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Consistent Pile-Shape Quantification for Autonomous Wheel Loaders

Martin Magnusson and Hakan Almqvist
Centre for Applied Autonomous Sensor Systems (AASS)
Orebro University, Sweden

Abstract— This paper presents a study of approaches for
selecting an efficient attack pose when loading piled materials
with industrial construction vehicles. Automated handling of
piled materials is a highly desired goal in many construction
and mining applications. The main contributions of the paper
are an experimental study of two novel approaches for selecting
an attack pose from 3D data, compared to previously published
approaches and extensions thereof. The outcome is based on
quantitative validation, both with simulated data and data from
a real-world scenario with nontrivial ground geometry.

1. INTRODUCTION
A. Overview

Handling heterogeneous piled materials is a core compo-
nent in many construction and mining applications. A typical
work cycle of a wheel loader working in these applications
(see Fig. 1) consists of three repeated tasks: loading, hauling,
and dumping. Hauling between the load and dump points can
be handled in a number of ways, whether by GPS-waypoint
following, or some more flexible approach from the rich
literature on mobile-robot navigation. Dumping is relatively
straightforward and can, in principle, be performed with
preprogrammed motions. Efficient loading is a harder problem
than the dumping sequence, and no practical solution for
fully autonomous vehicles exists today. For economical and
environmental reasons, it is important that the bucket is filled
maximally in each load cycle and that the mechanical stress
on the machine is minimised. When an automated wheel
loader approaches a gravel pile, then, it should first analyse
the shape of the pile (from a 3D range scan) and evaluate
potential artack poses along the pile edge; i.e., positions and
orientations at which it is efficient to approach the pile.

This paper presents a comparison of previously published
approaches and also presents the results of two novel
methods for selecting attack poses. The outcome is based
on quantitative experimental validation, both with simulated
data and data from a real-world site.

The present paper contains several contributions.

a) Head-to-head comparison: Prior work on automated
loading has only described single methods. This paper
presents a comparative evaluation of two previous methods
as well as two novel methods.

b) Real-world evaluation: Prior publications only
present experiments in simulation or in lab-like setups. This
paper presents evaluations on real-world data from an asphalt-
production site with nontrivial ground geometry.

c) 3D extension of Singh and Cannon [12]: A 3D
extension of the 2D method that was published by Singh and
Cannon [12] has been implemented and evaluated.

Fig. 1.

The experimental platform in the target environment.

d) Pile evaluation using a three-part bucket model: As a
way to overcome the drawbacks of the two-part bucket model
of Singh and Cannon [12], a method that uses a three-part
bucket model to estimate the pile properties is also presented.

e) Pile evaluation using quadric fitting: In addition to
the aforementioned methods, a novel method for attack-pose
evaluation is presented, which fits quadric surfaces in order
to estimate the local convexity and skewness characteristics
of the pile at each candidate attack pose.

f) Sub-column moment estimate: The results also demon-
strate the benefit of using polygon clipping to increase the
resolution of previous methods.

g) Pile detection: Another contribution is a method for
classifying unordered point clouds into “pile” and “nonpile”
segments. This problem has largely been ignored by previous
authors, but is important in cluttered real-world environments.

B. Loading piled materials

It is not always evident which attack pose is optimal for a
pile, but a number of heuristic criteria can be defined. One
such criterion is that the wheel loader’s bucket should enter
the pile flat on the ground. If not, it is more difficult to fill the
bucket completely, and it will be more difficult to maintain a
good pile profile. The pile should also be attacked at a slightly
convex point, so that more of the pile volume is in the middle
of the bucket than at the edges. Another criterion is to attack
the pile so as to prevent an asymmetric load (sideloading the
bucket). These criteria have also been noted by, e.g., Singh
and Cannon [12]. Using these criteria, the search space for
finding an optimal attack pose is one-dimensional: a point
along the 2D edge profile of the pile. However, the profile of
the pile may be different higher up than at the bottom edge.



Therefore a perpendicular attack pose at a convex point at
the pile’s bottom edge may still lead to an uneven load. For
this reason, Sarata et al. [8] also consider other orientations
than the pile’s normal at each edge point, leading to a two-
dimensional search space. The same approach is used in the
present work.

II. PREPROCESSING
A. Pile representation

Given a point cloud acquired with some range sensor (e.g.,
an actuated SICK lidar), there are several possibilities as to
how to process the points to create a pile model.

Sarata et al. have published a number of papers describing
the development of an automated wheel loader [6, 7]. In
their work, the pile is modelled as a set of columns, where
each column stores the mean height of the points within the
column — in other words, an elevation map. The column
model requires a dense sampling of points; otherwise the
columns must have wide bases in order to contain a sufficient
number of points. Using a scan resolution of one degree, the
distance between points on the scan line is 35cm at 20m
range. Therefore, 50-cm columns were used for the results
shown in this paper. With this resolution, holes in the column
model would start appearing at 28.6 m range.

The advantage of using a column model is that it is easy
to compute the volume of the pile from the columns, and
since the columns effectively subsample the point cloud,
handling the column model requires less time and memory
than operating on the full point cloud.

Another alternative is to use the full point cloud, and to
estimate the surface of the pile with a triangulated mesh.
Triangulated meshes, however, are not trivial to create. As
long as the pile model is created from a single, ordered,
point cloud (as can be expected from an actuated lidar) it is
easy to add meaningful triangles in the ideal case. However,
depending on the surface reflectivity, there may be missing
points, in which case a raster-based triangulation will fail even
on an ordered point cloud. This is likely to happen, e.g., in
loading applications at an asphalt-production site, where piles
of milled asphalt present a particularly challenging surface.
In the more general case of modelling a pile from a registered
set of scans, more time-consuming triangulation algorithms
would have to be employed. For the present work we used
semi-3D Delaunay triangulation. Assuming a ground-plane
model exists, the volume of the pile can easily be computed
by summing the volume of the triangular columns between
the triangle faces and the ground.

The main advantage of the triangle model compared to a
column model, of course, is the increased resolution, which
should lead to more accurate volume estimates.

Without explicit surface generation in the form of trian-
gulation or a column model, the raw point cloud can also
be used. In this case, a local surface parametrisation can be
estimated “on the fly”; e.g., by fitting a quadric surface to a
local neighbourhood of points.

The main advantages of this approach is that no potentially
time-consuming triangulation preprocessing is required, and

(b) Corresponding column model.
“ground”=brown and “pile”=green. Tall columns are coloured lighter than

(a) Point cloud, classified into

Grid lines are 1 m apart. short ones.

Fig. 2. Failure of using a column model to classify pile regions. In these
figures, the scan data are viewed from above. The approximate viewpoint
of the camera in Fig. 1 is indicated by the yellow arrow. The approach
proposed in Section II-B has been used to correctly detect the pile in the
lower right area of Fig. 2(a). The part of the ground in the upper area is
higher than most parts of the pile, as can be seen by the column heights in
Fig. 2(b), but does not have a surface slope and shape that is pile-like.

also that it is not susceptible to artifacts in the volume estimate
caused by holes in the triangle mesh or missing columns (as
is otherwise likely to happen with sparse or uneven data).

B. Pile detection

The first problem encountered by an autonomous wheel
loader as it approaches a pile is to reliably detect which parts
of the current view that belong to a pile. This problem has
not been explicitly handled in previous publications.

The work of Sarata et al. uses the heights of the columns
to locate the pile, which assumes that the pile is the only
object on a flat floor, as in the publications showcasing their
method [11, 2]. However, in a real environment such as the
one depicted in Fig. 1, it is not a viable solution to only
group areas of a certain height. Surface slope and shape must
also be considered in order to discriminate between the pile
(to the right in the image) and the drivable slope (to the left)
in this case. See Fig. 2 for an illustration of the problem of
classifying piles using height alone. The same problem is
also present in cluttered work-site environments, with other
machines and objects that may be large but are not piles.

A better solution is to consider also the surface orientation
and roughness within a local neighbourhood of each point.
The method outlined in the following paragraph is similar
to the method for boulder detection in piles presented by
Magnusson [3].

For each scan point p, perform principal component
analysis (PCA) to find the eigenvectors and eigenvalues of the
distribution of surface points within a local neighbourhood
radius p. The sorted eigenvalues 1; < A, < A3 describe
the shape of the surrounding surface. Points that are planar
enough (with 1; <« A, < A3; i.e., with a distribution that is
not linear or spherical) and have the right inclination (such
that the angle between the corresponding eigenvector e; and
the horizontal plane is within two angle thresholds a; and a5)
are classified as “pile”. Planar points with an angle below
are classified as “ground”. Nearby points with the same class
are then clustered and segmented (using radially-bounded
nearest-neighbour clustering [1]), and only the “pile” clusters
are used for the succeeding pile analysis.



C. Ground-plane detection

In order for the volume estimates of the triangle- and
column-based representations to be meaningful, a ground-
plane estimate is also required. In the present implementation,
MLESAC [13] is used to fit a plane to the points classified as
“ground” by the preceding PCA pile detection. The scan is
then rotated and translated so that the ground plane coincides
with the xy-plane in the local coordinate frame.

III. ATTACK-POSE EVALUATION

This section contains the heart of the paper: a comparison
of several ways to evaluate potential attack poses, including
related work published on the topic.

Once the points that belong to the pile have been selected,
the system needs to search along the bottom edge of the
pile in order to find an efficient attack pose. In this search,
the heuristics described in Section I-B are used; i.e., pile
convexity and bucket sideload.

Potential attack poses are selected from each scan point
that is at the border of the pile, and close to the ground plane.
The orientation of the attack pose is taken along the normal
of the border point. (In the presented results, only the normal
direction is used, in order to make the presentation clearer.
In the real application, alternative orientations at an angle
offset up to +10° are also considered.) A set of quantities
estimating the local convexity and sideload characteristics
are computed for each potential attack pose.

A. Column-model moment estimates

Sarata et al. [8, 9, 10, 11, 2] evaluate poses using a model
of the moments acting on the bucket, computed from a column
model. For each column i inside the trajectory that is followed
by the bucket when it has entered the pile, the moment is
computed from the height A; of the column and the lateral
distance w; to the bucket’s centre. The selected pose is the
one that minimises A, = 3, hjw;.

In our implementation, the columns are clipped (using
Sutherland-Hodgman polygon clipping) so as to include only
the part of each column that falls inside the bucket trajectory,
as opposed to using discrete columns [9]. In other words,

Ac = viw, (M)
with v; denoting the partial volume of column i that is inside
the bucket trajectory.

B. Two-part bucket model

Singh and Cannon [12] use a 2D bucket model split in
two, and examine the area that falls into each half in order to
judge the convexity and sideload at each attack pose. Their
two-part bucket model approach has been demonstrated in a
2D simulation. The implementation used for the present paper
uses a straightforward extension using volumes computed
from the triangulated 3D point cloud instead of areas.

With V; and V, denoting the pile volume within the left
and right half of the bucket, the convexity measure is simply

Be=V,+V,. 2)

Bad fill Good fill

Fig. 3. Failure of B¢ convexity measure. Pile profile shown in green, bucket
shown as black outline. Both cases would give similar values of B¢, while
Cc would correctly label the left case as concave and thus undesirable.

In the work of Singh and Cannon, potential attack poses
are generated by tracing the two front corners of the bucket
model along the edge of the pile. This way of selecting
potential poses is slightly different from the one used for the
methods in Sections III-A, III-C, and III-D. The convexity
measure B¢ depends on this particular way of selecting attack
poses. If the attack pose is not such that the bucket corners
touch the pile edge, B¢ is not a relevant measure of convexity.
The sideload is measured as

— |V1_Vr|
ST Vv,

so that Bg = 0 is a perfectly even distribution and By =1 is
the case when all of the volume is in one half of the bucket.

This approach is quite sensitive to the point sampling of the
pile, especially at places that are only mildly convex. Because
only a small part of the bucket model enters the pile when
the front corners touch the edge, it can easily happen that
Bg =1 even when the bucket enters the pile perpendicularly.
It is clear that a model of the whole bucket-fill trajectory is
preferable, both for convexity and side-load estimation, but
then another convexity measure is required.

3)

C. Three-part bucket model

An alternative to the two-part bucket model of Singh and
Cannon is to use a three-part model. Let V. be the volume
inside the centre third of the bucket and V; and V, the left
and right thirds. The convexity can then be modelled as

—_ VC
~ max(Vy, V)

which is a more explicit convexity measure than the area, or
volume, inside the bucket used in (2). Convex areas have C¢ >
0 and concave areas have C¢ < 0. The two-part convexity
measure Be cannot discriminate between perfectly flat and
concave points. To illustrate a further problem with the B¢
convexity measure, consider Fig. 3.

The three-part sideload is measured (similarly to the two-
part model) as

1, 4)

Vi = Vil
=—. 5
STV, AV, ®)

D. Quadric fitting

Disregarding a triangle- or column-based volume estimate,
the convexity and sideload can also be estimated by fitting a
quadric surface to the points within the local neighbourhood
of a potential attack pose. The local neighbourhood is taken
to be all the points that fall into the volume traced by the
bucket trajectory.

For a point p on a smooth surface, the principal directions
are the directions in the tangent plane with minimum and



Algorithm 1 Estimate local curvature at a surface point p.

o Let P={p’ 1, be a set of points in the neighbourhood
of p, expressed in the global coordinate frame.
1) Fit a plane to the points in X using total least
squares. Use the plane’s normal as an estimate of
the surface normal n at p.
2) Construct a rotated principal frame X, (7).
3) Map the points of £ into X, (6):

i iy ilT i
pi=[x ¥ Z] =RG-p. (10
4) Fit the rotated principal quadric
2 = ax? + bx,y, + cy* +dx, +ey,  (11)

to the mapped points.

« The horizontal curvature corresponds to a. The sideload
can be estimated by the horizontal slope term d.

maximum curvatures. The principal coordinate frame X, =
[x,y,2, 1T is an orthonormal frame [5] that has X, and y,
aligned with the principal directions, and z, aligned with
the surface normal n. In the principal frame, the principal
quadric is a second-order description of the surface [4].

A common approach for quadric fitting (adapted from
Mclvor and Valkenburg [4]) is listed in Algorithm 1. It
makes use of a rotated principal frame X,. For pile convexity
estimation, it is mostly the horizontal curvature that is
interesting. The horizontal curvature may not correspond to
the principal curvature. Therefore, a rotated principal frame,
defined such that one axis is aligned with the surface normal
and one is parallel to the ground, should be used instead.
Consider the “world” coordinate frame X,, = [X,, Y Z 1T
with x,, and y,, in the ground plane, and z,, pointing to the sky.
The transformation for a point pi, from the world coordinate
frame to the rotated principal frame for point p,, is

p. = R.(p,, — pw). (6)

The rotated principal frame can be defined using
T
R, = [1'1 r 1‘3] , (N

with r3 = n, r, = (z, Xn)/(||z,, X n||), r; =r3 Xr,.

The rotated principal frame is related to the principal frame
X,, by a rotation around n.

For fitting the parameters of the rotated principal quadric
(step 4 of Algorithm 1), the BFGS quasi-Newton algorithm is
used in our implementation. Empirical tests have shown that,
for this problem, the BFGS algorithm is faster than using the
true Hessian of the minimisation problem. Furthermore, line
search was found to be faster than a trust-region approach
for limiting the step size in each iteration.

The quantities used for evaluating attack poses are taken
from (11), with convexity and sideload

Dc = —-a, (8)
Ds =ld|. €))

Fig. 4. The simulated data set. Colours denote the ground-truth classification
of points into “pile” (green/dark) and “nonpile” (brown/light) points. White
points show simulated sensor positions for Section IV-B.

IV. EXPERIMENTS

This section presents experimental evaluations of the meth-
ods introduced above. The scan data used for these evaluations
is publicly available at http://aass.oru.se/~mmn/#data.

A. Validity

First, evaluations of the algorithms described in Section III
using a simulated pile scan will be presented. In this case,
laser scan points were generated by ray tracing in a scene
containing pile-like geometric primitives (cones and planes).
The simulated data set is shown in Fig. 4. The pile in this
case consists of two cones, simulating a pile with a small
hollow running down the centre.

A small test demonstrating how well the different quantities
describe the convexity and sideload of the simulated pile is
shown in Fig. 5. The convexity measures B¢, C¢, and D¢ all
show non-convex values for the central region. The effect is
seen most clearly for C¢ and D¢, and by the fact that B¢=0.
However, the plots also demonstrate the high noise levels in
Ac (mainly due to the tessellation of the pile model) even
though the central region generally has higher values than
the surroundings, as it should.

The sideload measures Cs and Dg mostly agree on small
sideload values along the rounded convex areas of the cones.
By is substantially more noisy. Because of the low convexity,
only a very small volume is inside the bucket model at
the points evaluated by this method, which causes the ratio
between the two halves to fluctuate. Still, in this case, all the
methods would succeed in choosing to attack the pile at a
convex area, perpendicular to the pile edge.

B. Consistency

A good shape measure should give consistent values
independently of the viewpoint at which the pile is observed
or the sensor configuration. In a real scenario where the
machine is constantly scanning and evaluating the pile while
moving towards it, it is important that the top-candidate attack
pose does not jump along the pile edge.

To measure consistency, we computed the value of the
quantities for several sets of scans, using one set of edge
points. All scans in each set were registered to the same
coordinate frame. The per-point standard deviation was used
to measure the consistency for each quantity.

In order to produce comparable values of the quantities,
which have different magnitudes, the statistics in Table I are
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Fig. 5. Plotting one set of evaluation quantities for the simulated pile.

TABLE I

CONSISTENCY EVALUATION, SHOWING AVERAGE NORMALISED STANDARD DEVIATIONS.

Simulated Real
distance ~ view angle  sweep speed  sensor noise

Ac 0.789 0.956 0.724 0.960 035
Ap 0.954 0.981 0.861 0982 043
B¢ 0.150 0.272 0.100 0.281  0.29
Bs 1.250 1.217 1.025 1.154 124
Cc 0.137 0.707 0.156 0946 052
Cs 0.163 0.879 0.280 0.950  0.64
D¢ 0.088 0.290 0.094 0341 021
Dy 0.176 0.550 0.173 0.616 026

computed after normalisation. Each quantity is normalised
by subtracting the total mean value and dividing by the
total standard deviation (computed over all edge points and
all scans). In the table, the normalised average standard
deviation is presented; i.e., the mean of the normalised
standard deviations (over the n scans) of all edge points.

1) Distance: Eight scans of the simulated pile were created,
with sensor positions at distances between 6 m and 20 m from
the pile edge with intervals of 2m (always at a height of 3m
above the ground).

As can be seen in the first column of Table I, D¢ has
the smallest variance of the convexity measures (o). The
variance of Ac is substantially larger, and looking at the A;.
values, it can be seen that the corresponding values computed
with discrete columns [9] are even worse. The variance of
By is also quite large, which can, again, be explained by the
fact that B¢ and Bs only integrate over a small portion of
the pile edge.

2) View angle: In order to test the stability with respect
to viewing angle, another eight scans were simulated, each at
20 m distance from the hollow at the centre of the simulated
pile, but following a circular arc from 0° to 70°. The simulated
scanner positions in these tests and the distance tests of
Section IV-B.1 are shown with white spheres in Fig. 4.

In this case, the values shown in Table I are computed only
for the right half of the pile (from O m to —5.5 m). Otherwise
the influence of occlusions would cause the numbers to

convexity
moment (Ac)

1 0 -1 2 -3 -4 -5 -6
y coordinate (m)

Fig. 6. Consistency of convexity measures for different view angles. Ideally,
the width of each band of values should be zero.

be higher. Occlusions are especially problematic for the
triangulation-based quantities (B, and C,).

Even using only this half, the values are spread much
wider for C¢ and Cs than for D¢ and Dy. In Fig. 6 another
weakness of the Ac measure can be observed. For one of the
scans, the global minimum of A¢ is at y = 0. This point is
located at the centre of the pile’s hollow and is the worst
attack pose of all. The reason is that poses at which little
volume is covered by the bucket trajectory also result in a
lower Ac moment, whether or not it is a good attack pose.

3) Scanner sweep speeds: For this test, scans with simu-
lated scanner sweep speeds between 0.1 rad/s and 0.7 rad/s
were generated. The effect of a lower sweep speed is higher
vertical scan resolution. All scans use the same 1-degree
horizontal resolution. The results can be seen in the third
column of Table I. Using a higher sweep speed has a similar
effect to scanning from a larger distance (although when
scanning from further away the effective horizontal resolution
is also affected). Indeed, the standard deviations for this test
are similar to the ones for the distance test.

4) Scanner noise: The stability to sensor noise was also
evaluated. For this test, each scan point was perturbed by
Gaussian noise with standard deviation from zero up to 10 cm
along the direction of the corresponding ray.

As can be seen in the fourth column of Table I, the variance
is generally larger for this test than for the other, as is to
be expected for this amount of noise. The general trend that
the convexity and sideload measures from quadric fitting, D¢
and Dg, are more stable than the other can still be observed.
The only exception is that B¢ has lower variance in this case,
because it is computed from a smaller part of the pile.

C. Real-world data

The methods have also been evaluated on real-world pile
data. Only the results for one gravel pile (see Fig. 7) are
included in the paper, because of space constraints.

It is not trivial to obtain ground-truth data for the optimal
attack pose of any real-world pile. We have discussed optimal
attack procedures with human operators but it is rarely the
case that there exists a single optimal pose that we could
measure the distance from. Not being able to compute a
meaningful distance to a ground-truth optimal attack pose,
the presented real-world results instead show the same kind
of stability analysis as for the simulated data. The evaluation
methods were applied to five scans from different viewpoints



Fig. 7. Photo of the pile analysed in Fig. 8.
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Fig. 8. Outcomes for the real-world data. The three convex areas on this

pile are at y = —10m, =3 m to 1 m, and 4 m.

registered to the same coordinate frame. Fig. 8 shows the
values of the different pile-shape quantification methods for
the real-world pile. The sensitivity results are summarised in
the rightmost column of Table L.

The variances are slightly larger in this case than for the
corresponding tests with the simulated data. What’s more
important to note is how the convexity measures straddle zero
in some cases (see the upper plots in Fig. 8). This could have
the adverse effect that an attack pose that is selected when
the vehicle starts driving toward the pile is later regarded
as unacceptable, causing disruptions for the vehicle’s path
planner. This problem is most pronounced around the bulge
between 0 and —3 m (the dark patch in Fig. 7), for all values
except D¢, and also at a point at =6 m for C¢. The same
problem can also be seen in the sideload plots in Fig. 8.
There are many points along the pile edge where the Cs and
Bg values are small in one scan but large in other scans.

D. Computation time

Average computation times per pose evaluation are as
follows: Sarata (Ac¢): 1.8 ms, Singh/Cannon (B¢ and Byg):
1.5 ms, three-part model (C¢ and Cy): 5.5 ms, quadric fitting
(D¢ and Dyg): 1.6 ms. These times do not include triangulation,
generation of the column model, or pile detection. The three-

part bucket model is about three times slower than the other
three methods. However, all methods can be performed in
just a few milliseconds per point.

V. CONCLUSIONS AND FUTURE WORK

We conclude that using quadric fitting to estimate the
convexity (D¢) and sideload (Dg) is a good solution in
an automated loading scenario. Compared to previously
published methods for the same task, it is more stable to
differences in viewpoint, sensor resolution, and sensor noise.
The accuracy in that it correctly identifies good attack poses
is as good as or better than the other methods studied in this
paper. The execution time is also fast. It does not require
preprocessing in the form of triangulation or the creation of
an elevation map, which makes the speed benefit even larger.

This paper has discussed methods for quantifying convexity
and sideload. However, it is still an open question which
combination of these surface characteristics leads to the most
efficient bucket fill. Future work should study the effect of
different weighting schemes of these two characteristics, also
weighting poses by the estimated cost of driving there. Future
work will also investigate operation over longer sequences
and in varying soil conditions.
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