
Path Planning in 3D Environments using the Normal Distributions Transform

Todor Stoyanov, Martin Magnusson, Henrik Andreasson and Achim J. Lilienthal
Center of Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden

Abstract— Planning feasible paths in fully three-dimensional
environments is a challenging problem. Application of existing
algorithms typically requires the use of limited 3D representa-
tions that discard potentially useful information. This article
proposes a novel approach to path planning that utilizes a
full 3D representation directly: the Three-Dimensional Normal
Distributions Transform (3D-NDT). The well known wavefront
planner is modified to use 3D-NDT as a basis for map represen-
tation and evaluated using both indoor and outdoor data sets.
The use of 3D-NDT for path planning is thus demonstrated to
be a viable choice with good expressive capabilities.

I. INTRODUCTION

The task of navigation in the context of mobile robotics
can be defined in a relaxed manner as the process of
determining and maintaining a course or trajectory to a
goal location [1]. Needless to say, reliable navigation is a
key requirement for autonomous robots and has been an
active research area for decades. Currently, the predominant
framework for navigation is built upon four components:
localization, mapping, motion/path planning and path follow-
ing. With the advance of six degrees of freedom Simultane-
ous Localization and Mapping (SLAM) algorithms accurate
three-dimensional maps are becoming available online during
navigation. Thus, planning in 3D environments is becoming
a more feasible and an increasingly important task.

Although a lot of progress has been made in the mo-
tion planning community, applications in real world mobile
systems have largely been limited to a flat floor scenario.
When dealing with full 3D environments, many approaches
attempt to reduce the problem dimensionality. Cost maps
[2][3][4] are one popular technique that utilizes an estimate
of the traversability of space, usually stored in a 2D grid.
The so obtained cost maps can be coupled with a grid-
based planner as in [3], or a cost-aware RRT implementation
as in [2][4]. Such approaches however greatly depend on
the terrain traversability estimate and may sacrifice path
discovery in environments lacking a trivial 2D projection.

Implementation of full 3D-aware methods on real plat-
forms is often hindered by the fact that modeling un-
controlled 3D environments is in general a very difficult
problem. Most applications for mobile robots utilize eleva-
tion maps for terrain representation and assume that valid
models are available. This however has two disadvantages
— first, the uncertainty in the environment maps is usually
not modeled, and second elevation grids cannot be used to
represent overhanging objects and multi-story environments.
Recent work has addressed these issues separately. In [5] the
authors present an extension to RRT’s that utilizes a particle
filter framework to model uncertainty in state transitions.

Further work by the same group [6] also models cost
of terrain traversability to produce more efficient vehicle
paths. Another approach presented in [7] utilizes a statistical
framework to explicitly model the state uncertainty of a
robot traversing an elevation grid. The techniques proposed
in these works offer a promising research direction to cope
with the inherent uncertainty in the robot state and the
environment, but still are limited by the underlying elevation
grid environment model.

A different approach to addressing the path planning
problem is the use of a more informative environment repre-
sentation scheme. A recent work from the domain of legged
robot locomotion [8] uses Gaussian processes to estimate a
predictive model of the terrain and handle the estimation un-
certainty. The planner presented though is tailored to legged
robots and can only model a single elevation level. Another
approach for a legged robot [9] utilizes tri-mesh models and
region segmentation algorithms to provide versatile planning
capabilities. The presented approach uses a global planner
for obtaining the end-to-end path and a set of local planners,
suitable for the terrain type traversed. Although this approach
could be migrated to a wheeled robot scenario as well,
triangulation and region growing/segmentation are expensive
operations and provide little utility beyond the planning task.

A novel approach to handling path planning in combined
indoor and outdoor scenarios proposed in [10] utilizes a
Multi-Level Surface (MLS) map. MLS is a generalization
of the elevation grid terrain representation that stores a set
of vertical patches in each cell, thus allowing for correct
handling of overhanging objects. A benefit of this approach
is that the MLS map can be obtained directly from the
underlying SLAM architecture and incorporates an estimate
of the uncertainty of the observed environment. The authors
propose a scheme to plan paths using MLS maps [11],
through a dimension projection and the extraction of a
2D binary traversability map. The so obtained occupancy
map can be used as an input to a wavefront propagation
algorithm [12] or another suitable two dimensional path
planner. Although this approach could be used to plan paths
over multi-layered terrains, the dimension projection imposes
some limitations. For example, if a path is required from
a specific location on any given floor of a building to the
same location on another floor, a 2D map cannot correctly
represent the overlapping sections of the environment.

This article proposes to address the limitations of current
path planners by using the Three-Dimensional Normal Dis-
tributions Transform (3D-NDT) for spatial representation.
3D-NDT provides a compact, yet expressive environment

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 3263

description and is well suited for point set registration and
mapping. Thus, to achieve an integrated approach to the au-
tonomous navigation problem, it is advantageous to explore
the use of 3D-NDT as a path planning data structure. The
well known wavefront path planning algorithm is extended to
operate on 3D-NDT spatial representations, avoiding dimen-
sion projection and possible loss of significant information.
The next section proceeds with a description of 3D-NDT
and a summary of its applications. Section III describes the
proposed path planner. Finally Section IV demonstrates the
feasibility of the approach on real-world data sets.

II. 3D-NDT

The Normal Distributions Transform was originally de-
veloped for 2D laser scan registration [13]. The central
idea is to represent the observed range points as a set of
Gaussian probability distributions. NDT was later extended
to three dimensions [14] and applied to the domains of 3D
scan matching and loop detection [15], as well as change
detection [16]. One of the key advantages of 3D-NDT is the
fact that it forms a piecewise smooth spatial representation,
resulting in the existence of analytic derivatives. Thus, 3D-
NDT can be coupled with standard optimization methods to
produce state of the art registration of 3D point clouds. The
correctly registered 3D-NDT scans can then be stacked to-
gether, possibly using a global network optimization scheme,
to form a map of the explored environment.

The planner proposed in the next section assumes that a
3D-NDT map is already available. Nevertheless, as several
possibilities exist for computing and storing NDT cells,
the remainder of this section describes the procedure used
in our implementation. Given a set of N sampled points
P = {(pxi, pyi, pzi)|i = 0...N}, the first step of the
algorithm constructs an OctTree representation of P . The
use of an OctTree for storage of 3D-NDT cells in general is
not necessarily an optimal choice, but was deemed a good
candidate for the needs of the proposed path planner. OctTree
leafs usually have pre-set sizes, typically in an attempt to
obtain well fitting Gaussian distributions in each cell. Due to
differences in the sparsity and size of the data sets processed,
the choice of an optimal leaf size can vary substantially. It
is therefore advantageous to attempt to estimate a good leaf
size adaptively, based on the observed points.

The 3D-NDT implementation used initially sets a conser-
vative pre-set leaf size (a cube with sides of four meters).
Next, a Gaussian distribution with mean µ and covariance
C is estimated for each leaf, using the respective point sets
Pleaf = {(pxi, pyi, pzi)|i = 0...l} :

µ =
1

l

i=l∑
i=0

 pxi
pyi
pzi

 (1)

M =

 px0 − µx .. pxl − µx
py0 − µy .. pyl − µy
pz0 − µz .. pzl − µz

 (2)

C =
1

l − 1
MMT (3)

At this point some of the cells might hold points from
different objects, resulting in a distribution that does not
correctly represent the environment. This effect is due to the
inherent unimodality of Gaussian PDFs that is not necessarily
reflected in the observations. Unfortunately, statistical tests
for unimodality of multivariate distributions are quite com-
plicated and time consuming. Thus, a heuristic approach was
used to determine if leaf cells should be split to obtain better
fitting approximations. The test used computes a residual
εi = pi − µ for each observation pi and an overall residual
variance σ2

ε . A measure of the model fitness is obtained:

fit =

∑N
i=0 ε

2
i

σ2
ε

(4)

The proposed fitness criterion penalizes models with a high
frequency of outliers, as these result in disproportionately
large residuals. A smaller fitness value indicates a better
coverage of the observed points and no need to split the cell.
In the proposed implementation, an empirically set threshold
of 1000 is used and all cells are further split until satisfying
the fitness criterion or reaching a minimal cell size (see Table
II in Section IV for a summary of all parameters). The results
obtained with this ad-hoc approach were satisfactory. Further
improving the approximation accuracy of the 3D-NDT rep-
resentation was thus left as a future research direction, as it
is not the focus of this work.

After estimating the 3D-NDT map the original points are
no longer necessary and can be disposed of. Thus, just nine
values are used to represent the local surface shape in a
cell — three for the mean value and six for the symmetric
covariance matrix. This greatly reduces the storage require-
ments for a map and ensures that the size depends on the
explored area and not on the number of observed points. It is
important to note that after representing the point set as a set
of Gaussian distributions, the only information that the path
planner can utilize is what is available from the 3D-NDT
data structure — namely the means and covariance matrices
for each cell. An example of a point cloud and its 3D-NDT
representation is shown in Fig. 1.

III. USING THE 3D-NDT FOR PATH PLANNING

This section describes the proposed extension of the grid-
based wavefront propagation algorithm to a 3D-NDT based
map. It is usually not computationally feasible to use grid-
based path planning methods in higher-dimensional prob-
lems. Note however that though the operational environment
of the robot is fully 3D, the dynamics of the vehicle constrain
it to locally move on a plane, possibly inclined up to a
maximal vehicle specific roll and pitch. Thus, there is no
need to propagate the wavefronts in a vertical direction or
towards cells belonging to non-traversable terrain (walls in an
indoor environment for example). The wavefront algorithm is
intuitive, easy to implement and has guaranteed convergence,
thus making it a good choice for a base path planner on 3D-
NDT maps. The proposed modified planner is introduced
in Algorithm 1 and further discussed in the following para-
graphs.

3264

Fig. 1: Left: A point cloud acquired with a 3D laser in an indoor hallway environment. Right: 3D-NDT representation of
the same point cloud. Ellipsoids are used to visualize the Gaussian distributions in each cell. All ellipsoids are centered at
the distribution means and orientated and scaled according to the respective covariance matrices

Algorithm 1: The 3D-NDT wavefront path planner

1: Initialize active cell list Q
2: ∀q ∈ C : q.cost =∞
3: qgoal.cost = 0
4: Q← qgoal
5: while Q not empty do
6: qcur ← Q.pop()
7: if CollisionCheck(qcur) then
8: Qnext ← AccessibleNeighbors(qcur)
9: if Qnext.cost > qcur.cost then

10: Qnext.cost = qcur.cost+ cost(Qnext, qcur)
11: Q.push(Qnext)

The algorithm presented is very similar to the 2D version
of wavefront propagation, but has two important distinctions
that utilize the 3D-NDT representation. The first modified
component is the CollisionCheck subroutine. While in
a 2D grid based approach this routine is a simple check
of the binary occupancy value of the cell, the modified
version is more involved. The second modification is in the
AccessibleNeighbors routine, which has also been changed
to accommodate the specific constraints of a vehicle moving
in a 3D environment. Finally, in order to handle the non-
uniformity of the 3D-NDT grid, the cost function propagated
cost(Qnext, qcur) is proportionate to the Euclidean distance
between the cells considered. Throughout this section, typical
path planning notation is used — namely C : {q} is used to
denote the configuration space of the robot.

A. State collision detection (CollisionCheck)
As the size of the 3D-NDT cells is generally not correlated

to the size of the robot, an accurate collision check routine
should evaluate a local neighborhood containing the tested
configuration. Thus, a nearest neighbor search for all cells
within a sphere with a double of the robot radius is performed
in the OctTree. Using this immediate robot neighborhood, the
routine in Algorithm 2 evaluates the safety of the configura-
tion state q. The cells in the immediate neighborhood N are
split in two classes — possible support and possible colliding
cells. Support cells cover space that could potentially be

Algorithm 2: CollisionCheck

1: Input q ← configuration state to be evaluated
2: N ← all OctTree cells within 2 x RobotRadius
3: for ∀n ∈ N do
4: if Angle(n, q) < maxPitch then
5: pSupportCells← n
6: else
7: pCollisionCells← n
8: if ∃ni ∈ pSupportCells : not horizontal or inclined

then
9: return Collision

10: if ∃ni ∈ pCollisionCells : Collides(q, ni) then
11: return Collision
12: return No Collision

traversed by the vehicle, while offering a stable kinematic
support. On the other hand, possible collision cells cannot be
traversed and belong to obstacles that can hinder the robot.
The classification is performed by evaluating the angle that
the vector µcurrent − µneighbor makes with the horizontal
plane. If this value is larger then the maximum vehicle
pitch the neighbor is regarded as a possible collision. Once
the cells are classified, two further conditions need to be
satisfied — namely that pSupportCells indeed provide a
stable support for the robot and that the pCollisionCells
do not actually collide with the robot body.

In order to check the stability of the support cells, first
the traversability of each cell in the set is assessed. As
proposed in [15], a threshold on the smallest eigenvalue of
the covariance matrix is used to determine the roughness of
the terrain. The inclination of the Gaussian in the NDT cell
is computed and compared to the maximum allowed pitch
of the vehicle. In practice the roughness and inclination are
precomputed for the entire map and the cells are classified
as rough, horizontal, inclined or vertical planar cells (Fig. 2).
Thus, this step amounts to querying the class of each cell.

Finally, the cells that do not belong to the robot support
are evaluated for collision with the robot sphere. This routine
(line 10 in Algorithm 2) is performed in two steps. First, a

3265

Fig. 2: Classified cells for the scan shown in Fig. 1. In a
colored print dark blue signifies a sharply inclined cell, red
is used for vertical flat surfaces, green is used for flat
horizontal cells and cyan for rough cells (not in this image).

fast check is performed, testing if the mean to mean distance
between the current and neighboring cell is bigger then the
robot radius — |µdiff | = |µcurrent − µneighbor| > r. Even
if this condition is satisfied, it is still possible that a collision
might occur. A fast conservative check for a collision is
performed using a re-scaled mean to mean distance µsc.

µsc =
|µdiff | − r
|µdiff |

µdiff (5)

The vector µsc estimates the distance between the mean of
the neighboring cell and the edge of the robot sphere. A
Mahalanobis distance based on the neighbor’s covariance
matrix Cneigh thus provides a measure of the likelihood
that the endpoint of this vector belongs to the neighbor’s
distribution. Thus, the final collision check is performed by
thresholding µTscCneighµsc < 1.

B. Finding accessible neighbors

The second modification to the 2D wavefront algorithm
is in the AccessibleNeighbors routine. In the original
wavefront algorithm this call returns the free cells with
adjacent indexes in the occupancy grid map. The logic
behind this routine is kept, but the implementation is changed
to accommodate for the 3D-NDT representation used. In
practice, the support cells extracted from the immediate
neighborhood evaluated in CollisionCheck are cached and
used as the input for this routine. To ensure that it is
possible to move from the current configuration qcur to a
cell in the support set, a further test is performed using
the TransitionPossible routine (Algorithm 3). Cells are
deemed non-accessible if the mean-to-mean distance is more
than the sum of the diagonals of the cells (not direct
neighbors) or if there is a large difference in the orientation
of the local surface ellipsoids.

C. Planning the path

Upon termination of the 3D-NDT Wavefront algorithm,
all cells from which the goal is reachable are assigned a cost
value. In case the cost of the start location is finite,

Algorithm 3: TransitionPossible

1: Input qcur and qneigh state transition to be tested
2: s← sum of half diagonals of the cells
3: if |µcur − µneigh| > s then
4: return false
5: vc ← eigenvector with smallest eigenvalue for Ccur
6: vn ← eigenvector with smallest eigenvalue for Cneigh
7: if Angle(vc, vn) > maxPitch then
8: return false
9: return true

a path to the goal exists and can be generated by following
the cost function gradient, starting from qstart and iteratively
checking for an accessible neighbor with lower cost.

IV. RESULTS

In order to demonstrate the validity and utility of the
proposed path planning algorithm, test runs were performed
in four different environments. The data sets used were
collected by means of an actuated two dimensional range
scanner (SICK LMS), using different mobile platforms. The
logged odometry pose data and point sets were used as input
to a 3D-NDT based scan matcher, as in [15]. The registered
scans were then merged and stored for use in several path
planning queries. The point sets used are shown in the left
column of Fig. 3, while the right column shows the reachable
3D-NDT cells, produced by the planner. The remainder of
this section discusses the features of each environment and
the performance of the proposed algorithm.

The first environment tested is an example of a typical
indoor scenario — a robot moving through a hallway with
flat floors. Even in such classical situations, there are a
number of challenges that are better faced with a 3D planning
strategy. One such example occurs when planning close to
tables or chairs, that normally have thin legs and might not
be visible in a 2D laser scan. The proposed approach handles
these areas elegantly thanks to the 3D collision evaluation.
As the potential map reflects, the areas near the top wall of
the hallway are correctly considered unreachable, due to the
presence of tables and chairs.

The second and third test environments consist of service
tunnels in a mine. Although the floors are mostly flat, there
are a number of rough floor areas, as well as ditches, that
produce holes in the point clouds. The planning task is
further complicated by the presence of other service vehicles,
that occupy some of the otherwise traversable areas of the
data sets. The potential maps obtained for these data sets are
also sound — rough and unobserved areas of the corridors
are not present in the final maps and thus avoided when
planning paths. Note that in the Kvarntorp data set, due to a
ditch there is no connectivity in the upper left corner of the
map.

The last test point set used is from an outdoor asphalt
processing site. The environment consists of uneven and
sloping terrain, including several piles of gravel and asphalt.
Paths were planned in this map using a vehicle model that
allows for a maximum pitch of up to 0.2 rad, which is

3266

Fig. 3: Left: Point clouds from four test environments. From top to bottom data sets are labeled ”hallway”, ”mine”,
”Kvarntorp” and ”piles”. For description of the environments, check Section IV. Right: Wavefront propagation maps for
the respective environments. Ellipsoids are scaled (x3) for display purposes. Colors show proximity to the goal. Planned
paths are shown as red lines, with start and goal locations marked by red cones. Only reachable cells shown.

reflected in the fact that the the pile foundations are still
considered traversable in the output map.

For each of these four environments, a goal location that
coincides with a free state was selected. Start locations, also
considered collision free were selected for each map and
used as an input to the proposed algorithm. Since ground
truth terrain traversability was not available for the collected
data sets, the feasibility of the produced paths was evaluated
only empirically. The quality of the paths, as demonstrated

in Fig. 3, exhibits the typical characteristics of a gradient-
following approach. The paths are geometrically feasible, but
are not necessarily optimal in minimizing jitter or vehicle
travel time. Note that the presented approach is indeed a
pure path planner and as such doesn’t take into consideration
the dynamics of the robot. Another feature of the data
sets that has to be mentioned is that although some of the
environments contain tunnels, truly overhanging structures
and multi-layered traversable terrain are not present.

3267

Data Set Points NDT Reachable NDT Planning
Cells Cells Time Time

Hallway 636k 4 423 282 12.5s 0.2s
Mine 863k 21 460 1 635 16.6s 1.8s
Kvarntorp 1 528k 31 269 4 120 26.5s 3.1s
Piles 183k 1 361 782 3.3s 0.6s

TABLE I: Environment complexity and runtime statistics

The performance of the planner is influenced by the
metaparameters in Table II. The maximum and minimum
cell size and model fitness affect the quality of the 3D-NDT
map and thus also the path quality. Notably, increasing the
minimum cell size or lowering the fitness threshold would
speed up planning, but could also induce errors in modeling
small details like narrow passages. The Mahalanobis and
eigenvalue thresholds change the behavior of the collision
checker and the discrimination of safe states. Increasing the
parameters allows for larger clearance from obstacles and
rougher horizontal cells respectively. The last two parameters
model the physical characteristics (width and tipping pitch
angle) of the robot executing the path.

The complexity of the environments tested and the average
path planning times (using an Intel Core2 Duo CPU at 3
GHz) are shown in Table I. Several general observations can
be made, based on the tests performed. The first notable re-
sult is that the path planning time (column 6) is dominated by
the time necessary for building the 3D-NDT representation
of the environment (column 5). This is not surprising, as
the planner utilizes information available in the NDT map to
speed up the search. It is important to note that in an online
navigation scenario, the 3D-NDT map would be available
by default as it is an integral part of the mapping system. A
second observation to note is that the planning time depends
more on the number of reachable cells (column 4) then on
the number of cells in the map (column 3). This relation
can be explained by the fact that searching for a cell in the
OctTree has an expected computational cost of O(log(N)).
This operation is performed in a manner proportionate to the
number of expanded cells K, as each cell has a finite number
of neighbors. Thus, the complexity of the path planner can
be approximated as O(Klog(N)), which in the presented
examples is dominated by the number of reachable cells.

V. CONCLUSION

This article proposed a novel approach to path planning for
wheeled mobile robots in semi-structured 3D environments.
The use of 3D-NDT as an underlying map representation
allows for an expressive and computationally effective spatial
modeling. A well known 2D path planning algorithm is
extended to operate on a 3D-NDT map, thus removing
the need for expensive terrain modeling and segmentation
operations. The proposed approach was demonstrated to
produce feasible paths in four different test environments,
with varying characteristics. The use of 3D-NDT as a spatial
data structure was shown to be beneficial for reducing
the complexity of the proposed path planner, removing the
necessity of projecting into two dimensions and the possible
loss of path diversity.

Max Min Model Mahal- Eigenval. Robot Max
Cell Cell Fitness anobis Roughness Radius Pitch
Size Size Thresh Thresh Thresh
4m 0.4m 1000 1 0.1 1m 0.2rad

TABLE II: Meta-parameters and their values
The algorithm presented is a grid planner and thus suffers

from the limitations of this class of approaches. Therefore,
an interesting direction for future work is the extension of a
sampling based planner to 3D-NDT maps. Another direction
to be explored is the comparison between paths produced
by the proposed algorithm and by existing approaches. Path
quality estimation in real world 3D environments with no
ground truth is still an open question and should be addressed
to facilitate an objective comparison.

ACKNOWLEDGMENTS

This work is partially sponsored by the All-4-eHAM project
(http://aass.oru.se/Research/Learning/all4eham/index.html)

REFERENCES

[1] M. Franz and H. Mallot, “Biomimetic robot navigation,” Robotics and
Autonomous Systems, vol. 30, pp. 133–153, 2000.

[2] J. Lee, C. Pippin, and T. Balch, “Cost based planning with RRT in
outdoor environments,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. IROS 2008.

[3] B. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in Proc. of the Workshop on Planning with Cost Maps, IEEE
Int. Conf. on Robotics and Automation, 2008.

[4] D. Ferguson and M. Likhachev, “Efficiently Using Cost Maps For
Planning Complex Maneuvers,” in Proc. of the Workshop on Planning
with Cost Maps, IEEE Int. Conf. on Robotics and Automation, 2008.

[5] N. Melchior and R. Simmons, “Particle RRT for path planning with
uncertainty,” in Proc. of IEEE Int. Conf. on Robotics and Automation,
ICRA 2007.

[6] J.-Y. Kwak, M. Pivtoraiko, and R. Simmons, “Combining cost and
reliability for rough terrain navigation,” in 9th Int. Symp. on Artificial
Intelligence, Robotics and Automation in Space (iSAIRAS’08).

[7] G. Kewlani, G. Ishigami, and K. Iagnemma, “Stochastic mobility-
based path planning in uncertain environments,” in Proc. of IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems. IROS 2009.

[8] C. Plagemann, S. Mischke, S. Prentice, K. Kersting, N. Roy, and
W. Burgard, “Learning predictive terrain models for legged robot
locomotion,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems. IROS 2008.

[9] R. B. Rusu, A. Sundaresan, B. Morisset, K. Hauser, M. Agrawal, J.-C.
Latombe, and M. Beetz, “Leaving Flatland: Efficient Real-Time 3D
Navigation,” Journal of Field Robotics (JFR), 2009.

[10] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems. IROS 2006.

[11] P. Pfaff, R. Kümmerle, D. Joho, C. Stachniss, R. Triebel, and W. Bur-
gard, “Navigation in Combined Outdoor and Indoor Environments
using Multi-Level Surface Maps,” in In Workshop on Safe Navigation
in Open and Dynamic Environments at IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, IROS 2007.

[12] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[13] P. Biber and W. Straßer, “The normal distributions transform: A new
approach to laser scan matching,” in Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems. IROS 2003.

[14] M. Magnusson, T. Duckett, and A. J. Lilienthal, “3d scan registration
for autonomous mining vehicles,” Journal of Field Robotics, vol. 24,
no. 10, pp. 803–827, Oct 24 2007.

[15] M. Magnusson, “The three-dimensional normal-distributions transform
— an efficient representation for registration, surface analysis, and
loop detection,” Ph.D. dissertation, Örebro University, Dec. 2009.

[16] H. Andreasson, M. Magnusson, and A. J. Lilienthal, “Has something
changed here? autonomous difference detection for security patrol
robots,” in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. IROS 2007.

3268

