecting the
best among them with a certain probability. The crossover operator is used to
achieve genetic recombination, in which the genes of two parents are combined
in order to form the chromosome of a new individual. The crossover can be
designed in different ways, but only creates new orderings of already existing
genes. On the other hand, the mutation operator can possibly change a gene
completely, since it often is designed to randomly change one or more parts
of the string representing the chromosome (Karray and de Silva, 2004). The
process flow of a typical genetic algorithm is illustrated in figure 2.8. When the
algorithm terminates, it returns the best solution found during the search.

Genetic algorithms have been used extensively throughout literature. To
mention just a few examples, it has in the field of information fusion earlier
been used for optimizing air combat tactics (Mulgund et al., 1998) and for gen-
eration and evaluation of potential enemy courses of actions for wargaming
(Gonsalves et al., 2003).

40 CHAPTER 2. BACKGROUND

2.4.2 Ant Colony Optimization

Ant colony optimization was originally proposed by Dorigo (1992). An inspir-
ing source of the ant colony optimization metaheuristic is the behavior of real
ants searching for food. In short, ants make use of a chemical substance called
pheromone, which is deposited on the ground. Initially, ants tend to wander
around randomly in their search for food. If an ant finds food, it starts laying
down trails of pheromone along its path back to the colony. When an ant finds
a path with pheromone, there is a high probability that it will stop wander ran-
domly and instead follow the pheromone trail to the food source (Engelbrecht,
2002). Upon finding the food, the ants return to their colony, strengthening the
pheromone trail. However, pheromone evaporates over time, so that unless the
trail is reinforced by any ants, it will eventually disappear. The local communi-
cation mediated by the pheromone information is a very important component
of ant behavior (Wahde, 2008). Using this kind of behavior, ants are successful
in cooperatively finding short(est) paths between their colony and food sources.

In order to use ant colony optimization, the optimization problem has to
be represented as a graph problem in which the optimal path is searched for
in a graph G (Wahde, 2008). By releasing artificial ants onto the graph G, and
letting those select paths guided by the use of probabilistic rules, the full path
traversed by an ant can represent a feasible solution to the original optimization
problem. As the ants move around in the graph, pheromone is deposited on the
graph edges of the used paths, so that the artificial ants implement an algorith-
mic counterpart to the local communication used by real ants. In this way, the
artificial ants cooperatively search for good solutions to the problem via the
exchange of pheromone information. The probabilistic rule is usually imple-
mented so as to favor short edges (edges with low costs) with large amounts of
pheromone (Dorigo and Gambardella, 1997) (i.e. exploitation) but also allow
for biased exploration of other paths in the graph.

Ant colony optimization has in the information fusion domain earlier been
applied to problems such as sensor scheduling (Schrage and Gonsalves, 2003)
and determination of the enemy’s possible avenues of approach (Svenson and
Sidenbladh, 2003).

2.4.3 Particle Swarm Optimization

Particle swarm optimization (PSO) is a global optimization approach that was
introduced by Kennedy and Eberhart (1995). Inspiration to the technique comes
from the behavior of bird flocking (Kennedy and Eberhart, 1995), where so
called particles form a swarm. Like birds, the particles move in a multidi-
mensional search space, adjusting their associated position and velocity (En-
gelbrecht, 2002). The position of a particle corresponds directly to a candidate
solution to the optimization problem being modeled.

2.4. OPTIMIZATION 41

Initial particle swarm generation

Evaluation of objective function
values

Termination
criteria fulfilled?

Update velocities and positions

Terminate algorithm

No

Yes

Figure 2.9: Illustration of the overall process flow of a standard particle swarm opti-
mization algorithm.

An important property of many instances of swarm behavior that can be
observed in nature is that there is no apparent leader that the other swarm
members follow. Hence, it is believed that the swarm behavior is a result of lo-
cal interactions only (Wahde, 2008). This property is also central in algorithmic
implementations of particle swarm optimization. All particles in the swarm are
initially given (random) positions and velocities. As described in figure 2.9, next
step is to evaluate the objective function values of the feasible solutions corre-
sponding to the particles’ positions in the search space. Based on the objective
function values, the velocities (and thereby also the positions) are updated. The
mechanism for determining the changes in velocity is dependent on the perfor-
mance of both the particle itself and the other particles in the swarm.

The original version of particle swarm optimization was intended for op-
timization problems with continuous decision variables, but there are also ex-
amples of where the use of particle swarm optimization has been applied to
discrete optimization problems. Particle swarm optimization has earlier been
used for e.g. sensor management in a biometric security system (Veeramacha-
neni et al., 2004) and assignment of unmanned aerial vehicles (UAVs) to tasks
(Pan et al., 2009).

Chapter 3
Threat Evaluation and Weapon
Allocation

In this chapter, we will provide formalizations of the threat evaluation and
weapon allocation processes. The provided threat evaluation description is the
author’s attempt to formalize the previously quite poorly defined process of
threat evaluation. There are surprisingly few articles that have been written on
the topic of threat evaluation. An explanation to this is probably that the inner
workings of threat evaluation systems typically are kept secret due to the high
cost and extensive research required to develop them (Roux and van Vuuren,
2007), and to avoid that weaknesses in developed threat evaluation algorithms
are exploited. Since there are no previous compilations of existing algorithms
for threat evaluation, a review of the existing literature on threat evaluation is
presented. As we will see, there exists considerably more work related to the
problem of weapon allocation. However, a review of the existing literature on
weapon allocation is presented as well, since many new algorithms have been
proposed in later years, for which no previous surveys exist.

3.1 Formalization

The formalization of the threat evaluation process presented in section 3.1.1 is
based upon work presented in Johansson and Falkman (2008a) and Johans-
son and Falkman (2009a). The static target-based weapon allocation prob-
lem described in section 3.1.2 was according to den Broeder et al. (1959)
and Manne (1958) originally introduced by Flood. It was formally defined by
Manne (1958). Its asset-based counterpart which also is presented in section
3.1.2 has earlier been described in e.g. Hosein (1990) and Hosein and Athans
(1990b).

43

44 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

3.1.1 Threat Evaluation

The purpose of the threat evaluation process is to determine the level of threat
posed by targets to defended assets (Paradis et al., 2005). Threat evaluation
is a continuous process, since the sensed environment is constantly changing.
According to Roux and van Vuuren (2007), this threat evaluation process is in
the context of air defense poorly defined. In the following, this process will be
described more formally, but first, we need to introduce some notation:

• T = {T1, . . . ,Tn} � the set of targets detected by our sensors.

• A = {A1, . . . ,Am} � the set of defended assets we would like to protect.

• Vij � the threat value of the target-defended asset pair (Ti, Aj),
Ti ∈ T, Aj ∈ A.

• Vi � the aggregated target value for target Ti ∈ T.

Moreover, |T| will in the following be used to denote the number of targets,
while |A| will be used to denote the number of defended assets. Using this
notation, we can formalize the threat evaluation problem as the creation of a
function f that maps each target-defended asset pair (Ti,Aj) into a threat value
Vij (where Ti ∈ T and Aj ∈ A). Such a threat value can be defined as the
level of threat posed by target Ti to the defended asset Aj . For convenience, we
determine the range of Vij to be the interval [0,1], where 0 is the lowest possible
threat value, and 1 is the highest possible threat value. Hence, we would like to
design a function f , such that:

f : T×A→ [0,1]. (3.1)

The function f can for example be based upon information such as the distance
between the target Ti and the defended asset Aj . A more thorough investiga-
tion of which parameters that are suitable for determining the threat value is
presented in section 3.2.1. The information used for estimating threat values
are usually acquired using various heterogeneous and imperfect sources, and
are subject to uncertainty and deception (Benaskeur et al., 2008).

Threat evaluation processes can be divided into two separate classes, de-
pending on the size |A| of the set of defended assets. The case where the task
of the air defense is to protect a single defended asset, i.e. |A| = 1, is known
as point defense (Roux and van Vuuren, 2007), and is often used in air de-
fense threat evaluation and weapon allocation systems on board naval crafts.
In this thesis we also take into account the more complex case where a larger
set of defended assets are to be defended, i.e. |A| > 1. This is known as area
defense (Roux and van Vuuren, 2007), and is often used in a ground based air
defense context. Examples of defended assets in such a context are air bases,
fuel depots, radars, and blue force units (Roux and van Vuuren, 2008).

3.1. FORMALIZATION 45

A1

A2

Am

T1

T2

Tn

... ...

A1

A2

Am

T1

T2

Tn

... ...

A1

A2

Am

T1

T2

Tn

... ...

A1

A2

Am

T1

T2

Tn

... ...

Threat values Target values

Figure 3.1: Illustration of the difference between threat values and target values.

Once threat values Vij have been calculated for target-defended asset pairs
using some specific algorithm, we often would like to process these into a single
target value Vi for each target Ti (illustrated in figure 3.1). As we will see, this
is required information for one type of weapon allocation (target-based wea-
pon allocation). Moreover, to aggregate threat values into a combined target
value is also very useful for human operators in stressful situations. This can
be accomplished in different ways. A straightforward way is to calculate the
target value as the average from target Ti’s threat values. A problem with this
approach is that it does not take differences among defended assets into ac-
count. In many scenarios, different defended assets will be of varying value to
the defenders. Hence, different defended assets can be assigned different pro-
tection values (cf. the development of defended asset lists in the Armed Forces
of the United States (Joint Chiefs of Staff, 2007)). We therefore introduce a
user-defined parameter ωj ∈ [0,1], denoting the protection value of a defended
asset Aj . Such a value can be thought of as the weight of the defended asset,
and is, as we soon will see, important input to one of the two static weapon
allocation problems studied in this dissertation. The protection value can be
used to calculate target value as the weighted average:

Vi =

∑|A|
j=1 Vijωj∑|A|

j=1 ωj

, (3.2)

where |A| is the total number of defended assets. This kind of weighted average
can however result in inappropriate target values in some kind of situations, e.g.
when there is a target representing a large threat to a single defended asset while
there are a lot of defended assets to which the target does not constitute any

46 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

threat. Using such a weighted average can then result in a low (averaged) target
value, which is not always wanted. An alternative, “safer” way to compute the
resulting target value is to simply go through all threat values for a specific
target Ti and pick the largest one. If we also take the protection value into
account, we end up with:

Vi = max (Vijωj), j = 1, . . . ,|A|. (3.3)

Obviously, the aggregated target value is more convenient to work with than a
set of threat values for each target. However, sometimes it can be very useful to
have access to the “original” threat values (e.g. when an operator would like to
know which defended asset that is threatened by a certain target). Therefore,
the threat values often have to be stored as well (note that the target value
calculation step is not necessary for the single platform perspective, i.e. when
|A| = 1, since it for that case only exists one threat value per target, and the
defended asset always will be the same).

Once the target values for all targets have been calculated, a prioritized
threat list can be created, i.e. a ranking from the target with the highest target
value to the target with the lowest target value. This list can be used for giv-
ing a human operator feedback on which targets to give most attention first.
Moreover, the calculated target values can in more automated systems be used
to decide which targets that should be subject to weapon allocation, and also
constitute an important parameter for which firing unit to allocate to which
target.

3.1.2 Weapon Allocation

Informally, weapon allocation (often also referred to as weapon assignment or
weapon-target allocation) can according to Paradis et al. (2005) be defined as:

“the reactive assignment of weapon systems to engage or counter
identified threats.”

More formally, the weapon allocation problem can be stated as an optimization
problem in which we aim to allocate firing units so as to minimize the expected
total target value of the targets. Alternatively, the weapon allocation problem
can be stated as an optimization problem where the objective becomes to max-
imize the expected survivability of the defended assets. These alternative views
are referred to as target-based (weighted subtractive) defense and asset-based
(preferential) defense, respectively (Hosein, 1990).

When presenting the two versions of the static weapon allocation problem
that will be used throughout this thesis, the following notation will be used, in
addition to the notation introduced in section 3.1.1:

• W = {W1, . . . ,Wp} � the set of defensive firing units.

3.1. FORMALIZATION 47

• Gj � the set of targets aimed for defended asset Aj ∈ A.

• Pik � estimated kill probability, i.e. probability that weapon Wk ∈ W
destroys target Ti ∈ T, if assigned to it.

• πi � estimated probability that target Ti ∈ T destroys the asset it is aimed
for.

• ωj � protection value of defended asset Aj ∈ A.

• Xik =
{

1 if weapon Wk ∈W is assigned to target Ti ∈ T,
0 otherwise.

Furthermore, |W| will be used to denote the number of firing units.

The Static Target-Based Weapon Allocation Problem

Given an air defense situation consisting of |W| firing units and |T| targets, the
static target-based weapon allocation problem can mathematically be formal-
ized as the nonlinear integer programming problem:

min F =
|T|∑
i=1

Vi

|W|∏
k=1

(1− Pik)Xik , (3.4)

subject to:

|T|∑
i=1

Xik = 1, ∀k,

Xik ∈ {0,1}, ∀i∀k.

(3.5)

The optimization of the objective function given in equation 3.4, subject to
the constraints given in equation 3.5, can be interpreted as finding the alloca-
tion of firing units to targets that minimizes the expected total value of surviving
targets (since the product

∏
(1− Pik)Xik represents the expected probability of

survival for target Ti). For this reason, this type of objective function can be
referred to as weighted subtractive defense or target-based weapon allocation
(Hosein, 1990). Since target values by definition never can be negative, the ob-
jective function value F is bounded below by 0. Moreover, it is bounded above
by

∑|T|
i=1 Vi (since the survival probability of target Ti never can exceed the

value 1.0).
A few assumptions are made in the static target-based weapon allocation

formulation. First of all, all firing units have to be assigned to targets, as indi-
cated in the first constraint given in equation 3.5. A firing unit therefore need
to be allocated to exactly one target. It shall however be noted that many firing

48 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

units can be allocated to the same target in order to decrease the probabil-
ity of the target surviving the attack. This type of allocations are known as
Salvo attacks (Hosein and Athans, 1990a; Eckler and Burr, 1972). Moreover,
all firing units have to be assigned simultaneously, i.e. we can not observe the
outcome of some of the engagements before a remaining subset of firing units
are allocated. This is what is meant by static weapon allocation, as opposed to
dynamic weapon allocation. We also assume that an engagement will not affect
other engagements (e.g. that a firing unit can destroy another target than it is
allocated to). Without the last assumption, the geometry of the problem must
be taken into account, creating an extremely complex problem. Despite these
assumptions, the static target-based weapon allocation problem is anything but
easy to solve. The NP-completeness of the problem was established by Lloyd
and Witsenhausen (1986), indicating the hardness of the problem. This is prob-
lematic since we often have to deal with large-scale problems, i.e. air defense
situations consisting of a large number of targets and/or firing units.

A solution to a static weapon allocation problem can be represented as a
matrix of decision variables

X =

⎡
⎢⎢⎢⎣

X11 X12 . . . X1|W|
X21 X22 . . . X2|W|

...
... Xik

...
X|T|1 X|T|2 . . . X|T||W|

⎤
⎥⎥⎥⎦ . (3.6)

Such a solution is feasible if it fulfills the constraints given in equation 3.5, i.e.
that the entries of each column in equation 3.6 sum to one. For a problem
instance consisting of |T| targets and |W| firing units, there are |T||W| feasible
solutions.

To illustrate the problem of static target-based weapon allocation, we will
here consider a specific problem instance, consisting of 5 targets and 4 firing
units. Such a problem instance is defined by a target value vector V and a
matrix P of kill probabilities, e.g.:

P =

⎡
⎢⎢⎢⎢⎣

0.8 0.9 0.6 0.7
0.3 0.5 0.4 0.6
0.5 0.6 0.3 0.7
0.5 0.7 0.6 0.4
0.8 0.6 0.6 0.8

⎤
⎥⎥⎥⎥⎦ .

V =

⎡
⎢⎢⎢⎢⎣
0.7
0.6
0.8
0.4
0.6

⎤
⎥⎥⎥⎥⎦

3.1. FORMALIZATION 49

In this case, there are 54 = 625 different possible allocations, and it is far from
trivial for a decision maker to find the best of the solutions in a short amount
of time. To this particular problem instance, the allocation:

Xopt =

⎡
⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
1 0 0 0

⎤
⎥⎥⎥⎥⎦

is the optimal solution, resulting in the objective function value 1.19.

The Static Asset-Based Weapon Allocation Problem

The main difference between the static target-based weapon allocation problem
and the static asset-based weapon allocation problem is that in the latter, the
aims of the targets are assumed to be known. In other words, the asset-based
formulation demands knowledge of which targets that are headed for which
defended assets. Therefore, the static asset-based weapon allocation problem
formulation is suitable for ballistic missile defense problems (such as base camp
protection against artillery and mortars,) while the target-based formulation is
more appropriate when the intended aim of the targets are not known for sure
(Murphey, 2000). To determine which targets that are headed for which assets
can be thought of as a data association problem (Malcolm, 2004).

In the static asset-based weapon allocation problem, each offensive target
Ti ∈ T is assumed to be aimed at a defended asset, where each defended asset
Aj ∈ A is associated with a protection value ωj . Each target has an associated
lethality probability πi, indicating the probability that Ti destroys the defended
asset it is aimed for, given that it is not successfully engaged. This probability
depends on the accuracy of the targets as well as the nature of the defended
assets (Hosein and Athans, 1990b). As in the static target-based weapon allo-
cation problem, the defenders are equipped with firing units, where each pair
of firing units and targets is assigned a kill probability Pik. Now, the objective
of the defense is to allocate the available firing units so as to maximize the
expected total protection value of surviving defended assets, i.e.:

max J =
|A|∑
j=1

ωj

∏
i∈Gj

(1− πi

|W|∏
k=1

(1 − Pik)Xik), (3.7)

subject to:

|T|∑
i=1

Xik = 1, ∀k,

Xik ∈ {0,1}, ∀i∀k.

(3.8)

50 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

In equation 3.7, the inner product represents the expected survival probability
of target Ti, while the outer product represents the expected survival probability
of defended asset Aj . Consequently, the sum over the outer product gives us the
total expected protection value of the defended assets, which we would like to
maximize, as stated above.

From the solution of this optimization problem, we can discover which of
the defended assets that should be protected, and in which way each of the
defended assets should be protected. It can be noted that if exactly one target
is aimed for each of the defended assets, the protection value of the defended
asset can be assigned as the target value of the attacking target, whereupon
the expected total value of surviving targets can be minimized. Hence, for this
special case, we end up with the static target-based weapon allocation problem,
stated in equation 3.4. In this way, the asset-based formulation can be seen as
a generalization of the target-based formulation. Based on this reasoning, it
can be concluded that the static asset-based weapon allocation problem is NP-
complete as well (Hosein, 1990).

To illustrate the problem of static asset-based weapon allocation, we will
here consider a small problem instance consisting of 5 targets, 3 defended assets,
and 3 firing units. Such a problem instance is defined by a vector of protection
values, a vector of lethality probabilities, and a matrix of kill probabilities, e.g.:

ω =

⎡
⎣0.7

0.4
0.6

⎤
⎦

π =

⎡
⎢⎢⎢⎢⎣
0.5
0.4
0.6
0.8
0.4

⎤
⎥⎥⎥⎥⎦

P =

⎡
⎢⎢⎢⎢⎣

0.8 0.9 0.7
0.3 0.5 0.6
0.5 0.6 0.7
0.5 0.7 0.4
0.8 0.6 0.5

⎤
⎥⎥⎥⎥⎦ .

We also need information regarding which defended asset a particular target
is headed for. In this example, we assume that G1 = {T1}, G2 = {T2,T3},
and G3 = {T4,T5}, i.e. the first target is headed for the first defended asset,
the second and third targets are headed for the second defended asset, and
the fourth and fifth targets are headed for the third defended asset. For this
particular problem instance, there are 53 = 125 feasible solutions (note that
the number of feasible solutions does not depend on the number of defended
assets, but only on the number of targets and firing units). Despite the small

3.2. PARAMETERS AND ALGORITHMS FOR THREAT EVALUATION 51

scale of this problem, it is nearly impossible for a human decision maker to
very quickly come up with an optimal or near-optimal solution to the problem
of which firing units to allocate to which targets. Hence, computer support is
needed.

3.2 Parameters and Algorithms for Threat
Evaluation

In this section, a review of existing literature on threat evaluation is presented.
More specifically, parameters that have been suggested as being useful for threat
evaluation are identified, analyzed, and discussed in section 3.2.1. Different
kinds of algorithms that have been proposed for threat evaluation are pre-
sented in section 3.2.2. Most existing literature on parameters and algorithms
for threat evaluation stems from the research area of information fusion, and
has as a consequence of this been published in the annual international con-
ferences on information fusion, or in information fusion journals. Moreover,
a couple of interesting papers related to threat evaluation have been published
in defense related conferences such as the international society for optics and
photonics (SPIE) conferences and international command and control research
and technology symposiums (ICCRTS). Lastly, some work can be traced back
to the tactical decision making under stress (TADMUS) program, initiated by
the US Navy for enhancing tactical decision making in air defense scenarios in
littoral environments.

3.2.1 Parameters for Threat Evaluation

In order to be able to identify parameters suitable for threat evaluation, it is
necessary to first define what is meant by a threat. A threat is in Roy et al.
(2002) defined as:

“an expression of intention to inflict evil, injury, or damage.”

This definition is also in accordance with the definition of the word given by
the Merriam-Webster dictionary. In the Oxford English dictionary, a threat is
defined as a person or thing likely to cause damage or danger.

Threats can according to Steinberg (2005) be modeled in terms of relation-
ships between threatening entities and threatened entities. In the terminology
used throughout this thesis, we refer to the threatening entities as targets, while
threatened entities are referred to as defended assets. Hence, as made clear in
section 3.1.1, a threat is posed by a target to a defended asset. This also means
that a target can constitute a threat to some defended assets, at the same time
as it does not constitute a threat towards other defended assets. Naturally, the
question then arises of how to judge whether a certain target constitutes a threat
to a defended asset or not (or rather, to which extent it constitutes a threat)?

52 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

Looking at existing literature, a target’s threat is often assessed as a com-
bination of its capability and intent to inflict damage on a defended asset (cf.
Nguyen (2002); Roy et al. (2002), and Waltz and Llinas (1990)). What is meant
by a target’s capability is its ability to inflict injury or damage to the defended
asset, while its intent refers to its will or determination to inflict such damage
(Paradis et al., 2005). Besides the threat components of capability and intent, a
third component is described in Little and Rogova (2006): opportunity. An op-
portunity is in this context a spatio-temporal state of affair making it possible
to carry out one’s intent given sufficient capabilities.

Based on the findings from the review of existing literature on suitable pa-
rameters to use for threat evaluation, three main classes of parameters have
been identified: proximity, capability, and intent parameters.

Proximity Parameters

An important class of parameters for assigning threat values to pairs of tar-
gets and defended assets are proximity parameters, i.e. parameters that in some
sense are measuring the target’s proximity to the defended asset. A key pa-
rameter that is used in many threat evaluation techniques (Roy et al., 2002;
Allouche, 2005) is the distance from the defended asset to the closest point of
approach (CPA). The CPA is the point where the target eventually will be the
closest to the defended asset, given current track estimates. If we assume that
the defended assets are stationary (i.e. non-moving), the CPA is the orthogonal
projection of the position of the defended asset on the extension of the target’s
velocity vector (see figure 3.2). The distance between the position of the de-
fended asset (often referred to as the threat reference point or point of interest)
and the CPA can be used as one measure of the threat level. Targets that are
far away from a defended asset can be assumed as not constituting a threat to
the defended asset at present, while a shorter distance indicates a more poten-
tial viable threat. The distance from the defended asset to the CPA will in the
following be referred to as range at CPA, while the distance from the target to
the CPA will be referred to as range from CPA.

A number of parameters that are closely related to these distances are time
to CPA (TCPA), CPA in units of time (CPA IUOT), and time before hit (TBH).
If two targets of the same kind have the same CPA but different TCPA, the one
with lowest TCPA will based on this reasoning constitute a larger threat to the
defended asset. The TCPA parameter is calculated as the distance between the
CPA and the target’s current position, divided by the target’s current speed, i.e.

TCPA =
range from CPA

speed
. (3.9)

The parameter CPA IUOT is the time it would take the target to hit the de-
fended asset after a 90◦ turn at its CPA, and is calculated as the distance be-

3.2. PARAMETERS AND ALGORITHMS FOR THREAT EVALUATION 53

Target

Velocity vector

CPA

Defended asset

Figure 3.2: Closest point of approach between a target and a stationary defended asset.

tween the CPA and the position of the defended asset divided by the target’s
current speed:

CPA IUOT =
range at CPA

speed
. (3.10)

The TBH parameter is an estimate of the time it would take the target to hit or
reach the defended asset. This is directly applicable for targets such as missiles,
but can also be used as a proximity measure for weapon platforms (helicopters,
fighters, etc.). This is according to Roux and van Vuuren (2008) a commonly
used parameter for threat evaluation, where a target with a long TBH to a
defended asset may be assigned a lower threat value than a target with shorter
TBH. The TBH is calculated as:

TBH = TCPA+CPAIUOT =
range from CPA + range at CPA

speed
. (3.11)

In the above calculations, it is assumed that targets have constant velocities.
This is an assumption that often is made when performing threat evaluation.
For many platforms and conventional weapons this is a reasonable assumption,
since they seldom make rapid maneuvers between two track updates (Oxen-
ham, 2003). However, for highly maneuvering targets such as guided missiles,
the assumption is often unrealistic (Allouche, 2005). In such cases, the quick
maneuvers of the target may cause large changes in the values of the above pa-
rameters between two updates. This can in its turn cause rapid changes in the
threat values assigned to a target-defended asset pair. Such changes are clearly
unwanted since it often results in an unstable prioritized threat list. In order to
handle the problem of highly maneuvering targets, there is sometimes a need
for the use of smoothing techniques for the trajectory of targets in order to en-
sure only gradual changes in their threat values (Roy et al., 2002). For more on
this issue, see Allouche (2005) and Allouche (2006).

Other proximity parameters that are suggested in the literature are the dis-
tance between the target and the defended asset and its rate of change. Accord-
ing to Okello and Thoms (2003), the threat posed by a very distant weapon

54 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

platform should be close to minimum and then increase gradually when the
target approaches the defended asset. It should reach its maximum when the
defended asset is within range of the target’s weapon systems. The same kind of
thinking can naturally be extended to targets that are weapons (e.g. missiles).
Such targets are not at all constituting a threat to the defended asset when the
distance between the target and the defended asset is larger than the weapon
reach, but if the distance is shorter, the target becomes a more imminent threat
the closer it comes.

Capability Parameters

The next class of parameters for threat evaluation that has been identified is
the capability parameters. Such parameters reflect a target’s capability to cause
damage to a defended asset. A central parameter here is target type. The target
type is often not known with certainty, but the target’s estimated speed, radar
cross-section, answer to IFF-interrogation, etc. can give a reasonable indication
of what kind of target that has been detected. Once the target type has been
estimated, parameters such as weapon type and weapon envelope can be in-
ferred, given that the target is a weapon platform (otherwise the target type
will also be the weapon type). These parameters are concerned with the lethal-
ity of the target and clearly are related to the proximity parameters, since a
target is more threatening if it is able to overlay its weapon envelope over a
defended asset than if it is outside the range of its weapon systems (Okello and
Thoms, 2003). Basically, a hostile aircraft is of high importance when defended
assets are within the firing range of its missiles (Virtanen et al., 2006). Fuel
capacity is another capability parameter that is related to proximity. Given an
identified target type it may be possible to have prior knowledge regarding the
fuel capacity. Such information can be used to reason about the target’s maxi-
mum radius of operation. According to Oxenham (2003), the most important
parameters for threat evaluation are the lethality of the target, the imminence
of the target to the defended asset, and the geometry of the target’s weapon
envelope relative to the defended asset.

Intent Parameters

The class of intent parameters is a broad category, containing parameters that
can reveal something about the target’s intent to cause damage to the defended
asset. An example of this is the target’s kinematics. According to Oxenham
(2003), the target’s velocity (i.e. its speed and heading) in combination with its
altitude can be a good indicator of the target’s intent to attack a defended asset.
Another parameter based on kinematic data that can be used is the number
of recent maneuvers (Liebhaber and Feher, 2002a). Here, it is assumed that
a target that is maneuvering a lot is having a more threatening behavior than
a non-maneuvering target. The typical behavior for commercial aircraft is to

3.2. PARAMETERS AND ALGORITHMS FOR THREAT EVALUATION 55

fly with steady speed, at a constant altitude, and at a straight line. Moreover,
they tend to use established airways and respond to verbal queries on special
radio frequencies (Smith et al., 2004). In other words, aircrafts deviating from
such behavior may be an indication of that the intent possibly is hostile. Other
parameters that may provide clear indications of hostile intent are the use of
radar jamming and other kinds of electronic warfare, and whether the target’s
fire-control radar is on or not (Oxenham, 2003; Benavoli et al., 2007).

Even though there are many parameters that can reveal something regarding
the intent of a target, it is important to keep in mind that intent recognition is no
exact science. According to St. John et al. (2004a), the intent of an aircraft can
never be established with certainty. Still, there exists work on intent inference
for air defense based on aircraft flight profile analysis, such as the fuzzy logic
approach reported in Foo et al. (2009). The author of this thesis has earlier
investigated the possibilities of using Bayesian networks for inferring the intent
of ground targets, as reported in Johansson and Falkman (2006).

To summarize the findings from this survey over parameters used for threat
evaluation, we can identify three main classes of parameters: proximity pa-
rameters, intent parameters, and capability parameters. Examples of these are
illustrated in table 3.1. Proximity parameters are generally quite easy to use

Table 3.1: Classes of parameters for threat evaluation.

Parameter class Examples

Proximity parameters Euclidean distance, CPA
Capability parameters Target type, weapon envelope
Intent parameters Speed, heading

since the estimates needed for calculation of proximity usually can be obtained
from sensors. Capability parameters often need more refined information since
it can be hard to estimate parameters such as target type from sensor obser-
vations only. Lastly, knowing a target’s intent would be extremely useful when
assessing the level of threat posed by a target. However, even though it is possi-
ble to obtain parameters such as speed and heading, it is often hard to construct
a good model that makes it possible to with a high precision infer a target’s in-
tent from such parameters.

Parameters Used by Air Defense Operators

In Liebhaber and Feher (2002a) and Liebhaber et al. (2002), a list of parame-
ters used for threat evaluation by navy air defense operators are presented. Out
of these, six parameters are referred to as being of critical importance when
evaluating the threat. These are: the country of origin (which is based on the
initial point of detection), IFF Mode, intelligence reports, altitude, proximity
to a commercial airlane, and electronic support measures (i.e. the target’s radar

56 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

signature, revealing information regarding the target type). Other parameters

Table 3.2: A list of parameters used by air defense operators in US Navy for threat
evaluation (adapted from Liebhaber and Feher (2002a)). Critical parameters are marked
with bold.

Parameter Description

Altitude The target’s altitude (feet above ground).
Country of origin Over which country was target first located?
Following airlane Does target follow a commercial airlane or not?
IFF mode Identified as friend, foe, or neutral?
Intel Intelligence reports.
Radar/ESM Kind of radar system used?
Coordinated activity Is target nearby/communicating with other targets?
Course The target’s heading relative the defended asset.
Range at CPA Distance from target’s CPA to the defended asset.
Feet wet Is the target flying over water or not?
Maneuvers Number of recent maneuvers.
Number Number of aircrafts in target’s formation.
Range Target’s distance from defended asset.
Speed An estimate of the target’s speed.
Visibility How far is the line of sight?
Weapon envelope How large is target’s estimated weapon envelope?
Wings clean Is the target carrying weapons?

that are used by air defense operators are according to Liebhaber and Feher
(2002a) and Liebhaber et al. (2002): the target’s heading relative to the de-
fended asset (in their study there is only one defended asset and that is the
own naval craft), whether the target is involved in coordinated activity or not,
range at CPA, whether the target is flying over water or land, the number of
recent maneuvers, the number of aircraft flying in formation, the target’s dis-
tance from the own ship, the target’s speed, the target’s position relative to its
estimated weapon envelope, whether it carries weapons or not, and the type of
weapons carried by the target. A summarizing list of these parameters is given
in table 3.2.

3.2.2 Existing Algorithms for Threat Evaluation

To develop reliable automated threat evaluation algorithms for aiding air de-
fense decision makers have for long been considered a “holy grail” (St. John
et al., 2004a). According to Liebhaber and Smith (2000), it is not well under-
stood and documented how air defense decision makers estimate target values.
A review of early attempts in building automated systems for threat evaluation
is presented in Waltz and Llinas (1990). The main problem with these early

3.2. PARAMETERS AND ALGORITHMS FOR THREAT EVALUATION 57

attempts is according to Benavoli et al. (2007) the lack of means to deal with
uncertain domain knowledge.

In a series of experiments with US Navy officers summarized in Liebhaber
and Feher (2002a), it has been studied how human air defense operators are
likely to perform manual threat evaluation. It should be noted that these stud-
ies only deal with point defense, i.e. protection of a single defended asset (the
naval craft itself). Hence, it is not obvious how to extend this to area defense
involving the protection of several defended assets. In the findings from their
studies, it is suggested that human operators evaluate the threat posed by air
targets through initially activating a template corresponding to the target’s par-
ticular type. The activated template is used to set a baseline threat rating for
the target (i.e. a target value). Parameters relevant to the active template are
then assessed and compared to expected values for the activated template. De-
pending on the degree of match between the actual value of a parameter and its
expected value, the current threat rating for the target is adjusted up or down
(as an example given in Liebhaber and Feher (2002a), an aircraft in a littoral
environment with a speed of 250 knots adds 0.2 to the current threat rating,
while a speed of 500 knots adds 1.81). In Liebhaber and Smith (2000), it is
mentioned that the geopolitical situation influences the tolerance for deviations
from expected values. In case of no unexpected data, the process is stopped
after evaluation of the most important parameters. Otherwise the so called ex-
ception score becomes negative and the evaluation process will continue with
more parameters (see the list given in table 3.2), until there are no more pa-
rameters to process, or until the fit of the expected values and the parameter
values is good enough. From this naturalistic model a rule-based algorithm for
threat evaluation was developed (Liebhaber and Feher, 2002a). The same algo-
rithm outline is described for threat evaluation of surface targets in Liebhaber
and Feher (2002b). A very high-level description of the rule-based algorithm is
shown in algorithm 3.12.

In Runqvist (2004), the threat evaluation module of a commercial air de-
fense system is described. For each defended asset, a defended area (represented
as a circle) has to be defined. This is accomplished by an operator specifying
the position of the defended asset, together with its priority and the radius of
the defended area. The parameters that are used for threat evaluation in the
system are time, relative bearing, altitude, identity, number of engagements,
speed, size, and aircraft type. The parameter time is the minimum time it will
take the target to reach the defended area border (assuming constant speed),
while the identity parameter specifies whether the target is identified as hostile
or unknown. Number of engagements refers to the number of friendly weapon
systems currently engaged to the target (Runqvist, 2004). The operator spec-

1Obviously, the threat ratings used are not restricted to the interval [0,1].
2Whether air defense operators really perform threat evaluation in this way or not is not easy

to tell, but the use of exception score as described in the algorithm does not seem very rational to
the author of this thesis.

58 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

Algorithm 3.1 Rule-based algorithm for threat evaluation (Liebhaber and Fe-
her, 2002b).

1: Exception Score← 0
2: Threat← ID Threat Rating + Platform Threat Rating
3: for all critical parameters do
4: Get V alue and Weight for current parameter
5: Threat← Threat ± Threat Change Rating
6: if V alue is an exception then
7: Exception Score← Exception Score - Weight
8: end if
9: end for

10: while Exception Score < 0 and more parameters exist do
11: Get V alue and Weight for the current parameter
12: Threat← Threat ± Threat Change Rating
13: if V alue is an exception then
14: Exception Score← Exception Score - Weight
15: else
16: Exception Score← Exception Score + Weight
17: end if
18: end while

ifies rules for each parameter, assigning a number of threat points depending
on the parameter’s actual value. An example of a rule that can be specified is
(Runqvist, 2004):

IF T ime < 1 THEN Points = Points + 15. (3.12)

For each target-defended asset pair, the points from the individual parameters
are summed and then multiplied with a weight that is dependent on the priority
of the defended asset. Finally, this value is divided by the maximum number of
points, resulting in a normalized threat value between 0 and 1 assigned to the
target-defended asset pair.

Another kind of rule-based algorithm is suggested in Liang (2007), in which
fuzzy inference rules are used to calculate the level of threat posed by air targets
to naval crafts using altitude, speed, CPA, and range as input parameters. For
each input parameter, three membership functions are defined. Using the mem-
bership functions, fuzzy inference rules are defined for how the input should af-
fect the output parameter threat rating. Hence, the suggested approach is used
for the protection of a single naval craft. A modified version of this algorithm
is presented in section 4.1.2.

In Dall (1999), an approach to threat evaluation based on predicate logic is
suggested. However, in the proposed approach it is not the case that an actual
threat or target value is calculated. Instead, it is checked whether there is any

3.2. PARAMETERS AND ALGORITHMS FOR THREAT EVALUATION 59

support for the hypothesis that the target Ti threatens the defended asset Aj .
This is accomplished through the use of logical rules such as:

(∀x)(∀y)(Target(x) ∧Asset(y) ∧Capability(x,y)
∧Intent(x,y))→ Threat(x,y),

(3.13)

where rules for Intent(x,y) and Capability(x,y) are further defined, and so
on. Hence, for the target to be considered as being threatening to the defended
asset, it is required that the target has the capability and the intent to cause
damage to the defended asset.

In Dong and Qing (1999), a neural network approach to threat evaluation
is suggested. A feature of artificial neural networks which is put forward as an
advantage is that they are learned from training data instead of being created
from explicit expert knowledge. The type of neural network used is a so-called
multilayer feed-forward network, consisting of a layer of input nodes, a hidden
layer, and an output layer in which the calculated threat is given as output.
The input parameters used in the network are the distance between the tar-
get and the own ship (the defended asset), the target’s speed, and the target’s
heading relative the defended asset. A similar architecture is used in Azak and
Bayrak (2008) (shown in figure 3.3), in which a feed-forward network con-
sisting of four input nodes (where two nodes correspond to various distance
measures, and the two others to target speed and orientation of the target) is
used. Moreover, there are two hidden nodes and four output nodes, where the
latter correspond to different threat categories. The network has been trained
using synthetic data and evaluated by measuring the classification error, but
no discussion is provided on how such labeled data that is needed for training
would be obtained in a real system. No such discussion is provided in Dong
and Qing (1999) either, except for that it is mentioned that “expert human
exemplary data” have been used in a simulation for which no details are given.

The last family of algorithms for threat evaluation that we have been able
to identify in the literature is so called graphical models. Okello and Thoms
(2003) present a Bayesian network based algorithm in which target state esti-
mates are used for evaluating the threat posed by a target to a defended asset.
The target’s capability to threaten a defended asset is measured by comparing
the maximum range of the target’s weapon systems with the range between the
target and the defended asset. In the same manner, the target’s intent to threaten
the defended asset is measured by looking at the rate of change of the range be-
tween the target and the defended asset, together with the angle between the
target’s velocity vector and the vector pointing from the target to the defended
asset. The threat value is then calculated as the product of the capability and
intent components. A prototype Bayesian network for threat evaluation is also
described in Runqvist (2004), in which a simplified version of the network for
target intent recognition suggested in Nguyen (2002) is used as a basis for the
threat evaluation. Another example of the use of graphical models for threat

60 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

Critical Potential Neutral Negligible

Figure 3.3: Feed-forward topology describing the artificial neural network used in Azak
and Bayrak (2008).

evaluation is presented in Benavoli et al. (2007), where an evidential network
(i.e. a valuation-based network using belief functions) is used to represent and
reason about threats in the context of air defense. The evidence variables that
are used in the network are: evasive maneuvers, fire control radar, countermea-
sures, political climate, IFF squawking, flight plan agreement, platform type,
and imminence. Most of these variables are binary, while some can take on
more states. Basically, the variables reveal whether the target is taking any eva-
sive actions, turning on its fire control radar (i.e. is about to fire a weapon),
employing electronic warfare countermeasures such as the use of jamming or
chaff, what the political climate is like, if it answers correctly to IFF interroga-
tion, and so on. Together with a few mediating variables, these evidence vari-
ables influences the intent and capability variables, which in turn have impact
on the value of the threat variable.

Table 3.3: Algorithmic approaches to threat evaluation.

Algorithmic approach References

Rule-based algorithms Runqvist (2004); Liebhaber and Feher (2002b)
Fuzzy logic Liang (2006, 2007)
Neural networks Dong and Qing (1999); Azak and Bayrak (2008)
Graphical models Okello and Thoms (2003); Benavoli et al. (2007, 2009)

In table 3.3, we summarize the different algorithmic approaches to threat
evaluation suggested within available literature.

3.3. ALGORITHMS FOR STATIC WEAPON ALLOCATION 61

3.3 Algorithms for Static Weapon Allocation

Initial research on the static target-based weapon allocation problem dates back
as far as the end of the 1950s (cf. Manne (1958); den Broeder et al. (1959)).
Much of the initial research on the problem seems to have been motivated by
the threat from intercontinental ballistic missiles during the Cold War era (Mal-
colm, 2004). Despite the end of the Cold War, research on defensive weapon
allocation still remains a very active area (Malcolm, 2004). A severe threat en-
countered in many military international operations of today and tomorrow
is that of rockets, artillery, and mortars fired by insurgents towards military
bases, troops, and other assets. Attacks like these have cost many human lives
in places like Iraq and Afghanistan during recent years. This kind of attacks has
actuated the need for quick and efficient air defense. Similarly, the development
of the so called Iron Dome system, intended for providing a defensive counter-
measure to rocket threats against Israel’s civilian population centers is highly
topical. In this kind of applications, the assumption of static weapon alloca-
tion that all firing units are to be allocated at once is realistic due to the short
range of the attacks, leading to very short reaction times and few engagement
opportunities.

The static weapon allocation problems of focus within this thesis have been
quite well studied, especially within the field of operations research. Despite
the extensive research, static weapon allocation is an example of a classical
operations research problem that still remains unsolved (Ahuja et al., 2007), in
the sense that effective methods for real-time allocation are lacking.

Much of the original work on weapon allocation focused on the allocation
of missiles to defended assets, rather than the other way around. Hence, the
problems were often modeled from an attacker’s side, instead of from the de-
fending side. A brief summary and review of unclassified literature from the
first years of research on the problem is given in Matlin (1970). Some years
later, a monograph describing many of the developed mathematical models for
weapon allocation problems was published by Eckler and Burr (1972). Unlike
Matlin’s review, the monograph by Eckler and Burr takes on the weapon al-
location problem from a defender’s view. A quote from that monograph says
that:

“None of the references actually cited in this monograph is clas-
sified. Perhaps surprisingly, it has not been found essential to cite
any. Mathematical models, by their nature, do not normally require
classification, and it appears that the authors of classified studies
have usually tried to publish the mathematical aspects of such stud-
ies in the unclassified literature.”

This is interesting reading and suggests that research on weapon allocation is
(or at least was) more open than the research on its threat evaluation counter-
part seems to be nowadays. The authors present a number of useful techniques

62 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

for weapon allocation, such as relaxing the integer constraint and then make
use of linear programming to solve the resulting continuous problem. This is
a technique that still is in use (cf. Karasakal (2008)). It should be noted how-
ever, that fractional assignments of firing units to targets does not make sense,
and rounding off the optimal solution to the relaxation of an nonlinear inte-
ger programming problem can yield solutions that are infeasible or far from
the optimal solution to the original nonlinear problem (Winston, 1997). Other
kinds of tools such as the use of Lagrange multipliers and dynamic program-
ming are also described in Eckler and Burr (1972). As the authors make clear,
their focus is on analytical approaches, since it is argued that what they re-
fer to as computer-oriented solutions give less insight into the weapon alloca-
tion problem than analytical approaches. A somewhat more recent survey of
work within weapon allocation is presented in Cheong (1985). As in the earlier
mentioned surveys, its focus is on analytical approaches to weapon allocation.
However, it is mentioned that a shift towards various techniques such as im-
plicit enumeration algorithms and nonlinear programming algorithms had been
started at that time, since mathematical formulations of the weapon allocation
problem are not generally amenable to solution in closed form (Cheong, 1985,
p. 66). In later years, advanced computer-based techniques have been devel-
oped which are better suited for real-time weapon allocation (Huaiping et al.,
2006). In the following, we will not consider techniques that are relying on
gradients (i.e. calculus-based techniques). We will instead focus on enumera-
tive techniques, and heuristic/approximate techniques such as guided random
search techniques.

Enumerative techniques are typically guaranteed to find an optimal solution
in bounded time for every finite size problem instance, hence, they are referred
to as exact algorithms. The problem with exact algorithms is that the compu-
tation times needed often are too high for practical applications. With heuristic
algorithms (e.g. guided random search techniques), we cannot guarantee to find
optimal solutions, but instead we can find good solutions in a significantly re-
duced amount of time (Blum and Roli, 2003). Hence, heuristic algorithms are
used when we seek good feasible solutions to optimization problems in circum-
stances where the complexity of the problem or the limited time available for
its solution do not allow using exact algorithms (Rardin and Uzsoy, 2001). Ac-
cording to Aarts and Lenstra (1997), this kind of algorithms is the method of
choice for NP-hard problems, as it provides a robust approach for produc-
ing solutions of high quality in reasonable time for problems of realistic size.
The real-time aspects is one of the major characteristics of real-world air de-
fense situations (Allouche, 2006; Huaiping et al., 2006), but despite this, the
real-time aspects have not traditionally been in focus of the operations research
community (Séguin et al., 1997).

3.3. ALGORITHMS FOR STATIC WEAPON ALLOCATION 63

3.3.1 Exact Approaches

For small values of |T| and |W|, the optimal solution to a static weapon allo-
cation problem can easily be found by exhaustive search (also referred to as ex-
plicit enumeration), i.e. a brute-force enumeration where all feasible solutions
are tested one after the other. However, as a static weapon allocation problem
consists of |T||W| feasible solutions, this is not a viable approach for air defense
scenarios involving a large number of targets and firing units. In such cases, it is
not possible to in real-time (or even after several years of computation) obtain
an optimal solution using an exhaustive search algorithm. The issue of how
large problem sizes that can be handled in real-time with exhaustive search al-
gorithms is discussed in section 7.2.1. Exact polynomial time algorithms have
been identified for the special case of the static target-based weapon allocation
problem in which the kill probabilities of all firing units are assumed to be iden-
tical, i.e. Pik = Pi. For this special case, the well known maximum marginal
return (MMR) algorithm suggested in den Broeder et al. (1959), and the lo-
cal search algorithm suggested in Hosein (1990) can be proven to be optimal.
Some other special cases of the static target-based weapon allocation problem
can be formulated as network flow optimization problems. If we assume the
constraint that all firing units have kill probabilities Pik ∈ {0,Pi}, i.e. that fir-
ing units either can or cannot reach a target, and in the former case, the kill
probability only depend upon the target, the problem can be transformed into
a minimum cost network flow problem with linear arc costs, for which several
efficient algorithms exist (Hosein, 1990). A similar transformation can be done
for the special case of the static target-based weapon allocation problem where
we assume that |T| ≤ |W|, and that at most one firing unit is to be allocated to
each target. In this case, we can convert the problem into a so called transporta-
tion problem, for which efficient algorithms exist (Hosein, 1990). However, the
general static target-based weapon allocation problem has been proved to be
NP-complete (Lloyd and Witsenhausen, 1986), as have been discussed earlier.
This also holds true for the asset-based version of the static weapon allocation
problem, since this can be seen as a generalization of the static target-based
version.

Another exact approach is to use branch-and-bound algorithms for finding
the optimal solution. Branch-and-bound algorithms use tree representations of
the solution space and are often able to prune away large subsets of feasible so-
lutions through calculation of lower and upper bounds on different branches of
the tree. In a recent article by Ahuja et al. (2007), three branch-and-bound algo-
rithms (using different lower-bound schemes) are investigated and are shown to
give short computation times on average. The results are impressive, however,
in theory, the risk exists that the algorithm will require branching the full tree
for some problem instances. This means that in worst-case, the performance
of the branch-and-bound algorithm can be at least as bad as the performance
of more naïve exhaustive search algorithms. Although it in practice is unlikely

64 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

that this worst-case scenario will appear, it is unfortunately not possible to in
advance compute an upper bound on the computational time it will take to find
the optimal solution to a problem instance when using a branch-and-bound al-
gorithm. Hence, as can be seen in the results reported in Ahuja et al. (2007),
some problem instance of large size can be solved very quickly, while consider-
ably smaller problem sizes can demand considerably more time for the optimal
solution to be found. In other words, we have to rely on heuristic algorithms
for large-scale problems when real-time guarantees are needed (Hosein, 1990;
Ahuja et al., 2007).

3.3.2 Heuristic Approaches

A well-known heuristic approach for static target-based weapon allocation is
the greedy maximum marginal return algorithm, originally suggested in den
Broeder et al. (1959). A similar greedy algorithm is presented in Kolitz (1988).
Basically, the maximum marginal return algorithm works sequentially by greed-
ily allocating firing units to the target maximizing the reduction of the expected
value. It starts with allocating the first firing unit to the target for which the re-
duction in value is maximal, whereupon the value of the target is reduced to the
new expected value. Once the first firing unit is allocated, the same procedure
is repeated for the second firing unit, and so on, until all firing units have been
allocated to targets. Pseudo code for the maximum marginal return algorithm
is shown in section 4.2.3. Obviously, the maximum marginal return algorithm
is very simple and fast. This is a general advantage of greedy algorithms, but
due to their greedy nature they are also very likely to end up with suboptimal
solutions. Since the algorithm uses target values for choosing which target to
be allocated next, it cannot be used as is for static asset-based weapon alloca-
tion. However, in Metler and Preston (1990) a number of greedy algorithms for
asset-based weapon allocation are described. These algorithms basically work
by approximating the asset-based problem with its target-based counterpart,
by using the protection value of the defended asset to which the target is aimed
for as the target value. When the problem has been approximated by a target-
based problem, it is suggested that the maximum marginal return algorithm
returns a solution that can be used as an approximative solution to the asset-
based problem. Another suggested approach in Metler and Preston (1990) is to
use the solution returned from the maximum marginal return algorithm and to
apply local search on the solution so that the target allocated by one weapon
can be swapped to the target allocated by another weapon, and vice versa.

Another kind of heuristic approach to a constrained version of the target-
based weapon allocation problem has been suggested in Wacholder (1989), in
which artificial neural networks are used. It is stated that solutions close to
global optima are found by the algorithm, but results are only presented for
a few small-scale problem instances, from which it in the author’s view is not
possible to generalize. It is in Huaiping et al. (2006) also argued that artificial

3.3. ALGORITHMS FOR STATIC WEAPON ALLOCATION 65

neural network algorithms for weapon allocation sometimes are unsteady and
non-convergent, leading to that obtained solutions may be both suboptimal
and infeasible.

As an alternative, the use of genetic algorithms seems to be popular. Such
an algorithm for static target-based weapon allocation is described in Julstrom
(2009), while a genetic algorithm combined with local search is presented in Lee
et al. (2002c) and Lee and Lee (2003). The quality of the solutions returned by
the greedy maximum marginal return algorithm presented in Kolitz (1988) is
in Julstrom (2009) compared to the solutions returned by genetic algorithms.
The standard genetic algorithm is outperformed on large-scale problem sizes,
but only one problem instance is tested for each problem size, so the possibility
to generalize the results can be questioned. Even though, the results seem to
indicate that greedy search works better than standard genetic algorithms on
large problem sizes. It is in Julstrom (2009) suggested that genetic algorithms
can be seeded with the solution returned from a greedy algorithm, which seems
to be a suitable approach to improve the quality of genetic algorithms on large
problem sizes. In Chen et al. (2009), a genetic algorithm combined with local
search is suggested for a dynamic version of the asset-based weapon allocation
problem. It is shown that local search improves the results compared to use
the genetic algorithm without local search, but that the computational time
needed is increased. The effect of real-time requirements on the algorithms are
not tested.

The use of ant colony optimization for weapon allocation is suggested in
Lee et al. (2002a); Lee and Lee (2005). Reported results in Lee and Lee (2005)
and Lee et al. (2002a) indicate that ant colony optimization algorithms per-
form better than standard genetic algorithms on large-scale problems, and that
the algorithms can be improved upon by using local search. However, the algo-
rithms were allowed to run for two hours, so it is unclear how this generalizes
to settings with real-time requirements.

A simulated annealing algorithm for static asset-based weapon allocation
is presented in Ciobanu and Marin (2001). Basically, simulated annealing is
based on an analogy of thermodynamics with the way metals cool and anneal,
in which a liquid that is cooled slowly is likely to form a pure crystal corre-
sponding to a state of minimum energy for the metal, while a quick cooling
phase is likely to result in states of higher energy levels (Suman and Kumar,
2006). By controlling an artificial “temperature” when making the optimiza-
tion (corresponding to the minimization of energy levels), it becomes possible
to escape from local minima in the hunt for the optimal solution (the purest
crystal in the thermodynamics analogy). However, no evaluation of the quality
of the solutions obtained by the algorithm is presented in Ciobanu and Marin
(2001), so it is unknown how good their implemented algorithm performs. An-
other implementation of a simulated annealing algorithm provides solutions of
lower quality than ant colony optimization and genetic algorithms in a static
target-based weapon allocation experiment described in Lee and Lee (2005).

66 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

The algorithms were, as describe above, allowed to run for two hours, so it is
not known how the algorithms perform under more realistic time constraints.

Ahuja et al. (2007) present good performance results for an approach us-
ing a minimum cost flow formulation heuristic for generating a good starting
feasible solution. This feasible solution is then improved by a very large-scale
neighborhood (VLSN) search algorithm that treats the problem as a partition-
ing problem, in which each partition contains the set of weapons assigned to
target Ti. The very-large scale neighborhood search improves the original feasi-
ble solution by a sequence of cyclic multi-exchanges and multi-exchange paths
among the partitions. As the name suggests, the size of the neighborhoods used
are very large. To search such large neighborhoods typically takes considerably
amounts of computations and demands implicit enumeration methods (Jha,
2004). By using the concept of an improvement graph, it becomes possible to
evaluate neighbors faster than other existing methods (Ahuja et al., 2007; Jha,
2004).

Recently, the use of particle swarm optimization for static target-based wea-
pon allocation has been suggested. In Teng et al. (2008), a particle swarm opti-
mization algorithm is implemented and compared to a genetic algorithm. The
results indicate that the particle swarm optimization algorithm generates better
solutions than the genetic algorithm, but the algorithms are only tested on a
single problem instance consisting of five targets and ten firing units. For this
reason, it is not possible to generalize the obtained results. Experiments pre-
sented in Zeng et al. (2006) also indicate that particle swarm optimization al-
gorithms create better solutions than genetic algorithms for static target-based
weapon allocation.

As evident from the literature survey presented above, a lot of different
algorithmic approaches have been suggested for the static weapon allocation
problem. A summary of some of the approaches presented above is presented
in table 3.4.

Table 3.4: Algorithmic approaches to the static weapon allocation problem.

Algorithmic approach References

Branch-and-bound Ahuja et al. (2007)
Genetic algorithms Julstrom (2009); Lee and Lee (2003)
Ant colony optimization Lee et al. (2002a); Lee and Lee (2005)
Greedy algorithms den Broeder et al. (1959); Kolitz (1988)
VLSN Ahuja et al. (2007)
Neural networks Wacholder (1989)
Particle swarm optimization Zeng et al. (2006); Teng et al. (2008)

3.4. DISCUSSION 67

3.4 Discussion

As indicated in section 3.1.1, it is possible to calculate aggregated target values
from individual threat values in different ways. The weighted average presented
in equation 3.2 seems reasonable in most air defense situations, but can be
problematic to use when there e.g. are very many defended assets, since there is
a potential risk that the threat against one single defended asset “disappears”
in the aggregation of threat values into a single target value due to the many
defended assets to which the target does not constitute a threat. The alternative
presented in equation 3.3 in general results in higher target values. Of course,
there are also other ways in which target values can be calculated. The problem
here is that there is no single aggregation operator that can be argued to be
better than all others for all kinds of situations. This leads us to the problem
of what threat values and target values really represent. As we have seen, the
threat value is the level of threat posed by a target to a defended asset, but
this threat value will vary depending on what parameters and algorithms that
are used for estimating the threat value. Consequently, this will hold true also
for target values. Furthermore, as will be discussed more in chapter 5, human
air defense experts are often disagreeing on a target’s level of threat (St. John
et al., 2004a). Arguably, there are no such things as objective threat and target
values. In the author’s view, these values are subjective. These subjective values
are nevertheless still useful, in that they can be used to judge how threatening
a target is, given a specific threat model of what parameters that should de-
cide the level of threat. However, that target values are subjective by nature is
rarely mentioned in literature. On the contrary, target values are in studies of
weapon allocation problems nearly always assumed to be known perfectly and
are taken for granted. We are not providing a solution to how to deal with the
subjectiveness of target values, but really would like to highlight that the allo-
cation given as output from a weapon allocation algorithm is only (at the very
best) optimal given a specific threat model.

In both the static target-based and asset-based weapon allocation problems
presented in this chapter, it is assumed that all firing units should be allocated to
targets. Various variants of especially the static target-based problem presented
here have been suggested in literature. It is e.g. in Jha (2004) mentioned that
constraints such as lower and upper bounds on the total number of firing units
assigned to a target Ti can be added, as well as bounds on the survival value of a
target. A modification of the general static weapon allocation problems that we
think can be fruitful in order to make them more adapted to realistic settings is
to add a cost to each use of firing units, since interceptors such as surface-to-air
missiles are quite expensive, but also due to the fact that the savings of inter-
ceptors can be needed later on in a dynamically evolving scenario. Hence, we
suggest that it may be interesting and worthwhile to develop modified versions
of the problems where a resource usage cost Ck is added to each firing unit Wk,
where the assumption that all firing units should be allocated to targets is re-

68 CHAPTER 3. THREAT EVALUATION AND WEAPON ALLOCATION

laxed. A modified version of the static target-based weapon allocation problem
could then look like:

min F =
|T|∑
i=1

Vi

|W|∏
k=1

(1− Pik)Xik +
|T|∑
i=1

|W|∑
k=1

XikCk, (3.14)

subject to:

|T|∑
i=1

Xik ≤ 1, ∀k,

Xik ∈ {0,1}, ∀i∀k.

(3.15)

Similarly, the modified version of the static asset-based weapon allocation
problem can be formulated as:

max J =
|A|∑
j=1

ωj

∏
i∈Gj

(1− πi

|W|∏
k=1

(1 − Pik)Xik)−
|T|∑
i=1

|W|∑
k=1

XikCk, (3.16)

subject to:

|T|∑
i=1

Xik ≤ 1, ∀k,

Xik ∈ {0,1}, ∀i∀k.

(3.17)

Hence, if a cost associated with the use of a weapon system is higher than
the estimated value of the engagement, it is not allocated to any target. A prob-
lem associated with such a formulation obviously is to find the balance of se-
lecting appropriate costs for resource usage. Such a cost function is also used in
the general optimization problem of allocating resources to tasks, as presented
in Gelenbe et al. (2010).

The threat evaluation algorithms reviewed in this chapter are intended for
classical air defense operations where there are a set of defended assets that
should be protected against conventional air targets such as fighter planes and
missiles. However, there are in today’s world many cases of asymmetrical war-
fare in which the opponent does not follow classical doctrines that can be de-
fined in a top-down manner. An example of this is the hijacking of commercial
passenger jet airliners by al-Qaeda terrorists on September 11, 2001, which
among other targets were used for crashing into the World Trade Center and
Pentagon. In order to be able to detect and counter this kind of attacks, alter-
native methods are needed. Since this kind of unexpected situations are hard
to define in advance, a promising idea is to use so called anomaly detection
methods for this kind of situations. Initial work on using such an approach for

3.5. SUMMARY 69

detection of vessel anomalies in the maritime domain has been presented in Jo-
hansson and Falkman (2007) and Riveiro et al. (2008), and the author of this
thesis argues that the same kind of approach can be useful in the air defense
domain.

3.5 Summary

Summarizing the findings in this chapter, a formal description of the threat
evaluation problem has been given. We have also given mathematical formal-
izations of two variants of the static weapon allocation problem; static target-
based weapon allocation and static asset-based weapon allocation. We have
seen that open literature on threat evaluation is sparse, while considerably more
research exists for static weapon allocation. Parameters that can be used for
threat evaluation have been divided into three classes; proximity parameters
(e.g. range to CPA), capability parameters (e.g. weapon envelope), and intent
parameters (e.g. speed and heading). In the review of algorithms for threat eval-
uation, we have identified four main approaches. These are based on classical
two-valued logic, fuzzy logic, artificial neural networks, and graphical mod-
els (e.g. Bayesian networks), respectively. A similar review of algorithms for
static weapon allocation has revealed that much of the first decades of research
mainly was devoted to analytical approaches. In the research during later years,
a vast amount of heuristic approaches have been suggested, such as genetic al-
gorithms, particle swarm optimization, ant colony optimization, and simulated
annealing. However, despite some initial comparisons, it is not well-known how
the algorithms perform, especially not under real-time constraints.

Chapter 4
Algorithms for Real-Time
Threat Evaluation and Weapon
Allocation

In this chapter, we present specific implementations of algorithms for real-time
threat evaluation and weapon allocation. The purpose of these implementa-
tions is to allow for comparison of the various algorithms, as described further
in chapter 7. The chosen implementations are based on the literature survey
presented in chapter 3. Many of the algorithms presented here have earlier
been published in conference proceedings. The Bayesian network for threat
evaluation presented in section 4.1.1 was originally described in Johansson and
Falkman (2008a), while the fuzzy logic algorithm for threat evaluation pre-
sented in section 4.1.2 earlier has been published in Johansson and Falkman
(2008b). The implemented exhaustive search algorithm and the genetic algo-
rithm for static target-based weapon allocation was originally published in Jo-
hansson and Falkman (2009b), while the particle swarm optimization and the
ant colony optimization algorithms previously have been published in Johans-
son and Falkman (2010a).

4.1 Algorithms for Real-Time Threat Evaluation

As identified in section 3.2, suggested approaches for automated threat evalua-
tion can be divided into classical two-valued logic, fuzzy logic, artificial neural
networks, and graphical models. Since the data which is used as input to threat
evaluation algorithms often are uncertain by nature (Paradis et al., 2005; Be-
naskeur et al., 2008), and since the domain knowledge itself often is incomplete,
it makes sense to only use approaches that can handle uncertainties within this
domain. For this reason, we have chosen not to implement any algorithm based
on two-valued logic (since such logic only can handle values that are true or

71

72 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

false). Artificial neural networks have not been seen as suitable for our pur-
poses, since they rely on large amounts of labeled training data which at the
least are very hard to acquire for this domain. Moreover, they are opaque to
the user, so that they provide no explanations to a decision maker on why a
target is considered to be threatening or not. Instead, we have implemented an
algorithm based on fuzzy logic, as well as a graphical model approach, in which
Bayesian networks have been used. Both these approaches are able to handle
uncertainty, and are potentially more transparent to the user of the algorithm.
The Bayesian network algorithm is presented in section 4.1.1, while the fuzzy
logic approach is presented in section 4.1.2.

4.1.1 A Bayesian Network Approach

When creating the Bayesian network for threat evaluation, we have used many
of the parameters identified in section 3.2.1. First of all, the variables and states
to include into the network needed to be decided on. The random variable
(node) of main interest here is the query variable Threat, since this is the vari-
able that is used to calculate a threat value. Since we want to calculate a threat
value in the range [0,1], the posterior probability of P (Threat = true|z) (where
z is an instantiation of a set of information variables Z) is used as our estimate
of the threat value posed by the observed target Ti to a specific defended asset
Aj . Hence, a specific Bayesian network corresponds to a single target-defended
asset pair (Ti,Aj). This means that a Bayesian network instance should be cre-
ated for each target-defended asset pair, and that the resulting target value needs
to be aggregated from the individual threat values.

As noticed earlier, threat can be seen as a combination of capability and
intent. Therefore, a Capability variable and an Intent variable has been identi-
fied as well. As discussed in section 3.2.1, many different variables can be used
to reason about the intent and capability of a target to damage a defended asset,
so we have here chosen a representative subset of these. Capability parameters
that have been included into our Bayesian network for threat evaluation are:

• Target type and Within weapon envelope?,

while included intent and proximity parameters are:

• Speed, Range from CPA,

• Range at CPA, TCPA,

• CPA IUOT , TBH , and Distance.

Most of the variables are continuous by nature, but have (which is very com-
mon when working with Bayesian networks) been discretized, so that the range
is {low,medium,high} for Speed, Capability, and Intent, while it for the vari-
able Weapon range is {none,short,medium,long}, etc. The current version of

4.1. ALGORITHMS FOR REAL-TIME THREAT EVALUATION 73

Weapon
range

Speed

Within
weapon env.?

Distance

Threat Intent

Capability

Range from
CPA Range at CPA

TBH

TCPA CPA IUOT

Target type

Figure 4.1: The variables used in the Bayesian network for threat evaluation, and the
relationships between them.

the Bayesian network only considers the target types F16, Mig21, B2, and
B747 (assuming a quite limited universe), but would obviously need to be ex-
tended with other types of aircrafts as well as different types of missiles, etc.
in a fully operational system. However, the current network should be enough
to demonstrate the usefulness of Bayesian networks for threat evaluation. To
add more aircraft or missile types to the Bayesian network would not impact
much on the complexity of the network, since it would not require adding ex-
tra nodes. The extra burden would rather only be noticeable when required to
specify some extra numbers in the conditional probability table for Target type
and the nodes having Target type as a parent.

In a second step, the structure of the Bayesian network needs to be identi-
fied, i.e. the directed edges between the nodes. Here, the technique of drawing
directed edges from causes to their effects has been used. Starting with the vari-
able Threat, we have earlier noticed that this is a combination of Intent and
Capability, hence, the Intent and Capability can be seen as causes of Threat.
Consequently, a directed edge from Intent to Threat can be drawn, as from
Capability to Threat. Similarly, a specific Targettype has a causal effect on the
estimated Capability. The target’s Intent can be seen as the cause of the Eu-
clidean distance between the target and the defended asset (Distance), as well
as of the TBH , and so on. All the used random variables and the relationships
between them are shown in figure 4.1. As can be seen, some of the variables and
the directed edges (Range from CPA, Range at CPA, TCPA, CPA IUOT ,
and their associated edges) are different from the others. These are not part of
the final Bayesian network, but rather are used to (deterministically) calculate
the value of TBH before any actual inference is made.

Even in this rather limited Bayesian network, knowledge elicitation of the
probability distributions needed for the conditional probability tables (CPTs)
of the network is the most cumbersome step. To illustrate what the conditional

74 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Intent
High
Medium
Low

44.8
37.3
17.9

Intent
High
Medium
Low

44.8
37.3
17.9

Threat
True
False

64.2
35.8

Threat
True
False

64.2
35.8

Within weapon envelope?
Within
Close
Far

75.0
23.1
1.89

Within weapon envelope?
Within
Close
Far

75.0
23.1
1.89

Weapon range (m)
None
Short
Medium
Long

5.00
35.0
55.0
5.00

20000 ± 27000

Weapon range (m)
None
Short
Medium
Long

5.00
35.0
55.0
5.00

20000 ± 27000

Target type
F16
Mig21
B2
B747

 0
 100
 0
 0

Target type
F16
Mig21
B2
B747

 0
 100

 0
 0 Speed (m/s)

Low
Medium
High

7.14
75.0
17.9

802 ± 1100

Speed (m/s)
Low
Medium
High

7.14
75.0
17.9

802 ± 1100

Time Before Hit (sec)
VeryShort
Short
Medium
Long
VeryLong

 0
 100
 0
 0
 0

71

Time Before Hit (sec)
VeryShort
Short
Medium
Long
VeryLong

 0
 100

 0
 0
 0

71

Capability
High
Medium
Low

71.7
22.6
5.75

Capability
High
Medium
Low

71.7
22.6
5.75

Distance (m)
VeryClose
Close
Medium
Far
VeryFar

 0
 100
 0
 0
 0

5250 ± 2700

Distance (m)
VeryClose
Close
Medium
Far
VeryFar

 0
 100

 0
 0
 0

5250 ± 2700

Figure 4.2: An example of an inference with the Bayesian network.

probability tables look like, the one used for the Threat variable is shown in ta-
ble 4.1. The remaining conditional probability tables can be found in Appendix
A.

Table 4.1: Conditional probability table for Threat.

Capability Intent true false
high high 0.90 0.10
high medium 0.70 0.30
high low 0.20 0.80

medium high 0.75 0.25
medium medium 0.50 0.50
medium low 0.10 0.90

low high 0.50 0.50
low medium 0.25 0.75
low low 0.03 0.97

Since the Threat variable has only two possible states (true and false), and
since its parents (Capability and Intent) have three possible states each, a total
of eighteen conditional probabilities are given in the conditional probability
table.

In figure 4.2, it is shown how an instantiated Bayesian network is used to
calculate the posterior probability of Threat, given certain information that
the target is a Mig21 at a close distance and short TBH . Moreover, the speed
of the target has been observed, but this observation is associated with uncer-

4.1. ALGORITHMS FOR REAL-TIME THREAT EVALUATION 75

tainty, so that we are 75% certain that the discretized speed is medium. Given
these observations, the posterior probability P (Threat = true|z) ≈ 0.64 has
been calculated, which is taken as the estimate of the threat value the target is
constituing to the defended asset.

The developed Bayesian network for threat evaluation has been presented
and discussed with experts working within the defense industry. Some of these
experts have previously also worked as air defense officers. The appropriate-
ness of the structure of the Bayesian network has in these discussions been
confirmed, but the actual numbers used in the conditional probability tables
have not been discussed and should only be seen as the author’s opinion of
suitable values.

4.1.2 A Fuzzy Logic Approach

In the implemented fuzzy inference system (which is based on the work pre-
sented by Liang (2007)), we have used the same set of input variables as in
the Bayesian network implementation, i.e. Target type, Speed, Distance, and
T ime Before Hit. As in the Bayesian network case, the purpose of the fuzzy
inference system is to calculate a threat value for the corresponding target-
defended asset pair, so that the output of the system is a fuzzy set Threat. The
rules used in the implementation can be seen below:

TargetType == F16 --> Threat = high (1)
TargetType == Mig21 --> Threat = med (1)
TargetType == B2 --> Threat = high (1)
TargetType == B747 --> Threat = low (1)
TBH == short --> Threat = high (1)
TBH == med --> Threat = med (1)
TBH == long --> Threat = low (1)
Speed == low AND Distance == far --> Threat = low (1)
Speed == med AND Distance == med --> Threat = med (1)
Speed == high AND Distance == close --> Threat = high (1)
Distance == far --> Threat = low (0.25)
Distance == med --> Threat = med (0.25)
Distance == close --> Threat = high (0.25)

For each rule the number within parentheses denotes the weight of the rule.
As can be seen, the Capability and Intent variables are not here used explicitly,
instead, Target type is modeled as having a direct impact on the threat value.
The same holds true for TBH and Distance. The reason for this choice is to
make it as similar to Liang’s types of rules as possible, in which no intermediate
variables are used. Moreover, the combination of Speed and Distance has been
considered as having a mutual effect on the threat level, so that a high speed
combined with a close distance are indications of a target being a very viable
threat.

76 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Close Medium Far

Distance (in meters x 10^5)

D
eg

re
e

of
 m

em
be

rs
hi

p

(a) Membership functions for Distance

Threat

D
eg

re
e

of
 m

em
be

rs
hi

p

Low Medium High

(b) Membership functions for Threat

HighLow Medium

Speed

D
eg

re
e

of
 m

em
be

rs
hi

p

(c) Membership functions for Speed

TBH

D
eg

re
e

of
 m

em
be

rs
hi

p

Long

(d) Membership functions for TBH

Figure 4.3: Illustration of some of the membership functions used in the fuzzy inference
system for threat evaluation.

The set that has been used to model Target type is actually a crisp set (i.e.
a target is either a F16, Mig21, B2, or B747). The other variables have been
modeled using fuzzy sets, and the membership functions for Distance, Threat,
Speed, and TBH are shown in figure 4.3.

4.2 Algorithms for Real-Time Weapon Allocation

As discussed in section 3.1.2, a large number of different algorithms for static
weapon allocation have been suggested in the open literature throughout the
years. We will in this section present implementations of some of the heuristic
algorithms that have been identified as promising for static real-time weapon
allocation. Moreover, we will present an exact exhaustive-search algorithm,
since such algorithms always return an optimal solution, given that there are
no restrictions on the available search time. It is obvious that there in prac-
tice is not unlimited amount of time available for searching for an optimal

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 77

solution, but there are for small-scale problem instances no reasons not to
use exact algorithms for real-time applications. The descriptions of the im-
plemented algorithms are in most cases made on a quite high level, but for
specific implementation details the Java source code can be downloaded from
http://sourceforge.net/projects/sward/ as explained further in chapter 6.

Some of the presented algorithms (e.g. the maximum marginal return al-
gorithm) make use of information regarding target values. These are therefore
only directly applicable to static target-based weapon allocation. However, as
was mentioned in section 3.1.2, the static asset-based weapon allocation prob-
lem can be approximated by its target-based counterpart. If information re-
garding which defended assets the targets are aimed for are combined with in-
formation regarding protection values of the defended assets, this can be used
as a substitute for target values. Hence, by using this kind of approximation,
the algorithms relying on target values can (with some minor modifications) be
used for static asset-based weapon allocation as well.

4.2.1 Representation

The implementations of weapon allocation algorithms suggested in this thesis
share the same kind of representation, in which a solution is represented as a
vector of natural numbers of length |W|. Each element k in the vector, (where
1 ≤ k ≤ |W|), points out the target Ti to which firing unit Wk is allocated.
As an example of this, the vector [2, 3, 2, 1]T represents a solution to a problem
consisting of four firing units, in which firing units W1 and W3 are allocated to
target T2, W2 is allocated to T3, and W4 is allocated to T1. Hence, a mapping
from the vector to a matrix of decision variables is provided, so that X14, X21,
X23, and X32 take on the value 1 for the above example, while the remaining
decision variables take on the value 0.

4.2.2 An Exhaustive Search Algorithm

As the name implies, exhaustive search algorithms exhaustively generate and
test all feasible solutions. When all feasible solutions have been tested, the al-
gorithm returns the optimal solution, i.e. the solution that minimizes (for min-
imization problems, e.g. the static target-based weapon allocation problem as
formulated in equation 3.4) or maximizes (for maximization problems, e.g. the
static asset-based weapon allocation problem as formulated in equation 3.7)
the objective function value. A pseudo code description of the implemented
algorithm for static target-based weapon allocation is given in algorithm 4.1,
while the corresponding pseudo code for static asset-based weapon allocation
is shown in algorithm 4.2. Since there are |T||W| feasible solutions to test, this
is the number of times the method createSolution() will be called. The method
takes a natural number as input and creates a solution by converting the in-
put data from the decimal number base (i.e. with radix 10) to radix |T|. As

78 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Algorithm 4.1 Exhaustive search algorithm for static target-based weapon al-
location
Input: A vector V of target values and a matrix P of kill probabilities.
Output: The optimal solution solbest.

1: Fbest ←∞
2: count← 0
3: while count < |T||W| do
4: sol← createSolution(count)
5: Fsol ← 0
6: for all i such that 1 ≤ i ≤ |T| do
7: Psurvival ← 1.0
8: for all k such that 1 ≤ k ≤ |W| do
9: Psurvival ← Psurvival × (1 − Pik)Xik

10: end for
11: Fsol ← Fsol + Vi × Psurvival

12: end for
13: if Fsol < Fbest then
14: Fbest ← Fsol

15: solbest ← sol
16: end if
17: count← count + 1
18: end while
19: return solbest

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 79

an example, for a problem where |T| = 4 and |W| = 3, the decimal value 5
generates the string 11 when converted. This string is left-padded with 0’s un-
til the length of the generated string is equal to |W|, so that the string in our
case becomes 011. In order to match the representation described above, the
value of each element in the generated string is increased with 1 so that the cor-
responding feasible solution in our case becomes [1,2,2]T, indicating that the
first firing unit should be allocated to T1, and the second and third firing units
should be allocated to T2. This is directly mapped to the corresponding ma-
trix of decision variables, as explained in section 4.2.1. The objective function
value is calculated as specified in equation 3.4 for target-based weapon alloca-
tion and as specified in equation 3.7 for asset-based weapon allocation. If the
objective function value for the current solution is better than the current best,
the solution is stored as the current best solution. This is repeated for all |T||W|

feasible solutions. Hence, since the algorithms explicitly enumerate all feasible
solutions, the current best solution will in the end be the optimal solution to
the problem. Due to the bad scaling of the exhaustive search algorithm, it is ob-
vious that it cannot be used in real-time for arbitrarily large problem sizes (i.e.
the number of targets, firing units, and defended assets). Nevertheless, it is easy
to give good estimates of how long search time the algorithm needs. Hence,
if the demanded search time is short enough, it is preferable to use exhaustive
search since the algorithm is guaranteed to find a global optimal solution.

4.2.3 A Maximum Marginal Return Algorithm

As briefly discussed in chapter 3, the maximum marginal return algorithm is a
simple greedy algorithm, suggested already in den Broeder et al. (1959), which
for the special case of the static target-based weapon allocation problem where
Pik = Pi can be shown to be optimal (see Hosein (1990)). For the more general
version of the static target-based weapon allocation problem studied in this
thesis, it is a greedy heuristic algorithm, i.e. it is not guaranteed to find the
optimal solution. The main advantages of the algorithm’s greedy nature are
that it is very fast and simple to implement. Basically, the maximum marginal
return algorithm works by assigning firing units sequentially to the target which
has the maximum decrease on the objective cost, i.e. the total expected target
value of surviving targets. When the first firing unit has been allocated to the
target for which the reduction in value is maximal, the target value is reduced
to the new expected value. After that, the same procedure is repeated for the
second firing unit, and so on, until all firing units have been allocated to targets.
The algorithm is described with pseudo code in algorithm 4.3.

Looking at the complexity of the algorithm, |T| marginal returns are cal-
culated for each iteration (i.e. each firing unit). Moreover, for each iteration,
the target value will be updated for the target maximizing the marginal return.
Since there are |W| firing units, this is the number of iterations that will be run.
Hence, the computational complexity becomes O(|W| × |T|).

80 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Algorithm 4.2 Exhaustive search algorithm for static asset-based weapon allo-
cation
Input: A vector π of lethality probabilities, a vector ω of protection values, sets
of target aims, and a matrix P of kill probabilities.
Output: The optimal solution solbest.

1: Jbest ← 0
2: count← 0
3: while count < |T||W| do
4: sol← createSolution(count)
5: Jsol ← 0
6: for all j such that 1 ≤ j ≤ |A| do
7: Psurvival(Aj)← 1.0
8: for all i such that 1 ≤ i ≤ |T| do
9: if Ti ∈ Gj then

10: Psurvival(Ti)← 1.0
11: for all k such that 1 ≤ k ≤ |W| do
12: Psurvival(Ti)← Psurvival(Ti)× (1− Pik)Xik

13: end for
14: Psurvival(Aj)← Psurvival(Aj)× (1− πi × Psurvival(Ti))
15: end if
16: end for
17: Jsol ← Jsol + ωj × Psurvival(Aj)
18: end for
19: if Jsol > Jbest then
20: Jbest ← Jsol

21: solbest ← sol
22: end if
23: count← count + 1
24: end while
25: return solbest

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 81

Algorithm 4.3 Maximum marginal return algorithm for static target-based
weapon allocation
Input: A vector V of target values and a matrix P of kill probabilities.
Output: The greedily generated allocation.

1: for all k such that 1 ≤ k ≤ |W| do
2: highestV alue← −∞
3: allocatedTarget← 0
4: for all i such that 1 ≤ i ≤ |T| do
5: value← Vi × Pik

6: if value > highestV alue then
7: highestV alue← value
8: allocatedTarget← i
9: end if

10: end for
11: allocate firing unit Wk to target TallocatedTarget

12: VallocatedTarget ← VallocatedTarget − highestV alue
13: end for
14: return allocation

Since target values are central for the maximum marginal return algorithm,
it is only directly applicable to target-based weapon allocation. However, as
briefly described in Metler and Preston (1990), it can also be used for asset-
based weapon allocation by approximating the static asset-based weapon allo-
cation problem (equation 3.7) with its target-based counterpart (equation 3.4).
By doing this, the obtained feasible solution for the target-based problem can
be used as solution for the asset-based version. In order for this to be possi-
ble, it must be decided how to estimate the target values. Metler and Preston
(1990) suggest to estimate target values by uniformly spreading out the protec-
tion value of a defended asset among the targets aimed for it. In Hosein (1990),
it is instead suggested that a target is assigned the protection value of the target
it is aimed for, i.e. that it does not matter how many targets that are aimed for
the defended asset. It should be noted that the produced solutions not necessar-
ily are good for static asset-based weapon allocation even though they might be
near-optimal for static target-based weapon allocation. It is in Hosein (1990)
argued that such approximations are suitable for situations with a so called
strong defense, i.e. situations where the ratio between firing units and targets is
high so that all defended assets can be protected, and where the expected num-
ber of targets surviving the weapon engagements is small (much less than one).
On the contrary, they are not suitable for situations with a weak defense, since
the approximation will work reasonably good for the defended assets whose

82 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

attackers are engaged, but bad for the remaining defended assets that cannot
be protected due to the lack of firing units (Hosein, 1990).

4.2.4 An Enhanced Maximum Marginal Return Algorithm

What here will be referred to as the enhanced maximum marginal return al-
gorithm (the author’s terminology) is quite similar to the standard maximum
marginal return algorithm. The difference between the two algorithms is that
while it in the standard version is predetermined which firing unit that should
be allocated next, it is in the enhanced maximum marginal return algorithm
not predetermined which firing unit to allocate next. Instead, the choice of
which firing unit to allocate next is based on which weapon-target pair that
maximizes the marginal return. This version of the maximum marginal return
algorithm is briefly presented in Julstrom (2009). We have implemented this
algorithm based on the description in Julstrom (2009), and the pseudo code for
the algorithm is given in algorithm 4.4. In the first iteration it = 1, |W| × |T|

Algorithm 4.4 Enhanced maximum marginal return algorithm for static target-
based weapon allocation (adapted from (Julstrom, 2009))
Input: A vector V of target values and a matrix P of kill probabilities.
Output: The greedily generated allocation.

1: for all it such that 1 ≤ it ≤ |W| do
2: highestV alue← −∞
3: allocatedTarget← 0
4: allocatedWeapon← 0
5: for all k such that 1 ≤ k ≤ |W| do
6: for all i such that 1 ≤ i ≤ |T| do
7: value← Vi × Pik

8: if value > highestV alue then
9: highestV alue← value

10: allocatedWeapon← k
11: allocatedTarget← i
12: end if
13: end for
14: end for
15: assign firing unit WallocatedWeapon to target TallocatedTarget

16: VallocatedTarget ← VallocatedTarget − highestV alue
17: end for
18: return allocation

combinations are tested. The weapon-target pair with highest marginal return
is selected, so that the firing unit is selected to the target, and the target value of

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 83

the corresponding target is updated accordingly. After this, |W| − 1 firing units
are unallocated. In next iteration, the remaining (|W|− 1)× |T| weapon-target
pairs are tested, and so on, until there does not remain any unallocated firing
units. Hence, in each of the |W| steps, the algorithm considers assigning each
of the unallocated weapons to each of the |T| targets, so that the total number
of considerations become

(|W|+ (|W| − 1) + . . . + 2 + 1)× |T| = |W|(|W|+ 1)
2

× |T|. (4.1)

Therefore, the time complexity of the enhanced maximum marginal return al-
gorithm becomes O(|W|2|T|). Hence, the complexity is somewhat worse than
that of the standard maximum marginal return algorithm, but it still scales
very good to large problems, compared to e.g. enumeration algorithms such as
exhaustive search.

4.2.5 A Naïve Random Search Algorithm

Algorithm 4.5 Random search algorithm for static target-based weapon alloca-
tion
Input: A vector V of target values, a matrix P of kill probabilities, and the
time allowed for search.
Output: solbest, which is the best random solution found during search.

1: Fbest ←∞
2: while termination criteria not met do
3: sol← ∅
4: for all k such that 1 ≤ k ≤ |W| do
5: randomly select an integer i in {1, . . . , |T|}
6: add allocation of firing unit Wk to target Ti to sol
7: end for
8: Fsol ← calculateFV alue(sol)
9: if Fsol < Fbest then

10: Fbest ← Fsol

11: solbest ← sol
12: end if
13: end while
14: return solbest

The algorithm implementations presented in this chapter so far are deter-
ministic in the sense that they always will produce the same solution when
run on a specific problem instance (the different algorithms are not guaranteed
to return the same solution, but the solution returned by e.g. the maximum

84 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

marginal return algorithm will always be the same for the specific problem in-
stance). In some sense, the complete opposite to this kind of approaches is pure
random search, i.e. to create (feasible) solutions randomly. Along these lines,
a very simple random search algorithm has been implemented as a baseline to
which more sophisticated algorithms can be compared. The algorithm gener-
ates random allocations as fast as possible, selecting the target to which a firing
unit should be allocated from the set {1, . . . , |T|} in a uniformly distributed
manner. When a complete solution has been generated, its objective function
value is calculated. If the objective function value of a newly generated solution
is better than the objective function value of the best generated solution so far,
the new solution is stored as the current best solution. This is repeated until
no more time remains. When this happens, the current best solution is given as
output from the algorithm. It shall however be noted that this somewhat naïve
algorithm is only intended for being used for benchmarking purposes. Pseudo
code for the static target-based version of this algorithm is given in algorithm
4.5, and the static asset-based formulation only requires minor changes of the
algorithm.

4.2.6 A Greedy Local Search Algorithm

Algorithm 4.6 Maximum marginal return algorithm combined with local
search for static asset-based weapon allocation
Input: A vector π of lethality probabilities, a vector ω of protection values, sets
of target aims, a matrix P of kill probabilities, and the time allowed for search.
Output: The heuristic solution solbest.

1: solbest ←MMR()
2: Jbest ← CalculateJV alue(solbest)
3: while termination criteria not met do
4: solneighbor ← SearchLocal(solbest)
5: Jneighbor ← CalculateJV alue(solneighbor)
6: if Jneighbor > Jbest then
7: solbest ← solneighbor

8: Jbest ← Jneighbor

9: end if
10: end while
11: return solbest

Another implemented algorithm that makes use of random search takes
the solution generated by the standard or advanced version of the maximum
marginal return algorithm as input and improves it using local search. The
implemented algorithm creates neighbor solutions by swapping two positions

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 85

Start W1 W2 W|W| End...

E11

E21

E|T|1

E12

E22

E|T|2

E1|W|

E|T||W|

Figure 4.4: A directed graph representation of the static weapon allocation problem

selected at random in the solution vector, but other kinds of randomly selected
neighborhood solutions can also be thought of. The algorithm described with
pseudo code in algorithm 4.6 is intended for static asset-based weapon alloca-
tion, but can of course easily be adapted for static target-based weapon alloca-
tion.

Obviously, the quality of the solution generated by algorithm 4.6 will al-
ways be at least as good as the quality of the solution returned by the maximum
marginal return algorithm used for obtaining the initial solution.

4.2.7 An Ant Colony Optimization Algorithm

Among the more complicated algorithms for static target-based weapon allo-
cation, an ant colony optimization algorithm has been implemented. This al-
gorithm makes use of the metaheuristic ant colony system proposed by Dorigo
and Gambardella (1997). The implementation builds upon the algorithm de-
scribed in Lee et al. (2002a) and Lee et al. (2002b). Central for the implemented
algorithm is a directed graph representation of the static target-based weapon
allocation problem, depicted in figure 4.4. The ants move stochastically through
this graph, biased by a pheromone model which is modified at runtime by the
ants.

The ants start out in the ant colony. From the colony, |T| edges lead to node
W1. From W1, |T| edges lead to node W2, etc., ending in the “food node” W|W|.
Hence, the edge Eik taken from the preceding node to node Wk represents the
target Ti to which weapon Wk should be allocated, and so, the complete path
taken by an ant corresponds to a feasible solution to the static target-based
weapon allocation problem. The pseudo code used for determining which ways
the ants take through the graph is described in algorithm 4.7.

In the Initialization()-method, heuristic information ηik is assigned to each
edge Eik according to the product Vi × Pik, so that edges with higher products
get a higher initial heuristic value (improving their chances of being selected).
Initial pheromone τik is also assigned uniformly to each edge.

86 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Algorithm 4.7 Ant colony optimization algorithm for static target-based wea-
pon allocation
Input: A vector V of target values, a matrix P of kill probabilities, and time
allowed for search.
Output: solbest, which is the best solution found during search.

1: Initialization()
2: while termination criteria not met do
3: for ant← 1 to nrOfAnts do
4: for k ← 1 to |W| do
5: q ← U [0,1]
6: if q ≤ q0 then
7: select i according to argmaxi∈{1,...,|T|}(τα

ik × ηβ
ik)

8: else
9: select i according to roulette-wheel selection

10: end if
11: let current ant use edge Eik

12: UpdateHeuristicInfo()
13: end for
14: calculate fitness for chosen path and replace solbest if better
15: ResetHeuristicInfo()
16: LocalPheromoneUpdate()
17: end for
18: GlobalPheromoneUpdate()
19: end while
20: return solbest

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 87

When an ant decides which edge to take from the current node to node Wk,
the pseudo random proportional rule given in equation 4.2 is used.

i =
{

arg maxi∈{1,...,|T|}(τα
ikηβ

ik) q ≤ q0

s otherwise.
(4.2)

Here, α and β are parameters specifying the importance of pheromone and
heuristic information, respectively. Moreover, q0 is a threshold regulating the
balance between so called exploitation and biased exploration. Furthermore,
q is a random number drawn from the uniform distribution U [0,1], while s is
an index selected using roulette wheel selection, where the probability that s is
selected becomes:

Ps =
τα
skηβ

sk∑
l∈{1,...,|T|} τα

lkηβ
lk

. (4.3)

That is, the target Ti to which weapon Wk should be allocated is greedily se-
lected to be the target (edge) maximizing the product of the pheromone and
heuristic information, given that q ≤ q0. Otherwise, the target is determined
through roulette wheel selection, where the amount of pheromone and heuris-
tic information determines the probability for a target (edge) to be selected.

When an ant reaches a new node (i.e. a weapon has been allocated to a
target Ti), it updates its local target values as:

Vi = Vi × (1− Pik)Xik , (4.4)

(where Xik = 1 if and only if edge Eik has been used), affecting the ant’s heuris-
tic information regarding the remaining edges so that it becomes less likely that
more weapons are assigned to the selected target in the ant’s generated solu-
tion. When the ant reaches the food node W|W|, the heuristic information is in
ResetHeuristicInfo() reinitialized in the same way as in the Initialization()-
method, and a local update of pheromone is in LocalPheromoneUpdate() ap-
plied on the recently used edge as:

τik = (1 − ϕ)τik + ϕτ0, (4.5)

where ϕ ∈ [0,1] is a constant regulating the pheromone evaporation. This local
update is used for diversifying the paths taken by ants within the same itera-
tion. After all ants within an iteration have reached W|W|, a global pheromone
update is in GlobalPheromoneUpdate() performed according to equation 4.6.
In this update, ρ ∈ [0,1], while Δτbest

ik is assigned the value 1/F best if edge Eik

is part of the iteration-best solution, and 0 otherwise.

τik = (1 − ρ)τik + ρΔτbest
ik . (4.6)

In this way, the level of pheromone is increased for the path taken by the
iteration-best ant, increasing the likelihood for this path to be taken by ants
in future iterations. The global best solution is all the time kept track of, so
that when no time remains, the best solution found during the search time is
returned by the algorithm.

88 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

4.2.8 A Genetic Algorithm

Another metaheuristic algorithm that has been implemented is a genetic algo-
rithm. The implemented genetic algorithm for static asset-based weapon alloca-
tion is described with pseudo code in algorithm 4.8, and it should be straight-
forward how to modify it to be used for static target-based weapon allocation.
In the first step, an initial population Pop consisting of nrOfIndividuals is

Algorithm 4.8 Genetic algorithm for static asset-based weapon allocation
Input: A vector π of lethality probabilities, a vector ω of protection values, sets
of target aims, a matrix P of kill probabilities, and the time allowed for search.
Output: The heuristic solution solbest.

1: fitnessbest ← −∞
2: Pop← GenerateInitialPopulation(nrOfIndividuals)
3: while termination criteria not met do
4: for l← 1 to nrOfIndividuals do
5: Jl ← CalculateF itness(Pop(l))
6: if Jl > fitnessbest then
7: solbest ← Pop(l)
8: fitnessbest ← Jl

9: end if
10: end for
11: Pop′ ← SelectionAndCrossover(Pop)
12: Pop←Mutate(Pop′)
13: end while
14: return solbest

created. This is accomplished through the generation of a vector of length |W|,
where each element Wk randomly is assigned an integer value in {1, . . . ,|T|}.
In each generation, each individual in the current population is evaluated by
determining its objective function value. Each individual is thus assigned a fit-
ness value that can be used in the selection and recombination step. After this,
deterministic tournament selection is used to determine which individuals in
population Pop that should be used as parents for Pop′, i.e. two individuals
are picked at random from Pop and the one with best fitness value is selected.
The reason for using this simple selection mechanism is that it is faster than
more advanced selection mechanisms such as roulette-wheel selection. When
two parents have been selected from Pop, one-point crossover (illustrated in
figure 4.5) is applied at a randomly selected position k ∈ {1, . . . ,|W|}. This
crossover operator generates two individuals that become members of Pop′.
This is repeated until there are nrOfIndividuals in Pop′. Thereafter, a muta-
tion operator is applied on a randomly selected position k ∈ {1, . . . ,|W|} in the
first individual of Pop′, where the old value is changed into i ∈ {1, . . . ,|T|}.

4.2. ALGORITHMS FOR REAL-TIME WEAPON ALLOCATION 89

Hence, there is a probability of |T|−1 that the individual is unaffected of the
mutation. The mutation operator is repeated on all individuals in Pop′ and the
resulting individuals become members of the new population Pop. This loop
is repeated until a termination condition is fulfilled, in our case that the upper
limit on the computational time bound is reached. At this point, the individual
with the best fitness found during all generations is returned as the solution of
which weapons that should be allocated to which targets.

1 3 2 2 1 3 1 3

2 3 2 22 3 1 3

Randomly selected position

1 3 2 2 1 3 1 3

2 3 2 22 3 1 3

33

33

Randomly selected position

Figure 4.5: Illustration of the one-point crossover operator

A small variation of the genetic algorithm which also has been implemented
is to seed one or more individuals in the initial population with a solution that
is generated using the greedy maximum marginal return algorithm (presented in
section 4.2.3) or its enhanced version (presented in section 4.2.4). Obviously,
at least a part of the valuable search time available is used to generate the
individual using greedy search instead of the even faster random generation.
However, this sacrifice can be very valuable, since the seeded individual(s) most
likely will have a better fitness and thereby can guide the evolution process, so
that better individuals are created more quickly.

4.2.9 A Particle Swarm Optimization Algorithm

In the implemented particle swarm optimization algorithm, a swarm consist-
ing of nrOfParticles particles is created. Each particle pj has in every time
step t an associated position
xj

t and a velocity
vj
t. The search space is |W|-

dimensional, so that each dimension represents a firing unit Wk. Each particle

is also associated with a memory
bj

t
storing the particle’s personal best posi-

tion. Moreover, the swarm’s global best position is stored in the vector
gt. In
the initialization phase (see algorithm 4.9), each particle gets an initial position

xj

0 and velocity
vj
0. The elements in the initial position vectors are natural

numbers randomly distributed between 1 and |T|, while the elements in the
initial velocity vectors are real numbers uniformly distributed in the interval
U [−|T|,|T|].

90 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Algorithm 4.9 Particle swarm optimization algorithm for static asset-based
weapon allocation
Input: A vector π of lethality probabilities, a vector ω of protection values, sets
of target aims, a matrix P of kill probabilities, and the time allowed for search.
Output: The heuristic solution solbest.

1: Initialization()
2: while termination criteria not met do
3: for l← 1 to nrOfParticles do
4: Jl ← CalculateF itness(
xl)
5: if Jl = CalculateF itness(
g) then
6: pl ← reinitialize()
7: else
8: if Jl > CalculateF itness(
bl) then
9:
bl ←
xl

10: if Jl > CalculateF itness(
g) then
11:
g ←
xl

12: end if
13: end if
14: end if
15: end for
16: for l← 1 to nrOfParticles do
17:
vl ← UpdateV elocity(
pl)
18:
xl ← UpdatePosition(
pl)
19: end for
20: end while
21: return
g

4.3. DISCUSSION 91

The position and velocity for each particle is in the implemented algorithm
updated according to equation 4.7 and 4.8.

vj
t+1 = ω
vj

t + c1
r1
t ◦ (
bj

t −
xj
t) + c2
r2

t ◦ (
gt −
xj
t) (4.7)

xj
t+1 =
xj

t +
vj
t+1 (4.8)

In equation 4.7, ω is a parameter (not to be confused with the vector of
protection values) referred to as inertia or momentum weight, specifying the
importance of the previous velocity vector, while c1 and c2 are positive con-
stants specifying how much a particle should be affected by the personal best
and global best positions. These constants are often referred to as the cogni-
tive component and the social component, respectively.
r1

t and
r2
t are vectors

with random numbers drawn uniformly from [0,1]. Moreover, the ◦-operator
denotes the Hadamard product, i.e. element-by-element multiplication of the
vectors.

In the standard version of particle swarm optimization, it is assumed that
the particles take on values in a continuous search space. However, as we know,
only integer solutions are feasible for the static weapon allocation problems
studied here. The method that has been used for making it possible to apply
particle swarm optimization to the integer problem of weapon allocation is to
round off the obtained positions (dimension by dimension) to the nearest inte-
ger value after the position update specified in equation 4.8. This is in accor-
dance to how standard, i.e. continuous, particle swarm optimization is adapted
to integer programming problems in Laskari et al. (2002), and is referred to as
variable truncation by Wahde (2008). Another problem that must be handled is
what to do when particles fly outside the bounds of the search space. When this
happens, the position and velocity values of the element for which the problem
occurred are reinitialized. Moreover, to avoid problems with premature con-
vergence to local optima, the position and velocity vectors are reinitialized for
particles rediscovering the current best solution.

4.3 Discussion

An interesting observation worth noticing is that the maximum marginal return
algorithm (and also the enhanced maximum marginal return algorithm) always
will return the same solution when run on a specific problem instance, i.e. the
algorithm is deterministic. This can be compared to most other algorithms for
static weapon allocation algorithms presented in this chapter, which do not
always return the same solution. Another note to make is that the firing units
are assumed to be ordered in some way, since the first firing unit is allocated
first, than the second, and so on. Different orderings of firing units may return
different solutions.

92 CHAPTER 4. ALGORITHMS FOR REAL-TIME TEWA

Among the algorithms for threat evaluation and weapon allocation pre-
sented in this chapter, many of the algorithms are variations of ideas previously
presented by other researchers (which is expected since the choice of algorithms
is based on the literature surveys presented in chapter 3). In the following para-
graphs, the implemented algorithms are compared to existing work, in order
to highlight similarities and differences, and to more clearly state what is novel
and what is not. The implemented Bayesian network is unique in the choice of
random variables to use for threat evaluation, the structure of the network, and
subsequently also the conditional probability tables used. Okello and Thoms
(2003) have earlier used a Bayesian network for threat evaluation in the air
defense domain, but they have used a smaller example Bayesian network with
fewer nodes, and have instead of discretization used a linear Gaussian approx-
imation of continuous variables. The developed Bayesian network is more sim-
ilar to the discrete Bayesian network suggested in Runqvist (2004), but the
parameters used for calculating capability and intent differ a lot. In the imple-
mented fuzzy inference system, the input variables have been chosen to be as
similar to the Bayesian network as possible. It has also been made as similar as
possible to the descriptions provided in Liang (2006, 2007), so that the used
membership functions and fuzzy inference rules have been selected in accor-
dance to this. Among the implemented algorithms for weapon allocation, the
described exhaustive search algorithm and the random search algorithm have
to the best of the author’s knowledge not been presented in previous litera-
ture. The maximum marginal return algorithm and the enhanced maximum
marginal return algorithm have been implemented based on the descriptions
given in den Broeder et al. (1959) and Julstrom (2009), respectively. The im-
plemented greedy local search algorithm is loosely based upon an idea briefly
discussed in Metler and Preston (1990). The idea of using ant colony opti-
mization for weapon allocation is based on Lee and Lee (2005), but the main
difference is that it here is used for global search instead of local search as orig-
inally proposed by Lee and Lee. Comparing the implemented genetic algorithm
to previously existing genetic algorithms for static weapon allocation (e.g. Jul-
strom (2009) and Lee and Lee (2003)), the main differences are in the choice
of selection and recombination operators. Those have here been selected to al-
low for real-time applications. For the same reason, we have also avoided to
apply local search after recombination, which has been used in Lee and Lee
(2003, 2005). Finally, the particle swarm optimization algorithm has been de-
veloped independently of any other research on weapon allocation. However,
as discussed earlier, other descriptions of the use of particle swarm optimization
algorithm for static target-based weapon allocation do exist. It is not entirely
clear to the author how Zeng et al. (2006) have implemented their algorithm,
but it seems clear that the same kind of representation has been used. However,
they have applied local search in their implementation, which has not been
used here. In Teng et al. (2008), the inertia weight is adaptively adjusted and

4.4. SUMMARY 93

they apply another approach than the author to avoid that particles converge
prematurely to local optima.

A promising algorithm for real-time weapon allocation which has not been
implemented is the VLSN algorithm developed by Ahuja et al. (2007), briefly
presented in section 4.2. The main reason for why it has not been implemented
is that it to the best of the author’s knowledge has not been described thor-
oughly enough to allow for reimplementation. The results presented in Ahuja
et al. (2007) however look very promising, and we hope that the algorithm in
the future will be implemented into the testbeds described in later chapters of
this thesis.

4.4 Summary

In this chapter, implemented algorithms for real-time threat evaluation as well
as static weapon allocation have been described. A Bayesian network has been
developed for threat evaluation, and we have implemented an adapted version
of the fuzzy logic approach presented by Liang (2007). For real-time weapon
allocation, an exhaustive search algorithm has been presented which is guar-
anteed to return an optimal solution if run long enough, but the problem is
that the computation time needed is too high for most problem sizes. For this
reason, heuristic algorithms are needed, and pseudo code for a number of such
algorithms have have been given in this chapter. Among these are the well-
known maximum marginal return algorithm, and an enhanced version of this,
as well as a genetic algorithm, a particle swarm optimization algorithm, and
an ant colony optimization algorithm. Moreover, a simple random search algo-
rithm has been implemented, which can be used a baseline to which other more
sophisticated algorithms can be compared. The implemented algorithms have
also been included in the testbeds which are presented in chapter 6.

Chapter 5
Performance Evaluation

In this chapter, the problem of evaluating the performance of TEWA systems
and the components being part of such a system is studied. This problem is very
relevant, due to the critical consequences the decisions made or recommended
by a TEWA system can have. Despite this, research on performance evaluation
of TEWA systems and their contained threat evaluation and weapon allocation
algorithms is very sparse. In section 5.1 it is shown that performance evaluation
is considered to be a very important topic within the information fusion com-
munity, but that the evaluation of high-level information fusion applications is
considered as problematic. In section 5.2 it is discussed how threat evaluation
algorithm can be evaluated, and a similar discussion is provided for weapon
allocation in section 5.3. In section 5.4, the evaluation of TEWA systems is
highlighted, and a novel performance evaluation metric is put forward.

5.1 Performance Evaluation and Information Fusion

As has been described earlier in this thesis, threat evaluation and weapon allo-
cation can be seen as high-level information fusion problems. When it comes
to high-level information fusion, it is not obvious how to evaluate the perfor-
mance of developed algorithms and systems. This is illustrated by the following
quote by Steinberg et al. (1999):

“The lack of common engineering standards for data fusion sys-
tems has been a major impediment to integration and re-use of
available technology. There is a general lack of standardized – or
even well-documented – performance evaluation, system engineer-
ing methodologies, architecture paradigms, or multi-spectral mod-
els of targets and collection systems. In short, current developments
do not lend themselves to objective evaluation, comparison or re-
use.”

More than ten years have passed since this statement was made. Many tracks
have been devoted to performance evaluation on the annual international con-

95

96 CHAPTER 5. PERFORMANCE EVALUATION

ferences on information fusion, but most of the articles concern evaluation of
low-level information fusion algorithms. Despite the seemingly large interest in
the topic, it is in Liggins et al. (2009) argued that the field of information fusion
has suffered from a lack of rigor with regard to the evaluation and testing of al-
gorithms. This argument is strengthened by Llinas (2009), stating that although
much research has been devoted to the development of new fusion algorithms,
much less work has been put in to evaluation of how well developed algorithms
work, and how they compare to alternative algorithms on common problems.

As made clear by Waltz and Llinas (1990), the formulation of standard
measures of correctness for high-level information fusion processes is extremely
important. However, as highlighted by the same authors:

“Given these characteristics of situation and threat assessment, it
is clear that there would be no single way to perform these pro-
cesses. Unlike level 1 fusion processing, where correctness is easier
to define and such a definition, in turn, provides a way to evaluate
the quality of a given methodology (for position or identity estima-
tion), correctness in assessing a situation or threat is a much less
clear notion.”

A problem related to the evaluation of information fusion processes is that
such processes are either components of a system, or enhancements to a system,
i.e. they rarely represent the whole system under test (Llinas, 2009), but rather
are part of a larger system process. For this reason, if it is the the performance of
the information fusion process as such that needs to be evaluated, other compo-
nents in the system must be kept fixed during evaluation. According to Llinas
(2009), criteria such as computational complexity, time-critical performance,
and adaptability are applicable when evaluating all kinds of information fusion
applications.

In a recent paper by van Laere (2009), it is observed that many researchers
within the information fusion community have reflected upon that, generally,
ground truth information is not available in practice. This makes performance
evaluation harder, as most evaluation metrics within information fusion are re-
lying of information regarding ground truth (van Laere, 2009). According to
Yang et al. (2008), there are two types of performance evaluation; comparative
and absolute. In comparative performance evaluation, a set of performance
metrics are used to rank the algorithms or systems, while absolute performance
evaluation is concerned with a particular algorithm or system (Yang et al.,
2008). In the following section, evaluation of a more specific information fu-
sion problem is studied, namely, the evaluation of threat evaluation algorithms.

5.2 Evaluating Threat Evaluation Algorithms

Since it exists many operational air defense systems with threat evaluation ca-
pabilities, and since calculated target values form an important foundation for

5.2. EVALUATING THREAT EVALUATION ALGORITHMS 97

decisions on whether a target should be engaged or not, it becomes very relevant
to raise the question of how algorithms for threat evaluation can be evaluated.
According to Dall (1999), performance evaluation of threat evaluation algo-
rithms is problematic, since suitable performance measures are hard to find.
Actually, due to the immature level of research on threat evaluation, systematic
comparisons of threat evaluation algorithms are lacking within open literature.

It is in Dall (1999) suggested that a realistic performance measure for au-
tomated threat evaluation is that it should perform with accuracy and speed
comparable to a human expert. As argued by Dall (1999), automated threat
evaluation algorithms that perform far worse than a human expert are not
very useful. At the same time, they do not need to perform better than hu-
man experts. If the algorithm and the human perform on the same level and
their judgments are correlated, the algorithm can be used for offloading, so
that the expert can focus on the more difficult cases (Dall, 1999). On the other
hand, if they perform on the same level and their judgments are uncorrelated,
using them in combination will improve the overall performance (Dall, 1999)
(this can be compared to the use of ensembles in the area of machine learning,
where diversity among classifiers is aimed for, cf. Krogh and Vedelsby (1995)).

Unfortunately, the performance of human decision makers is not well char-
acterized within the air defense domain (Dall, 1999). It is not trivial to measure
the accuracy of a threat evaluation algorithm (or a decision maker) since this
demands ground truth in some sense, i.e. information regarding how threaten-
ing a target really is. We will in section 5.4 discuss how such information can
be obtained indirectly using the concepts of survivability and effectiveness, but
in general, there is no such thing as a physical target value property that can
be measured or obtained directly. However, it is (at least in theory) possible
to measure how much target values calculated by threat evaluation algorithms
deviate from target values estimated by human experts. In this way, the expert’s
estimates can be used as ground truth. Hence, one potential way to judge the
accuracy of a threat evaluation algorithms is to measure the overall deviation
from target values obtained from human experts on the same air defense sce-
narios. This kind of evaluation methodology is illustrated in figure 5.1.

There are a number of studies in which the output given by automated
threat evaluation algorithms on a small amount of scenarios (typically only
a single scenario) is analyzed and judged by, or compared to, human expert
knowledge. In Liang (2006) and Liang (2007), the target values for three dif-
ferent air targets are displayed for a small number of discrete time steps, as
calculated by a fuzzy logic algorithm. The resulting ranking are (very briefly)
compared to the ranking given by experts for the same scenario. A similar
evaluation approach is taken in Benavoli et al. (2007), where the calculated
target values are shown for ten different time steps, during which incoming
evidence streams are fed into the evidential-based threat evaluation algorithm.
This idea is extended in Benavoli et al. (2009). There, the algorithm’s calculated
target values are shown for some different “extreme” cases (as judged by hu-

98 CHAPTER 5. PERFORMANCE EVALUATION

Threat evaluation algorithm 1

Threat evaluation algorithm 2

V1

V2

Scenarios
Evaluation criteria

ΔV1=|Vexpert - V1|
ΔV2=|Vexpert - V2|

Vexpert

Figure 5.1: Illustration of how threat evaluation algorithms can be evaluated using ex-
pert knowledge.

man expert knowledge); a highly threatening situation, and a non-threatening
situation. In this way, it is observed whether the computed target values are in
accordance with expert judgments or not.

A problem with using this kind of evaluation is that threat ratings vary
among experts. It has been shown that expert decision makers often disagree
about the threat of individual aircraft (St. John et al., 2004b,a), making it hard
to measure performance on air defense tasks involving substantial expert user
judgment. This problem can partially be tackled by involving several experts in
the studies, but the fundamental problem is that this kind of evaluation only
can be based upon a fairly limited number of different scenarios, due to the
need for expert judgments regarding the quality of the generated target values.
Another problem with this kind of evaluation is that we then only strive for
correlated judgments and thereby miss the opportunity of creating uncorrelated
target value predictions. In other words, the developed threat evaluation algo-
rithms can be used to offload the human operator, but the algorithms will most
likely make the same kind of systematic errors as the operators make. Also, it
is possible that developed algorithms can create target values that better reflect
the threatening behavior of targets than human operators can. However, such
algorithms will perform poorly according to the described performance met-
ric, since the calculated target values will deviate from the operators’ opinion.

5.3. EVALUATING WEAPON ALLOCATION ALGORITHMS 99

For the above reasons, it is far from perfect to judge the accuracy of a threat
evaluation algorithm only by using this kind of evaluation.

The time demanded by air defense decision makers to perform threat eval-
uation is according to an early study presented in Jorgensen and Strub (1979)
dependent on the number of targets and on the rate at which the targets ap-
proach. In that study, the average time from target detection to manual weapon
allocation was close to four minutes in simulated combat exercises for human
air defense decision makers (Jorgensen and Strub, 1979). It should be noted
that this is an old study, so it is not clear how the obtained results can be trans-
lated to more modern settings. In Khosla (2001), it is mentioned that a cycle
of threat evaluation and weapon allocation is allowed to take a few seconds at
most.

Except for the accuracy and time requirements on threat evaluation algo-
rithms, other criteria of importance can be identified as well. Depending on
in which kind of environment a threat evaluation algorithms should operate,
there might be restrictions on the amount of memory capacity available. Hence,
an algorithm’s memory complexity is of importance. There is often a trade-off
between time and memory complexity, in which the execution time can be de-
creased by increasing the memory consumption, and vice versa. Even though
an algorithm is fast and demands only small amounts of memory for scenarios
involving a few targets and defended assets, it may be the case that it requires
much longer execution time and higher memory consumption as the number of
targets and defended assets increases. Hence, the algorithm’s scalability is of im-
portance. Another criterion of interest is the algorithm’s sensitivity to changes
in the input parameters. If the calculated target values are drastically affected
by small changes in the input parameters, there is a risk of very unstable target
values. This is not wanted, since such oscillating behavior can have negative
impact on the decision making process (Allouche, 2005).

There are also more soft properties of the used threat evaluation algorithms
that can play an important role. The adaptivity of an algorithm has to do with
how hard or easy it is to add new parameters, rules, etc. to the threat evalu-
ation algorithm, while the algorithm’s transparency is a (subjective) measure
of how transparent it is to a human operator. As highlighted in e.g. Morrison
et al. (1998); Liebhaber and Feher (2002a), it is important with explanation-
based capabilities in air defense systems so that the decision maker can obtain
an understanding of why a target is considered as threatening or not. Accord-
ing to Davis et al. (1977), ability to generate explanations is crucial for user
acceptance of decision support systems.

5.3 Evaluating Weapon Allocation Algorithms

When it comes to performance evaluation of weapon allocation algorithms,
such evaluation is very related to how algorithms for other kinds of optimiza-
tion problems traditionally are evaluated.

100 CHAPTER 5. PERFORMANCE EVALUATION

For exact algorithms, i.e. optimization algorithms that always produce op-
timal solutions, the obvious criterion to use for performance evaluation is time-
efficiency (Rardin and Uzsoy, 2001). Another criterion that can be of interest
is the amount of memory needed to create the solution. In order to study the
performance of heuristic algorithms developed for complex optimization prob-
lems, empirical analysis often needs to be used. Such an analysis involves ex-
periments in which the heuristic methods are applied to a collection of problem
instances. The performance measures for experiments on heuristic algorithms
generally involve comparing the observed solution quality and computational
time to exact solution methods (Rardin and Uzsoy, 2001). However, a general
problem with heuristic algorithms is that the quality of their generated solu-
tions is hard to evaluate, due to the absence of optimal algorithms for large
problem sizes (Ahuja et al., 2007). For this reason, we often have to evaluate
the quality of solutions to large-scale problems without access to the optimal
solution (Rardin and Uzsoy, 2001). Figure 5.2 is an example of how two heuris-
tic weapon allocation algorithms can be compared to each other, given that it
is possible to calculate the optimal solution (obviously, this can easily be ex-
tended to allow for comparison of a larger number of algorithms). If this is not
the case, the evaluation can instead be based upon which of the algorithms that
has the lowest objective function value. A heuristic is said to dominate another
if both the solution quality and the computational time are better, all other
things being equal (Metler and Preston, 1990).

Weapon allocation algorithm 1

Weapon allocation algorithm 2

<Allocation1 , F1>

Problem
instances

Evaluation criteria

ΔF1=|Fopt - F1|
ΔF2=|Fopt - F2|<Allocation2 , F2>

Optimal weapon allocation
algorithm

<Allocationopt , Fopt>

Figure 5.2: Illustration of the comparison of two weapon allocation algorithms.

The comparison of heuristic weapon allocation algorithms may seem trivial,
but there are a number of aggravating circumstances. Firstly, there is a lack of
unclassified real-world data sets on which to evaluate the algorithms (Julstrom,
2009). For this reason, it seems to be standard procedure to evaluate the algo-
rithms on randomly generated synthetic data sets (see e.g. Lee et al. (2002b);

5.3. EVALUATING WEAPON ALLOCATION ALGORITHMS 101

Lee and Lee (2005); Ahuja et al. (2007)). Secondly, most heuristic algorithms
have a large degree of inbuilt randomness. It is therefore important to base
the evaluation of such algorithms on a statistically sufficient number of runs,
rather than a single one. Successive trials can produce quite different outcomes
because of the impact of random choices along the way. Hence, several runs
are generally preferable, in which different random number seeds controlling
the evolution of computation are used, in order to get robust results (Rardin
and Uzsoy, 2001). Thirdly, algorithms for static weapon-allocation only have a
very limited time available for searching for good or optimal solutions, due to
the real-time requirements. This is often overlooked when assessing the perfor-
mance of weapon allocation algorithms, as discussed in section 3.3.2. Hence,
the algorithms should be evaluated and tested on situations that are as realis-
tic as possible, i.e. since the deadlines are very tight for the algorithms when
applied in a real-world situation, they should not be allowed to run for longer
time when being evaluated. The reason for this is that an algorithm that gener-
ates very good solutions after a long search time can return quite bad solutions
when the available search time is shorter. For making comparisons fair, this also
means that the algorithms should be allowed to run for equally long time. This
may seem obvious, but there are many examples of where it only is ensured
that algorithms are allowed to run for equally many iterations, despite that
different algorithms may require different amounts of time for completing one
iteration. Fourthly, there is a problem when trying to compare the performance
of a weapon allocation algorithm to algorithms suggested by others. An impor-
tant reason for this is that problem instances typically are randomly generated
from (uniform) probability distributions. If an algorithm is tested on one or
more problem instances generated at random from a uniform [0,1]-distribution
in one experiment, and another algorithm is tested on equally many problem
instances generated at random from a similar distribution, it is not obvious how
to compare the performance of the algorithms. An alternative approach is to
implement all algorithms on which the comparison should be based, but it is
often the case that all the details of a weapon allocation algorithm are not pub-
lished, making it hard to implement weapon allocation algorithms developed
by other researchers (not to mention the amount of extra work needed). Lastly,
as discussed earlier, it is in general hard to evaluate how accurate heuristic al-
gorithms are, since the optimal solution can not be calculated for large-scale
problems.

In order to address some of the problems related to performance evaluation
of weapon allocation algorithms, success factors within the research area of
machine learning can be studied. The so called UCI (an abbreviation for Uni-
versity of California, Irvine) machine learning repository (Asuncion and New-
man, 2007) is and has been heavily used for empirical analysis, comparison,
and benchmarking of different machine learning algorithms. As an indication
of the impact of the repository, it is according to its web page (Asuncion and
Newman, 2007) one of the most cited papers and resources within computer

102 CHAPTER 5. PERFORMANCE EVALUATION

science. Similar data sets exist for specific operations research problems such
as the well-known traveling salesman problem (TSP), but no such benchmark
data sets have earlier existed for weapon allocation research. Hence, it is here
argued that a set of “standardized” data sets or problem instances for weapon
allocation would benefit the comparison and benchmarking of static weapon al-
location algorithms. Standardized challenge problems and associated data sets
are according to Llinas (2009) a goal that the information fusion community
should aim at.

Another successful concept within the machine learning community is the
open source software workbench WEKA (Waikato Environment for Knowl-
edge Analysis) (Hall et al., 2009). According to Hall et al. (2009), WEKA has
been downloaded more than 1.4 million times since April 2000. WEKA clearly
facilitates the performance evaluation and benchmarking of machine learning
algorithms, since it includes open source implementations of a large set of dif-
ferent state of the art algorithms for machine learning. A workbench built on
the same principles as WEKA would be beneficial for research on weapon al-
location, as the possibility to benchmark weapon allocation algorithms against
each other probably would lead to more open and active research, which in the
long run can give new state of the art algorithms and may contribute to a better
theoretical framework. As argued in Llinas (2009):

“In an era of tight defense research budgets, algorithm-level sharable
testbeds, is suspected and hoped, will become the norm for the DF
community.”

A testbed that incorporates the ideas of standard data sets and open source
implementations for weapon allocation is presented in section 6.2.

5.4 Evaluating TEWA Systems

We have in section 5.2 and 5.3 discussed the problems of evaluating threat
evaluation and weapon allocation algorithms, respectively. As could be seen,
it is not obvious how to make such evaluations. Moreover, it has within the
area of systems theory been an increasing understanding that the approach of
analyzing complete systems by analyzing its subsystems in detail and in iso-
lation does not hold in environments where systems become more and more
interdependent and complex (van Laere, 2009). Since TEWA systems are com-
plex, and since there are interdependencies between the threat evaluation and
weapon allocation processes, it is not enough to in a reductionistic manner
evaluate the different parts of a TEWA system independently of each other. In
this section, metrics for evaluating the performance of complete TEWA systems
is proposed. For being able to use these metrics properly, the use of computer-
based simulations is called for. The original idea which this section is based on
was briefly presented in Johansson and Falkman (2008c). That initial work has
been extended upon in Johansson and Falkman (2009a,c). Except being used

5.4. EVALUATING TEWA SYSTEMS 103

for evaluation of TEWA systems, the suggested methodology can be used for
evaluating individual parts of such systems (e.g. threat evaluation algorithms)
as well.

5.4.1 A Performance Evaluation Metric for TEWA Systems

As the mission of air defense units most often is to ensure the survivability of
defended assets, it makes sense to use this as an important criterion on which
to evaluate the performance of a TEWA system. For this reason, we suggest the
use of a quantitative survivability metric for evaluation of TEWA systems. The
survivability of defended assets can be defined as:

S =

∑|A|
j=1 ωjuj∑|A|

j=1 ωj

, (5.1)

where |A| as before is the number of defended assets, ωj is the protection value
of the defended asset Aj , and
u ∈ {0,1}|A| is a binary vector defined as

uj =
{

1 if defended asset Aj survives;
0 otherwise.

(5.2)

Hence, the ratio between the protection value of surviving defended assets to
the total protection value of all defended assets (surviving as well as destroyed)
is calculated, where the protection values can be seen as weights that specify the
relative importance of the defended assets. Obviously, a TEWA system has not
been successful if all the defended assets which the air defense should protect
are destroyed in an air defense scenario, while the system can be considered
more successful if all the defended assets survive the attacks aimed at them.

Luckily enough, battles involving air attacks are not very frequent in most
parts of the world. This is one reason for why air defense cannot be evaluated
in real-world conflicts only. Another reason is of course that it is too late to
only evaluate a system when it already is operational. For those reasons, it be-
comes natural to use computer-based simulations in which the survivability of
different systems or system configurations can be tested. The use of simulations
for performance evaluation of TEWA systems has earlier been described as a
cost-effective approach by Chapman and Benke (2000).

By letting a complete TEWA system be situated within a simulated envi-
ronment, the survivability of defended assets in an air defense scenario can be
used as a relative metric for measuring the performance of the TEWA system,
to which the performance of other TEWA system implementations can be com-
pared. One possible advantage of this way of performance evaluation is that the
need for elicitation of target values from human air defense experts is removed
(although not completely, as discussed further in section 5.5), and that a more
“holistic” evaluation is made possible (compared to the reductionistic approach

104 CHAPTER 5. PERFORMANCE EVALUATION

in which only the individual parts of the system are evaluated). Moreover, the
use of computer-based simulations allow for more systematic comparisons on
a larger set of scenarios, opening up for more robust performance evaluation.

A potential problem with using the survivability metric is that it does not
explicitly take misguided allocations against targets with non-hostile intent
into consideration. It is often assumed that identification friend or foe (IFF)
transponders can be used to avoid blue force targets from becoming candidates
for weapon allocation, but this does not always hold true. Cooperative IFF sys-
tems can at best be used to positively identify friends, but they do not positively
identify enemies. If no reply to an IFF interrogation is received, it is likely that
it is an enemy, but it is also possible that the target is a neutral or a friend with-
out an operation IFF transponder (illustrated in some of the fratricide accidents
during the second Gulf war (British Ministry of Defence, 2004)). This must be
taken into consideration somehow when making the performance evaluation,
in order to avoid fratricide and engagement of civilian targets. If the scenario
is complex enough, e.g. the ratio of the number of threatening targets to the
number of defensive firing units is high, the allocation of weapons to harm-
less targets will be reflected in the resulting survivability value, since valuable
weapons will be “wasted” on non-hostile targets. However, if there are only
a few targets and a lot of available firing units, the engagement of harmless
targets will not decrease the survivability. This is a serious problem, since we
cannot possibly judge an air defense system that engages friendly or civilian
targets in non-threatening scenarios to be equally good as a system that does
not engage any targets in the same scenario.

As a solution to this problem, we introduce a cost for each engagement, i.e.
use of firing units. This does not only punish the engagement of non-hostile
targets, but all kind of unnecessary engagements. The saving of surface-to-air
missiles and other kinds of defensive resources is important, both for protection
against possible future attacks and because of the high price of a single missile
(Karasakal, 2008). Hence, we are in addition to the survivability metric also
introducing a resource usage cost Ck for each firing unit Wk. This cost can
either be assumed to be the same for all firing units, or vary between firing units
(since certain types of firing units are more “expensive” to use than others). In
the same way as we would like to maximize the survivability of the defended
assets, we want to minimize the resource usage cost. The effectiveness E of a
TEWA system on a specific air defense scenario can therefore be expressed as
the difference among these quantities:

E = αS − βC, (5.3)

where C is the sum of all individual resource usage costs during the scenario,
and α and β are adjustable weights (where α+β = 1) that can be used to decide
on the relative importance of survivability and resource usage. This effective-
ness metric is therefore proposed as a performance measure for comparison of

5.4. EVALUATING TEWA SYSTEMS 105

different TEWA systems. The use of this effectiveness metric for evaluation of
TEWA systems is illustrated in figure 5.3, and the choice of metric is discussed
further in section 5.5.

Threat evaluation module

Weapon allocation module

Tracked target information

Simulation
engine

Evaluation criteria

E=αS - βCtot

Tracking module
Ground truth data

List of calculated target valuesList of engagements

Figure 5.3: Illustration of the use of simulations and the suggested effectiveness metric
to evaluate TEWA systems.

It is very important to have robust evaluations of the performance of TEWA
systems, since the systems need to be able to operate under very varying oper-
ational conditions (e.g. scenarios with varying number of targets, firing units,
political climates, etc.). Hence, in general, it is not enough to evaluate the effec-
tiveness of a TEWA system on a very small restricted set of air defense scenarios.
In order to be able to generalize the achieved results, the evaluation needs to be
based on a large number of different air defense scenarios. Moreover, it also is
necessary to run the same scenario more than once, since there are many non-
deterministic outcomes of processes within a TEWA system, such as whether a
target is detected or not, and whether a weapon-to-target engagement is suc-
cessful or not. For this reason, the same scenario needs to be run multiple times
in order to get statistically significant results. Hence, rather than just calculating
a TEWA system’s effectiveness on a scenario as shown in equation 5.3, we in-
stead calculate it as an average of N scenario runs in accordance with equation
5.4:

E =
∑N

t=1 αSt − βCt

N
. (5.4)

It should be noted that obtained effectiveness values are not very interesting
in their own right, since what can considered to be a good effectiveness value

106 CHAPTER 5. PERFORMANCE EVALUATION

depends on the difficulty of the tested scenarios. Effectiveness should not be
used as an absolute performance metric, but rather as a comparative metric
suitable for comparing the performance of two or more TEWA systems. Ex-
cept for comparing completely different TEWA systems, we can also use the
effectiveness metric to compare different system configurations by keeping the
remaining parts of the system fix. As an example, two threat evaluation algo-
rithms can be compared by comparing the effectiveness of two systems where
all parts are identical except for the used threat evaluation algorithms. Since
everything else is identical, differences in effectiveness values are likely to be
caused by the part which has been changed.

5.5 Discussion

As discussed in this chapter, it is not doable to compare the output from threat
evaluation algorithms on more than a few data points, since the bottleneck of
elicitation of target values from human experts soon becomes insurmountable.
The use of the methodology of measuring the effectiveness in computer-based
simulations of air defense scenarios is a first step for automating some parts
of the evaluation, but it is important to realize that human experts still are
needed for the evaluation, since such knowledge is needed for creating relevant
air defense scenarios on which TEWA systems should be evaluated. Moreover,
they are needed if the effectiveness of threat evaluation algorithms or TEWA
systems are to be judged in an absolute manner (rather than only compared to
other algorithms or TEWA systems). That human involvement always will and
should be part of the evaluation process is clear, but as the situation looks today,
there is still a bottleneck left in that many different air defense scenarios have
to be created if the algorithms and systems are to be evaluated in a systematic
manner. Even though there is good support for creating scenarios in commercial
scenario generators such as STAGE Scenario (see chapter 6) and VR-Forces, it
still takes quite some time to create realistic scenarios, making it hard to create
as many scenarios as would be needed to produce robust and generalizable
performance evaluations. We think that it would be possible to create templates
of air defense scenarios on an even higher level of abstraction, which could be
use to automatically (or at least semi-automatically) instantiate a large set of
specific air defense scenarios of different sizes.

Looking at the proposed effectiveness metric defined in equation 5.3, we
can see that S is bounded to be in the interval [0,1], while C can grow with the
size of the scenario (long scenarios involving a large number of firing units and
targets can result in a larger value of C, since more engagements are likely to
take place). To normalize the value of C does not seem meaningful, and hence,
we must be aware of that the “optimal” value of E can be lower for long
complex air defense scenarios than for short small-scale scenarios if the values
of α and β are not adjusted accordingly. Another note to make is that we have

5.6. SUMMARY 107

here chosen to use a simple linear model for calculating the effectiveness. Many
other aggregations can be thought of, such as:

E =
Sα

Cβ
.

We are not arguing that the proposed effectiveness metric necessarily is the best
possible way to aggregate the values of S and C, but rather that there is no
point in replacing this simple model with a more complex one at this stage.
The future may reveal that it is more fruitful to use more complex aggrega-
tion operators, but concrete experiments with the proposed simulation-based
methodology have to be undertaken before such possible improvements can be
tested.

To evaluate how well a TEWA system is performing based on the survivabil-
ity of defended assets is clearly related to the objective function used to decide
on how firing units should be allocated to hostile air targets in static asset-based
weapon allocation. The main difference is that we here measure the total pro-
tection value of the surviving defended assets after a whole air defense scenario
(instead of a single allocation phase), and that the actual scenarios are simu-
lated. Moreover, the target values are not fixed but are continuously updated
as the scenario evolves. Just as the maximization of the expected total protec-
tion value of surviving defended assets (static asset-based weapon allocation)
has a counterpart in the minimization of the expected total target value of sur-
viving targets (static target-based weapon allocation), it is for example possible
to assign a value to each target type and introduce a metric that takes the total
value of hostile targets shot down during a scenario into consideration (as well
as the resource usage cost). The reason for why the survivability measure has
been chosen is that it in the author’s view is more close to the most common
task of the air defense, i.e. to protect defended assets. Nevertheless, there are
undoubtedly situations in which the destruction of high-valued targets can be
of higher importance than the protection of defended assets with low protec-
tion values, so the value of destroyed target can certainly be a factor to weigh
into the effectiveness of the TEWA system as well.

The approach presented by Chapman and Benke (2000) relies on the use of
simulations to evaluate the survival probability of a single ship against one or
more attacking cruise missiles. The main difference of our approaches therefore
seems to be that we are interested in the protection of a set of defended assets
and not only the survival of a single ship. Moreover, due to classified nature of
their work, not many details are revealed on how the simulations are done.

5.6 Summary

In this chapter, evaluation of the performance of threat evaluation and weapon
allocation algorithms has been discussed. As could be seen, neither of them are

108 CHAPTER 5. PERFORMANCE EVALUATION

straightforward to evaluate. Research on the topic of evaluation of threat evalu-
ation algorithms is very sparse, as a natural consequence of the lack of research
on threat evaluation in the first place. A problem related to performance eval-
uation of threat evaluation algorithms is that existing methodologies demand
comparison to expert knowledge, which becomes a bottleneck that limits the
robustness of obtained results since such knowledge elicitation is a hard task
demanding a lot of time. A number of problems are associated with evaluation
of weapon allocation algorithms as well, such as repeatability of experiments
and the lack of unclassified problem instances on which to test developed al-
gorithms. Another problem is that threat evaluation and weapon allocation
algorithms only are evaluated independently of each other in a reductionistic
manner, despite that air defense systems are very complex by nature. This has
caused us to suggest a holistic methodology for comparing TEWA systems (or
different configurations of TEWA systems) that make use of computer-based
simulations. The proposed effectiveness metric is a combination of the surviv-
ability of defended assets, and the cost of the weapon resources used to defend
the defended assets. This make it possible to evaluate algorithms without hav-
ing to elicit target values from experts, to which calculated target values can be
compared.

The idea of using simulations and the proposed effectiveness metric to eval-
uate TEWA systems has been implemented in the testbed STEWARD, which is
described in section 6.1. Similarly, the ideas to overcome some of the identi-
fied problems with evaluating weapon allocation algorithms has resulted in the
open source testbed SWARD, which is presented in section 6.2.

Chapter 6
Testbeds for Performance
Evaluation of TEWA Systems

We will in this chapter describe two testbeds that have been developed for
the purpose of performance evaluation. The testbed STEWARD presented in
section 6.1 is a tool for demonstrating how different TEWA systems can be
compared using the methodology based on effectiveness described in the last
chapter. In order to overcome many of the current problems associated with
the evaluation of weapon allocation algorithms, we are in section 6.2 present-
ing the open source testbed SWARD. Parts of STEWARD have earlier been de-
scribed in Johansson and Falkman (2009a), while SWARD has been described
in Johansson and Falkman (2010b).

6.1 STEWARD

In order to demonstrate the idea with using computer-based simulations in
which survivability of defended assets and resource usage are measured for
comparing the performance of TEWA systems, the testbed STEWARD (System
for Threat Evaluation and Weapon Allocation Research and Development) has
been developed. STEWARD consists of two main modules. The first of the two
modules is the commercial simulation engine STAGE Scenario1, in which it is
possible to create and run dynamic and interactive military scenarios, involving
individual platforms such as military aircrafts that can be equipped with mis-
siles. In order to build scenarios, there is a scenario editor within STAGE which
can be used to position the platforms, assign waypoints, etc. Moreover, scripts
and missions can be assigned to the individual platforms. Examples of useful
scripts that can be written are to make a platform change course upon reaching
a pre-defined waypoint, or to lock on a specific target when getting in range
of it. Missions are quite similar to the scripts, but are constructed on a higher

1http://www.presagis.com/products_services/products/ms/simulation/stage/

109

110 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

level, allowing for making platforms respond to events according to pre-defined
rules or doctrines. A very simplified example of a mission in STAGE Scenario is
shown in table 6.1. Basically, what this simple mission does is that it activates
the entity’s radar when it is created and launches surface-to-air missiles against
hostile targets that comes into the weapon range of the entity, as long as there
are any defensive weapons left.

Table 6.1: Simplified example of a mission in STAGE.

INIT Activate Radar

IF Weapon Count = 0 Stop Cycle On
IF TrackHostile = true AND TrackRange ≤ 10000m Launch SAM

END

The sensor observations from STAGE Scenario regarding entities in the
scenarios are communicated in real-time to the second module, which is our
TEWA module, into which the algorithms for threat evaluation and weapon
allocation algorithms described in chapter 4 have been integrated. Once firing
units have been allocated to targets that are ranked as threatening, the proposed
allocations are communicated back to STAGE Scenario, in which they are re-
alized into engagements within the simulations. Hence, fired weapons become
part of the simulation. For sending messages between the simulation engine
and the TEWA module we make use of socket communication (the main rea-
son for this design choice being that support for the reception and transmission
of messages through sockets is built into STAGE, but also allows for changing
the simulation engine in the future if needed). An alternative, more effective, de-
sign choice for communication could have been to use STAGE’s shared memory,
but this would have made STEWARD more dependent on STAGE. The socket
is used for sending XML-observations regarding targets, defended assets, and
firing units from STAGE to the TEWA module, as well as sending information
back from the TEWA module to STAGE. This is illustrated in figure 6.1.

In order to allow for the integration of STAGE Scenario and the TEWA
module, the functionality of STAGE Scenario has been modified and extended
using user plugins which have been written in (unmanaged) C++. The created
code has been linked into dynamic libraries (.dll-files), which are hooked into
the the simulation engine used in STAGE Scenario at runtime. Except for send-
ing the the sensed target information to the implemented TEWA module, the
extended functionality also allow for execution of the firing orders received
from the TEWA module. Moreover, it keeps track of the survivability of de-
fended assets, and the weapon resource usage costs.

The two threat evaluation algorithms described in section 4.1 have been
implemented into the TEWA module. The user can in a graphical user interface
choose which threat evaluation algorithm that should be used (see figure 6.2).

6.1. STEWARD 111

STAGE Scenario

<target><name>B2_1</name><x>57.95</x><y>13.80</y>…
<target><name>747_2</name><x>57.84</x><y>14.82</y>…

…

TEWA module

<attacker>2</attacker><target>4</target>
<attacker>5</attacker><target>3</target>

Figure 6.1: Illustration of the connection between the scenario engine and the TEWA
module, together with examples of XML-messages sent between them.

The chosen threat evaluation algorithm is used to constantly calculate the threat
value Vij for each pair of targets and defended assets (using estimates of target
speed, target type, and calculated distances between the target and the defended
asset based on the communicated sensor observations). The estimated threat
values are in their turn used to calculate the target value Vi for a target Ti. The
calculated target values are presented in the graphical user interface, together
with symbols showing the observed positions of defended assets and detected
targets. Figure 6.2 illustrates an air defense situation consisting of four detected
targets, in which T1 and T2 have been classified as neutral air targets, while
T3 and T4 have been classified as hostile air targets. The lines shown are the
targets’ velocity vectors, showing their estimated speed and heading. Moreover,
the values shown underneath the targets are their estimated target values. The
graphical user interface has been designed coarsely, since the focus has been on
the algorithmic aspects, so if a real air defense operator should use STEWARD,
the interface has to be improved. The calculated target values are compared to
an adjustable user-defined threshold τ . In the case of Vi ≥ τ , the target Ti is
added to the set of targets Twa, which is the set of targets that become subject
to weapon allocation. Hence, depending on the choice of the threshold setting,
it is decided how high the target value Vi has to be in order for the target Ti to
be considered as threatening enough for being a potential candidate for weapon
allocation.

When the threat evaluation process has been performed and there are tar-
gets within Twa, a weapon allocation process is started in which firing units
are allocated to the targets in Twa. The weapon allocation process is performed
using the selected weapon allocation algorithm, which is chosen in the same
manner as the threat evaluation algorithm (i.e. in the graphical user interface).
The weapon allocation algorithms that can be chosen among are the static
target-based weapon allocation algorithms described in section 4.2 (the asset-
based versions have not been implemented here, since the testbed was not de-
veloped with this in mind, although it could be useful for evaluation also of

112 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

Figure 6.2: Illustration of STEWARD’s graphical user interface.

such kind of air defense systems). Hence, the chosen weapon allocation algo-
rithm aims at minimizing the expected target value of the targets in Twa by
allocating the set Wwa of available firing units to them. The use of firing units
has been constrained so that a firing unit cannot make a new allocation until
its last engagement is finished (i.e. until the engaging surface-to-air missile de-
stroys or miss its intended target). This make perfect sense for missiles guided
by the firing unit’s radar, while it is less realistic for fire-and-forget missiles, i.e.
missiles that do not require further guidance after launch. This constraint has
been implemented into the testbed by the creation of a set Weng of current en-
gagements. If a firing unit is allocated to a target, the firing unit is added to this
set, and information regarding the unique object ID of the weapon implement-
ing the allocation is stored. The firing unit is not removed from this set until
the testbed gets information from the simulation environment that the weapon
with a matching object ID has been destroyed. Hence, all members of Weng

are excluded from the set Wwa of potential firing unit candidates for weapon
allocation, i.e. Wwa = W−Weng.

Since the weapon allocation algorithms use information regarding kill prob-
abilities when deciding on to which target a firing unit should be allocated, es-

6.2. SWARD 113

timation of such kill probabilities are needed. In the current simulations, only
the distance between a target Ti and a firing unit Wk is used to calculate the as-
sociated kill probability Pik ∈ [0,1]. This is obviously a simplification since kill
probabilities in real world depend on a lot of different factors such as distance,
target type, weather conditions, target size, maneuverability of the target, etc.,
but for demonstrating the concept the simplified kill probability estimations
used here should be adequate. Hence, it is here assumed that P̂ik is linearly de-
creasing with an increasing distance between Ti and Wk, except for very small
and large distances, where P̂ik is assumed to be zero.

When the used weapon allocation algorithm has returned a feasible solu-
tion, this is communicated back to the simulation engine, in which weapons
are fired against targets in accordance to the suggested allocation. The sensor
observations are regularly sent to the TEWA module, so that target values are
calculated, used as input to weapon allocation, and so on, until the scenario is
over. Once the scenario is completed, the testbed calculates the survivability of
the defended assets and the total cost for the used firing units. Since the out-
comes of engagements are not deterministic, different runs of a scenario with
a specific selection of threat evaluation and weapon allocation algorithms can
result in different outcomes when it comes to survivability and usage of fir-
ing units. Hence, we have implemented the possibility to design experiments in
which a scenario automatically is repeated a large number of times, in order
to get more statistically significant results. For each simulation run, the surviv-
ability and the number of firing units used are logged.

6.2 SWARD

As identified in section 5.3, there is today a large problem when trying to com-
pare and benchmark new weapon allocation algorithms to already existing
ones. In order to overcome this problem, the open source software SWARD2

(System for Weapon Allocation Research and Development) has been devel-
oped. The name is intended to contrast it to the testbed STEWARD, and to
show that it focuses solely on the weapon allocation part of TEWA.

SWARD has been implemented in Java, in order to ensure platform inde-
pendence and to make it available for as many researchers as possible. The
choice of implementing SWARD in Java means that the computer hardware is
not necessarily made use of optimally due to the fact that Java is interpreted by
a Java Virtual Machine. Much of the original slowness of Java was removed
when features like Just-In-Time (JIT) compilation and adaptive optimization
were introduced, but it is still likely that the SWARD code written in Java
could have been made more efficient in e.g. C++. However, since SWARD is
a testbed rather than a weapon allocation module intended for being plugged

2The current version of the open source testbed SWARD can be downloaded freely from
http://sourceforge.net/projects/sward/

114 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

into a real-world TEWA system, it is the author’s hope and belief that the possi-
bly unoptimized execution times are outweighed by the platform independence
made possible by the choice of implementing the code in Java.

The choice to release SWARD as an open source project needs to be com-
mented upon, since there typically is a strong tradition to keep defense-related
research non-public. A shift towards open source software can however be seen
in many places, and according to a memorandum from U.S. Department of
Defense (DoD Chief Information Officer Memorandum, 2009), open source
software is particularly suitable for experimentation and rapid prototyping. In
this way, SWARD should be able to facilitate the development and testing of
algorithms for weapon allocation. By releasing implementations of weapon al-
location algorithms as open source code, the hope is that a larger community
will be able to find disadvantages and advantages with existing algorithms and
in the long run develop novel state of the art algorithms. This is also an answer
to the wish for sharable testbeds within the information fusion community put
forward in Llinas (2009).

A problem identified in section 5.3 was that unclassified real-world air de-
fense scenarios on which weapon allocation algorithms can be tested is lack-
ing. For this reason, researchers are most often testing developed algorithms for
weapon allocation on randomly created problem instances. A key issue here is
that details regarding which kind of probability distributions that are used for
generating the problem instances, in which intervals the random numbers are
drawn, etc. often are not published. Even in cases where most such details are
given, it is not possible to recreate exactly the same problem instances as used in
the experiments due to the random fashion in which problem instances are gen-
erated. This should not necessarily be a large problem if algorithms were tested
on very large numbers of problem instances for each problem size, but since
such testing takes time, algorithms are rarely tested on more than ten problem
instances for each tested problem size. To make comparisons based on a small
number of problem instances, where the problem instances vary between the
different algorithms, can give very misleading results. For this reason, it has
been made sure that SWARD guarantees that problem instances easily can be
recreated on different occasions, demanding only a few parameter settings to
be specified (these settings are described in section 6.2.1).

Yet another problem identified in section 5.3 was that weapon allocation
algorithms rarely are described well enough to allow for implementation by
other researchers. This might in some cases be due to a conscious choice not to
give away details enough for others to implement the suggested algorithm, but
in most cases, this probably is not the case. In SWARD, it is easy to implement
and add new algorithms for weapon allocation to the existing ones. In the same
manner as WEKA with its open source implementations facilitates the bench-
marking and development of machine learning algorithms within the machine
learning community, SWARD is intended to facilitate the benchmarking and
development of new algorithms for static weapon allocation.

6.2. SWARD 115

The SWARD testbed consists of four main packages: a GUI package, an
algorithm package, a scenario package, and an experiment package.
Additionally, there is functionality for calculating statistics, etc. in the util
package.

In figure 6.3, it is illustrated how the most important classes of SWARD
relate to each other. As can be seen, a very central class to SWARD is the class
Experiment, which has relations to all the other important classes. Instanti-
ations of this class control the generation of scenarios on which to test static
weapon allocation algorithms, and solutions produced by the individual wea-
pon allocation algorithms on the different scenarios tested are stored by the
help of the ExperimentResult class. In order to set up experiments, the
SwardGUI can be used. The individual packages and the classes being part of
these are more thoroughly described in section 6.2.1–6.2.4.

Experiment

«interface»
IController

ExperimentResult

«interface»
IInstance

«interface»
IResult

SwardGUI

WAAlgorithm

Solution Scenario

Figure 6.3: UML class diagram describing the relations between the main classes within
SWARD.

6.2.1 The Scenario Package

A central part of SWARD is the generation of scenarios on which to test various
algorithms for static weapon allocation. Note that these are not dynamically
evolving air defense scenarios as in STEWARD, but rather static information
representing the situation in a single point in time of a scenario. These snap-
shots of scenarios will in the following also be referred to as problem instances.
In SWARD, both static target-based and static asset-based scenarios can be
generated. A static target-based scenario consists of a matrix of kill probabili-
ties and a vector of target values. Given as input a parameter |T|, a parameter

116 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

|W|, and a seed s, a static target-based problem instance is generated, where
kill probabilities as default are randomly generated in the interval [0.6,0.9] and
target values as default are randomly generated in the interval [25,100]. Hence,
the default target values are not in the range [0,1] that we worked with in chap-
ter 3, but can be seen as scaled target values between 0.25 and 1, where the
threshold has been set so that targets with lower target values are not subject
to weapon allocation. Obviously, these intervals can be changed, but these are
used as default settings, in order for the created problem instances to be in ac-
cordance with the experiments presented in Ahuja et al. (2007). By making use
of the seed s, it is guaranteed that problem instances easily can be recreated.
This is ensured since the seed is used to control Java’s pseudo-random number
generator, so that experiments created with the same seed and parameter set-
tings will generate identical sequences of problem instances independently of
on when and on which machine SWARD is used.

In a similar way as the target-based scenarios, static asset-based scenarios
are generated from the input parameters |T|, |W|, |A|, and a seed s. The gen-
erated asset-based scenarios consist of kill probabilities in the same interval
as the target-based scenarios, but the target values are replaced with a vector
of lethality probabilities, a vector of protection values, and a vector of target
aims, as explained in section 3.1.2. The default settings are that lethality proba-
bilities are generated randomly in the interval [0.3, 0.8] and protection values in
[25, 100], where the latter have been chosen to be on the same scale as the target
values used for target-based problem instances. The target aims are generated
in the following way:

• If |T| ≥ |A|, the aim of target Ti is set to the ith defended asset, and the
aims of the remaining targets (if such targets exist) are randomly selected
from the defended assets.

• If |T| < |A|, the aim of target Ti is set to the ith defended asset, and the
rest of the defended assets are not attacked by any targets.

This distribution of target aims ensures that each defended asset is threatened
by at least one target when |T| ≥ |A|. An alternative way to generate the target
aims can be to do this entirely random, in order to allow for situations where
a majority of all targets are aimed for the same defended asset.

6.2.2 The Algorithm Package

Within the algorithm package, there is an abstract class WAAlgorithm with
a method for calculating the objective function value for a given allocation of
firing units to targets. The objective function value is calculated in accordance
with equation 3.4 for target-based scenarios, and in accordance with equation
3.7 for asset-based scenarios. The class is declared as abstract since no ob-
ject instances are allowed to be created of the WAAlgorithm class. Instead,

6.2. SWARD 117

the class should be inherited by classes that are implementations of weapon
allocation algorithms. There are currently nine different weapon allocation al-
gorithms implemented within the package. These are: two versions of genetic
algorithms (with and without seed), an ant colony optimization algorithm, a
random search algorithm, an exhaustive search algorithm, three variants of
greedy search algorithms, and a particle swarm optimization algorithm. Most
of the algorithms are suitable for both target-based and asset-based weapon
allocation, as described in chapter 4. Other researchers are encouraged to im-
plement their own algorithms for weapon allocation into the testbed.

WAAlgorithm

ExhaustiveSearch GeneticAlgorithm GreedySearchMMR...

Figure 6.4: UML class diagram illustrating that specific weapon allocation algorithms
such as a genetic algorithm are implemented as classes that inherits attributes and meth-
ods from the abstract class WAAlgorithm.

In order to demonstrate how it is possible to extend SWARD with new
algorithms for static weapon allocation, it is now shown how WAAlgorithm
has been implemented, and how new algorithms are supposed to inherit from
and override necessary methods within WAAlgorithm.

public abstract class WAAlgorithm {
...
// The solution to be returned by the algorithm
Solution bestSolution;

/* The empty base constructor for the algorithm */
public WAAlgorithm() {}

/* The method to override*/
public abstract Solution calculateSolution(long
timeInMilliSeconds);

/* Calculates objective function value for a solution */
public double calculateFValue(
Vector<Integer> allocation) {...}

}

What is shown of WAAlgorithm are the fundamental parts of the class that
have to be understood in order to implement a weapon allocation algorithm

118 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

into SWARD. As shown in the comments, it is essentially just to override the
calculateSolution()-method in order to be able to implement a new al-
gorithm. How to override this method is shown in the parts of the code that
follows:

package sward.algorithm;
...
public class NewAlgorithm extends WAAlgorithm {
...

public Solution calculateSolution(long timeInMS) {
long start = System.currentTimeMillis();
long stop = start + timeInMS;
...

while (System.currentTimeMillis() < stop) {
// Generate bestSolution here...

}
return bestSolution;

}
}

It can be seen that we in the override of calculateSolution() simply keep
track of the time allowed for search, and when there is no time left return
the best solution found so far. This is essentially what all implemented algo-
rithms should do, and what differ among algorithms are the techniques used
for searching for good solutions.

6.2.3 The Experiment Package

An experiment is in SWARD set up by specifying parameters for which value
of |T| to start with, to end with, and how much to increment this value in each
step (from now on referred to as Tstart, Tend, and Tstep). The same kind of
parameters should be set for |W|. These parameters are referred to as Wstart,
Wend, and Wstep. Additionally, the number of problem instances that should
be tested for each problem size (|T|,|W|) should be specified using the pa-
rameter nrOfIterations, as well as whether the generated problem instances
should be asset-based or target-based. Finally, the parameter timeLimit, which
is the amount of time that each algorithm is allowed to search for a solution,
is needed. Together, these parameters define an experiment setup. Using the se-
lected experiment settings, algorithms that have been selected to participate in
the experiment are tested on the generated problem instances.

The class ExperimentResult is used to handle the results from an ex-
periment. This class uses internal helper classes implementing the interfaces
IInstance and IResult, respectively, which also are defined within the same
package. Results that can be stored from an experiment are the algorithms’ cal-
culated objective function values, and the algorithms’ obtained ranks for each

6.2. SWARD 119

tested problem instance. Moreover, average objective function values and aver-
age ranks can be calculated, together with their associated standard deviations.
A number of experiments which have been constructed in SWARD are shown
and explained in chapter 7.

6.2.4 The GUI Package

Experiments can be set up using code, but in most cases it is more convenient to
use the graphical user interface that has been developed for SWARD. Figure 6.5
illustrates what the graphical user interface looks like. The values that can be
edited within the text boxes correspond to the experiment parameters described
in section 6.2.3, so that all relevant experiment settings can be adjusted within
the graphical user interface.

Figure 6.5: Screenshot of the SWARD graphical user interface.

In the experiment shown in figure 6.5, the algorithms have been constrained
to search for two seconds on each problem instance. The algorithms are on
each problem size tested on ten problem instances, as specified by the value
of nrOfIterations. The other selected experiment settings show that a total
of four problem sizes are tested: (|T| = 5,|W| = 5), (|T| = 5,|W| = 10),
(|T| = 10,|W| = 5), and (|T| = 10,|W| = 10). In the bottom of figure 6.5,
the average objective function values and the standard deviations obtained by
the random search algorithm are shown for the four tested problem sizes. It can
also be seen that the generated problem instances are target-based, as shown by
the selection in the drop-down list to the right. The experiment settings chosen

120 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

within the graphical user interface can be accessed in the Experiment class by
the use of the interface IController, which also is part of the GUI package.

6.3 Discussion

As has been mentioned, the current use of STEWARD is to demonstrate the
idea of using computer-based simulations for evaluating the effectiveness of
various TEWA systems. Hence, the current version of STEWARD is a proto-
type testbed, and more work needs to be done before it becomes really useful
for benchmarking purposes. At the moment, “ground truth” position data are
used as input to the TEWA module, i.e. no sensor models are used to simulate
the imperfect nature of the target tracks produced in a real-world TEWA sys-
tem. Such sensor models can quite easily be added to the user modules used in
STAGE Scenario. The status of SWARD is more mature, and can already today
be used for systematic performance evaluation of static weapon allocation al-
gorithms, as shown in chapter 7. The latest stable release of SWARD (version
1.2) has already been downloaded from various countries (statistics available
from http://sourceforge.net/downloads/sward/stats_map).

An advantage with SWARD compared to STEWARD is its open source na-
ture, making it possible for anyone to freely use it. STEWARD is, as has been
described in this chapter, relying on the commercial simulation engine STAGE
Scenario. It is nothing in the used communication protocol or the TEWA mod-
ule as such that constrains them to only being used with the current simulator,
hence, it is possible that it in the future can be replaced with an open source
simulation engine. However, there is currently a lot of functionality built into
STAGE Scenario that cannot easily be implemented into any open source sim-
ulation engine that the author is aware of.

An interesting possible future use of the closed-loop simulations provided
by STEWARD is to not only use it for measuring survivability and resource
usage for specific scenarios, but also for automated reinforcement learning in
which threat evaluation algorithms can be optimized so as to give as good re-
sults as possible on a set of air defense scenarios. As an example, this could
be used for finding good conditional probability distributions for the Bayesian
network algorithm, given a fixed structure, by letting the obtained survivability
and resource usage cost values be used as the fitness of a specific parameter set-
ting. The structure could still be identified by human experts, in order to allow
for a well-understood Bayesian network that can be trusted by human decision
makers, but the conditional probability distributions that are harder to elicit
could instead be learned by running the scenarios multiple times and adjust the
values of the conditional probability tables in the direction suggested by the ob-
tained fitness scores. Although an interesting opportunity, it must first be made
sure that the used air defense scenarios really are appropriate, since the learned
threat evaluation algorithms otherwise can show unwanted behavior. The usual
problems with overfitting must be looked after, and it must be carefully checked

6.4. SUMMARY 121

that learned models look reasonable to human experts, since relying on auto-
mated algorithms that have been created erroneously would have much larger
negative effects than not using them at all. In the author’s view, very careful
consideration must be given before a threat evaluation algorithm learned from
either simulated or real data is used in a real-world system, but it is undoubt-
edly an interesting area of future research.

In SWARD, we are generating problem instances in which there are no de-
pendences among the values of the parameters. As an example, there is no
correlation between any of the kill probabilities involving a specific target (or
rather, there might be such correlation, but if so, this is by pure chance). This
is consistent with how weapon allocation algorithms have been evaluated ear-
lier in reported literature, but it can be discussed whether this lack of structure
really would be seen in estimated kill probabilities from real-world air defense
scenarios. Thinking of such a scenario, two targets, T1 and T2, of the same
type, approaching a firing unit W1 from the same direction and on the same
altitude, would most likely result in kill probabilities P11 and P12 being quite
similar. Likewise, two firing units W2 and W3 would obtain kill probabilities
of approximately same magnitude, given that the firing units were positioned
close together and being of the same type. Hence, the random fashion in which
problem instances are generated in SWARD (and in previous reported experi-
ments with static weapon allocation algorithms) may not necessarily create the
same kinds of search spaces that would be experienced in real-world air de-
fense situations. For some of the algorithms implemented into SWARD, such
as the maximum marginal return algorithms and the random search algorithm,
this would not have any impact, but it is not unlikely that this could have at
least a slight impact on the performance of algorithms such as particle swarm
optimization algorithm, since the objective function values of nearby solutions
then would be correlated, given that the firing units and targets were sorted
after similarity in e.g. position or type. An idea which has not been made use of
in the work presented here, but could be of interest for the future, is therefore
to create problem instances with some inbound structure, e.g. by using STAGE
Scenario or some other simulator to create scenarios, and to take snapshots
from the scenarios as the problem instances used when evaluating the weapon
allocation algorithms in SWARD. This is not very different from how we now
evaluate TEWA systems using STEWARD, but the fundamental difference is
that we then would not let the proposed allocations have any effect on the
simulations, but only evaluate the weapon allocation algorithm on how good
solutions they produce, as measured by the obtained objective function values.

6.4 Summary

In this chapter, the testbeds STEWARD and SWARD have been presented.
STEWARD is intended for demonstration of how the performance of TEWA
systems can be compared using computer-based simulations by measuring the

122 CHAPTER 6. TESTBEDS FOR PERFORMANCE EVALUATION

survivability of defended assets, and resource usage of firing units. The simu-
lation engine used for controlling the simulations is the commercial software
STAGE. The simulation engine communicates with a TEWA module using a
socket connection, so that sensor observations are used as input to the selected
threat evaluation algorithm. Targets that are assigned target values over a spec-
ified threshold value become subject to weapon allocation. Once the selected
weapon allocation algorithm has allocated firing units to threatening targets,
these allocations are communicated back to STAGE, in which the suggested
allocations are implemented into actual engagements.

In the open source testbed SWARD, the performance of various algorithms
for static weapon allocation can be compared. Moreover, new algorithms can
easily be added to the testbed. By making experiments related to performance
evaluation in SWARD, it is ensured that the experiments easily can be set up,
and that the used problem instances can be recreated at later occasions on other
systems, in order to allow for fair benchmarks of various algorithms for static
weapon allocation.

Chapter 7
Experiments

In previous chapters, a number of algorithms for real-time threat evaluation
and weapon allocation have been suggested, and different ways for evaluating
the suggested algorithms have been presented. Moreover, detailed presentations
of developed testbeds for facilitating the comparison of performance among dif-
ferent algorithms have been given. In this chapter, initial experiments in which
threat evaluation algorithms are compared using STEWARD are presented in
section 7.1. Thereafter, more rigorous experiments with the SWARD testbed
in which the performance of the developed weapon allocation algorithms have
been evaluated are presented in section 7.2. The purpose of these experiments
is twofold in that they show which of the implemented algorithms that have
the best real-time performance on various problem instances, and also serves as
a demonstration of the suggested evaluation methodology and the developed
testbeds.

7.1 Comparison of Threat Evaluation Algorithms

7.1.1 A First Scenario

As discussed earlier, scenarios to use for evaluation of TEWA systems with
STEWARD can be generated in the STAGE Scenario tool. These scenarios
are during runtime continuously communicated to the TEWA module, so that
threat values can be calculated in real-time for target-defended asset pairs using
the selected threat evaluation method. In order to demonstrate this approach, a
test scenario consisting of a single defended asset and four air targets (one F-16,
one B-2 bomber, and two Boeing 747) has been constructed. Since there is only
a single defended asset in this scenario, the calculated threat values also corre-
spond directly to target values for the individual targets. Speeds of the targets
are close to constant, except for the F-16, which accelerates at the point of its
turn against the defended asset. Figure 7.1 illustrates the scenario by showing
the way points used for determining the trajectories of the targets and the ap-

123

124 CHAPTER 7. EXPERIMENTS

DA

B2

F16

747

747

~200m/s

~450m/s

~600m/s
~100m/s

~200m/s

Figure 7.1: Illustration of the test scenario.

proximate speeds of the targets. The reason for why this particular scenario has
been chosen is that it shows extremes with different kinds of air targets (fight-
ers, bombers, and civilian aircrafts) with varying velocities. In figure 7.2(a), the
threat values inferred by the Bayesian network presented in section 4.1.1 are
shown, while the corresponding values inferred by the fuzzy logic algorithm
presented in section 4.1.2 are shown in figure 7.2(b). In the figures, one unit of
time corresponds to 50 time updates, which is approximately ten seconds.

Analysis of Obtained Results

As can be seen, the resulting ranking of the threats are quite similar, even though
the threat values in general are higher in figure 7.2(b). Another difference is that
the threat values are more clearly separated in figure 7.2(a). The output from
the Bayesian network better reflects the author’s opinion regarding the threat
values in the scenario, but it should also be noted that the time spent to create
the fuzzy inference rules was shorter than for the development of the Bayesian
network, since the used membership functions were chosen to be similar to the
ones presented in Liang (2007).

Looking at the sensitivity of the algorithms, we can in figure 7.2 see that
the changes in threat values are smoother when using the fuzzy inference sys-

7.1. COMPARISON OF THREAT EVALUATION ALGORITHMS 125

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

Th
re

at
 v

al
ue F16

B2
747_2
747_1

(a) Bayesian network (see section 4.1.1)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Time

Th
re

at
 v

al
ue F16

B2
747_2
747_1

(b) Fuzzy inference rules (see section 4.1.2)

Figure 7.2: Calculated threat value for different targets as a function of time.

126 CHAPTER 7. EXPERIMENTS

tem than when the Bayesian network is used. Of course, the output from the
Bayesian network becomes smoother the more states that are added. However,
this comes with the cost of an increased burden in specifying more conditional
probabilities. Also, the computational complexity increases with an increased
number of states. This smoothness is an interesting property of fuzzy logic,
compared to the Bayesian network’s less soft boundaries between states.

Another difference between the two approaches to threat evaluation is that
the inference goes in only one direction when using fuzzy inference rules (i.e.
evidence regarding the input variables is entered, whereupon a crisp value for
the output variable is calculated), while the Bayesian network can be used to
compute an arbitrary posterior probability of interest, given some evidence.
As an example, the Bayesian network can be used to calculate P (Speed =
low|Distance = far) as well as P (Threat = true|Distance = close, TBH =
short, Speed = low). An even more important property of Bayesian networks
is their ability to handle missing information. A fuzzy inference system is often
dependent upon that the values of all its input variables are known, while this
is not the case of the Bayesian network. In a hostile situation this can be very
important, since complete sensor coverage seldom is the case, sensors can be
disturbed by countermeasures, etc.

In the implementation of the fuzzy logic algorithm, min- and max-operators
have been used as t-norm and t-conorm. However, many other operators have
been proposed within literature, and there is no common agreement on which
that is the best. In fact, different t-norms and t-conorms seems to be appropriate
for different types of problems (Kreinovich and Nguyen, 2006). The choice
of t-norm and t-conorm will often influence the result of the fuzzy inference,
hence, the choice of the “right” t-norm and t-conorm can be crucial, and can be
seen as a problem with the fuzzy logic approach. Bayesian networks does not
have this problem of ad hoc solutions, since they have a sound mathematical
foundation within probability theory. Nevertheless, fuzzy inference rules are
very appealing in that they are easy to work with. On the opposite, to obtain
the probabilities that are required for the conditional probability tables in a
Bayesian network can often be a daunting task. This problem can be solved by
learning the probabilities from data (as described in section 2.3.1), however,
this demands large amounts of data that seldom is available in this domain.

7.1.2 A Second Scenario

In order to demonstrate how the STEWARD testbed and the suggested perfor-
mance evaluation metrics work, we have in STAGE also created a second air
defense scenario consisting of two firing units (which also are the defended as-
sets within the scenario), three hostile fighters, and a neutral civilian aircraft.
Both firing units have been assigned a protection value of 1.0. The scenario is of
quite high intensity and is approximately 8 minutes long. The blue force firing
units are equipped with three surface-to-air missiles each. The hostile fighters

7.1. COMPARISON OF THREAT EVALUATION ALGORITHMS 127

have one missile each, which they fire according to preassigned missions. Each
simulation has been run hundred times for each TEWA system configuration,
in order to get more reliable results. Hence, a TEWA system’s effectiveness has
been calculated as:

E =
∑100

t=1 αSt − βCt

100
(7.1)

In the experiments, a constant kill probability of 0.7 within the range 0-500
kilometers has been used. If the range is larger, the kill probability becomes 0.
For convenience, this holds true for both red force and blue force weapons in
the simulation.

In the first experimental setup, we have used two identical TEWA system
configurations, except for the used threat evaluation algorithms. The threat
evaluation algorithm used in the first TEWA configuration is the implemented
Bayesian network, while the second configuration uses the threat evaluation
algorithm based on fuzzy logic. For both configurations we have used the ex-
haustive search algorithm for weapon allocation, since the number of firing
units and targets has been small enough to allow for calculation of the opti-
mal solution in real-time. The weapon allocation algorithm has been run with
regular intervals, and has taken targets with target values higher than 0.5 into
consideration. The results obtained for the two configurations are shown in the
two first rows of table 7.1 (a uniform cost of 1 has been used for each usage of
a firing unit).

In order to investigate what effect small changes of the used configuration
can have on the overall performance of the TEWA system, the survivability and
firing unit cost has also been measured when the threshold τ for how high the
target value needs to be for a target to become subject to weapon allocation
has been changed from 0.5 to 0.7. The results from these runs can be seen in
the two last rows of table 7.1.

Table 7.1: Results for the tested TEWA configurations

Configuration μS μC E(α = 0.99, β = 0.01)
BN (τ = 0.5) 0.255 4.83 0.204
FL (τ = 0.5) 0.170 6.00 0.108
BN (τ = 0.7) 0.480 3.76 0.438
FL (τ = 0.7) 0.465 3.58 0.425

Analysis of Obtained Results

Looking at the survivability, we can see that the average is 0.255 for configura-
tion 1, and 0.170 for configuration 2. Hence, if we only consider survivability,
the first configuration is the best of the two for this particular scenario. If we

128 CHAPTER 7. EXPERIMENTS

instead look at the weapon usage cost, the average for configuration 1 is 4.83,
while it for configuration 2 becomes 6.00 (i.e. it uses all defensive resources in
each run of the scenario). From this we can see that the first configuration also
is more selective with its resources than the second configuration. Assuming
use of the user-defined parameters α = 0.99 and β = 0.01 (giving a much larger
weight to survivability of defended assets than the saving of resources), we can
calculate the effectiveness of each TEWA configuration for the specific scenario.
Doing this, we end up with an effectiveness of 0.204 for configuration 1, while
the corresponding number for configuration 2 becomes 0.108. The actual ef-
fectiveness number does not say anything on its own, but if we compare the
numbers to each other, it can be concluded that the first TEWA configuration
performs better than the second on the described scenario, given the choice of
α = 0.99 and β = 0.01.

As can be seen in the two last rows of table 7.1, the average survivabil-
ity of the third configuration (i.e. the same configuration as configuration 1,
except for the used threshold) has increased to 0.480, while it for the fourth
configuration (the same as configuration 2 except for the used threshold) has
increased to 0.465. The number of used weapons is noticeable lower in this sec-
ond experiment, compared to the first one. This is expected, since we demand
higher target values before targets are considered as potential candidates for
weapon allocation. Using the same user-defined parameters as in experiment 1,
i.e., α = 0.99, β = 0.01, the resulting effectiveness becomes 0.438 for configu-
ration 3 and 0.425 for configuration 4.

From the above results, it is obvious that rather small changes of a TEWA
system configuration (in this case the threshold settings) can have major impact
upon the resulting weapon allocation, which in its turn affects survivability and
resource usage, and thereby also the effectiveness. The results should not be in-
terpreted as any of the tested threat evaluation algorithms being superior to
the other, since the TEWA configurations only have been tested on a single air
defense scenario, on a specific choice of α and β. Hence, the provided experi-
ment should only be taken as an example of how various TEWA configurations
can be compared to each other, using the suggested performance evaluation
methodology and the functionality provided with STEWARD.

7.2 Comparison of Weapon Allocation Algorithms

The algorithms for static weapon allocation implemented into the open source
testbed SWARD have been used for experiments on problem sizes of various
size, and these experiments and their results are presented here. In section 7.2.1,
it is investigated how much computation time that is needed to solve small-
scale problem instances optimally using exhaustive search, while the real-time
performance of the implemented heuristic algorithms is tested on small-scale
problem instances in section 7.2.2, and larger-scale problem instances in section

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 129

7.2.3. Finally, the algorithms’ sensitivity to the choice of time available for
search is investigated in section 7.2.4.

The experiments presented here have all been run on a computer with the
following specifications:

• CPU: Intel Core 2 Quad Q9450, 2.66GHz (12MB L2 cache)

• Memory: 4GB RAM

• Operating system: Microsoft XP (Service Pack 3)

Moreover, the default settings in SWARD have been used for the genera-
tion of all problem instances. Hence, the static target-based problem instances
have been generated randomly from uniform probability distributions so that
target values Vi ∈ U [25,100] and kill probabilities Pik ∈ U [0.6,0.9]. Similarly,
the static asset-based problem instances have been generated so that lethality
probabilities have been generated randomly as πi ∈ U [0.3, 0.8] and protection
values as ωj ∈ U [25, 100]. For those instances, the target aims have also been
generated as described in section 6.2.1.

In the experiments with heuristic algorithms, we have on the target-based
problem instances tested a total of eight different algorithms: the genetic algo-
rithm (GA), the genetic algorithm seeded with an individual obtained through
the use of the enhanced maximum marginal return algorithm (GA-S), the ant
colony optimization algorithm (ACO), the particle swarm optimization algo-
rithm (PSO), the maximum marginal return algorithm (MMR), the enhanced
maximum marginal return algorithm (EMMR), the algorithm which improves
the solution returned by the maximum marginal return algorithm using local
search (MMR-LS), and the random search algorithm (RS). The same algorithms
have been used for the asset-based problem instances, except for the ant colony
optimization algorithm, since it is designed only for target-based problems. The
MMR and EMMR algorithms have in the asset-based case worked on target-
based approximations of the asset-based problem instances, as explained in
section 4.2.3. For the approximation of target values, we have calculated the
target value Vi for a target Ti as:

Vi = ωj × πi, (7.2)

where j is the index of the defended asset to which target Ti is aimed. Hence,
the target value has been calculated as the product of the lethality probability
πi of the target and the protection value ωj of the defended asset it is aimed
at. In this way, we follow the approach suggested in Hosein (1990) to use the
protection value of the defended asset to impact on the target value, but we
complement this with taking the lethality of the target into account, since this
extra information otherwise is lost.

For the implemented weapon allocation algorithms, the following parame-
ter settings have been used throughout all the experiments:

130 CHAPTER 7. EXPERIMENTS

• Ant colony optimization algorithm

– nrOfAnts = max (|T|,|W|), q0 = 0.5, α = 1, β = 1, ϕ = 0.1,
ρ = 0.1.

• Genetic algorithm

– nrOfIndividuals = max (|T|,|W|)
• Particle swarm optimization algorithm

– nrOfParticles = 50, c1 = 2.0, c2 = 2.0, ω = 0.8.

The settings for the ant colony optimization algorithm make sure that there
is a balance between the (greedy) exploitation and biased exploration of the
search space, and that pheromone and heuristic information are assigned equal
weight. Likewise, the settings for the particle swarm optimization algorithm
dictate that the social and cognitive components of the swarm should be of
equal importance when updating the velocity vectors of the particles. These
suitable parameter settings for the various algorithms have been established
based on experimentation in which the obtained objective function values have
been used as selection criterion.

7.2.1 The Limit for Exhaustive Search

In a first experiment with the developed weapon allocation algorithms, the limit
for how large problem sizes that can be solved reasonably fast using exhaustive
search has been investigated. By varying |T| and |W| between 1 and 9, a total
of 81 problem sizes have been tested for static target-based weapon allocation,
and as many have been tested for static asset-based weapon allocation. In the
latter case, the number of defended assets was fixed to five. For each tested
problem size, ten problem instances were randomly created. The total time re-
quired for the ten runs of the specific problem size was measured, and this time
was used to calculate an average computation time needed for each problem
size. To average over ten problem instances should not really be necessary since
all problem instances of a specific problem size demand equally many com-
putations when applying the exhaustive search algorithm. Nevertheless, this
approach was used to ensure that the granularity of which the operating sys-
tem measure time would not affect the results, and to reduce the effects of e.g.
garbage collection.

In order to recreate the experiment in SWARD, the following parameter
settings should be used (note that the DAs parameter only is used for the asset-
based problem instances):

• Tstart = 1, Wstart = 1, Tend = 9, Wend = 9, Tstep = 1, Wstep = 1,

• iterations = 10, DAs = 5, seed = 0.

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 131

The obtained results for the average computation times are presented in ta-
ble 7.2 for the static target-based case, and in table 7.3 for the static asset-based
case. For the problem sizes where no values are shown, the average computa-
tion time was less than or equal to 1 millisecond.

Table 7.2: Average computation time (in ms) for the exhaustive search algorithm on
static target-based problems.

|W|
|T| . . . 4 5 6 7 8 9
. . .
3 4 18 56
4 9 43 197 558
5 3 23 131 711 3845
6 11 73 490 3201 20924
7 3 25 195 1502 11480 87422
8 6 50 448 3955 34708 302758
9 9 95 953 9464 93365 917651

Table 7.3: Average computation time (in ms) for the exhaustive search algorithm on
static asset-based problems.

|W|
|T| . . . 4 5 6 7 8 9
. . .
3 7 23 73
4 3 14 62 267 773
5 6 31 168 901 4793
6 15 101 686 4221 27097
7 4 37 271 2098 15231 115238
8 7 73 643 5511 47218 401687
9 14 142 1368 13397 128034 1224496

Analysis of Obtained Results

As can be seen in table 7.2, all the tested target-based problem instances involv-
ing six firing units or less took less than one second to solve optimally using ex-
haustive search. Hence, for general static target-based problem instances where
the number of threatening targets are nine or less, we can find the optimal so-
lution in less than one second (using a computer equivalent in performance to
what has been used here), as far as the number of available firing units is six

132 CHAPTER 7. EXPERIMENTS

or less. Looking only at the problem sizes where |T| = 9, i.e. the last row of
table 7.2, we can see that computation time needed for solving a problem in-
stance optimally is approximately increased by a factor of ten when an extra
firing unit is added. As also can be seen, increasing the number of firing units
has a much larger effect on the computation time needed than if the number
of targets is increased. This is quite natural, given that there are |T||W| feasible
solutions to test, i.e. an increase of |W| in general gives raise to much more
extra feasible solutions to check than a corresponding increase of |T|.

In table 7.3, it can be seen that the results from the experiment with the
asset-based problem instances follow the same pattern as the target-based prob-
lem instances. Generally, the computation times are higher in the asset-based
cases compared to their target-based equivalents, which is expected since it is
somewhat more complicated to calculate a solution’s objective function value
in an asset-based setting than in its target-based counterpart (see algorithm 4.2
and algorithm 4.1, respectively).

The presented results give a clear indication of how long it takes to solve
problem instances of different size using exhaustive search. However, to give an
answer to how large problem instances that can be solved in real-time demands
more information, namely, exactly what is meant by real-time in this context.
Unfortunately, there is no clear and definite answer to this, since this can vary
with the type of targets, type of firing units, and what kind of air defense situ-
ation it is. However, looking at the results in table 7.2 and 7.3, we can clearly
see that the largest problems tested take too long time to be solved in real-time
air defense situations, since they take more than 15 minutes to solve. In this
amount of time, an airplane flying with Mach 1 is able to travel further than
250 kilometers, which is a longer distance than the range of most air surveil-
lance radars (see table 2.1). Similarly, the time it takes from the firing of nine
short-range missiles until they hit their intended targets is much shorter than
the more than twenty minutes it takes to solve a (|T| = 9, |W| = 9)-problem
instance optimally for the asset-based case. Clearly, the time horizon for decid-
ing which firing units to allocate to which targets is a matter of seconds at most
(Khosla, 2001), not minutes. This has also been confirmed in the author’s dis-
cussions with air defense experts. The upper time limit for how long we can let
an algorithm search for a good solution is rather approximately 1–3 seconds,
setting the limit for how large problem sizes that can be solved in real-time us-
ing exhaustive search on the used computer to around (|T| = 7, |W| = 7) for
both target-based and asset-based weapon allocation.

7.2.2 Performance of Heuristic Algorithms on Small-Scale
Problems

In a second experiment, the real-time performance of the implemented heuris-
tic algorithms for weapon allocation has been measured on a set of small-scale
problems. An advantage with such small-scale problems is that it becomes pos-

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 133

sible to compute the optimal solution using exact methods, which can be used
for comparison. In order to recreate the experiment that is presented here, the
following parameter settings should be used in SWARD:

• Tstart = 5, Wstart = 5, Tend = 9, Wend = 9, Tstep = 1, Wstep = 1,

• iterations = 10, DAs = 5, seed = 0, timeLimit = 1000ms.

As seen in the parameter settings, the search time has been constrained so that
a weapon allocation algorithm only is allowed to run for one second on each
problem instance. The shown parameter settings are what have been used when
evaluating the performance of the static asset-based weapon allocation algo-
rithms. The same settings have been used when the static target-based weapon
allocation algorithms have been tested, with the difference that the number of
defended assets has not been specified or used in these experiments. Note that
all the created problem instances are symmetric, i.e. there are as many firing
units as there are targets. The impact of asymmetry in the number of targets
and the number of firing units on the algorithms’ solution quality is further
investigated in section 7.2.3.

Table 7.4 shows the algorithms’ average percentage deviations from the op-
timal solution for the tested target-based problem sizes, where the optimal so-
lutions have been calculated using exhaustive search. The corresponding results
for asset-based problem sizes are shown in table 7.5. The average percentage
deviation from the optimal solution is a common metric to use for evaluating
heuristic algorithms on small-scale optimization problems where the optimal
solution can be calculated, and therefore it also has been used here. The per-
centage deviation Δalg for a specific algorithm on a specific problem instance
has been calculated as:

Δalg =
|Falg − Fopt|

Fopt
× 100, (7.3)

where Falg is the objective function value for the tested algorithm and Fopt is
the optimal objective function value. In the tables, we use bold to show which
obtained objective function value that is the best for each tested problem size.

Analysis of Obtained Results

A discovery that can be made when studying the results in table 7.4 and 7.5
is that the average percentage deviations from the optimal solution are higher
in the target-based case than in the asset-based case. This should not necessar-
ily be interpreted as that the algorithms are performing worse on target-based
problem instances than asset-based problem instances (rather, the opposite is
more likely true, since it as shown in section 7.2.1 takes longer time to evalu-
ate a solution in the asset-based case, while the feasible solutions are equally
many for an asset-based and a target-based problem instance of equal size).

134 CHAPTER 7. EXPERIMENTS

Table 7.4: Deviation from optimal solution (in %) on target-based problem instances.
Averaged over ten problem instances.

5× 5 6× 6 7× 7 8× 8 9× 9
GA 0 0 0 0.8 5.5

GA-S 0 0 0 2.4 5.8
ACO 0 0 0 0.9 1.7
PSO 0 0 0 0 0.9

MMR 39.8 27.2 44.7 50.3 44.5
EMMR 3.4 3.6 7.4 7.4 10.0

MMR-LS 0 0 5.4 7.7 5.6
RS 0 0 0.8 7.7 19.1

Table 7.5: Deviation from optimal solution (in %) on asset-based problem instances.
Averaged over ten problem instances.

5× 5 6× 6 7× 7 8× 8 9× 9
GA 0 0 0 0.1 0.7

GA-S 0 0 0 0.1 0.5
PSO 0 0 0 0 0.2

MMR 2.9 3.7 4.8 6.4 6.6
EMMR 0.3 0.8 0.8 0.8 0.9

MMR-LS 0.3 1.0 0.6 1.0 1.5
RS 0 0 0.4 1.2 2.7

Instead, this can be explained with that the objective function values obtained
by the algorithms are much lower in the target-based cases than the asset-based
cases, since these are minimization and maximization problems, respectively.
This means that the obtained percentage deviation becomes higher in the mini-
mization case, since the objective function value of the optimal solution gener-
ally is higher (see equation 7.3). Hence, the results shown in table 7.4 and 7.5
should not be compared to each other, since they stems from different “scales”.

With this said, the results shown in table 7.4 can be studied. As can be seen,
most of the algorithms are able to find the optimal solution to all problem
instances of size (|T| = 5, |W| = 5) and (|T| = 6, |W| = 6). This is expected
since it is possible to exhaustively search the whole search space in less than
100 milliseconds for those sizes, as was shown in table 7.2. Starting with the
quite naïve random search strategy, it can be seen that the deviation from the
optimal solution grows larger as the problem size increases, which is not very
surprising. The well-known greedy maximum marginal return algorithm shows
perhaps more surprisingly bad performance results on even the smallest tested
problem sizes. This performance is improved upon by the enhanced version

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 135

of the maximum marginal return algorithm, as well as the algorithm in which
the standard greedy algorithm is combined with local search, but as can be
seen, all these greedy heuristics are outperformed by all the nature-inspired
metaheuristics on all but the (|T| = 9, |W| = 9)-problem size. Of the nature-
inspired metaheuristics, the ant colony optimization algorithm and the particle
swarm optimization algorithm perform better than the others. Especially, the
particle swarm optimization algorithm shows very good performance, given
that it in one second is able to generate almost optimal solutions to problems
consisting of 99 = 387,420,489 feasible solutions.

Looking at the results from the tested small-scale asset-based problem in-
stances shown in table 7.5, we can see that the trend is similar to the target-
based results, in that all algorithms except for the greedy heuristics are able to
find the optimal solutions to the small problem instances of size (|T| = 5, |W| =
5) and (|T| = 6, |W| = 6). The nature-inspired algorithms are performing best
also in this case, and the particle swarm optimization algorithm is producing
optimal solutions to all problem sizes except (|T| = 9, |W| = 9), for which it
produces near-optimal solutions.

It should be noted that the results obtained on small-scale problems do not
necessarily extends to large-scale problems. For small instances of any combi-
natorial problem, it is likely that algorithms such as particle swarm optimiza-
tion algorithms and genetic algorithms are able to search a large fraction of
the solution space in a short period of time, making it more probable to find
a high quality solution, while one wrong decision by a constructive, one-pass
heuristic may result in a solution differing dramatically from the optimum of a
small case (Rardin and Uzsoy, 2001). Therefore, the results should not without
further tests be generalized to larger problem sizes. With this said, it is still very
relevant to test the performance on small-scale problem instances, not at least
since it in many real-world air defense scenarios is likely that the number of
targets and available firing units will be close to the settings tested here.

7.2.3 Performance of Heuristic Algorithms on Large-Scale
Problems

In experiments with larger-scale problems, problem instances of sizes between
(|T| = 10, |W| = 10) and (|T| = 30, |W| = 30) have been generated. For each
problem size, hundred problem instances have been created in order to allow
for more robust evaluation.

In order to recreate an experiment with the same problem instances in
SWARD, the following parameters should be used:

• Tstart = 10, Wstart = 10, Tend = 30, Wend = 30, Tstep = 10, Wstep = 10,

• iterations = 100, DAs = 5, seed = 0, timeLimit = 1000ms.

136 CHAPTER 7. EXPERIMENTS

In table 7.6–7.8, we show the mean objective function values returned by
the static target-based weapon allocation algorithms after one second, averaged
over the hundred tested problem instances. We also show the associated stan-
dard deviations within parentheses. As before, bold is used to indicate the best
obtained objective function value on each problem size. For getting a clearer
picture of how the implemented algorithms perform in relation to each other,
an average rank has also been calculated for the algorithms. This average rank
information is presented in figure 7.3.

Table 7.6: Average objective function value for |T| = 10. Averaged over 100 static
target-based problem instances. (Lower objective function values are better).

10× 10 10× 20 10× 30
GA 93.4 (11.2) 16.2 (2.6) 3.0 (0.5)

GA-S 89.1 (10.6) 12.0 (2.0) 1.6 (0.3)
ACO 87.6 (10.3) 15.9 (2.2) 3.1 (0.5)
PSO 86.4 (10.8) 15.4 (3.2) 4.1 (0.8)

MMR 127.0 (18.7) 25.7 (4.7) 5.2 (1.0)
EMMR 90.3 (11.4) 12.0 (2.0) 1.6 (0.3)

MMR-LS 90.0 (11.0) 18.5 (2.8) 4.2 (0.7)
RS 108.0 (13.5) 25.8 (3.9) 6.2 (0.9)

Table 7.7: Average objective function value for |T| = 20. Averaged over 100 static
target-based problem instances. (Lower objective function values are better).

20× 10 20× 20 20× 30
GA 576.6 (62.3) 226.6 (19.4) 99.8 (9.6)

GA-S 566.6 (61.8) 162.7 (14.9) 66.5 (7.3)
ACO 564.7 (61.1) 199.9 (16.2) 93.2 (9.1)
PSO 570.8 (61.8) 283.0 (31.3) 148.3 (18.6)

MMR 588.2 (60.4) 230.1 (23.0) 104.1 (11.8)
EMMR 567.0 (61.9) 162.7 (14.9) 66.5 (7.3)

MMR-LS 565.7 (62.5) 210.8 (17.5) 102.4 (11.6)
RS 625.6 (62.4) 306.2 (28.6) 156.0 (16.0)

In a similar manner, the objective function values obtained when the algo-
rithms have been applied to the generated asset-based problem instances are
shown in table 7.9–7.11. The average ranks obtained for the algorithms when
tested on the asset-based problem instances are shown in figure 7.4.

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 137

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

10 x 10 10 x 20 10 x 30 20 x 10 20 x 20 20 x 30 30 x 10 30 x 20 30 x 30

Problem size

A
vg

. r
an

k

GA
GA-S
ACO
PSO
MMR
EMMR
MMR-LS
RS

Figure 7.3: Average rank on target-based problem instances (where 1.0 is the best possi-
ble and 8.0 is worst possible rank).

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

10 x 10 10 x 20 10 x 30 20 x 10 20 x 20 20 x 30 30 x 10 30 x 20 30 x 30

Problem size

A
vg

. r
an

k

GA
GA-S
PSO
MMR
EMMR
MMR-LS
RS

Figure 7.4: Average rank on asset-based problem instances (where 1.0 is the best possible
and 7.0 is worst possible rank).

138 CHAPTER 7. EXPERIMENTS

Table 7.8: Average objective function value for |T| = 30. Averaged over 100 static
target-based problem instances. (Lower objective function values are better).

30× 10 30× 20 30× 30
GA 1142.9 (81.8) 667.2 (58.0) 363.7 (25.6)

GA-S 1127.0 (80.0) 584.5 (53.2) 231.1 (14.6)
ACO 1126.5 (80.1) 630.9 (52.4) 319.9 (18.0)
PSO 1147.4 (80.4) 785.1 (68.3) 527.1 (46.7)

MMR 1142.2 (78.0) 635.2 (51.0) 324.9 (23.6)
EMMR 1127.2 (80.1) 584.5 (53.2) 231.1 (14.6)

MMR-LS 1127.5 (81.7) 631.9 (52.0) 323.3 (23.4)
RS 1214.0 (79.5) 820.6 (66.9) 540.7 (36.9)

Table 7.9: Average objective function value for |T| = 10. Averaged over 100 static asset-
based problem instances. (Higher objective function values are better).

10× 10 10× 20 10× 30
GA 265.9 (41.4) 301.8 (49.1) 302.4 (46.5)

GA-S 268.6 (42.3) 304.1 (49.5) 303.1 (46.6)
RS 258.7 (40.4) 297.1 (48.6) 300.7 (46.3)

MMR 251.5 (40.3) 296.8 (48.6) 301.2 (46.3)
EMMR 268.1 (42.2) 304.1 (49.5) 303.1 (46.6)

MMR-LS 267.9 (42.7) 300.8 (49.0) 301.8 (46.4)
PSO 270.0 (42.1) 302.3 (49.2) 301.8 (46.4)

Table 7.10: Average objective function value for |T| = 20. Averaged over 100 static
asset-based problem instances. (Higher objective function values are better).

20× 10 20× 20 20× 30
GA 153.7 (30.7) 219.2 (36.2) 262.8 (34.3)

GA-S 153.9 (30.7) 237.2 (37.0) 279.8 (36.0)
RS 135.9 (28.7) 195.1 (33.6) 238.3 (32.7)

MMR 117.6 (28.6) 210.2 (36.4) 261.2 (34.0)
EMMR 127.6 (29.8) 237.0 (37.0) 279.8 (36.0)

MMR-LS 128.7 (30.2) 218.1 (35.6) 262.2 (34.3)
PSO 156.5 (30.7) 206.8 (36.1) 242.8 (34.2)

Analysis of Obtained Results

In our analysis of the results obtained when applying the algorithms to the
target-based problem instances, it should first of all be noted that algorithms
with low objective function values perform better than algorithms with high

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 139

Table 7.11: Average objective function value for |T| = 30. Averaged over 100 static
asset-based problem instances. (Higher objective function values are better).

30× 10 30× 20 30× 30
GA 96.1 (20.6) 147.2 (30.6) 186.3 (34.6)

GA-S 96.0 (20.8) 150.2 (29.4) 208.4 (36.7)
RS 74.9 (18.4) 110.5 (24.7) 143.4 (27.3)

MMR 53.6 (20.4) 117.0 (27.0) 174.8 (32.2)
EMMR 59.7 (24.2) 135.7 (30.6) 208.1 (36.5)

MMR-LS 59.7 (23.9) 123.1 (28.9) 176.1 (31.7)
PSO 97.1 (21.2) 123.5 (28.0) 150.3 (29.4)

objective function values, since the static target-based weapon allocation prob-
lem has been formulated as a minimization problem (see equation 3.4). An-
other note to make is that the standard deviations shown in many cases are
larger than the differences in mean values among the algorithms. However, this
should not be interpreted as that there are no significant differences among the
algorithms. Rather, the largest part of these standard deviations are due to the
differences between various problem instances. In some problem instances the
optimal objective function values are lower, while they in others are higher (as a
natural result of the random fashion in which the problem instances are gener-
ated). As a consequence of this, also an optimal algorithm would obtain a quite
large standard deviation. This argument is strengthened by the presented aver-
aged ranks, where it is obvious that there is a clear separation in performance
among different algorithms.

Starting out the analysis with the random search algorithm, it can be seen
that all other algorithms on average perform better on all problem sizes, except
for the smallest problem size (|T| = 10,|W| = 10) tested, on which the max-
imum marginal return algorithm performs worse. That is also the algorithm
that (except for the random search algorithm) produces the worst solutions for
|T| = 10. The quality of the solutions produced by the maximum marginal re-
turn relative the other algorithms become better as the problem size increases,
but it never is the algorithm producing the best solutions, as confirmed in figure
7.3. Nevertheless, the enhanced version of the maximum marginal return algo-
rithm produces solutions of good quality (relative the others) on all the tested
problem sizes. Among the three nature-inspired metaheuristic algorithms, the
genetic algorithm produces solutions that are very close in quality to the ones
produced by the enhanced maximum marginal return algorithm. This is not
very surprising since the genetic algorithm is seeded with the solution obtained
by the enhanced maximum marginal return algorithm, but it is interesting to
see that the quality of the solution returned by the genetic algorithm only is
refined in the cases where |W| = 10, while it for larger problem sizes is not

140 CHAPTER 7. EXPERIMENTS

able to improve upon the the solution obtained from the enhanced greedy algo-
rithm. This can be taken as a clear indication of that the search space becomes
too large to be searched in such a small amount of time as one second. An algo-
rithm which obviously also is cursed by very large search spaces is the particle
swarm optimization algorithm. As can be see in figure 7.3, it is in top on the
(|T| = 10,|W| = 10) problem size, but gets a much worse rank as the problem
size increases. In fact, on the largest tested problem size (|T| = 30,|W| = 30),
the average objective function value is not much better than that obtained by
random search, as seen in table 7.8. Finally, the ant colony optimization algo-
rithm shows a stable behavior as its produced solutions on average are closer to
the average solution quality of the best algorithm than the worst, on all tested
problem sizes. However, the ant colony optimization algorithm also seems to
be better suited for smaller problem sizes, since it for all problem sizes where
|W| = 10 is among the top-two algorithms, while it is not for any other of the
tested problem sizes (where it always is beaten by at least the seeded genetic
algorithm and the enhanced maximum marginal return algorithm). Hence, the
utility of using the nature-inspired metaheuristic algorithms is clearly decreas-
ing with an increasing solution space, which is not surprising due to the tight
real-time requirements.

In the results from the corresponding experiment with asset-based problem
instances, it should be noted that a higher objective function value is better
than a low, since it has been formulated as a maximization problem (see equa-
tion 3.7) instead of a minimization problem. As explained for the target-based
results, the shown standard deviations are a natural consequence of the ran-
dom generation of problem instances. The random search algorithm is, as in
the target-based case, producing solutions of lower quality than the genetic al-
gorithm and the particle swarm optimization algorithm on all tested problem
sizes, but here the unguided random search is able to generate better solutions
than the two versions of the greedy maximum marginal return heuristic on the
tested problem sizes where |W| = 10. This may seem surprising at first glance,
but is an indication of that the approximation does not work properly in those
cases. These empirical results fit well with the analytical arguments by Hosein
(1990), presented in section 4.2.3, who argues that the method of approximat-
ing a static asset-based problem with its target-based counterpart should give
good results for problem instances with a strong defense (i.e. where the ratio
between the number of firing units and the number of targets is high) but that it
may give solutions of lower quality for problem instances with a weak defense
(i.e. where the ratio between the number of firing units and the number of target
is low). For those cases, the genetic algorithm has been able to improve signif-
icantly upon the quality of the solutions generated by the enhanced maximum
marginal return algorithm. However, as in the target-based case, it has not been
able to improve much upon the quality for the problem sizes where the quality
of the solutions produced by the enhanced maximum marginal return algo-
rithm is high already. The particle swarm optimization algorithm also shows

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 141

consistent behavior with the results obtained from the target-based version of
the experiment, in that it performs well in comparison to the other algorithms
on the smaller problem instances, but experiences more troubles with larger
search spaces.

7.2.4 Effect of Amount of Search Time on the Quality of
Obtained Solutions

In order to investigate how much the performance of the algorithms are af-
fected by the tight real-time requirements, we have let the algorithms run for 60
seconds each, on hundred target-based problem instances and hundred asset-
based problem instances of size (|T| = 20,|W| = 20). For this experiment, the
following settings have been used in SWARD:

• Tstart = 20, Wstart = 20, Tend = 20, Wend = 20, Tstep = 1, Wstep = 1,

• iterations = 100, DAs = 5, seed = 0, timeLimit = 60000ms.

(As in the former experiments, the parameter specifying the number of defended
assets is only used for creation of the asset-based problem instances.) The aver-
age objective function values (and the associated standard deviations) obtained
after one second and after one minute are shown in table 7.12 for the target-
based instances, and in table 7.13 for the asset-based instances.

In figure 7.5, we have plotted the quality of the best solution found by
each algorithm with five second intervals for one of the tested target-based
problem instances. Similarly, figure 7.6 shows the corresponding results for one
of the tested asset-based problem instances. The values plotted at time 0 are
the objective function values of the solutions created in the first iteration. Note
that these are not shown for some of the algorithms in figure 7.5, since e.g. the
random search and the genetic algorithm in their first iterations have objective
function values of higher value than the used maximum vale of the y-axis. The
slope of the lines indicate how large the initial objective function values really
are for these algorithms.

Analysis of Obtained Results

In figure 7.5, we can see that the highest increase in quality of the generated so-
lutions occur during the first update (i.e. the time between the first iteration and
the following five seconds), which is not very surprising given that the values at
time 0 originates from one or a couple of solutions created at random for most
of the algorithms. Since the maximum return algorithm and the enhanced max-
imum marginal return algorithm only generate one solution each, the objective
function values never change for those. The greedy algorithm that applies local
search to the solution returned by the maximum marginal return algorithm is
during the first twenty seconds able to improve upon the best solution found,

142 CHAPTER 7. EXPERIMENTS

120

140

160

180

200

220

240

260

280

300

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e GA

GA-S
ACO
PSO
MMR
EMMR
MMR-LS
RS

Figure 7.5: Objective function value as a function of time when algorithms are run for
60 seconds on a target-based problem instance of size (|T| = 20,|W| = 20).

100

120

140

160

180

200

220

240

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

GA
GA-S
PSO
MMR
EMMR
MMR-LS
RS

Figure 7.6: Objective function value as a function of time when algorithms are run for
60 seconds on an asset-based problem instance of size (|T| = 20,|W| = 20).

7.2. COMPARISON OF WEAPON ALLOCATION ALGORITHMS 143

Table 7.12: Average objective function values for target-based problem instances of size
(|T| = 20,|W| = 20), with standard deviations within parentheses.

1 s 60 s Improvement
GA 230.8 (21.8) 209.0 (17.9) 9.4%

GA-S 164.4 (14.8) 164.4 (14.8) 0%
ACO 203.0 (16.8) 187.4 (15.4) 7.7%
PSO 284.5 (30.2) 173.6 (17.1) 39.0%

MMR 231.4 (21.3) 231.4 (21.3) -
EMMR 164.4 (14.8) 164.4 (14.8) -

MMR-LS 213.0 (18.9) 197.8 (17.4) 7.1%
RS 312.2 (32.0) 276.9 (26.7) 11.3%

Table 7.13: Average objective function values for asset-based problem instances of size
(|T| = 20,|W| = 20), with standard deviations within parentheses.

1 s 60 s Improvement
GA 218.3 (33.5) 223.7 (33.8) 2.5%

GA-S 234.6 (35.5) 234.9 (35.5) 0.1%
PSO 205.2 (32.4) 234.1 (35.4) 14.1%

MMR 206.4 (33.9) 206.4 (33.9) -
EMMR 234.4 (35.6) 234.4 (35.6) -

MMR-LS 215.1 (33.1) 220.7 (34.1) 2.6%
RS 193.4 (30.8) 204.3 (32.1) 5.6%

but after that, the quality is unchanged for the specific example shown in figure
7.5. In a similar way, the genetic algorithm seems to converge to a local opti-
mum after twenty seconds. Still, some of the algorithms are able to eventually
escape from such local optima, as can be seen for the ant colony optimization
algorithm. Despite that there is a long period of time for which the ant colony
optimization algorithm is not able to improve on the solution quality, it is later
able to escape from the local optima. The algorithm that most steadily is able
to improve upon the solution quality over time is the particle swarm optimiza-
tion algorithm, and this behavior seems to hold in general for most problem
instances and not only the specific run shown here. Similar observations that
have been made for the target-based case can also be found in figure 7.6 for
the asset-based problem instance. What is most noticeable from the figures is
that no algorithm which does not make use of the solution generated by the
enhanced maximum marginal return algorithm is able to find solutions with
better quality, even though that solution is generated in much less than a sec-
ond, compared to the 60 seconds used by most other algorithms. The only
algorithm that is able to create a somewhat better solution is the seeded genetic

144 CHAPTER 7. EXPERIMENTS

algorithm, indicating that the other algorithms will not be able to outperform
the enhanced maximum marginal return algorithm on real-time weapon allo-
cation problems, even if better computer hardware is used than have been used
in the experiments presented in section 7.2.2 and section 7.2.3.

The graphs analyzed above give detailed information regarding the algo-
rithms’ behavior on a single problem instance, but no information on how the
performance of the algorithms is increased in general with an increased search
time. Studying the numbers in table 7.12 and 7.13, it is striking that the parti-
cle swarm optimization algorithm on average is able to increase its performance
by far most for both the target-based and asset-based problem instances. This
can partly be explained with that the solutions generated by the particle swarm
optimization algorithm after one second were quite bad, but the algorithm is
after one minute outperforming the other algorithms, except for the enhanced
maximum marginal return algorithm and the seeded genetic algorithm. It is no-
ticeable that the seeded genetic algorithm is not able to improve on the average
objective function value at all in the target-based case, and very marginally in
the asset-based case, despite the extra search time. The average objective func-
tion values for the remaining algorithms are quite far from the ones obtained
with the enhanced maximum marginal return algorithm, the seeded genetic al-
gorithm, and the particle swarm optimization algorithm.

7.3 Discussion

Although we have made clear that it almost always is a human decision maker
that takes the decision of whether a target should be engaged or not (an excep-
tion being the firing of CIWS for terminal defense self-protection against anti-
ship missiles (Neri, 1991)), the experiments with STEWARD have been fully
automated, in that no human operator has been involved in the firing decisions
sent back to STAGE Scenario. One reason for this is that the human-computer
interaction has not been in focus of the PhD project of which this thesis is a re-
sult. However, it is nothing in the proposed methodology as such that prevents
the involvement of a human decision maker when evaluating TEWA systems by
measuring survivability and weapon resource usage in computer-based simula-
tions. On the contrary, this kind of involvement would be needed for evaluation
of all aspects of the air defense system of which the operator usually is an im-
portant component. However, experiments such as the one presented here are
also needed, since the decisions recommended by the automated system other-
wise can be overridden by the operator, potentially hiding weaknesses of the
tested algorithms.

In the experiments with algorithms for static weapon allocation presented
in this chapter, computer hardware of relatively good standard has been used.
However, better hardware will be available in the near future, and exists already
today. The obtained limits for how large problem sizes that can be solved in
real-time using exhaustive search are, hence, not set in stone. Moreover, it is

7.3. DISCUSSION 145

also easy to distribute the computations over several processors or computers in
parallel, in order to speed up the process. Despite this, the exponential increase
of the solution space makes sure that heuristic algorithms will be needed also
in the future.

In the experiments involving asset-based problem instances, we have in
addition to the reported results also tested the approach suggested in Metler
and Preston (1990), i.e. to spread out the protection value of a defended asset
among all targets aimed for it. This gave somewhat worse performance, and
hence, only the results from the approach described in equation 7.2 have been
reported. However, it has in the experiments been ensured that the targets are
spread out quite evenly over the defended assets, as a result of how the tar-
get aims are generated in SWARD (as explained in section 6.2). If target aims
instead should have been selected in another way, it could have been more com-
mon with problem instances in which a lot of targets were aimed for one and
the same target. Such situations are not unrealistic, since e.g. an attack against
an aircraft carrier most likely would require a lot of attacking missiles targeted
against the carrier in order to be successful, due to the heavy air defense pro-
tecting such an important defended asset. Hence, it could be of interest to see
whether the used approach of approximating the target value with the product
of the lethality probability of the target and the protection value of the target
aim would be beneficial also for such problem instances, or if it for such cases
is better to spread out the protection value of a defended asset over all targets
aimed for it.

It should be noted that the presented results for the various tested nature-
inspired metaheuristic algorithms are dependent on the used parameter settings,
i.e. we can not infer that the obtained ranking of the algorithms will be the same
for all possible selections of crossover operators, mutation rates, population
sizes, etc. However, when deciding on which parameter settings to use, different
selections have been tested and it seems like the obtained results are robust to
at least small changes.

Comparing the obtained results to previously reported experiments, we can
confirm that greedy search is indeed superior to (unseeded) genetic algorithms
on large-scale target-based weapon allocation problem instances, as suggested
by the experiment reported in Julstrom (2009). Likewise, the results obtained
by Lee and Lee (2005) indicating that ant colony optimization is better than
(unseeded) genetic algorithms for large-scale problems have been shown to
hold also when subject to tight real-time constraints. However, it has been
shown that the results that particle swarm optimization is better than genetic
algorithms for target-based weapon allocation (reported in Teng et al. (2008))
cannot be generalized to hold also for large-scale problems.

146 CHAPTER 7. EXPERIMENTS

7.4 Summary

The experiments in which STEWARD has been used to demonstrate the method
for evaluating the performance of TEWA systems has involved four different
TEWA configurations. The tested air defense scenario has been small enough
to allow for exhaustive search to be used as weapon allocation algorithm, so
what have been changed among the configurations are what threat evaluation
algorithm to use (Bayesian network or fuzzy logic) and what threshold τ to use
for how high target values need to be before the target is considered for weapon
allocation (0.5 and 0.7, respectively). For the specific air defense scenario tested,
the resource usage cost as expected became lower with the higher threshold, but
it was also shown that the survivability became larger when using this higher
threshold.

In the experiments with SWARD for evaluation of the real-time perfor-
mance of the implemented algorithms for static weapon allocation, a number of
results have been seen. Firstly, the limit for how large problem sizes that can be
solved optimally using exhaustive search has been investigated. This limit in its
turn depends on where the limit for real-time goes, but setting the latter limit
to somewhere around 1–3 seconds, the upper limit on problem size becomes
approximately (|T| = 7,|W| = 7) on the computer used in the experiments,
corresponding to a little bit more than 820,000 feasible solutions. This approx-
imate limit is the same for both the target-based and asset-based formulations,
even though the computational cost is somewhat higher for asset-based prob-
lem instances of a specific size, compared to their target-based counterparts.
Since realistic air defense scenarios can consist of more firing units and targets
than can be solved optimally using exhaustive search, we have also investigated
the performance of the implemented heuristic algorithms in a number of exper-
iments. In the first of these, the average percentage deviations from the optimal
solutions have been tested for the different heuristic algorithms on small-scale
problem instances. We could see that the standard maximum marginal return
algorithm performed quite bad compared to the other algorithms, and that
also the other greedy variants on average performed less good that the nature-
inspired metaheuristics. Of these, the particle swarm optimization algorithm
and the ant colony optimization algorithm performed best on the target-based
weapon allocation problem, while the former was the best also for the asset-
based problem. However, as shown in the experiment on larger-scale prob-
lems, the particle swarm optimization algorithm encountered difficulties with
large search spaces, degenerating its real-time performance quite drastically.
Instead, the algorithms producing the best solutions for the large-scale target-
based problems were the enhanced maximum marginal return algorithm, and
the genetic algorithm seeded with the solution generated from the former. In
the case of large-scale asset-based problem sizes, the results are more com-
plex. For problem instances involving a strong defense, the use of the enhanced
maximum marginal return algorithm (and thereby also the seeded genetic algo-

7.4. SUMMARY 147

rithm) seems appropriate, since this gives solutions of high quality compared
to the other algorithms, but for problem instances involving a weak defense,
the situation becomes different. In those cases, none of the greedy algorithms
give good results. Rather, it is for those cases the nature-based algorithms that
produce the best solutions. For the instances where the search space is of rea-
sonable size, the particle swarm optimization algorithm performs best, while
it in situations involving both a weak defense and a large search space is the
genetic algorithm that performs the best.

Chapter 8
Conclusions and Future Work

The work which has been reported within this thesis is focused on the devel-
opment and evaluation of TEWA systems, and their underlying algorithms for
threat evaluation and weapon allocation. As highlighted, a fundamental prob-
lem is that the threat evaluation and weapon allocation processes need to be
executed in real-time, a fact that is disregarded in most earlier research on wea-
pon allocation algorithms.

In section 8.1, we summarize the contributions which have been made in
the work presented here. An outline of future work is presented in section 8.2.
Finally, a discussion regarding how the work and the achieved results presented
here potentially can be generalized to other research domains or applications is
given in section 8.3.

8.1 Contributions

In this doctoral thesis, a number of contributions have been made. We are
here describing the contributions made in context to the objectives that were
presented in section 1.1:

O1. Review and analyze existing algorithms and methods for threat evalua-
tion and weapon allocation.

O2. Suggest and implement algorithms for real-time threat evaluation and
weapon allocation.

O3. Suggest methods for evaluating the performance of TEWA systems, and
the threat evaluation and weapon allocation algorithms being part of such
systems.

O4. Develop testbeds for performance evaluation.

O5. Evaluate the performance of the developed algorithms.

149

150 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Review and analyze existing algorithms and methods for threat evaluation and
weapon allocation

Two literature surveys have been undertaken, in which existing algorithms for
threat evaluation and weapon allocation, respectively, have been reviewed. The
reviews are important, both in their own right and in combination, since this
thesis to the best of the author’s knowledge is the first work that thoroughly
treats both threat evaluation and weapon allocation, and thereby provides a
rare unified view on TEWA, i.e. threat evaluation and weapon allocation. Tra-
ditionally, threat evaluation is studied separately within the information fusion
domain, while weapon allocation is studied in isolation within the field of oper-
ations research. However, both threat evaluation and weapon allocation func-
tionality are needed within air defense systems, and hence, it makes very good
sense to study them together. Moreover, there are interdependences between
the processes of threat evaluation and weapon allocation, since estimated tar-
get values play an important role when it is decided to which target a specific
firing unit should be allocated. When deciding on how high target values have
to be for targets to become subject for weapon allocation, a comprehension of
the underlying threat evaluation algorithms is necessary.

In the reviews it was found out that the amount of open literature on the
research topic of threat evaluation is very sparse. In the previous existing work,
four main approaches to threat evaluation could be identified. These are:

• classical (two-valued) logic

• fuzzy logic

• artificial neural networks

• graphical models

Of the above, the three last seem more promising since it is not possible to
handle uncertainty using classical logic, which is a strong disadvantage since
data used as input to threat evaluation typically originate from sensor obser-
vations which are imperfect by nature. Artificial neural networks are opaque
models which in general are not transparent to the human user. Moreover, they
are dependent on large amounts of labeled data which is hard to obtain for
air defense scenarios. For these reasons, the fuzzy logic approach and the use
of graphical models have been identified as being most promising for use in
TEWA systems.

The review of literature on weapon allocation revealed that a lot more re-
search has been published on the topic of weapon allocation than on threat
evaluation. Many of the early publications on weapon allocation, of which
some dates back as far as to the late 1950’s, mainly focus on analytical ap-
proaches to special cases of the more general static target-based weapon allo-
cation problem (e.g. problems including additional constraints such as at most

8.1. CONTRIBUTIONS 151

one firing unit can be allocated to each target). In more recent years, the fo-
cus has shifted towards more advanced computer-based heuristic algorithms
that are better suited for real-world air defense problems. This latter kind of
algorithms are also what the review of static weapon allocation algorithms pre-
sented in this thesis focuses on, due to its higher relevance for TEWA systems,
and since there already are many existing surveys covering different analytical
approaches.

Despite the vast amount of algorithms for static weapon allocation sug-
gested within existing literature, it is not earlier well enough researched how the
suggested algorithms are affected by the real-time requirements that are funda-
mental in real-world air defense scenarios. Of the existing heuristic algorithms
for static weapon allocation, a number of techniques have been identified as
promising (before any actual experiments were performed). These are e.g. ge-
netic algorithms, ant colony optimization algorithms, particle swarm optimiza-
tion algorithms, and more greedy algorithms such as the maximum marginal
return algorithm.

Suggest and implement algorithms for real-time threat evaluation and weapon
allocation

In the second objective, a number of the identified algorithms for threat eval-
uation and static weapon allocation have been implemented. Since most al-
gorithms that have been presented for static weapon allocation have been de-
scribed quite briefly in existing literature, this objective was far from straight-
forward to carry out. For small problem instances, an optimal (in the sense that
the optimal solution always is found) exhaustive search algorithm has been
implemented. Moreover, a number of heuristic algorithms have been imple-
mented, as follows. A genetic algorithm has been developed and implemented
that probably is quite similar to existing genetic algorithms for weapon allo-
cation, but which has been tailored for real-time requirements when it comes
to the choice of selection mechanism, mutation and crossover operators, etc.
Similarly, a particle swarm optimization algorithm has been developed, which
has many features in common with Zeng et al. (2006) and Teng et al. (2008).
A third nature-based optimization algorithm which has been implemented for
static target-based weapon allocation is an ant colony optimization algorithm,
based on a description presented in Lee et al. (2002a). We have also imple-
mented a simple random search algorithm which can be used as a baseline for
comparisons, as well as a number of greedy algorithms. Of the latter, the well-
known maximum marginal return algorithm presented in den Broeder et al.
(1959) and the enhanced version of the previous algorithm, presented in Jul-
strom (2009), have been implemented. Moreover, we have also implemented
a local search algorithm which take the solution generated by the maximum
marginal return algorithm as input, and refines this using local search. Lastly, a
version of the genetic algorithm discussed above, which is seeded by the solu-

152 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tion returned by the greedy enhanced maximum marginal return algorithm has
been implemented. All of the implementations have been made public available,
as part of the SWARD testbed.

On the threat evaluation side, two different kinds of algorithms have been
suggested and implemented. These are a developed Bayesian network, in which
threat values are inferred from observations regarding target type, speed, dis-
tance, etc., and a fuzzy logic approach which is based on descriptions given
in Liang (2006) and Liang (2007). In the latter, the used input variables and
rules have been changed in order to match the variables used in the developed
Bayesian network algorithm.

Suggest methods for evaluating the performance of TEWA systems, and the
threat evaluation and weapon allocation algorithms being part of such systems

In order to be able to evaluate the real-time performance of the implemented al-
gorithms, systematic benchmarking is needed. Some comparisons of algorithms
for weapon allocation can be found in existing literature, however, these com-
parisons very rarely take real-time requirements into consideration. Moreover,
obtained results cannot be used for benchmarking against other algorithms
since not enough details are given on how the problem instances used for per-
formance evaluation have been generated (i.e. the problem instances cannot
be recreated). The situation is even more troublesome for evaluation of threat
evaluation algorithms. At present, algorithms for threat evaluation are (in best
case) only evaluated very briefly. When developed algorithms are evaluated,
they are only tested on a very small number of simple air defense scenarios,
in which the target values produced by the algorithms are compared to those
estimated by some human expert on the same scenarios. For those deficiencies
to be handled, a methodology for evaluating TEWA systems and their com-
ponents (e.g. threat evaluation and weapon allocation algorithms) has been
suggested. This methodology relies on the use of computer-based simulations,
in which the survivability of defended assets and the usage of defensive weapon
resources is measured. The developed methodology is also a contribution to the
information fusion community, since the importance of more systematic eval-
uation of proposed high-level information fusion algorithms and applications
often is highlighted, but that concrete examples of evaluation methodologies
earlier have been lacking.

Develop testbeds for performance evaluation

The suggested methodology described above has been implemented into the
prototype testbed STEWARD (System for Threat Evaluation and Weapon Al-
location Research and Development), consisting of a TEWA module in which
threat evaluation and static weapon allocation algorithms have been imple-
mented, and the commercial simulation engine STAGE Scenario, in which it is

8.1. CONTRIBUTIONS 153

possible to create and run dynamic and interactive air defense scenarios. These
modules have been integrated with each other so that sensed targets within the
scenario continuously are communicated to the TEWA module for threat evalu-
ation, and if necessary, weapon allocation. Suggested allocations are communi-
cated back to STAGE Scenario, in which the firing units are fired in accordance
to the received firing orders.

Additionally, an open source testbed for systematic comparisons of the per-
formance of static weapon allocation algorithms has been developed. The name
of this second testbed is SWARD (System for Weapon Allocation Research and
Development), which has been chosen to contrast it to STEWARD. The devel-
oped algorithms for static weapon allocation presented in this thesis have been
implemented into SWARD, and the testbed has been made publicly available so
that it can be downloaded from the web page:

http://sourceforge.net/projects/sward/

The testbed indirectly gives access to standardized data sets (through the use of
pseudo-randomly generated problem instances), so that researchers on different
occasions (independently of where they are and which machine they use) easily
can run newly developed algorithms on problem instances which already have
been used by other researchers when testing other algorithms, so that a better
understanding of how different algorithms perform in relation to each other
under various conditions (e.g. real-time requirements) can be created.

Evaluate the performance of the developed algorithms

The prototype testbed STEWARD has been used to demonstrate the idea of
using computer-based simulations for evaluating the effectiveness of different
TEWA system configurations. An air defense scenario created in STAGE Sce-
nario has been used to evaluate a total of four different configurations, in which
exhaustive search has been used for weapon allocation, while both the Bayesian
network approach and the fuzzy logic approach have been tested for threat
evaluation. Moreover, two different thresholds for how high a target value must
be for a target to become subject for weapon allocation have been tested.

The open source testbed SWARD has been used to systematically compare
the real-time performance of the implemented algorithms for static weapon al-
location on a large number of problem instances (scenarios) of various size.
It has in the experiments been shown that exhaustive search can be usable
for target-based as well as asset-based real-time allocation of firing units to
targets in situations where the number of targets and firing units are (approxi-
mately) seven or less, but that other kinds of approaches are needed for problem
instances of larger size. The performance of the implemented heuristic algo-
rithms have been tested on both small-scale and large-scale problems. On the
small-scale problems, the nature-inspired metaheuristics performed best, and
of these, the particle swarm optimization algorithm was the winner for both

154 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

target-based and asset-based weapon allocation, since it produced optimal or
very near-optimal solution for all the small-scale problem instances tested, i.e.
problem sizes up to (|T| = 9, |W| = 9). The worst performing algorithm on
the small-scale problem instances was the greedy maximum marginal return
algorithm. However, on the tested problems of larger scale, the results looked
different. It has been shown that the utility of using the implemented nature-
based optimization algorithms quickly decreases when the problem size is in-
creased, given that the solutions must be produced in real-time. For larger-scale
target-based problem instances, the enhanced maximum marginal return algo-
rithm (and thereby also the seeded genetic algorithm) generated the solutions
of best quality, while the results were different for the asset-based case. In situ-
ations with a strong defense, i.e. a large number of firing units compared to the
number of targets, the enhanced maximum marginal return algorithm provides
solutions of good quality compared to the others, but for situations involving
a weak defense, its produced results become poor. Overall, the seeded greedy
algorithm produced the best solutions here, but there are indications that none
of the algorithms produce solutions of especially good quality on these prob-
lem instances. Lastly, experiments have been performed in which it has been
investigated whether the quality of the solutions improve significantly if the
tight real-time requirements are relaxed (i.e. when the algorithms are allowed
to search a longer time for good solutions). It has been shown that most of the
algorithms were able to improve quite much on the average solution quality,
but still could not produce better solutions than the seeded genetic algorithm,
despite that the latter could not improve at all during the extra search time
for the target-based instances, and only very marginally on the asset-based in-
stances. The algorithm improving the quality of its generated solutions by far
most was the particle swarm optimization algorithm, producing solutions that
were almost as good as the seeded genetic algorithm when run for one minute.

8.1.1 Summary of Contributions

In this thesis, we formally describe the processes of threat evaluation and wea-
pon allocation. The threat evaluation process is previously quite poorly defined,
and a better understanding of this process is necessary for better threat evalua-
tion algorithms to be constructed. Reviews of the available literature on threat
evaluation and weapon allocation have been done, providing knowledge of
different parameters that can be used for threat evaluation, and identification
of classes of algorithms that can be suitable for threat evaluation and wea-
pon allocation, respectively. Based on the results from these literature reviews,
algorithms for threat evaluation and static weapon allocation have been imple-
mented. The implementation details have been made public in order to make it
possible for other researchers to use the same algorithms.

An important question raised in this doctoral thesis is how to evaluate the
performance of TEWA systems and the threat evaluation and weapon allo-

8.2. FUTURE WORK 155

cation algorithms being part of such systems? The testbed SWARD has been
developed for making it possible to compare the performance of various al-
gorithms for static weapon allocation, and its source code has been released
so that other researchers can add more algorithms to the testbed, improve
it, and make their own experiments using the testbed. For the comparison
of threat evaluation algorithms as well as complete TEWA systems, an eval-
uation methodology involving the use of computer-based simulation has been
proposed. By calculating the survivability of defended assets and the resource
usage cost, an effectiveness metric can be used for comparing different TEWA
system configurations. The suggested methodology has resulted in the proto-
type testbed STEWARD. It has been demonstrated how the developed testbeds
can be used, and we have provided experimental results showing that nature-
based metaheuristic algorithms outperform greedy search on small-scale static
weapon allocation problem instances, but that the increase of the search space
quickly decreases the real-time performance of the more advanced nature-based
algorithms when the complexity of the problem instances is increased.

8.2 Future Work

As have been made clear, the scope of the weapon allocation part of this thesis
has been restricted to static weapon allocation. However, it is in real-world air
defense situations only specific circumstances in which all firing units will be
allocated simultaneously. Examples of such situations are air defense situations
involving rockets, artillery, or mortars fired from a short distance. For many
other situations there are multiple engagement opportunities. The approach
that has been used in this work for handling long dynamic scenarios with mul-
tiple engagement opportunities has been to iteratively sense the environment,
estimate the threat posed by the detected targets to the defended assets, and to
allocate available firing units only to targets that achieves a target value higher
than a predefined threshold. A problem with this approach is that even if each
individual static allocation is made optimal, the combination of all individual
static weapon allocation decisions may not be optimal for the whole chain of
defense processes (Chen et al., 2009). Another approach to handle dynamic
scenarios is to treat the allocation problem as a dynamic optimization prob-
lem (cf. Hosein (1990)), in which a so-called shoot-look-shoot (SLS) strategy is
used, i.e. the defense is divided into a number of phases, in which the defend-
ers can engage the targets, observe the outcome of the previous engagements,
engage again, and so on. As for the static case, it is not well-known how the
algorithms suggested within existing literature perform in comparison to each
other. It is therefore of large interest to conduct a study for dynamic weapon al-
location similar to the one presented for the static version of the problem in this
thesis. Likewise, for making such comparisons, a testbed similar to SWARD is
needed, in which it should be possible to generate problem instances for dy-
namic weapon allocation.

156 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The suggestion of the methodology based on measuring survivability and
resource usage costs, and the development of the testbed STEWARD are im-
portant steps for being able to evaluate TEWA systems in a more systematic
manner, which is necessary due to consequences it may have to take the wrong
decision in this kind of systems. However, before this kind of methodology can
be used in larger scale, it is necessary that a large amount of representative
air defense scenarios can be created. As discussed in section 5.5, this might be
achieved by the creation of air defense scenarios templates on a high level of
abstraction, but whether this really is a suitable way, and if so, how such tem-
plates should be constructed, are research questions that need to be answered.
Another improvement that is needed if STEWARD should become more than
a proof-of-concept of the idea to measure the effectiveness of TEWA systems
through the use of computer-based simulations is that sensor models that sim-
ulate the performance of real sensors should be added to the simulation engine,
and replace the “ground truth” data that currently is sent from the simulator to
the TEWA module. Another possible improvement of STEWARD for the future
is to replace the used simulation engine with one based on open source code,
so that STEWARD just as SWARD gets the possibility to be used by a larger
group of researchers and developers.

Another direction for future research that has been briefly discussed is to use
the closed-loop simulations in STEWARD to allow for automated reinforce-
ment learning, which can be used to fine-tune the actual parameter settings of
threat evaluation and weapon allocation algorithms. For such an approach to
be of any real value, it is necessary that the air defense scenarios can be made
very realistic, but it is definitely an unexplored research subject that can be of
interest for the future.

Potential improvements of SWARD that have been discussed are to add
other weapon allocation algorithms into the testbed. An important example
of such an algorithm is the VLSN algorithm suggested in Ahuja et al. (2007).
This algorithm seems to have great potential based on the computational re-
sults reported in Ahuja et al. (2007), but it has not been implemented in the
work presented here since the algorithmic details have not been described thor-
oughly enough to allow for reimplementation by the author at this point.
Other algorithms that, based on the results presented in this dissertation can
be fruitful for future research, are so called greedy randomized adaptive search
procedure (GRASP) metaheuristic algorithms. Algorithms that implement the
GRASP metaheuristic typically construct the solution by iterative generation of
greedy randomized partial solutions which are improved iteratively using lo-
cal search. In this sense it is related to how we have generated solutions using
a maximum marginal return algorithm and improved it using a genetic algo-
rithm. Hence, the greedy part of a GRASP algorithm could rely on a maximum
marginal return algorithm, since this kind of algorithms have shown good re-
sults for large-scale problem instances in our experiments. The main difference
would be that the random component in a GRASP approach possibly allows

8.3. GENERALIZATION TO OTHER RESEARCH AREAS 157

for getting out of local optima faster than a genetic algorithm. To the best of
the author’s knowledge, GRASP approaches have not earlier been suggested for
weapon allocation.

8.3 Generalization to Other Research Areas

The work presented in this thesis has been constrained to threat evaluation and
weapon allocation in the air defense domain. The thesis has deliberately been
quite focused, but it is now time for elaborating on how the results obtained
here potentially can be generalized to other research domains or applications.

A research problem adjacent to weapon allocation is the problem of allo-
cating unmanned aerial vehicles (UAVs) and other kinds of sensors and sensor
platforms to different tasks or entities. This problem is very similar to the wea-
pon allocation problem since it deals with integer optimization problems that
need to be solved in real-time within the defense domain.

The algorithms developed for weapon allocation in this thesis can also be
of interest for domains that are very different from the military domain. As an
example of this, the static target-based weapon allocation problem has in Cetin
and Esen (2006) been used as a basis to allocate media vehicles (such as TV,
radio, Internet, newspaper, billboards, etc.) to audience segments in advertising
campaigns. Obviously, the real-time requirements are far from being as impor-
tant in the advertising domain as in the air defense domain. However, this is an
illustrative example of that resource allocation problems can be found in vari-
ous domains. Another example of a related resource allocation problem, given
in Gelenbe et al. (2010), is the optimization problem of allocating a set of am-
bulances or emergency personnel to a set of emergencies, where the goal is to
maximize the number of collected injured individuals while the response time
is minimized, and where it is uncertainty involved in whether an emergency
unit will be able to reach a targeted emergency or not. Obviously, the real-time
performance can be of uttermost importance in such problems.

When it comes to the developed algorithms for threat evaluation, the pos-
sible generalizations are perhaps not as obvious as in the weapon allocation
case. However, even there it is possible to find related problems of high rele-
vance. An example of this is threat detection algorithms to be used at airports
for flagging of individuals for additional screening of baggage, based on e.g.
flight records. An example of such a system being in use already today is the so
called Computer Assisted Passenger Pre-Screening System (CAPPS), developed
by the US Federal Aviation Administration (Witten and Frank, 2005). More-
over, we have here only discussed threat evaluation in an air defense context,
and mostly from a ground-based perspective. However, threat evaluation can
be very relevant for other military contexts as well, e.g. as decision support
for fighter pilots, as well as on naval vessels (to which some extent has been
discussed) and for active protection systems on e.g. tanks.

158 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

The results obtained in this thesis show that nature-inspired optimization
algorithms such as particle swarm optimization and ant colony optimization
are not very useful for large-scale weapon allocation problem instances, when
the time allowed for search is very constrained. For this kind of large search
spaces, it is more useful to use greedy heuristics when subject to tight real-time
constraints. These results are likely to be generalizable to other kinds of real-
time optimization problems as well. Although not many other applications will
require as tight search time constraints as present in real-time air defense, it
seems (based on the obtained results) likely that greedy algorithms are to be
preferred to nature-inspired ones also for other large-scale optimization prob-
lems in which time constraints are of crucial importance.

Appendix A
Bayesian Network for Threat
Evaluation

In this appendix, implementation details for the developed Bayesian network
for threat evaluation are given, so that other researchers can implement the
same network for comparison purposes. In tables A.1–A.8, the conditional
probability tables that have been used in the Bayesian network are shown.

Table A.1: Conditional probability table for Target type.

F16 Mig21 B2 B747
0.30 0.20 0.05 0.45

Table A.2: Conditional probability table for Weapon range.

Target type none short medium long
F16 0.05 0.20 0.30 0.45

Mig21 0.05 0.35 0.55 0.05
B2 0.05 0.80 0.15 0.00

B747 0.99 0.01 0.00 0.00

The conditional probability table for Within weapon envelope? has been
constructed in Netica using the following expression:

WeapEnv(WeapRange, Dist) =
Dist−WeapRange ≤ 0?Within :
Dist−WeapRange ≤ 20000?Close :
Far

159

160 APPENDIX A. BAYESIAN NETWORK FOR THREAT EVALUATION

Table A.3: Conditional probability table for Speed.

Target type low medium high
F16 0.15 0.45 0.40

Mig21 0.20 0.70 0.10
B2 0.95 0.05 0.00

B747 0.98 0.02 0.00

Table A.4: Conditional probability table for Capability.

Weapon envelope Target type high medium low
within F16 0.90 0.10 0.00
within Mig21 0.80 0.20 0.00
within B2 0.99 0.01 0.00
within B747 0.05 0.10 0.85
close F16 0.70 0.20 0.10
close Mig21 0.50 0.30 0.20
close B2 0.65 0.20 0.15
close B747 0.00 0.05 0.95
far F16 0.10 0.40 0.50
far Mig21 0.05 0.35 0.60
far B2 0.03 0.30 0.67
far B747 0.00 0.02 0.98

Table A.5: Conditional probability table for Intent.

high medium low
0.25 0.30 0.45

Table A.6: Conditional probability table for Threat.

Capability Intent true false
high high 0.90 0.10
high medium 0.70 0.30
high low 0.20 0.80

medium high 0.75 0.25
medium medium 0.50 0.50
medium low 0.10 0.90

low high 0.50 0.50
low medium 0.25 0.75
low low 0.03 0.97

161

Table A.7: Conditional probability table for Distance.

Intent very close close medium far very far
high 0.35 0.30 0.20 0.10 0.05

medium 0.15 0.25 0.35 0.20 0.05
low 0.05 0.20 0.25 0.25 0.25

Table A.8: Conditional probability table for TBH .

Intent very short short medium long very long
high 0.35 0.30 0.20 0.10 0.05

medium 0.15 0.25 0.30 0.25 0.05
low 0.05 0.10 0.20 0.35 0.30

References

Emile Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial
Optimization. John Wiley & Sons Ltd., 1997.

Ravindra Ahuja, Arvind Kumar, Krishna Jha, and James Orlin. Exact and
heuristic methods for the weapon target assignment problem. Operations
Research, 55(6):1136–1146, 2007.

Mohamad Khaled Allouche. Real-time use of Kohonen’s self-organizing maps
for threat stabilization. Information Fusion, 6:153–163, 2005.

Mohamad Khaled Allouche. A pattern recognition approach to threat stabi-
lization. Technical report, DRDC Valcartier, June 2006.

Richard D. Amori. An adversarial plan recognition system for multi-agent
airborne threats. In SAC ’92: Proceedings of the 1992 ACM/SIGAPP Sym-
posium on Applied computing, pages 497–504. ACM Press, 1992.

Andreas Antoniou and Wu-Sheng Lu. Practical Optimization: Algorithms and
Engineering Applications. Springer, 2007.

Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tuto-
rial on particle filters for on-line non-linear/non-gaussian bayesian tracking.
IEEE Transactions on Signal Processing, 50:174–188, 2001.

Arthur Asuncion and David Newman. UCI machine learning repository, 2007.
URL http://www.ics.uci.edu/ml/.

Mustafa Azak and Ahmet Engin Bayrak. A new approach for threat evaluation
and weapon assignment problem, hybrid learning with multi-agent coordi-
nation. In Proceedings of the 23rd International Symposium on Computer
and Information Sciences, 2008.

Patrick Beaumont. Multi-platform coordination and resource management in
command and control. Master’s thesis, Faculté des sciences et de génie Uni-
versité Laval, Québec, 2004.

163

164 REFERENCES

Benjamin Bell, Eugene Santos Jr, and Scott M. Brown. Making adversary de-
cision modeling tractable with intent inference and information fusion. In
Proceedings of the 11th Conference on Computer Generated Forces and Be-
havioral Representation, pages 535–542, Orlando, FL, 2002.

Abder Rezak Benaskeur, Éloi Bossé, and Dale Blodgett. Combat resource al-
location planning in naval engagements. Technical Report TR 2005-486,
Defence R&D Canada - Valcartier, 2007.

Abder Rezak Benaskeur, Froduald Kabanza, Eric Beaudry, and Mathieu Beau-
doin. A probabilistic planner for the combat power management problem.
In Proceedings of the Eighteenth International Conference on Automated
Planning and Scheduling, 2008.

Alessio Benavoli, Branko Ristic, Alfonso Farina, Martin Oxenham, and Luigi
Chisci. An approach to threat assessment based on evidential networks. In
Proceedings of the 10th International Conference on Information Fusion,
2007.

Alessio Benavoli, Branko Ristic, Alfonso Farina, Martin Oxenham, and Luigi
Chisci. An application of evidential networks to threat assessment. IEEE
Transactions on Aerospace and Electronic Systems, 45:620–639, 2009.

Mikael Berndtsson, Jörgen Hansson, Björn Olsson, and Björn Lundell. Plan-
ning and Implementing your Final Year Project - with Success!: A Guide for
Students in Computer Science and Information Systems. Springer, 2002.

Raj Bhatnagar and Laveen N. Kanal. Fuzzy logic for the management of uncer-
tainty, chapter Models of enquiry and formalisms for approximate reason-
ing, pages 29–54. John Wiley & Sons, Inc., 1992.

Samuel S. Blackman. Multiple hypothesis tracking for multiple target tracking.
IEEE Aerospace and Electronic Systems Magazine, 19(1):5–18, 2004.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimiza-
tion. ACM Computing Surveys, 35(3):268–308, 2003. ISSN 0360-0300.

George N. Brander and E. J. Bennet. Real-time rule based resource allocation
in naval command and control. In IEE Colloquium on Rule-Based Systems
for Real-Time Planning and Control, 1991.

Berndt Brehmer. The dynamic OODA loop: Amalgamating Boyd’s OODA loop
and the cybernetic approach to command and control. In Proceedings of
the Tenth International Command and Control Research and Technology
Symposium (ICCRTS), McLean, Virginia, June 2005.

British Ministry of Defence. Aircraft accident to Royal Air Force Tornado GR
MK4A ZG710, May 2004.

REFERENCES 165

Joel Brynielsson. A Gaming Perspective on Command and Control. PhD thesis,
School of Computer Science and Communication, Royal Institute of Technol-
ogy, Stockholm, Sweden, June 2006.

Eyüp Cetin and Seda Tolun Esen. A weapon-target assignment approach to
media allocation. Applied Mathematics and Computation, 175:1266–1275,
2006.

Bruce A. Chalmers and P. da Ponte. MIMD algorithms for naval resource
planning: overview and preliminary assessment. Technical report, Defense
Research Establishment Valcartier, 1995.

Stephen J. Chapman and Kurt K. Benke. Assessment of ship air defence per-
formance by modelling and simulation. In Proceedings of the Simulation
Technology and Training Conference (SimTecT 2000), 2000.

Jie Chen, Bin Xin, ZhiHong Peng, LiHua Dou, and Juan Zhang. Evolution-
ary decision-makings for the dynamic weapon-target assignment problem.
Science in China Series F: Information Sciences, 52(11):2006–2018, 2009.

Chow Kay Cheong. Survey of investigations into the missile allocation prob-
lem. Master’s thesis, Naval Postgraduate School, Monterey, CA, 1985.

Camelia Ciobanu and Gheorghe Marin. On heuristic optimization. An. Stiint.
Univ. Ovidius Constanta, 9(2):17–30, 2001.

Paul R. Cohen. Empirical Methods for Artificial Intelligence. The MIT Press,
1995.

Gregory F. Cooper. Probabilistic inference using belief networks is NP-hard.
Artificial Intelligence, (42):393–405, 1990.

Ian W. Dall. Threat assessment without situation assessment. In Robin Evans,
Lang White, Daniel McMichael, and Len Sciacca, editors, Proceedings of
Information Decision and Control 99, pages 365–370, Adelaide, Australia,
February 1999. Institute of Electrical and Electronic Engineers, Inc.

Randall Davis, Bruce Buchanan, and Edward Shortliffe. Production rules as a
representation for a knowledge-based consultation program. Artificial Intel-
ligence, 8(1):15–45, 1977.

Christian W. Dawson. The Essence of Computing Projects: A Student’s Guide.
Prentice Hall, 2000.

Defense Science Board Task Force. Report of the Defense Science Board Task
Force on Patriot System Performance : Report Summary. United States De-
partment of Defense, 2005.

166 REFERENCES

George G. den Broeder, R. E. Ellison, and L. Emerling. On optimum target
assignments. Operations Research, 7(3):322–326, 1959.

DoD Chief Information Officer Memorandum. Clarifying guidance regard-
ing open source software (OSS), October 2009. URL http://cio-nii.
defense.gov/docs/OpenSourceInDoD.pdf.

An Xiao Dong and Liu Gou Qing. Application of neural network in the field
of target threat evaluation. In International Joint Conference on Neural Net-
works, 1999.

Marco Dorigo. Optimization, learning and natural algorithms (in Italian). PhD
thesis, Politecnico di Milano, 1992.

Marco Dorigo and Luca Maria Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions on
Evolutionary Computation, 1(1):53–66, 1997.

Marco Dorigo and Thomas Stützle. Ant Colony Optimization. The MIT Press,
2004.

Marek J. Druzdzel and Linda C. van der Gaag. Building probabilistic networks:
"where do the numbers come from?". IEEE Transactions on Knowledge and
Data Engineering, 12(4):481–486, 2000.

A. Ross Eckler and Stefan A. Burr. Mathematical models of target coverage
and missile allocation. Technical Report DTIC: AD-A953517, Military Op-
erations Research Society, Alexandria, VA, 1972.

Mica R. Endsley. Design and evaluation for situation awareness enhancement.
In Proceedings of the Human Factors Society 32nd Annual Meeting, pages
97–101, Santa Monica, California, 1988.

Mica R. Endsley. Toward a theory of situation awareness in dynamic systems.
Human Factors, 37(1):32–64, 1995.

Andries P. Engelbrecht. Computational Intelligence: An Introduction. John
Wiley & Sons, Ltd., 2002.

Lucia Falzon. Using Bayesian network analysis to support centre of gravity
analysis in military planning. European Journal of Operational Research,
170(2):629–643, 2006.

Craig W. Fisher and Bruce R. Kingma. Criticality of data quality as exemplified
in two disasters. Information & Management, 39:109–116, 2001.

Pek Hui Foo, Gee Wah Ng, Khin Huang, and Rong Yang. Application of intent
inference for air defense and conformance monitoring. Journal of Advances
in Information Fusion, 4(1):3–26, 2009.

REFERENCES 167

Lance Fortnow. The status of the P versus NP problem. Communications of
the ACM, 52(9):78–86, 2009.

Anissa Frini, Adel Guitouni, Abder Rezak Benaskeur, and Éloi Bossé. Single
ship resource allocation in above water warfare. Technical Report TR 2006-
766, DRDC Valcartier, 2008.

Daniel Fu, Emilio Remolina, Jim Eilbert, and Stottler Henke. A CBR approach
to asymmetric plan detection. In KDD Workshop on Link Analysis for De-
tecting Complex Behavior, 2003.

Erol Gelenbe, Stelios Timotheou, and David Nicholson. Fast distributed near-
optimum assignment of assets to tasks. The Computer Journal, 2010. doi:
10.1093/comjnl/bxh000.

Paul G. Gonsalves, Janet E. Burge, and Karen A. Harper. Architecture for
genetic algorithm-based threat assessment. In Proceedings of the Sixth Inter-
national Conference on Information Fusion, 2003.

Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman, Urban Forssell,
Jonas Jansson, Rickard Karlsson, and Per-Johan Nordlund. Particle filters
for positioning, navigation and tracking. IEEE Transactions on Signal Pro-
cessing, 50(2):425–437, 2002.

David Hall and James Llinas. Handbook of Multisensor Data Fusion. CRC
Press, Boca Raton, FL, USA, 2001.

David Hall and Sonya McMullen. Mathematical Techniques in Multisensor
Data Fusion. Artech House, 2004.

David Hall and Alan Steinberg. Dirty secrets in multisensor data fusion. In
Proceedings of the National Symposium on Sensor Data Fusion (NSSDF),
San Antonio, TX, USA, June 2000.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The WEKA data mining software: An update.
SIGKDD Explorations, 11(1), 2009.

John H. Holland. Adaptation in natural and artificial systems. University of
Michigan Press, 1975.

Patrick A. Hosein. A class of dynamic nonlinear resource allocation problems.
PhD thesis, Massachusetts Institute of Technology, Dept. of Electrical Engi-
neering and Computer Science, 1990.

Patrick A. Hosein and Michael Athans. Some analytical results for the dynamic
weapon-target allocation problem. Technical Report AD-A219281, MIT,
1990a.

168 REFERENCES

Patrick A. Hosein and Michael Athans. Preferential defense strategies: Part 1
- the static case. Technical report, Massachusetts Institute of Technology,
Laboratory for Information and Decision Systems, 1990b.

Chi Huaiping, Liu Jingxu, Chen Yingwu, and Wang Hao. Survey of the re-
search on dynamic weapon-target assignment problem. Journal of Systems
Engineering and Electronics, 17(3):559–565, 2006.

Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedu-
ral guide. International Journal of Approximate Reasoning, 15(3):225–263,
1996.

Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2001. ISBN 0387952594.

Krishna C. Jha. Very large-scale neighborhood search heuristics for combina-
torial optimization problems. PhD thesis, University of Florida, 2004.

Fredrik Johansson and Göran Falkman. Implementation and integration of a
Bayesian network for prediction of tactical intention into a ground target
simulator. In Proceedings of the 9th International Conference on Informa-
tion Fusion, Florence, Italy, July 2006.

Fredrik Johansson and Göran Falkman. Detection of vessel anomlies - a
Bayesian network approach. In Proceedings of the 3rd International Con-
ference on Intelligent Sensors, Sensor Networks and Information Processing,
2007.

Fredrik Johansson and Göran Falkman. A Bayesian network approach to threat
evaluation with application to an air defense scenario. In Proceedings of the
11th International Conference on Information Fusion, 2008a.

Fredrik Johansson and Göran Falkman. A comparison between two ap-
proaches to threat evaluation in an air defense scenario. In Vicenc Torra and
Yasuo Narukawa, editors, Proceedings of the 5th International Conference
on Modeling Decisions for Artificial Intelligence, volume 5285 of Lecture
Notes in Artificial Intelligence, pages 110–121, 2008b.

Fredrik Johansson and Göran Falkman. A survivability-based testbed for com-
paring threat evaluation algorithms. In Henrik Boström, Ronnie Johansson,
and Joeri van Laere, editors, Proceedings of the 2nd Skövde Workshop on
Information Fusion Topics, 2008c.

Fredrik Johansson and Göran Falkman. A testbed based on survivability for
comparing threat evaluation algorithms. In S. Mott, J. F. Buford, G. Jakob-
son, and M. J. Mendenhall, editors, Proceedings of the SPIE Symposium on
Defense, Security and Sensing, volume 7352 (Intelligent Sensing, Situation
Management, Impact Assessment, and Cyber-Sensing), 2009a.

REFERENCES 169

Fredrik Johansson and Göran Falkman. An empirical investigation of the static
weapon-target allocation problem. In Proceedings of the 3rd Skövde Work-
shop on Information Fusion Topics, 2009b.

Fredrik Johansson and Göran Falkman. Performance evaluation of TEWA sys-
tems for improved decision support. In Vicenc Torra, Yasuo Narukawa, and
Masahiro Inuiguchi, editors, Proceedings of the 6th International Conference
on Modeling Decisions for Artificial Intelligence, volume 5861 of Lecture
Notes in Artificial Intelligence, pages 205–216, 2009c.

Fredrik Johansson and Göran Falkman. A suite of metaheuristic algorithms
for static weapon-target allocation. In Proceedings of the 2010 International
Conference on Genetic and Evolutionary Methods, 2010a.

Fredrik Johansson and Göran Falkman. SWARD: System for weapon allo-
cation research & development. In Proceedings of the 13th International
Conference on Information Fusion, 2010b.

Joint Chiefs of Staff. Joint publication 3-01: Countering air and missile threats,
Feb 2007.

Charles C. Jorgensen and Michael H. Strub. Analysis of manual threat evalua-
tion and weapons assignment (TEWA), in the AN/TSQ-73 air defense system.
Technical Report TR 419, U.S. Army, Research Institute for the Behavioral
and Social Sciences, October 1979.

Bryant A. Julstrom. String- and permutation-coded genetic algorithms for the
static weapon-target assignment problem. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO2009), 2009.

Rudolf E. Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82(1):35–45, 1960.

Orhan Karasakal. Air defense missile-target allocation models for a naval task
group. Computers and Operations Research, 35(6):1759–1770, 2008. ISSN
0305-0548.

Fakhreddine O. Karray and Clarence de Silva. Soft computing and intelligent
systems design. Addison-Wesley, 2004.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceed-
ings of IEEE International Conference on Neural Networks, pages 1942–
1948, 1995.

Deepak Khosla. Hybrid genetic approach for the dynamic weapon-target allo-
cation problem. In Proceedings of SPIE, volume 4396, 2001.

170 REFERENCES

Uffe B. Kjærulff and Anders L. Madsen. Bayesian Networks and Influence
Diagrams: A Guide to Construction and Analysis. Springer, 2007.

George J. Klir and Tina A. Folger. Fuzzy sets, uncertainty, and information.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1987.

Wolfgang Koch. On exploiting negative sensor evidence for target tracking and
sensor data fusion. Information Fusion, 8(1):28–39, 2007.

Stephan E. Kolitz. Analysis of a maximum marginal return assignment al-
gorithm. In Proceedings of the 27th Conference on Decision and Control,
1988.

Alexander Kott, Martha Pollack, and Bruce Krogh. The situation assessment
problem: Toward a research agenda. In Proceedings of the DARPA-JFACC
Symposium on Advances in Enterprise Control, 1999.

Vladik Kreinovich and Hung T. Nguyen. Which fuzzy logic is the best: Prag-
matic approach (and its theoretical analysis). Fuzzy Sets and Systems, 157
(5):611–614, March 2006.

Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross valida-
tion, and active learning. In G. Tesauro, D. S. Touretzky, and T. K. Leen, ed-
itors, Advances in Neural Information Processing Systems, volume 7, pages
231–238. MIT Press, 1995.

Rudolf Kruse, Joan E. Gebhardt, and F. Klowon. Foundations of Fuzzy
Systems. John Wiley & Sons, Inc., New York, NY, USA, 1994. ISBN
047194243X.

Dale A. Lambert. A blueprint for higher-level fusion systems. Information
Fusion, 10(1):6–24, 2009.

Eleni C. Laskari, Konstantinos E. Parsopoulos, and Michael N. Vrahatis. Parti-
cle swarm optimization for integer programming. In Proceedings of the 2002
Congress on Evolutionary Computation, 2002.

Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with prob-
abilities on graphical structures and their application to expert systems. Jour-
nal of the Royal Statistical Society, B50:157–224, 1988.

Zne-Jung Lee and Chou-Yuan Lee. A hybrid search algorithm with heuristics
for resource allocation problem. Information Sciences, 173(1-3):155–167,
2005.

Zne Jung Lee and Wen Li Lee. A hybrid search algorithm of ant colony opti-
mization and genetic algorithm applied to weapon-target assignment prob-
lems. In Jiming Liu, Yiu-Ming Cheung, and Hujun Yin, editors, Proceed-
ings of the 4th International Conference on Intelligent Data Engineering and

REFERENCES 171

Automated Learning, volume 2690 of Lecture Notes in Computer Science,
pages 278–285. Springer, 2003.

Zne-Jung Lee, Chou-Yuan Lee, and Shun-Feng Su. Parallel ant colonies with
heuristics applied to weapon-target assignment problems. In Proceedings of
the 7th Conference on Artificial Intelligence and Applications, 2002a.

Zne-Jung Lee, Chou-Yuan Lee, and Shun Feng Su. An immunity-based ant
colony optimization algorithm for solving weapon-target assignment prob-
lem. Applied Soft Computing, 2:39–47, 2002b.

Zne Jung Lee, Shun Feng Su, and Chou Yuan Lee. A genetic algorithm with
domain knowledge for weapon-target assignment problems. Journal of the
Chinese Institute of Engineers, 25(3):287–295, 2002c.

Yawei Liang. A fuzzy knowledge based system in situation and threat assess-
ment. Journal of Systems Science & Information, 4(4):791–802, Dec 2006.

Yawei Liang. An approximate reasoning model for situation and threat assess-
ment. In Proceedings of the 4th International Conference on Fuzzy Systems
and Knowledge Discovery, 2007.

Michael J. Liebhaber and Bela Feher. Air threat assessment: Research, model,
and display guidelines. In Proceedings of the 2002 Command and Control
Research and Technology Symposium, 2002a.

Michael J. Liebhaber and Bela Feher. Surface warfare threat assessment: Re-
quirements definition. Technical report, SSC San Diego, 2002b.

Michael J. Liebhaber and C. A. P. Smith. Naval air defense threat assessment:
Cognitive factors and model. In Command and Control Research and Tech-
nology Symposium, 2000.

Michael J. Liebhaber, D. A. Kobus, and Bela Feher. Studies of U.S. navy air
defense threat assessment: Cues, information order, and impact of conflicting
data. Technical report, SSC San Diego, 2002.

Martin E. Liggins, David L. Hall, and James Llinas, editors. Handbook of
multisensor data fusion. CRC Press, 2nd edition, 2009.

Eric G. Little and Galina L. Rogova. An ontological analysis of threat and
vulnerability. In Proceedings of the 9th International Conference on Infor-
mation Fusion, 2006.

James Llinas. Handbook of multisensor data fusion, chapter Assessing the
performance of multisensor fusion processes, pages 655–675. CRC Press,
2nd edition, 2009.

172 REFERENCES

Stuart P. Lloyd and Hans S. Witsenhausen. Weapon allocation is NP-complete.
In Proceedings of the 1986 Summer Conference on Simulation, 1986.

Carl G. Looney and Lily R. Liang. Cognitive situation and threat assessments
of ground battlespaces. Information Fusion, 4:297–308, 2003.

Francesco Maffioli and Giulia Galbiati. Approximability of hard combinatorial
optimization problems: an introduction. Annals of Operations Research, 96:
221–236, 2000.

Wiliiam P. Malcolm. On the character and complexity of certain defensive
resource allocation problems. Technical Report DSTO-TR-1570, DSTO -
Weapons Systems Division, 2004.

Ebrahim H. Mamdani. Application of fuzzy logic to approximate reasoning us-
ing linguistic synthesis. In Proceedings of the Sixth International Symposium
on Multiple-valued Logic, pages 196–202, Los Alamitos, CA, USA, 1976.
IEEE Computer Society Press.

Alan S. Manne. A target-assignment problem. Operations Research, 6(3):346–
351, May-June 1958.

MathWorks. Fuzzy Logic Toolbox 2: User’s Guide, 2010.

Samuel Matlin. A review of the literature on the missile-allocation problem.
Operations Research, 18(2):334–373, 1970.

William A. Metler and Fred L. Preston. A suite of weapon assignment algo-
rithms for a SDI mid-course battle manager. Technical report, Naval Re-
search Laboratory, 1990.

Jeffrey G. Morrison, Richard T. Kelly, Ronald A. Moore, and Susan G.
Hutchins. Tactical decision making under stress (TADMUS) - decision sup-
port system. In Proceedings of the 1997 IRIS National Symposium on Sensor
and Data Fusion, 1997.

Jeffrey G. Morrison, Richard T. Kelly, Ronald A. Moore, and Susan G.
Hutchins. Implications of decision making research for decision support and
displays. In J. A. Cannon-Bowers and E. Salas, editors, Decision Making Un-
der Stress: Implications for Training and Simulation. American Psychological
Association, 1998.

Sandeep Mulgund, Karen Harper, and Kalmanje Krishnakumar. Air combat
tactics optimization using stochastic genetic algorithms. In Proceedings of
the 1998 IEEE International Conference on Systems, Man, and Cybernetics,
1998.

REFERENCES 173

Robert A. Murphey. Target-based weapon target assigment problems. In
Panos M. Pardalos and Leonidas S. Pitsoulis, editors, Nonlinear assignment
problems: algorithms and applications, pages 39–53. Kluwer Academic Pub-
lishers, 2000.

John Naisbitt. Megatrends: Ten New Directions Transforming Our Lives.
Warner Books, 1982.

Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

Filippo Neri. Introduction to Electronic Defense Systems. Artech House, 1991.

X.Thong Nguyen. Threat assessment in tactical airborne environments. In
Proceedings of the Fifth International Conference on Information Fusion,
2002.

Lars Niklasson, Maria Riveiro, Fredrik Johansson, Anders Dahlbom, Göran
Falkman, Tom Ziemke, Christoffer Brax, Tomas Kronhamn, Martin Smed-
berg, Håkan Warston, and Per Gustavsson. Extending the scope of situation
analysis. In Proceedings of the 11th International Conference on Informa-
tion Fusion, 2008.

Maria Nilsson. Mind the Gap: Human Decision Making and Information Fu-
sion. Licentiate thesis, Örebro University, Örebro, Sweden, 2008.

Nickens Okello and Gavin Thoms. Threat assessment using Bayesian networks.
In Proceedings of the Sixth International Conference on Information Fusion,
2003.

Martin Oxenham. Enhancing situation awareness for air defence via auto-
mated threat analysis. In Proceedings of the Sixth International Conference
on Information Fusion, volume 2, pages 1086–1093, 2003.

Feng Pan, Guanghui Wang, and Yang Liu. A multi-objective-based non-
stationary UAV assignment model for constraints handling using PSO. In
Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolution-
ary Computation, pages 459–466, 2009.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization:
Algorithms and Complexity. Dover Publications, 1998.

Stéphane Paradis, Abder Rezak Benaskeur, Martin Oxenham, and Philip Cut-
ler. Threat evaluation and weapons allocation in network-centric warfare.
In Proceedings of the 8th International Conference on Information Fusion,
2005.

Angela M. Pawlowski, Sergio Gigli, and Frank J. Vetesi. Situation and threat
refinement approach for combating the asymmetric threat. In MSS NSSDF
Conference, San Diego, CA, 2002.

174 REFERENCES

Judea Pearl. Fusion, propagation, and structuring in belief networks. Artificial
Intelligence, 29:241–288, 1986.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. Morgan Kaufmann, 1988.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge Univer-
sity Press, 2000.

John Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986.

Ronald L. Rardin and Reha Uzsoy. Experimental evaluation of heuristic opti-
mization algorithms: A tutorial. Journal of Heuristics, 7:261–304, 2001.

Chet Richards. Certain to win: The strategy of John Boyd applied to business.
Xlibris Corporation, 2004.

Maria Riveiro, Fredrik Johansson, Göran Falkman, and Tom Ziemke. Tenth
Scandinavian Conference on Artificial Intelligence, chapter Supporting Mar-
itime Situation Awareness Using Self Organizing Maps and Gaussian Mix-
ture Models, pages 84–91. IOS Press, 2008.

Jaco N. Roux and Jan H. van Vuuren. Threat evaluation and weapon assign-
ment decision support: A review of the state of the art. ORiON, 23:151–186,
2007.

Jaco N. Roux and Jan H. van Vuuren. Real-time threat evaluation in a ground
based air defence environment. ORiON, 24(1):75–101, 2008.

Jean Roy. From data fusion to situation analysis. In Proceedings of the Fourth
International Conference on Information Fusion, 2001.

Jean Roy, Stéphane Paradis, and Mohamad K. Allouche. Threat evaluation for
impact assessment in situation analysis systems. In I. Kadar, editor, Proceed-
ings of SPIE: Signal Processing, Sensor Fusion, and Target Recognition XI,
volume 4729, pages 329–341, July 2002.

Agnes Runqvist. Threat evaluation. An application for air surveillance systems.
Master’s thesis, Uppsala University, 2004.

Dan Schrage and Paul G. Gonsalves. Sensor scheduling using ant colony opti-
mization. In Proceedings of the 6th International Conference on Information
Fusion, 2003.

Johan Schubert. Evidential force aggregation. In Proceedings of the 6th Inter-
national Conference on Information Fusion, 2003.

REFERENCES 175

Tod M. Schuck, J. Bockett Hunter, and Daniel D. Wilson. Handbook of mul-
tisensor data fusion, chapter Developing Information Fusion Methods for
Combat Identification, pages 773–812. CRC Press, 2009.

René Séguin, Jean-Yves Potvin, Michel Gendreau, Teodor G. Crainic, and
Patrice Marcotte. Real-time decision problems: An operational research per-
spective. The Journal of the Operational Research Society, 48(2):162–174,
1997.

Glenn Shafer. A Mathematical Theory of Evidence. Princeton University Press,
1976.

Edward H. Shortliffe and Bruce G. Buchanan. A model of inexact reasoning in
medicine. Mathematical Biosciences, 23:351–379, 1975.

C.A.P. Smith, Joan Johnston, and Carol Paris. Decision support for air warfare:
Detection of deceptive threats. Group Decision and Negotiation, 13(2):129–
148, 2004.

Mark St. John, D. I. Manes, H. S. Smallman, Bela Feher, and J. G. Morrison. An
intelligent threat assessment tool for decluttering naval air defense displays.
Technical report, SSC San Diego, 2004a.

Mark St. John, D. I Manes, H. S. Smallman, Bela A. Feher, and J. G. Morrison.
Heuristic automation for decluttering tactical displays. In Proceedings of the
Human Factors and Ergonomics Society 48th Annual Meeting, 2004b.

Alan Steinberg, Christopher Bowman, and Frank White. Revisions to the JDL
data fusion model. In Proceedings of the SPIE Sensor Fusion: Architectures,
Algorithms, and Applications III, pages 430–441, 1999.

Alan N. Steinberg. An approach to threat assessment. In Proceedings of the
8th International Conference on Information Fusion, 2005.

Alan N. Steinberg. Handbook of multisensor data fusion, chapter Foundations
of Situation and Threat Assessment, pages 437–501. CRC Press, 2009.

Balram Suman and Prabhat Kumar. A survey of simulated annealing as a tool
for single and multiobjective optimization. Journal of the Operational Re-
search Society, 57:1143–1160, 2006.

Robert Suzić. Stochastic Multi-Agent Plan Recognition, Knowledge Represen-
tation and Simulations for Efficient Decision Making. PhD thesis, Royal
Institute of Technology, 2006.

Pontus Svenson and Hedvig Sidenbladh. Determining possible avenues of ap-
proach using ants. In Proceedings of the 6th International Conference on
Information Fusion, pages 1110–1117, 2003.

176 REFERENCES

Peng Teng, Huigang Lv, Jun Huang, and Liang Sun. Improved particle swarm
optimization algorithm and its application in coordinated air combat missile-
target assignment. In Proceedings of the 7th World Congress on Intelligent
Control and Automation, 2008.

Jeffrey Tweedale and X. Thong Nguyen. An architecture for modelling situa-
tion and threat assessment. In Proceedings of SimTecT 2003, 2003.

US Congress, Office of Technology Assessment. Who Goes There: Friend or
Foe? U.S. Government Printing Office, 1993.

Joeri van Laere. Challenges for IF performance evaluation in practice. In Pro-
ceeedings of the 12th International Conference on Information Fusion, 2009.

Kalyan Veeramachaneni, Lisa Osadciw, and Pramod Varshney. An evolution-
ary algorithm based approach for dynamic thresholding in multimodal bio-
metrics. In Proceedings of the 2004 International Conference on Biometric
Authentication, 2004.

Jaco Vermaak, Simon J. Godsill, and Patrick Perez. Monte Carlo filtering for
multi target tracking and data association. IEEE Transactions on Aerospace
and Electronic Systems, 41(1):309–332, 2005.

Kai Virtanen, Raimo P. Hämäläinen, and Ville Mattila. Team optimal signaling
strategies in air combat. IEEE Transactions on Systems, Man and Cybernet-
ics, 36(4):643–660, 2006.

Eitan Wacholder. A neural network-based optimization algorithm for the static
weapon-target assignment problem. ORSA Journal on Computing, 1(4):
232–246, 1989.

Mattias Wahde. Biologically inspired optimization methods. WIT Press, 2008.

Edward L. Waltz and James Llinas. Multisensor Data Fusion. Artech House,
1990.

Kenneth P. Werrell. Archie to SAM: A Short Operational History of Ground-
Based Air Defense. Air University Press, Maxwell Air Force Base, Alabama,
USA, 2005.

Wayne L. Winston. Operations Research: Applications and Algorithms.
Wadsworth Publishing Company, 1997.

Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, San Francisco, CA, 2nd edition, 2005.

Ning Xiong and Per Svensson. Multi-sensor management for information fu-
sion: issues and approaches. Information Fusion, 3:163–186, 2002.

REFERENCES 177

Chun Yang, Erik Blasch, and Ivan Kadar. Optimality self online monitoring
(OSOM) for performance evaluation and adaptive sensor fusion. In Pro-
ceedings of the 11th International Conference on Information Fusion, 2008.

Lotfi A. Zadeh. The role of fuzzy logic in the management of uncertainty in
expert systems. Fuzzy Sets and Systems, 11:197–198, 1983.

Xiangping Zeng, Yunlong Zhu, Lin Nan, Kunyuan Hu, Ben Niu, and Xiaoxian
He. Solving weapon-target assignment problem using discrete particle swarm
optimization. In Proceedings of the 6th World Congress on Intelligent Con-
trol and Automation, 2006.

Nevin Lianwen Zhang and David Poole. Exploiting causal independence in
Bayesian network inference. Journal of Artificial Intelligence Research, 5:
301–328, 1996.

Publications in the series
 Örebro Studies in Technology

 1.	 Bergsten, Pontus (2001)  Observers and Controllers for Takagi 	
	 – Sugeno Fuzzy Systems. Doctoral Dissertation.

 2.	 Iliev, Boyko (2002)  Minimum-time Sliding Mode Control of 	
	 Robot Manipulators. Licentiate Thesis.

 3.	 Spännar, Jan (2002)  Grey box modelling for temperature 		
	 estimation. Licentiate Thesis.

 4.	 Persson, Martin (2002)  A simulation environment for visual 	
	 servoing. Licentiate Thesis.

 5.	 Boustedt, Katarina (2002)  Flip Chip for High Volume and Low 	
	 Cost – Materials and Production Technology. Licentiate Thesis.

 6.	 Biel, Lena (2002)  Modeling of Perceptual Systems – A Sensor 	
	 Fusion Model with Active Perception. Licentiate Thesis.

 7.	 Otterskog, Magnus (2002)  Produktionstest av 			
	 mobiltelefonantenner i mod-växlande kammare. Licentiate Thesis.

 8.	 Tolt, Gustav (2003)  Fuzzy-Similarity-Based Low-level Image 	
	 Processing. Licentiate Thesis.

 9.	 Loutfi, Amy (2003)  Communicating Perceptions: Grounding 	
	 Symbols to Artificial Olfactory Signals. Licentiate Thesis.

10.	 Iliev, Boyko (2004)  Minimum-time Sliding Mode Control of 	
	 Robot Manipulators. Doctoral Dissertation.

11.	 Pettersson, Ola (2004)  Model-Free Execution Monitoring in 	
	 Behavior-Based Mobile Robotics. Doctoral Dissertation.

12.	 Överstam, Henrik (2004)  The Interdependence of Plastic 		
	 Behaviour and Final Properties of Steel Wire, Analysed by the 	
	 Finite Element Metod. Doctoral Dissertation.

13.	 Jennergren, Lars (2004)  Flexible Assembly of Ready-to-eat Meals. 	
	 Licentiate Thesis.

14.	 Jun, Li (2004)  Towards Online Learning of Reactive Behaviors in 	
	 Mobile Robotics. Licentiate Thesis.

15.	 Lindquist, Malin (2004)  Electronic Tongue for Water Quality 	
	 Assessment. Licentiate Thesis.

16.	 Wasik, Zbigniew (2005)  A Behavior-Based Control System for 	
	 Mobile Manipulation. Doctoral Dissertation.

17.	 Berntsson, Tomas (2005)  Replacement of Lead Baths with 	
	 Environment Friendly Alternative Heat Treatment Processes in 	
	 Steel Wire Production. Licentiate Thesis.

18.	 Tolt, Gustav (2005)  Fuzzy Similarity-based Image Processing. 	
	 Doctoral Dissertation.

19.	 Munkevik, Per (2005)  ”Artificial sensory evaluation – 		
	 appearance-based analysis of ready meals”. Licentiate Thesis.

20.	 Buschka, Pär (2005)  An Investigation of Hybrid Maps for Mobile 	
	 Robots. Doctoral Dissertation.

21.	 Loutfi, Amy (2006)  Odour Recognition using Electronic Noses in 	
	 Robotic and Intelligent Systems. Doctoral Dissertation.

22.	 Gillström, Peter (2006)  Alternatives to Pickling; Preparation of 	
	 Carbon and Low Alloyed Steel Wire Rod. Doctoral Dissertation.

23.	 Li, Jun (2006)  Learning Reactive Behaviors with Constructive 	
	 Neural Networks in Mobile Robotics. Doctoral Dissertation.

24.	 Otterskog, Magnus (2006)  Propagation Environment Modeling 	
	 Using Scattered Field Chamber. Doctoral Dissertation.

25.	 Lindquist, Malin (2007)  Electronic Tongue for Water Quality 	
	 Assessment. Doctoral Dissertation.

26.	 Cielniak, Grzegorz (2007)  People Tracking by Mobile Robots 	
	 using Thermal and Colour Vision. Doctoral Dissertation.

27.	 Boustedt, Katarina (2007)  Flip Chip for High Frequency 		
	 Applications – Materials Aspects. Doctoral Dissertation.

28.	 Soron, Mikael (2007)  Robot System for Flexible 3D Friction Stir 	
	 Welding. Doctoral Dissertation.

29.	 Larsson, Sören (2008)  An industrial robot as carrier of a laser 	
	 profile scanner. – Motion control, data capturing and path 	
	 planning. Doctoral Dissertation.

30.	 Persson, Martin (2008) Semantic Mapping Using Virtual Sensors 	
	 and Fusion of Aerial Images with Sensor Data from a Ground 	
	 Vehicle. Doctoral Dissertation.

31.	 Andreasson, Henrik (2008) Local Visual Feature based 	
	 Localisation and Mapping by Mobile Robots. Doctoral Dissertation.

32. 	 Bouguerra, Abdelbaki (2008) Robust Execution of Robot
	 Task-Plans: A Knowledge-based Approach. Doctoral Dissertation.

33. 	 Lundh, Robert (2009) Robots that Help Each Other:
	 Self-Configuration of Distributed Robot Systems.
	 Doctoral Dissertation.

34. 	 Skoglund, Alexander (2009) Programming by Demonstration of 	
	 Robot Manipulators. Doctoral Dissertation.

35. 	 Ranjbar, Parivash (2009) Sensing the Environment:
	 Development of Monitoring Aids for Persons with Profound
	 Deafness or Deafblindness. Doctoral Dissertation.

36. 	 Magnusson, Martin (2009) The Three-Dimensional Normal-	
	 Distributions Transform – an Efficient Representation 		
	 for Registration, Surface Analysis, and Loop Detection.
	 Doctoral Dissertation.

37.	 Rahayem, Mohamed (2010) Segmentation and fitting for 		
	 Geometric Reverse Engineering. Processing data captured by a 	
	 laser profile scanner mounted on an industrial robot.
	 Doctoral Dissertation.

38.	 Karlsson, Alexander (2010) Evaluating Credal Set Theory as 	
	 a Belief Framework in High-Level Information Fusion for 	
	 Automated Decision-Making. Doctoral Dissertation.

39.	 LeBlanc, Kevin (2010) Cooperative Anchoring – Sharing Information
	 About Objects in Multi-Robot Systems. Doctoral Dissertation.

40.	 Johansson, Fredrik (2010) Evaluating the Performance of TEWA 	
	 Systems. Doctoral Dissertation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

