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Abstract

Autonomous vehicles are already widely used in industrial lo-
gistic settings. However, applications still lack flexibility, and
many steps of the deployment process are hand-crafted by
specialists. Here, we preset a new, modular paradigm which
can fully solve logistic problems for AGVs, from high-level
task planning to vehicle control. In particular, we focus on
a new method for multi-robot coordination which does not
rely on pre-defined traffic rules and in which feasible and
collision-free trajectories are calculated for every vehicle ac-
cording to mission specifications. Also, our solutions can
be adapted on-line to exogenous events, control failures, or
changes in mission requirements.

Introduction

Industrial actors involved in the development of autonomous
vehicles (e.g., autonomous forklifts for warehouses) are con-
stantly interested in decision support tools which could im-
prove the flexibility and the performance of their products.
Atlas-Copco' (Larsson, Appelgren, and Marshall, 2010),
Kiva Systemsz, INRO? (Thomson and Graham, 2011) and
Kollmorgen?*, among others, aim to achieve complete au-
tomation in Autonomous Ground Vehicle (AGV) deploy-
ments. Although it is current practice to employ automated
solutions in several aspects of logistics automation, many
key parts of the deployment phase are still ad-hoc and man-
ual. For instance, the definition of AGV paths is often done
off-line, and these paths are hand crafted for each different
setting. Also, large-scale industrial deployments of AGVs
rarely include more than very crude heuristics to optimize
mission scheduling. Another limitation of current industrial
solutions is the resolution of spatial conflicts, which is of-
ten performed off-line through manually synthesized traffic
rules, whose correctness cannot be formally proved. Other
fallacies of real systems include the lack of support for re-
sources and an often only partial support for on-line mis-
sion constraint posting (e.g., changed deadlines, new re-
quirements, collapses of resource availability).

When automated solving components are used in indus-
trial AGV deployments, these are usually not integrated. For
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instance, it is often the case that path planning is de-coupled
from trajectory generation, or that the allocation of vehicles
to destinations does not depend on the trajectory that will ac-
tually be followed by the vehicles. This leads to inefficien-
cies in the quality of the solutions and reduced flexibility
in dealing with contingencies. Furthermore, the methodol-
ogy for assessing how many AGVs are necessary for a par-
ticular deployment typically consists of what-if analyses on
simulated scenarios. This analysis becomes more cumber-
some and, especially, less accurate if many de-coupled solv-
ing modules are employed.

In this paper, we introduce a system which strives to facil-
itate all phases of deployment of AGVs in real settings. Our
approach is modular, in that it can be applied “partially” or
in “pieces”, depending on the requirements of the particu-
lar deployment at hand. For instance, AGV paths may be
automatically generated by a path planner (as is the case in
this paper), or the routes could be manually decided by a
field specialist (as is often the case in industrial settings).
The same principle applies to task planning, which can be
automated or manually decided by human operators (in this
paper, the specific task planning algorithm is omitted). To
achieve this, the modules rely on a shared, constraint-based
representation of the overall problem, and each module re-
fines this representation from “its own” point of view.

Related Work

Many of the problems underlying the automation of task and
motion planning for industrial vehicles have been addressed
in research. As a result, important advancements have been
achieved in addressing separate parts of the overall prob-
lem. Algorithms such as M* (Wagner and Choset, 2011),
an extension of the classical A* to multi-robot systems, and
the work of Luna and Bekris (2011), whose focus is a new
method for multi-robot path planning which is computation-
ally efficient and complete, are recent examples of promis-
ing theoretical results. A new system for the coordination of
large multi-robot teams has been presented by Kleiner, Sun,
and Meyer-Delius (2011). The authors propose a system that
generates an overall, optimal road map configuration. How-
ever, in this work the agents are assumed as moving on a
grid, and the local motions are calculated for each robot in-
dependently from the motions of other robots.

A common approach for multi-robot path planning which



usually guarantees fast results is the assignment of prior-
ity levels to different robots. This can be seen as an im-
proved version of hand-coded traffic rules, but cannot ensure
deadlock-free situations. An example of an algorithm which
relies on this paradigm is presented by ter Mors (2011).
The overall system can find optimal, conflict-free routes in
low polynomial time, but relies on a pre-defined roadmap
shared by all agents for path planning. Desaraju and How
(2011) further extend the idea of prioritized path planning,
by substituting the pre-defined priority levels with a merit
based token, which is passed among agents. Once a robot
has planned its own path, it circulates it to the other team
members, which in turn update their trajectories.

In recent years, a number of approaches to multi-robot
coordination have been presented which rely on pre-defined
paths. Examples include the work of Kleiner, Sun, and
Meyer-Delius (2011), whose algorithm is resolution com-
plete and can be easily applied to situations in which a large
number of agents is moving. However, the overall coordi-
nated motions lack flexibility, as time is considered only im-
plicitly in configurations along the paths. Therefore, the fi-
nal result cannot take into account motion delays, or explicit
temporal constraints imposed on the single agents and their
positions over time.

A Constraint-Based Approach

A trajectory is a sequence of points and an associated tem-
poral profile, which specifies exactly when the vehicle will
be in a certain point. Instead of reasoning in terms of one
trajectory, in our approach we reason in terms of tempo-
ral and spatial constraints on trajectories. The collection of
spatial and temporal constraints on one vehicle’s trajectory
is called a trajectory envelope. We can describe the overall
mission planning problem (which will be defined precisely
shortly) as a Constraint Satisfaction Problem (Tsang, 1993,
CSP) where variables represent vehicles, their values repre-
sent possible trajectories that they should execute, and con-
straints are spatial and temporal requirements on these tra-
jectories. A solution to the overall problem is therefore an
assignment of trajectories to vehicles such that none of the
requirements on trajectories is violated.

Trajectory envelopes are the key representational ele-
ments used to express and solve our problem. More pre-
cisely, (see also figure 1):

Definition 1. A trajectory envelope is a triple (S,D,O)
where

o S = {51,...5,} is a set of linear spatial constraints in
the form A;x + By < C;; each set S; of spatial con-
straints specifies a convex region in the map within which
the vehicle must be contained;

e D ={Dy,...D,} is a set of linear temporal constraints
in the form l; < t§ —t7 < w;, where t (t7) represents
the time at which the vehicle enters (exits) the area spec-
ified by the set of spatial constraints S;; these constraints
provide bounds on when the vehicle is within the convex
region specified by S;;

e O = {04,...0,_1} is a set of linear temporal con-
straints in the form l; <t —t7, | < uy; these constraints
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Figure 1: A trajectory envelope consisting of two spatio-temporal
polygons.

provide bounds on when the vehicle is within the (convex)
spatial overlap between S; and S; 1.

Problem Statement

Given N vehicles, we define the overall mission planning
problem in our scenario as follows:

Definition 2. A mission planning problem is a tuple
(M,Z,G,T,V), where

o M is a metric map of the environment;

e 7 ={ly,...ln} is a set of coordinates in the map speci-
fying the initial location of all vehicles;

o G ={G1,...Gp} is a set of goals in the form (k, s, g),
each specifying that k loads must be transported from lo-
cation s to location g;

o T ={Ty,...T,} is a set of temporal constraints on GUZ;
these constraints are in the form l; < t, —t, < u;, where
tx and t, are start/end timepoints of a goal or initial po-
sition;

o V = {V1,...Vn} are the capacities of the vehicles (max-
imum amount € N of load each vehicle can carry).

Finding a solution to a mission planning problem is decom-
posable into three parts; first, compute an allocation of ve-
hicles to goals which achieves the necessary displacement
of loads to places; second, compute the trajectory envelopes
& for each vehicle; third, synthesize a set of temporal con-
straints 7o imposing that spatio-temporal polygons inter-
sect either only in space, or only in time, or not at all. Note
that a solution to a mission planning problem in fact repre-
sents sets of possible trajectories for each vehicle.

Our approach is based on four functional modules,
namely task planning, trajectory planning, trajectory
scheduling, and control. All modules output constraints cap-
turing some aspect of the mission’s requirements. Together,
these constraints define trajectory envelopes for all vehicles,
and provide a global representation of the mission, from its
high-level goals to the specific trajectories vehicles must ex-
ecute to achieve these goals. Each of the four modules pro-
gressively refines the representation, imposing increasingly
specific requirements:
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Figure 2: Overall information flow of the four solving modules.

1. Task planning decides goal locations for currently avail-
able vehicles, therefore constraining the start and end
points of vehicle trajectories. Also, task planning may im-
pose quantified temporal requirements on these trajecto-
ries, e.g., “vehicle A must reach goal (x,y) before time
t”, or “vehicle A must reach its goal before vehicle B”.

2. Trajectory planning decides locations that should be vis-
ited in-between goals for each vehicle. Crucially, these are
not simple paths between the initial and goal positions,
rather they are trajectory envelopes, i.e., temporally-
constrained sets of spatial constraints.

3. Trajectory scheduling imposes further temporal con-
straints which ensure that the trajectory envelopes of dif-
ferent vehicles do not intersect in time and space. As ex-
plained below, this is a hybrid form of spatio-temporal
reasoning based on state-of-the-art scheduling techniques.

4. The Control module employs a kinematic and geomet-
ric model of a vehicle to generate and follow one specific
trajectory that lies within the trajectory envelope obtained
as a result of the above modules. This results in appropri-
ate control signals for the vehicle or in the selection of a
new trajectory within the trajectory envelope in the case
that the currently selected trajectory does not adhere to
the constraints.

Note that commitment to a specific trajectory in the above
scheme is performed only at the control level, and that the
controller is given the constraints within which it can se-
lect one of many trajectories to follow. As we will show,
the way in which these constraints are posted and propa-
gated by the first three modules ensures that for each vehi-
cle there exists a trajectory, within the constraints, which is
feasible with respect to all vehicles. Also, due to the particu-
lar type of hybrid temporal-spatial scheduling performed by
the trajectory scheduling module, the selection of mutually-
compatible trajectories by all vehicles can be done in poly-
nomial time.

All communication between the four modules occurs
through a spatio-temporal constraint database (see figure 2),
which contains variables and constraints defining an over-
all CSP. The variables of this problem are spatio-temporal
polygons, and the constraints are spatial or temporal rela-
tions defining the trajectory envelopes. Note that the tem-
poral constraints in D and O constitute a Simple Temporal

Problem (Dechter, Meiri, and Pearl, 1991, STP), which is
solvable in cubic time through the Floyd-Warshall (Floyd,
1962) temporal constraint propagation algorithm. The algo-
rithm computes the lower and upper bounds [I;, u;] of all
timepoints given the constraints in the database, and is trig-
gered every time a constraint is added to the database. Thus,
through temporal constraint propagation, the bounds of all
timepoints ¢; of the spatio-temporal polygons are maintained
at all times consistent with the temporal constraints that are
present in the spatio-temporal database. Note also that if a
temporal constraint is added which invalidates previously
existing temporal constraints, the constraint database can de-
tect this though a propagation failure, and thus rejects this
constraint. This feature of temporal constraint propagation
is employed in the trajectory scheduling to search for tem-
poral constraints that avoid collisions between vehicles.

For convenience, we will refer to the sets S and D U O
as the spatial and temporal envelopes of a trajectory, respec-
tively. Also, we refer to the i-th set of spatial and tempo-
ral constraints {S; U D; U O;} on a trajectory envelope as
a spatio-temporal polygon. Two spatio-temporal polygons
i and j are spatially overlapping if S; N S; # (. Tempo-
ral overlap is less straightforward: since the underlying STP
maintains bounds on the timepoints of spatio-temporal poly-
gons, temporal overlap must be assessed by choosing an ear-
liest start time for the timepoints. Specifically, two spatio-
temporal polygons ¢ and j are said to be temporally overlap-
ping in the earliest start time solution if [IF,1¢]N [lj"‘?, lje] # .
Note that two spatially and temporally overlapping polygons
belonging to trajectory envelopes of different vehicles entail
that the vehicles may collide.

Solving a Mission Planning Problem

It is often the case in real-world deployments that a partic-
ular task allocation strategy, i.e., a task planning module, is
given and cannot be substituted. This is due to the often very
domain-specific objective functions, preferences and char-
acteristics of the application scenario (e.g., a milk packag-
ing factory vs. an underground mine). For this reason, in the
following sections we omit details about task planning and
focus on modules (2—4). Consequently, we assume for the
purposes of the following description that a task planner has
decided, for each goal G = (s, g, k), a high-level plan that
achieves the displacement of % loads from s to g by an ap-



propriate set of vehicles. Each element of this plan is in the
form 7y, = (i, f, s, g), indicating that vehicle 7 should load
an amount f < V; of load in s and transport it to g. Obvi-
ously, f can also be equal to 0, when s represents the initial
position of a vehicle and g its first load pick-up location.

We can now define the solution to the mission planning
problem as follows:

Definition 3. A solution to a mission planning problem
(M,Z,G,C,V) with N vehicles is a triple (I, £, C) where

o II = {my,...,mp} is a set of high-level plans which
achieve the goals in G;

o & ={(51,D1,01)...(Sn,Dn,OnN)} is a set of trajec-
tory envelopes where
— &, is a set of spatial envelopes for the trajectory of ve-

hicle i;
— for every (i, f,s,g) in the high-level plan 11, S; con-
tains a sequence of spatial polygons (Si,...,5Sn)

where Sy contains location s, Sy, contains location g,
and each S; spatially overlaps S;i1;

— D, and O; are sets of temporal constraints defining the
temporal envelope of the trajectory for vehicle i; these
constraints impose that overlapping spatial polygons
also overlap in time;

o C =T U7y is a set of temporal constraints between the
start/end timepoints of any pair of spatio-temporal poly-
gons in E; this set contains the constraints ‘T expressing
the initial temporal requirements of the mission planning
problem, as well as a set of constraints T, which ensures
that the intersection of spatio-temporal polygons for dif-
ferent vehicles is either only spatial, or only temporal, or
neither (i.e., these constraints disallow collisions).

Trajectory Planning

In order to obtain trajectory envelopes, we first employ
a lattice-based planner to generate kinematically feasible
paths for the (non-holonomic) vehicles in the mission plan-
ning problem. A lattice can be seen as a generalization of a
grid: instead of using perpendicular lines, the state-space is
discretized by repeating the same primitive set of connect-
ing edges. We start from a set of kinematically acceptable
motion primitives which can be repeated over and over to
obtain a directed graph. Obviously, the graph need not be
completely specified from the start, and can be progressively
built during search. The graph is then efficiently explored
using deterministic, theoretically sound algorithms. In our
case, we chose to rely on the classic A* (Hart, Nilsson, and
Raphael, 1968) for optimal path generation®, and on one of
its most efficient anytime versions, ARA* (Likhachev, Gor-
don, and Thrun, 2003), which can provide provable bounds
on sub-optimality.

Our approach is inspired by existing lattice-based path
planners, as the ones successfully used in real world ap-
plication by Pivtoraiko, Knepper, and Kelly (2009) and by
Urmson, Anhalt, and others (2008).

3The resulting path is optimal wrt the choice of the set of prim-
itive motions and to the granularity with which the lattice is built.

Each vertex of the lattice represents a pose of the vehi-
cle in the form (z,y, 6), where = and y are coordinates on
a grid of a pre-determined resolution, and § € O is the ve-
hicle orientation, where © is the set of pre-selected possible
orientations for a specific vehicle model. For instance, in the
experimental runs presented in this paper, the grid resolution
is always equal to 0.2 meters, O is a set of 16 angles, equally
spaced between 7 and —m, and each vertex is connected to
15 others through pre-calculated, kinematically feasible mo-
tion primitives. In our setup, the cost is based on the distance
covered by each edge of the lattice, multiplied by a cost fac-
tor that penalizes backwards and turning motions.

Using off-line computation, it is possible to speed up the
exploration of the lattice in environments with obstacles in
two ways. First, as each edge is the instantiation of a pre-
calculated motion template, we can pre-compute for each
primitive the cells which the vehicle will partially or to-
tally occupy during the motion. This way, obstacle detec-
tion can be efficiently performed on-line, by checking the
occupancy level of each cell in the grid-partitioned environ-
ment. Second, a more informed heuristic function can be
pre-computed and stored in a lookup table (Knepper and
Kelly, 2006) by saving the minimum cost to connect two
poses in a specific range (10 meters, in the experimental runs
presented in this paper). This proves to be a much more effi-
cient heuristic than simple Euclidean distance, as it uses the
kinematic model of the non-holonomic vehicle to factor in
maneuvering costs. Both functions are however admissible,
and they entail optimal solutions when used with A*.

When the environment presents obstacles, a third heuristic
function is also used. Regardless of the pose of the vehicle,
each cell in the environment is associated with a value repre-
sented by the distance from the goal in a 8-connected graph.
All three heuristic functions are evaluated when a new ver-
tex of the lattice is expanded, and we always use the higher
in value. Clearly, the resulting heuristic function is not ad-
missible in environments with obstacles. This, however, is
not a big drawback in practical applications, where our goal
is to obtain drivable and kinematically feasible, albeit sub-
optimal, paths. Also, in real settings (as the one described
below), we preferably employ ARA* to explore the lattice,
in order to speed up the computation, therefore relinquishing
optimality anyway.

Recall that a trajectory envelope is defined as a set of tem-
porally constrained spatio-temporal polygons. The starting
point for computing the spatial constraints S, for vehicle ¢’s
trajectory envelope is a path obtained through the path plan-
ning strategy outlined above. Then, the computed spatial en-
velope is used together with the path and the minimum and
maximum speeds of the particular vehicle to determine the
temporal envelope of the trajectory (i.e., the temporal con-
straints D; and ;). These two procedures are described in
the following paragraphs.

Spatial envelope generation. For each vehicle, waypoints
are sampled along the path obtained by the path planning al-
gorithm. The sampling procedure is incremental, and works
as follows:



1. select the first two points of the path;

2. build a convex polygon around the vector defined by these
two points whose shape is the bounding box of the vehi-
cle, centered in the first point;

3. grow the sides of the polygon outwards, stopping the
growth of each side when it intersects with an obstacle
or when a threshold on growth has been reached;

4. select two points along the path immediately outside the
polygon, and go to step (2).

The resulting sequence of polygons is such that (1) the path
is completely covered by polygons, and (2) each polygon
intersects the next one®. The resulting polygons are used to
define the spatial envelope S; for each vehicle 7. All spatial
envelopes are then added to the spatio-temporal constraint
database.

Temporal envelope generation. Again starting from the
first point along a vehicle’s path, the path is traversed to
compute the distance covered by the vehicle while traveling
in each spatial polygon S; € S;. These distances are used
to compute the temporal bounds within which the vehicle
can possibly occupy each polygon and each area of polygon
intersection. For this computation, we employ two constant
speeds (Umin, Umax) corresponding to the minimum and max-
imum desired speeds for the vehicle. For each spatial poly-
gon S; we thus obtain a pair of bounds [I;, u;| restricting
the temporal distance between its start and end timepoints
(t3,t5), as well as a pair of bounds I}, u] restricting the
distance between the end time t7 of spatial polygon S; and
the start ¢, of spatial polygon S; 1. Together, all these
constraints constitute the spatial envelope D; U O; of the
trajectory of the i-th vehicle, and are added to the spatio-
temporal constraint database.

Trajectory Scheduling

The spatio-temporal polygons generated by the trajectory
planning module impose vehicles to be in certain (convex)
regions within certain temporal bounds. In order to complete
the synthesis of the solution to the mission planning prob-
lem, further constraints must be added (the set 7.,) in order
to prune out of the solution trajectory envelopes in £ those
trajectories that lead to collisions. This problem is cast as a
CSP whose variables are sets of spatio-temporal polygons
which have a non-empty spatial and temporal intersection.
The values of these variables are temporal constraints which
separate these temporally concurrent, spatially overlapping
polygons in time. In other words, the trajectory schedul-
ing module resolves concurrent use of floor space by al-
tering when different vehicles occupy spatially overlapping
polygons. This results in temporal constraints that disallow
the concurrent occupation of overlapping polygons by more
than one vehicle at a time.

The reduction of the trajectory scheduling problem to a
CSP is inspired by the ESTA precedence-constraint post-
ing algorithm (Cesta, Oddi, and Smith, 2002) for resource

SPolygon intersection is not guaranteed with this procedure,
which, however, gives very good results in practice.

Function SolveESTA (&) : success or failure
1 static Teol < 0

2 repeat

3 conflicts < {((¢7,t5), (t5,t5)) € €

4 15,6510 [5,05] #0 A SinS; # 0}
5 if conflicts # () then
6

7

8

9

MCS < Choose (conflicts, hyar)
resolvers < {(t,13) : Dy, Djzi € MCS}
while resolvers # () do

(t5,t5) < Choose (resolvers, hya)
10 resolvers <— resolvers \ (£{,17)
11 STP +— STPU (0 < t; — t§ < 00)
12 if STP is consistent then
13 7zo]<—7;01U(0§t§—tf§OO)
14 if SolveESTA (€) = failure then
15 | Teol = Tear \ (0 < #5 — 15 < 00)
16 else return success

17 until conflicts = ()

scheduling. The algorithm is a CSP-style backtracking
search (see algorithm SolveESTA ()). It starts by collect-
ing all pairs of spatio-temporal polygons that overlap both
spatially and temporally (line 3—4). These conflicts are the
variables of the CSP, and as usual in CSP search, ordered ac-
cording to a most-constrained-first variable ordering heuris-
tic (hyar) — the rationale being that it is better to fail sooner
rather than later so as to prune large parts of the search tree.
Once a conflict is chosen, its possible resolvers are identi-
fied (line 7). These are values of the CSP’s variables, and
each is a temporal constraint to be imposed between the pair
of spatio-temporal polygons that would eliminate their tem-
poral overlap. Note that since conflicts are pairs of spatio-
temporal polygons, there are only two ways to resolve the
temporal overlap, namely imposing that the end time of one
spatio-temporal polygon is constrained to occur before the
start time of the other, or vice-versa. Again as is common
practice in constraint-based reasoning, the resolver to at-
tempt first is chosen (line 9) according to a least constrain-
ing value ordering heuristic (hy,) — the rational being that
the value which leaves most options open for future choices
should be given precedence. The algorithm then attempts to
post the chosen resolving constraint into the spatio-temporal
constraint database (line 11). If the underlying STP is still
consistent, then the procedure goes on to identify and re-
solve another conflict through a recursive call (line 14). In
case of failure (line 15), the chosen value is retracted from
the spatio-temporal constraint database and another value is
attempted.

Clearly, the efficiency of the search for resolving con-
straints depends on how well-informed the value and vari-
able ordering heuristics are. In our specific case, we employ
two heuristics which take into account both the temporal
and the spatial features of the trajectory scheduling prob-
lem. The heuristic hy,; employed for variable ordering gives
preference to the pairs of spatio-temporal polygons that are
spatially closer to other conflicting pairs. The idea of this



heuristic is that conflicts that are “close” to other conflicts
are more likely to be the most difficult to solve, as the possi-
ble choices for resolving these conflicts will depend on how
other conflicts are resolved.

As a value ordering heuristic, we follow the method used
by Cesta, Oddi, and Smith (2002), whereby the temporal

bounds [Zf/e,u‘:/e] and [l;/e,u;/e] of the start/end time-

points of the chosen pair of spatio-temporal polygons are
analyzed to determine which ordering least restricts the tem-
poral slack of the intervals.

From Envelopes to Vehicle Control

The trajectory scheduling module performs the last step in
defining trajectory envelopes that solve the mission plan-
ning problem. Every vehicle’s control module must at this
point select one particular trajectory (i.e., a path and a speed
profile) within the vehicle’s trajectory envelope to execute.
However, it is important to note that the particular trajec-
tory chosen by each vehicle’s controller depends on which
trajectory other vehicles have chosen, as trajectories of dif-
ferent vehicles are temporally dependent.

The presence of temporal dependencies between trajecto-
ries entails that vehicle controllers must communicate their
choice to other controllers. This choice can be seen as a set
of temporal constraints 7¢,,, which is added to the shared
constraint database. Here, we leverage an important feature
of the STP underlying our constraint database: in a fully
propagated and consistent STP, i.e., one in which the bounds
[l;,u;] of all timepoints ¢; have been updated to reflect the
constraints, there exist two specific assignments of times to
timepoints that are temporally consistent, namely the earli-
est time assignment (ET) and the latest time assignment (LT).
The former is obtained by choosing the lower bound I; for
all timepoints, and the latter by choosing the upper bound u;
for all timepoints. Therefore, we can immediately obtain the
fastest and slowest speed profiles for all vehicles.

Our vehicle control scheme consists in a model predictive
controller (Qin and Badgwell, 2003) which synthesizes con-
trol outputs to the vehicle. These outputs enable the vehicle
to follow the given trajectory, both with respect to the spa-
tial constraints S; and with respect to a particular solution
to the temporal constraints in {D; U O;}. Having selected a
particular speed profile, this means that a controller must en-
ter and exit spatial polygons exactly at the times prescribed
in the particular speed profile selected for that vehicle (e.g.,
the fastest speed profile). Whenever these times cannot be
achieved, vehicle controllers must revise their trajectories
and compute new control outputs. Fortunately, to compute
an allocation of times which is different from the ET or LT,
it is sufficient to impose one constraint which models the
desired allocation of one timepoint, and this can be achieved
in polynomial time. As a result of propagation, the new ET
allocation will clearly be temporally feasible. Indeed, even
more interestingly, numerous alternative, globally consistent
speed profiles can be computed before hand, each of which
reflects one specific time in which vehicles should enter and
exit each spatial polygon on their trajectory.

Experimental Evaluation

We now present an experimental validation of the two cen-
tral modules of our approach, namely trajectory planning
and trajectory scheduling. We validate the modules both
qualitatively and quantitatively, with a special focus, in the
quantitative analysis, on the performance of the trajectory
scheduling algorithm. All test runs were performed in simu-
lation. The kinematic model employed in all the experiments
is that of a Linde H50D forklift.

Qualitative Evaluation

A single run in an industrial scenario was performed to
qualitatively assess the feasibility of the approach in a re-
alistic setting. For this purpose, we used a real map of an
underground mine (courtesy of Atlas-Copco Drilling Ma-
chines, see figure 3), where we deployed 7 identical ve-
hicles with pre-assigned tasks. Each task consisted in an
initial and final pose for one of the vehicles, in the form
{<xi7 Yi, 02>, <l'fa Y, 9f>}

The overall run consisted of three phases. First, our
lattice-based path planner generated in parallel individual
kinematically feasible paths. Second, the paths were sam-
pled to calculate the spatial envelopes for each vehicle.
Assuming that all the forklifts would start moving at the
same time, and defining the minimum and maximum desired
speed in the tunnels (Vmin,Vmax ), We thus obtained a temporal
envelope for each vehicle. The SolveESTA () algorithm
was then invoked to generate a solution to the mission plan-
ning problem. As explained above, the algorithm identified
all the conflicts in space and time over the temporally and
spatially constrained polygons, and solved them by impos-
ing additional temporal constraints 7,;.

In this specific run, considering the initial temporal and
spacial envelopes for each single vehicle, the scheduler iden-
tified three groups of conflicting polygons (shaded in fig-
ure 3). Each conflict reflects the fact that, with only the tem-
poral constraints stemming from the desired vy, and vpmax
of each vehicle along its nominal path, two or more vehicles
would be “allowed” to be in overlapping areas at the same
time, if they chose some particular velocity profiles.

The scheduler’s solution consisted of 13 temporal con-
straints. This resulted in revised bounds for each of the
spatio-temporal polygons such that in any consistent execu-
tion (e.g., the earliest start time, or fastest, execution) vehi-
cles yield to each other appropriately in order to avoid colli-
sions.

Extracting a specific trajectory for execution other than
the earliest and latest time trajectories takes about 250 mil-
liseconds. The total time required to generate the scheduled
trajectory envelopes was less than 40 seconds: the paths
were generated using the ARA* algorithm, with a cut-off
time of 5 seconds, and then used to grow a total of 140 poly-
gons for the 7 vehicles, while trajectory scheduling took less
than 34 seconds.

Quantitative Evaluation

To evaluate our approach in a more thorough and quan-
titative way, we generated a benchmark set of 900 tra-
jectory scheduling problems. On an obstacle free map of



Vehicle: Linde H50D
Size (WxL): 1900x4639 mm
# vehicles: 7

# polygons: 140

Size of solution: 13 constraints

Figure 3: A solution to a mission planning problem involving seven vehicles in an underground mine. Spatio-temporal polygons involved in

critical sets during trajectory scheduling are shaded.

width and length of 50 meters, we pre-defined 80 poses
{<l‘1, Y1, 91>7 ey <LL‘80, Y80, 980>}, where the (CL’, y) coordi-
nates of each pose correspond to one of 10 points spatially
distributed on a circle, 40 meters in diameter, and where the
orientation 6 is one of 8 pre-determined angles. Each pose
could be chosen as initial of final pose for a vehicle, with the
only constraint that the (z,y) coordinates of the two poses
should be different.

The experimental evaluation was performed by defining
9 test sets, each corresponding to an increasing number of
vehicles concurrently deployed in the environment, from 2
(the minimum number of vehicles whose spatial and tem-
poral envelopes could generate conflicts) to a maximum of
10. For each set, we performed 100 test runs, as follows. In
each run, we randomly chose initial and final poses for the
number of vehicles required, only avoiding that two or more
vehicles had the same starting or final (z, y) positions. Once
generated, the paths were used to obtain the spatial and tem-
poral envelopes with (Uin, Umax) = (0.05,15) meters per
second. In order to make the problems difficult to solve for
the scheduler, we also added temporal constraints imposing
that the temporal distance between all initial spatio-temporal
polygons is zero, thus forcing all vehicles to start moving at
the same time. This, combined with a non-zero minimum
speed for all vehicles, is what allows some benchmark prob-
lems to be unsatisfiable.

Again, we focused on analyzing the trajectory scheduling
efficiency, so we measured the time required by the sched-
uler to find a conflict-free solution for each run, or to identify
the problem as unsolvable. The results are shown in figure 4.
As expected, scheduling time grows exponentially with the
number of vehicles involved.

Two features of these results are interesting. First, note
that problem difficulty in this benchmark is somewhat artifi-
cially inflated as all vehicles are constrained to operate in an
area which is 40-meter diameter circle at roughly the same
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Figure 4: Quantitative evaluation of the trajectory scheduler.

time. Moreover, all vehicles are constrained to start moving
at the same time, as all starting spatio-temporal polygons
are constrained to occur at the same time and a minimum
velocity of zero is not possible. Even under these rather un-
likely circumstances, the average resolution time remains
under one second up to problems in which we deployed 8
vehicles. Second, recall that the solutions obtained through
the scheduling procedure represent a trajectory envelope for
each vehicle. Two single trajectories, the earliest time and
latest time trajectory, can be extracted for all vehicles in lin-
ear time (in the number of polygons). This is, even for the
most difficult problem, an operation which takes less than
10 milliseconds. Furthermore, even if one vehicle controller
decides it must stray from its current chosen trajectory, the
calculation of another trajectory for all other vehicles is also
a matter of milliseconds, as it can be done in cubic time.
Specifically the most challenging problem of our benchmark
contains 94 polygons, and we can extract a new trajectory



for all vehicles in less than 50 milliseconds.

Comparing heuristics. In a comparison against a random
choice variable and/or value ordering heuristic, the proposed
hyar and hy, lead to dramatically better performance. We
have also compared hy, to a heuristic commonly used in
scheduling which employs only temporal features of the
constraint network to determine the most constrained vari-
able (Cesta, Oddi, and Smith, 2002). Our spatio-temporal
heuristic lead to better performance of the backtracking
search algorithm, although a complete comparison is nec-
essary to establish whether the effect is due to the particular
problem structure of the benchmark.

Conclusions and Future Work

This paper presents a new approach to multiple vehicle coor-
dination in industrial environments. The framework is com-
posed of four different modules for solving logistics problem
for AGVs. The modules progressively refine a constraint-
based representation of the overall problem, taking into ac-
count high-level task planning goals and temporal require-
ments to ultimately obtain commands for vehicle control.
Our approach is engineered in a way that single modules
can be used independently, thus providing the flexibility re-
quired in industrial settings.

We have focused on the two central modules of our frame-
work, namely trajectory planning and trajectory schedul-
ing. Our main contribution lies in multi-robot system coor-
dination: instead of relying on ad-hoc traffic rules, or pre-
defined priority levels, we used an on-line scheduler to syn-
chronize the movements of the AGVs. Our scheduler allows
maximum flexibility, as vehicle trajectories can be globally
adapted to exogenous events, control failures, or changed
mission requirements. The two modules are evaluated both
qualitatively and quantitatively, proving that our approach
can be used on-line, and that the results can be immediately
employed by low-level controllers.

Our future work will focus on the full development of the
remaining two modules, the task planner and a robust model
predictive controller, for one or more specific industrial set-
tings. Also, we will explore the use of different heuristics
for trajectory scheduling. Finally, we intend to test the full
framework and/or parts of it in real industrial scenarios to
demonstrate the benefit of our new paradigm in terms of de-
ployability and efficiency.
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