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Chapter 10

Achim J. Lilienthal
Örebro University, Sweden

Improved Gas Source 
Localization with 
a Mobile Robot by 
Learning Analytical 

Gas Dispersal Models 
from Statistical Gas 

Distribution Maps Using 
Evolutionary Algorithms

ABSTRACT

The method presented in this chapter computes an estimate of the location of a single 
gas source from a set of localized gas sensor measurements. The estimation process 
consists of three steps. First, a statistical model of the time-averaged gas distribu-
tion is estimated in the form of a two-dimensional grid map. In order to compute 
the gas distribution grid map the Kernel DM algorithm is applied, which carries 
out spatial integration by convolving localized sensor readings and modeling the 
information content of the point measurements with a Gaussian kernel. The statisti-
cal gas distribution grid map averages out the transitory effects of turbulence and 
converges to a representation of the time-averaged spatial distribution of a target 
gas. The second step is to learn the parameters of an analytical model of average 
gas distribution. Learning is achieved by nonlinear least squares fitting of the 
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INTRODUCTION

A major problem for gas source localization in a natural environment is the strong 
influence of turbulence on the dispersal of gas. Typically, turbulent transport is 
considerably faster compared to molecular diffusion (Nakamoto et al., 1999; Rob-
erts and Webster, 2002). Apart from very small distances where turbulence is not 
effective, molecular diffusion can thus be neglected concerning the spread of gas. 
A second important transport mechanism for gases is advective transport due to 
prevailing fluid flow. Relatively constant air currents are typically found even in an 
indoor environment without ventilation (Wandel et al., 2003) as a result of pressure 
(draught) and temperature inhomogeneities (convection flow).

Turbulent flow comprises at any instant a high degree of vortical motion, which 
creates packets of gas that follow chaotic trajectories (Shraiman and Siggia, 2000). 
This results in a concentration field, which consists of fluctuating, intermittent patches 
of high concentration. The instantaneous concentration field does not exhibit smooth 
concentration gradients that indicate the direction toward the centre of a gas source 
(Lilienthal and Duckett, 2004b; Russell, 1999). Figure 1 illustrates actual gas con-
centration measurements recorded with a mobile robot along a corridor containing 
a single gas source. It is important to note that the noise is dominated by the large 
fluctuations of the instantaneous gas distribution and not by the electronic noise 
of the gas sensors. Turbulence is chaotic in the sense that the instantaneous flow 
velocity at some instant of time is insufficient to predict the velocity a short time 
later. Consequently, a snapshot of the distribution of a target gas at a given instant 
contains little information about the distribution at another time. However, under 
certain assumptions (e.g. that the air flow is uniform and steady) the time-averaged 
concentration field varies smoothly in space with moderate concentration gradients 
(Roberts and Webster, 2002).

analytical model to the statistical gas distribution map using Evolution Strategies 
(ES), which are a special type of Evolutionary Algorithm (EA). This step provides 
an analysis of the statistical gas distribution map regarding the airflow conditions 
and an alternative estimate of the gas source location, i.e. the location predicted by 
the analytical model in addition to the location of the maximum in the statistical gas 
distribution map. In the third step, an improved estimate of the gas source position 
can then be derived by considering the maximum in the statistical gas distribution 
map, the best fit, as well as the corresponding fitness value. Different methods to 
select the most truthful estimate are introduced, and a comparison regarding their 
accuracy is presented, based on a total of 34 hours of gas distribution mapping 
experiments with a mobile robot. This chapter is an extended version of the confer-
ence paper (Lilienthal et al., 2005).
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It is often desirable to know the spatial structure of the time-averaged gas dis-
tribution. The Kernel Distribution Mapping (Kernel DM) algorithm was introduced 
by Lilienthal and Duckett (Lilienthal and Duckett, 2003b) to compute a grid map 
representation of the structure of the time-averaged gas distribution. The input to 
the Kernel DM algorithm is a set of localized gas sensor readings. In this chapter 
we consider the case that the readings were collected by a mobile robot. The algo-
rithm is summarized in Section ”The Kernel DM Algorithm”. In itself, gas distribu-
tion mapping is useful for any application that requires estimating the average 
distribution of a certain gas in a particular area of the environment. For example, 
mobile robots that are able to build such a map can be used for pollution monitoring 
(DustBot Consortium, 2006), they could indicate contaminated areas in a rescue 
mission, or could be used in Precision Farming (Blackmore & Griepentrog, 2002) 
to provide a non-intrusive way of assessing certain soil parameters or the status of 
plant growth to enable a more efficient usage of fertilizer.

In this chapter, which is an extended version of a paper by the authors (Lilienthal 
et al., 2005), we describe a method to use statistical gas distribution grid maps in 
order to locate a gas source. An obvious clue for the gas source position is the maxi-
mum in the map. Experiments in an indoor environment indeed demonstrated that 
the concentration maximum estimate (CME)1 provides a satisfying approximation 
of the source location in many cases (Lilienthal & Duckett, 2004a). Under certain 
assumptions discussed in Sec. “Analytic Gas Distribution Model”, the spread of 
a gas that evaporates from a stationary source can be approximated as a Fickian 
diffusion process. Instead of the small diffusion constant that describes molecular 
diffusion the turbulent diffusion is ruled by a substantially larger turbulent diffusion 
constant K (eddy diffusivity). In the event of negligible advective transport due to 
a weak air current, the resulting average gas distribution takes a circular shape. In 
such cases, it was observed that the distance between the CME and the true source 

Figure 1. Normalized raw response readings from an example trial
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location was small. By contrast, the localization capability of the CME was found 
to be considerably degraded when the concentration map showed a stretched out 
distribution due to a dominant wind direction. According to the equations, which 
describe the time-averaged stationary gas distribution analytically (see Sec. “Analytic 
Gas Distribution Model”), the concentration decreases slowly along the direction 
of a constant air current. Thus, even small distortions due to rudiments of turbu-
lent concentration peaks can cause a large displacement of the point of maximum 
concentration. Also the localization error introduced by the fact that gas sensor 
measurements are acquired not exactly level with the gas source is more pronounced 
in the case of stronger air current.

A method that formalizes this qualitative argument is presented in Sec. “Step 
3 – Selection of Source Location Estimate”. The method allows distinguishing 
situations, where the CME is a reliable approximation of the source location from 
situations where the CME is unlikely to indicate the gas source position accurately. 
This is accomplished by comparing how well the statistical gas distribution map 
can be approximated by the analytical model (detailed in Sec. “Analytic Gas Dis-
tribution Model”), which describes the time-averaged gas distribution under certain 
idealized assumptions.

Apart from providing a measure of the reliability of the CME, the introduced 
method allows to derive an alternative estimate of the gas source position, which 
can be used in situations where the CME fails. To determine the analytical model, 
which approximates the given statistical gas distribution map most closely, the 
parameter set is optimized by means of nonlinear least squares fitting. Since the 
model parameters include the position of the gas source, the best fit naturally cor-
responds to an estimate of the source position. In contrast to the CME, the best fit 
estimate (BFE) is derived from the whole distribution represented in the statistical 
gas distribution grid map.

The rest of this chapter is structured as follows. First, the Kernel DM algorithm to 
compute statistical gas distribution grid maps is described in Sec. “Step 1 - Compu-
tation of a Statistical Gas Distribution Model”. Second, the adapted physical model 
that was used to approximate the time-averaged gas concentration is introduced in 
Sec. “Analytic Gas Distribution Model”. Then, the evolutionary strategy method to 
learn the optimal model parameters is detailed in Sec. “Step 2 – Learning Parameters 
of the Analytical Model”. Next, reasons that cause deviations between the physical 
model and the statistical gas distribution grid map are discussed in Sec. “Sources 
of Inaccuracy” and two strategies to select the best estimate of the gas source loca-
tion are presented in Sec. “Step 3 – Selection of Source Location Estimate”. Finally 
details of the experimental setup are given in Sec. “Experimental Setup” and results 
are presented in Sec. “Results”, followed by conclusions and suggestions for future 
work in the final Section “Conclusions and Outlook”.
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STEP 1: COMPUTATION OF A STATISTICAL 
GAS DISTRIBUTION MODEL

Creating Gas Distribution Grid Maps

By contrast to metric grid maps extracted from sonar or laser range scans, a single 
measurement from a gas sensor represents the measured quantity (in the case of 
metal oxide sensors: the rate of redox reactions) only at the comparatively small 
area of the sensor’s surface, typically around 1 cm2. Nevertheless, the gas sensor 
readings contain information about the time-averaged gas distribution of a larger 
area. First, this is due to the smoothness of the time-averaged gas distribution, 
which allows extrapolating on the averaged gas sensor measurements because the 
average concentration field does not change drastically in the vicinity of the point 
of measurement. Second, the metal-oxide gas sensors perform temporal integration 
of successive readings implicitly due to their slow response and long recovery time. 
Modeled as a first-order sensor, the time constants of rise and decay for the complete 
gas sensitive system used here were estimated as τr ≈ 1.8s and τd ≈ 11.1s, respectively 
(Lilienthal & Duckett, 2003a). Thus the measurements contain information that is 
spatially integrated along the path driven by the robot.

The Kernel DM Algorithm

Based on the observations mentioned in Sec. “Creating Gas Distribution Grid 
Maps”, the Kernel DM algorithm introduced in (Lilienthal & Duckett, 2004a) uses 
a Gaussian kernel function to model the decreasing likelihood that a particular 
reading represents the true quantity (here: the time-averaged relative concentration) 
with respect to the distance from the point of measurement. For each measurement, 
two quantities are calculated for grid cells k: an importance weight and a weighted 
reading. In practice, only those cells in the vicinity of the point of measurement need 
to be considered, i.e. the cells for which the corresponding centre x(k) lies within a 
certain radius around the point xt where the measurement was taken at time t. Cells 
that are further away from the measurement can be ignored since the effect of the 
update is negligible. The importance weight is calculated by evaluating the two-
dimensional, uni-variate Gaussian function
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at the displacement Δxt
(k)=x(k)-xt between the centre of grid cell k and the point of 

measurement xt. This weight models the information content of a particular mea-
surement rt at the location x(k) of grid cell k. From these weights, two temporary grid 
maps are computed: Ω(k)

t by integrating importance weights and R(k)
t by integrating 

weighted readings up to time t as
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The kernel width σ is a parameter of the algorithm. Please note that the gas 
sensor readings ri we consider here are first normalized by linear scaling of each 
sensor to the range of [0, 1]. Please note further that we assume perfect knowledge 
about the position xi of a sensor at the time of the measurement. To account for the 
uncertainty about the sensor position in connection with any gas distribution model-
ing algorithm, the method in (Lilienthal et al., 2007) can be used.

The integrated weights Ω(k)
t provide a confidence measure for the estimate at 

cell k. A high value means that the estimate is based on a large number of readings 
recorded close to the centre of the respective grid cell. A low value, on the other 
hand, means that few readings nearby the cell centre are available and that therefore 
a prediction has to be made using sensor readings taken at a rather large distance. 
Consequently, if the sum of the weights Ω(k)

t exceeds a certain threshold value Ωmin, 
the grid cell is set to

r R
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k
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representing an estimate of the value of the distribution in that particular area of the 
environment. If the sum of weights is below Ωmin, the cell is considered unexplored. 
Since integrated weights Ω(k)

t are used for normalization of the weighted readings 
R(k)

t even coverage is not necessary.
Ω(k)

t models the information content of a series of gas sensor measurements in 
a way that reflects the sensor characteristics and the trajectory of the robot. An ex-
ample is shown in Figure 2. First, the certainty about the average gas distribution 
is modeled as being higher if the gas sensor is moved at a slower speed. A higher 
information content is assumed by the Kernel DM algorithm especially in cases 
where a number of successive measurements were performed on the spot. In this 
case, the estimated value (calculated by averaging over multiple readings) represents 
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a temporally integrated quantity that naturally contains more information about the 
gas distribution at this particular location. This value also contains more informa-
tion about adjacent places because of the higher certainty about the average gas 
distribution, and because the temporal mean also carries out spatial integration due 
to the spatial fluctuation of the gas.

Second, the information content is modeled to be particularly high along the 
sensor trajectory, i.e. at places to which the sensors have actually been exposed to. 
This is particularly important for gas sensors used in this study where, due to the 
memory effect of the metal oxide sensors, the sensor readings present a low-pass 
filtered response value integrated along the path driven. Correspondingly the con-
tinuously collected measurements contain information about the locations between 
the places where the sensor data were actually logged. By contrast, the importance 
model decreases quickly orthogonal to the sensor trajectory, corresponding to the 
fact that the distribution value can only be approximated by extrapolating on the 
actual measurements assuming smooth transitions in the time-constant gas distribu-
tion structure.

Finally, the certainty about the average concentration is modeled as being ap-
proximately constant along the path if the robot was driven at a constant, not too 

Figure 2. Integrated importance weightΩt for an example sensor trajectory. The 
contributions from each measurement position are shown (in black) together with the 
integrated value (in red). The trajectory results from a constant velocity movement 
along a straight path and an immediate stop after the fifth time step (i.e., measure-
ments x5, x6 and x7 were all taken at the same physical location). The Kernel DM 
algorithm considers a finite discretization of Ωt to a grid map, which is not shown 
in this figure for the sake of a better illustration. The course of Ωt shown here cor-
responds to a grid map discretization with infinite resolution.
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high speed. As long as the time constant of decay is much longer than the time 
between individual measurements, the information content of the sensor readings 
about locations along the integration path is in fact approximately independent of 
the actual points of measurements.

Parameters of the Kernel DM Algorithm

While the actual value of the threshold Ωmin was found to have a minor influence 
on the resulting gas distribution map (Lilienthal & Duckett, 2004a), the width σ of 
the Gaussian kernel function is a critical parameter. Referring to the exploration 
path of the robot, σ has to be chosen high enough to satisfy the requirement for 
sufficient extrapolation on the gas concentration measurements, but low enough 
to preserve the fine details of the mapped structures. In this work, fixed parameter 
values of σ = 15 cm, and Ωmin = 10.0 × (number of sensors) were chosen based on 
the considerations in (Lilienthal & Duckett, 2004a).

Impact of the Sensor Dynamics

Due to the response characteristics of metal oxide sensors, a single gas sensor reading 
represents a temporally and, if the robot is driven at non-zero speed, also a spatially 
integrated concentration value. The averaging effect is considered implicitly by the 
model of the information content applied in the Kernel DM algorithm. The func-
tion in Equation (1) to compute importance weights contains, on the other hand, 
no term to model the asymmetry, which is induced by the much longer recovery 
time compared to the response time of the sensors. It would indeed not be possible 
to unambiguously determine the actual concentration distribution along the path 
that caused a given series of gas sensor readings. Therefore, an asymmetric term 
is not incorporated. Consequently, a certain level of distortion in the mapped gas 
distribution has to be tolerated. The magnitude of this distortion is estimated below.

As a consequence of the delayed response and the prolonged decay time of the 
gas sensors, the mapped values show asymmetrically blurred edges and a slightly 
shifted centre of the area of maximum concentration compared to the real distribu-
tion. This effect can be seen in Figure 3, which shows how a rectangular step pulse 
would be mapped by the Kernel DM algorithm introduced above. In the upper left 
part (a) the real distribution can be seen, which is a step pulse with an assumed 
duration of Δt = 10s. In addition, the response of the gas-sensitive system is shown 
in part (b). This curve was calculated using a first order sensor model with the pa-
rameters τr and τd of the Örebro Mark III mobile nose. In Figure 3 (c), the Gaussian 
kernel functions multiplied by the corresponding sensor readings are also shown. 
The samples were assumed to be recorded at a rate of 2 Hz and a width of σ = 1s 
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was used for the Gaussian kernel functions in Equation (1). This corresponds to a 
distance of σ = 5 cm, if a situation is considered where a robot drives with a constant 
velocity of 5 cm/s through a 50 cm wide area of constant concentration. Note that 
the Gaussians vanish in the front part of the graph due to the zero response of the 
sensor. Finally, the normalized curve of the mapped values is depicted in Figure 3 
(d). This curve is calculated according to Equation (3), meaning that the sum of the 
Gaussians shown in Figure 3 (c) is divided by the sum of the weights.

Comparing the assumed distribution with the course of the mapped values, the 
asymmetrical shift as well as the blurring effect can be seen in Figure 3 (d). This 
distortion is, however, not critical. Due to the low speed of the robot, which never 
exceeded 5 cm/s during the experiments presented here, the expected shift would 
be in the order of 10 cm at most. This effect is even smaller for smoother distribu-
tions, which the metal-oxide sensors can follow more closely than a step-like one. 
Further on, the directional component of both effects gets averaged out if the robot 
passed the same point from different directions. For the experiments considered 
here, this condition is fulfilled because either a predefined exploration path was 
used, where the path is passed equally often from opposite directions, or the robot 
was controlled as a gas-sensitive Braitenberg vehicle (Braitenberg, 1984), and 
particular points were passed equally often from multiple directions on average. 
Thus, the mapping process results in a representation, which is broadened but not 
severely shifted compared to the true distribution.

Figure 3. Mapping of a rectangular step pulse. The figure shows the step-like con-
centration course the gas-sensitive system is exposed to (a), the sensor response 
as calculated for the ¨Orebro Mark III mobile nose (b), the Gaussian weighting 
functions multiplied by the corresponding sensor readings (c), and the resulting 
curve of the mapped values (d).
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ANALYTIC GAS DISTRIBUTION MODEL

It is currently not feasible to model all aspects of turbulent wind and gas distribu-
tion in a realistic environment. A general problem is that many boundary condi-
tions are unknown. Even if sufficiently accurate knowledge about the state of the 
environment would be available, it would be very time-consuming to achieve the 
required resolution with a conventional finite element model (Kowadlo & Russell, 
2003). For specific situations, however, the time-averaged gas distribution can be 
described in a computationally inexpensive way. Assuming isotropic and homog-
enous turbulence and a one-directional, constant wind field, the time-averaged gas 
distribution of a constantly emitting point source on the floor can be described as 
(Hinze, 1975; Ishida et al., 1998):
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The concentration C at a point (x, y) level with the gas source is determined by 
the turbulent diffusion coefficient K, the location of the gas source (xS, yS), its release 
rate q, the wind speed V, and the upwind direction θ. Equation (4) comprises a term 
for symmetric 1/r decay and a second term that models asymmetric decay with 
respect to the wind direction. The variable xw is the projection of the displacement 
with respect to the source to the upwind direction. Accordingly, the exponential term 
in Equation (4) is constant along the upwind direction and the asymmetric decay is 
steepest in downwind direction.

The model introduced in Equation (4) describes a system in the state of equi-
librium where the gas source evaporates infinitely long into an infinite space. As 
a consequence, the model diverges at the source location, which is obviously an 
unrealistic description of the observed gas concentration. For this reason, the sym-
metric term is replaced here by the spatial profile of the Green’s function of the 
diffusion equation. For a fixed time (> 0) this function declines with exp(-const× 
r2) and does not diverge at the source location. Consequently, the time-averaged 
gas distribution was modeled in this work as
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This model depends on seven parameters. C00 is the maximum concentration at 
the source location while CS and CA describe the magnitude of the symmetric and 
asymmetric decay, respectively. (xS,yS) are the coordinates of the point source and θ 
is the upwind direction, i.e. the angle between the upwind vector w and the x-axis. 
The parameter CB is added in order to account for a non-zero base-level.

A comparison of the models specified in Equation (4) and Equation (7) is given 
in Figure 4. The model of the time-averaged gas distribution as defined in Equa-
tion (3.1) is shown in Figure 4 (a). In order to relate the models to each other, the 
parameters of the adapted model were chosen such that the symmetric terms are 
equal at a distance of 15cm in case of Figure 4 (b,c), and at a distance of 10cm 
in case of Figure 4 (d), respectively. The same asymmetric term was used for all 
four plots. Finally, the parameter CS was chosen to represent a highly asymmetric 
distribution with CA/CS = 5 in Figure 4 (b) and more symmetric distributions with 
CA/CS = 0.5 in Figure 4 (c) and Figure 4 (d).

Figure 4. Comparison of models of the time-averaged gas distribution. A plot of 
the model given by Equation(3.1) (a) is compared with plots of the model given by 
Equation (3.4) for three different parameter sets: CA/CS = 5, symmetric term equal 
to the model in Equation (3.1) at a distance of 15 cm from the point source (b); 
CA/CS = 0.5, symmetric term equal to the model in Equation (3.1) at a distance 
of 15 cm (c); CA/CS = 0.5, symmetric term equal to the model in Equation (3.1) 
at a distance of 10 cm (d). The same asymmetric term was used for all four plots.
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STEP 2: LEARNING PARAMETERS OF THE ANALYTICAL 
MODEL

The problem is now to find the set of parameters of the analytical model given in 
Equation (7), which approximates the statistical gas distribution grid map most closely.

In order to calculate the model quality for a given parameter set p, the gas dis-
tribution predicted by the analytical model Cp is discretized to the grid map and the 
deviation of Cp

(k) from the value r(k) predicted by the statistical gas distribution grid 
map is determined for all corresponding grid cells k ∈ {1,..., N}. The prediction 
errors are then summed up and normalized over all explored cells, resulting in the 
average prediction error

∆p

p

=
−∑ ( )( ) ( )C c

N

k k

k

2

 (8)

with N being the total number of grid cells.

Optimization Using Evolution Strategies

Searching for the best set of parameters p in terms of minimizing the average predic-
tion error is a typical optimization problem. Preliminary experiments showed that 
the particular optimization problem considered here is multi-modal, i.e. the function 
defined in Equation (8) comprises multiple possibly deceptive local optima apart 
from the global optimum.

Therefore, it was decided to use Evolutionary Algorithms (EA), which are known 
for their capability to perform well in multi-modal search spaces. EA are probabilistic, 
generational, population based optimization strategies that mimic the natural evolu-
tion based on Darwin’s principle of the “survival of the fittest” by repeated simula-
tion of a generational life cycle. Starting from a population of randomly initialized 
solutions (individuals) a generational cycle is started by evaluating all individuals 
with a target or fitness function, e.g. Equation (8), and stochastically selecting the 
best individuals to generate offspring for the next generation. Offspring is typically 
generated by making copies of the selected individuals (parents), which can then be 
altered through mutation (i.e. random changes) or crossover (i.e. mixing partial cop-
ies from multiple parents). While mutation and crossover enables the EA to explore 
the whole search space, the quality of the solutions represented by the individuals 
increases gradually over multiple generations simply due to iterated selection.
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In this work, a special type of EA called Evolution Strategies (ES) is applied to 
the optimization problem. ES were developed by Rechenberg and Schwefel to solve 
practical application problems in mechanical engineering (Rechenberg, 1973; Schwe-
fel, 1981). In contrast to Genetic Algorithms (GA) developed by Holland (Holland 
[1975]), ES abstract the key elements of EA to perform an efficient search especially 
on real-valued search spaces and typically use specialized mutation operators.

For example, instead of a stochastic selection scheme, ES use typically a (μ+λ)- or 
(μ,λ)-strategy, selecting only the μ best individuals as parents to generate λ offspring. 
In case of a (μ,λ)-strategy these offspring set up the next generation to be evaluated. 
A (μ+λ)-strategy, on the other hand, combines the μ parents and the λ offspring in the 
next generation. While a (μ+λ)-strategy is guaranteed to improve monotonically due 
to elitism, the (μ,λ)-strategy is usually better suited for multi-modal search spaces 
because it enables the ES to escape from local optima.

Self-Adapting Mutation Operators and Crossover

ES often use so called self-adapting mutation operators. A mutation operator that 
adds random values with a fixed variance to the decision parameters does not perform 
well in all cases. A fixed mutation step size can be too small in case an individual 
is in a local optimum or still far from the optimum. In this case the optimization 
algorithm would either converge prematurely or convergence would be achieved 
too slowly. On the other hand, a fixed mutation step size can also be too large if the 
individual is already close to the global optimum. Because oversized perturbations 
lead the offspring away from the global optimum this might prevent the algorithm 
to converge to an optimum at all.

Therefore, Rechenberg and Schwefel introduced so called strategy parameters 
σ2 that define the mutation step size. Strategy parameters are used either one for all 
decision parameters (global mutation) or using a vector of strategy parameters one 
for each decision parameter (local mutation). Local mutation enables independent 
adaptation of the strategy parameters for each dimension of the problem space. Each 
individual has a unique set of decision and strategy parameters which are altered 
with a probability of pmut by calculating the new strategy parameters σ’j and the new 
model parameters p’j as
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N(0, 1) and Nj(0, 1) are random numbers independently drawn from a normal Gauss-
ian distribution, τ is an overall learning rate and τ’ is a coordinate wise learning 
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rate. The parameters δpj have to be assigned to each strategy parameter in advance. 
They specify the range for each decision variable and thus normalize the mutation 
step size to the size of the search space.

Ultimately, each individual can be altered by crossover of two parents <p’1, σ’1 
> and <p’2, σ’2 > with a probability of pcross as
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′ + ′

= ′ ′ ′′′
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Here, n gives the number of parameters, and Rj(1, 2) is a random variable that 
is used to select for each decision parameter pj with equal probability whether pj is 
chosen from parent 1 or parent 2.

A non elitist generation strategy like the (μ,λ)-strategy will in the long run favor 
individuals with suitable strategy parameters, since their offspring will perform better 
than offspring from individuals with poorer strategy parameters. This way the ES is 
able to self-adapt the strategy parameters to the local properties of the search space.

Optimization Strategy Used in this Work

In order to determine suitable parameters for the ES, several test runs were per-
formed where the model function was used with set parameters as the ground truth. 
These test runs showed that the performance of the ES with local mutation does not 
depend heavily on the actual value of the parameters used. As a parameter set that 
produced very good fitting results in the preliminary tests, enables self-adaption, 
and reduces the chance of premature convergence, the following parameters were 
used here: μ = 10, λ = 50, pmut = 1.0, pcross = 0.01. The initial step width was set to σj 
= σinit = 0.1. According to (Eiben & Smith, 2003), the overall learning rate and the 
coordinate wise learning rate were chosen to be τ = {√(2⋅√n)}-1 ≈ 0.435 and τ’ = 
{√(2n)}-1 ≈ 0.267, respectively. The parameter ranges pj were chosen to be [0,5] for 
C00, [0,20] for CS and CA, [-4,4] for x0 and y0, [-180°,180°] for θ, and [-1,1] for CB.

To reduce the chance to get stuck in a local optimum further, four independent 
ES optimization runs with 25000 fitness calls in each run were performed. Finally, 
the best individual found was selected and considered to be the best possible fit for 
the given gas distribution map.
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SOURCES OF INACCURACY

A perfect agreement between the statistical gas distribution map and the analytical 
model given by Equation (7) cannot be expected in general for several reasons. First 
of all, the assumptions the analytical gas distribution model is based on might not 
be fulfilled. This mainly applies to the assumption of constant, unidirectional wind. 
Although no artificial air current was produced to create a dominant constant flow, 
the gas distribution was strikingly stable in the experiments presented in this paper, 
most likely due to stable temperature gradients in the room (Wandel et al., 2003). 
For that reason, the observed gas distribution can often be approximated reasonably 
well with the analytical model. Assuming only minor variations of the dominant 
air stream, the model will indicate the average wind direction while poorer fitness 
values are expected in case of stronger variations.

A further assumption, which is not completely fulfilled, is that the statistical gas 
distribution map represents the true time-averaged gas distribution as it would appear 
over infinitely long time. Due to the local character of gas sensor measurements, 
it takes some time to build the statistical grid map model. In addition to spatial 
coverage, a certain amount of temporal averaging is also necessary to represent 
the time-constant profile of the gas distribution. The basic structures in the map 
were found to stabilize within the first hour of the mapping experiments (Lilien-
thal & Duckett, 2004a). During this time, transient concentration peaks caused by 
turbulence might not be sufficiently averaged out and thus can be preserved in the 
statistical gas distribution map as minor deviations from the smooth course of the 
distribution. While this is generally more of a problem in regions of low concentra-
tion (because the peak to time-average ratio is higher there (Roberts & Webster, 
2002), it is especially problematic concerning the experiments where the robot was 
reactively controlled to avoid low concentrations, causing a low density of mea-
surements in regions where the average concentration is low. The distortions due 
to rudiments of turbulent peaks tend to influence the fit result because the region 
of low concentration was typically much larger than the area of high concentration 
in the experiments considered in this work. In order to compensate for this effect, 
a modified fitness function was used that compares the square of the prediction of 
the analytical model C(k) with the square of the corresponding grid cell value r(k).

∆p =
−∑ (( ) ( ) )

,

( ) ( )
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Hence, the influence of deviations in regions of low average concentration on 
the fitness function Δp is reduced compared to deviations in regions of high aver-
age concentration.

It is important to note that an important result of the fitting procedure, in addition 
to the obtained value of the fit parameters, is the fitness value itself, i.e. the average 
prediction error given in Equation (8) and Equation (11). A poor fitness indicates 
that the applied analytical model cannot describe the observed gas distribution (in 
terms of the statistical model) faithfully. If so, the source position estimate obtained 
from the best fit cannot be considered reliable and the best information at hand is 
the CME. On the other hand, if a good fitness can be achieved, the corresponding 
parameter set comprises a reasonable estimate of the source location as will be seen 
in Sec. “Results”.

Please note that because of the difficulty to measure absolute concentrations 
with metal oxide gas sensors in an uncontrolled environment (Lilienthal & Duckett, 
2004b), the gas distribution map directly models the sensor readings. Although the 
calibration function of the gas sensors is nearly linear if a small range of concentra-
tions is considered as in the experiments presented here, it is therefore not possible 
to determine the absolute value of C00 and CB. The remaining parameters, however, 
have a meaningful interpretation because they refer to the geometric dimension of 
the distribution profile. Therefore the fitting process described in Sec. “Step 2 – 
Learning Parameters of the Analytical Model” can be seen as model-based shape 
analysis of the statistical gas distribution grid map.

STEP 3: SELECTION OF SOURCE LOCATION ESTIMATE

The results of the second step are the parameters of the best fitting analytical model 
and the respective fitness value. The parameters of the analytical model include 
the coordinates of the source position. In the third step, the asymmetry ratio CA/
CS and the optimal fitness value are used to determine whether the source estimate 
corresponding to the best analytical model or the estimate given by the maximum 
in the statistical gas distribution map is more reliable. This step corresponds to an 
analysis of the observed conditions, particularly the airflow conditions.

SABEC1: SHAPE ANALYSIS-BASED 
ESTIMATION CHOICE STRATEGY

Based on the observations above we propose the following strategies for determin-
ing an improved estimate of the gas source location. The first strategy is referred 
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to in the following as SABEC1 strategy (Shape Analysis-Based Estimation Choice 
strategy). It is sketched in Figure 5, together with the SABEC2 strategy previously 
discussed. When applying the SABEC1 strategy, the best fitting analytical model 
is determined with the ES and the average prediction error (fitness) and the asym-
metry ratio CA/CS are compared with corresponding threshold values tf and tA/S. If 
the average prediction error is above tf, the BFE is considered not reliable and the 
CME is used to estimate the source location. The CME is also chosen in case of 
a prediction error below tf and a low value of CA/CS, indicating a relatively weak 
stationary air current. Finally, the BFE is used in case of a small prediction error 
and a CA/CS value above tA/S.

SABEC2: EVENTUALLY REFUSING TO PREDICT THE GAS 
SOURCE LOCATION

A further improvement of the accuracy can be obtained if it is acceptable to refuse 
a prediction of the source location in case both the BFE and the CME were found 
to be unreliable. The important observation in this context is that a poor fitness 
value, corresponding to an unstable wind field, for example, typically indicates 
an expanded region of high values in the statistical gas distribution map where the 
maximum can easily vary due to rudiments of turbulent fluctuations. This entails the 

Figure 5. Flowchart of the SABEC1 and SABEC2 strategy to select the most truthful 
estimate of the source location. Based on the fitness and the asymmetry of the best 
fit model obtained from optimizing the average prediction error with the ES, either 
the CME or the BFE is chosen, or no prediction is made at all.
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SABEC2 strategy also indicated in Figure 5, which selects the BFE or the CME in 
case of a reliable best fit model (depending on the asymmetry of the model) while 
it does not make a prediction in case of an unreliable model with a poor fitness.

EXPERIMENTAL SETUP

Robot and Gas Sensors

The experiments were performed with a Koala mobile robot equipped with the Mark 
III mobile nose (Lilienthal & Duckett, 2003a), comprising 6 tin oxide gas sensors 
manufactured by Figaro (see Figure 6). This type of chemical sensor shows a de-
creasing resistance in the presence of reducing volatile chemicals in the surround-
ing air. In consequence of the measurement principle, metal oxide sensors exhibit 
some drawbacks, including low selectivity, comparatively high power consumption 
(caused by the heating device) and weak durability. In addition, metal oxide sensors 
are subject to a long response time and an even longer recovery time (Lilienthal & 
Duckett, 2003a). However, this type of gas sensor is most often used on mobile robots 
because it is inexpensive, highly sensitive and relatively unaffected by changing 
environmental conditions such as room temperature and humidity. The gas sensors 
were placed in sets of three (of type TGS 2600, TGS 2610 and TGS 2620) inside 
two separate tubes containing a suction fan each. Papst Fans (Papst 405F) were used 
to generate an airflow of 8m3/h. Multiple, redundant sensor types were used only to 
increase the robustness of the system (there was no attempt to discriminate different 
odors). The distance between the two sets of sensors was 40 cm.

Figure 6. Koala robot with the Örebro Mark III mobile nose and the gas source 
used in the experiments. The small image in the top left corner shows a Figaro gas 
sensor used in the Mark III mobile nose.
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Environment, Gas Source and Absolute Positioning System

All experiments were carried out in a rectangular laboratory room at ¨Orebro Uni-
versity (size 10.6×4.5 m2). The robot’s movement was restricted so that its centre 
was always located inside the central region where precise and reliable position 
information is available from the external absolute positioning system WCAPS 
(Lilienthal & Duckett, 2003c), which was used to track the colored cardboard “hat” 
on top of the robot (the “hat” can be seen in Figure 6).

To emulate a typical task for an inspection robot, a gas source was chosen to 
imitate a leaking tank. This was realized by placing a paper cup filled with ethanol 
on a support in a bowl with a perimeter of 12cm (see Figure 6). The ethanol dripped 
through a hole in the cup into the bowl at a rate of approximately 50ml/h. Ethanol 
was used because it is non-toxic and easily detectable by the tin oxide sensors. The 
air conditioning system in the room was deactivated.

Results

An illustration of the optimization process described in Sec. “Step 2 – Learning 
Parameters of the Analytical Model” is given in Figure 7 and Figure 8. At the bottom 
right of each figure, the statistical gas distribution grid map, which is to be approxi-

Figure 7. Example of the model selection process. The statistical gas distribution grid 
map that is to be approximated can be seen at the bottom of the figure to the right 
of a fitness plot, which shows the average prediction error according to Equation 
(5.1). Four individual solutions corresponding to best model obtained after 500, 
2500, 10000 and 25000 fitness calls are depicted in the top row.
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mated, is shown. The gas distribution maps in both figures were created from data 
collected in 90 minutes of exploration in two different experiments where the robot 
was reactively controlled as a Braitenberg vehicle which follows the local gradient 
sensed with a pair of gas sensor arrays (Lilienthal & Duckett, 2004a). To the left 
of the gas distribution map, the evolution of the average and the best fitness in the 
population is plotted depending on the number of fitness evaluations. In addition, 
four individual solutions are depicted in the top row. As indicated in the fitness 
plot, these solutions correspond to the best model obtained after a certain number 
of fitness evaluations. Different shadings are used to indicate relative concentration 
values in the gas distribution grid maps and the visualization of the model output 
(dark → low, light → high). Values higher than 90% of the maximum are displayed 
with a second range of dark-to-light shadings (of red), and unexplored cells are 
shown with a different color (dark green).

A good agreement between the statistical gas distribution map and the best fit 
model after 25000 fitness evaluations was obtained in both the cases considered in 
Figure 7 and Figure 8, indicated by a low fitness value. The fitting results, how-
ever, suggest that the experiments were carried out under different conditions. While 
the long stretched out shape of the fitted analytical model displayed in Figure 7 
points to a relatively strong air current, a weaker air stream is indicated by the more 
circular shape of the best fit model shown in Figure 8. Such a difference is expressed 
by the ratio of the parameters CA/CB, which was 15.5 in case of the distribution in 
Figure 7 but only 2.8 for the distribution in Figure 8. In case of a strong asymmetry, 
i.e. a high CA/CB value, the CME is typically a poor approximation of the true source 

Figure 8. Example of the model selection process. In the same way as in Figure 7, 
a statistical gas distribution grid map, the fitness plot and best fit models obtained 
after 500, 2500, 7500 and 25000 fitness calls are shown.
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location. Due to the small variation of the gas distribution in upwind direction, small 
inhomogeneities of the wind field can cause a large displacement of the maximum 
along the direction of the air current. As in the example shown in Figure 7, the BFE 
is a more reliable estimate of the gas source position in case of a high ratio CA/CB.

On the other hand, the distance of the BFE to the gas source was often higher 
compared to the CME in case of a more symmetric distribution (see the example 
in Figure 8). A potential reason is that a circular distribution (with a corresponding 
source estimate in the centre of the region of increased concentration) can easily 
be interpreted as a plume-like structure (with a source estimate at the boundary of 
the same region), for example if the distribution was not explored properly around 
the gas source. Another reason might be due to the distortion and broadening effect 
due to the slow decay of the gas sensors mentioned when considering the impact 
of the sensor dynamics above. Regions of high concentration appear expanded in 
the map and consequently the fit results tend to be displaced with respect to the 
true gas source location by a certain amount. Here, the CME is typically a more 
accurate approximation of the gas source that is less sensitive to small deviations 
from the ideal distribution profile.

SABEC1 Results

The accuracy of different gas source location estimates was compared based on 97 
snapshots of concentration maps obtained in 11 mapping experiments, including a 
total of 34 hours of exploration. In four runs the robot moved along a predefined 
path (inwards and outwards a rectangular spiral) while it was reactively controlled 
as a gas-sensitive Braitenberg vehicle in the remaining seven trials. The explored 
area was approximately 2.4 × 2.4m2 in the experiments with a predefined exploration 
path, and it was approximately 3.7 × 3.7m2 in the Braitenberg vehicle experiments. 
Snapshots of the gas distribution map were taken in intervals of 15 minutes start-
ing after one hour of exploration to assure that the maps would represent mainly 
the stationary properties of the gas distribution (see Sec. “Sources of Inaccuracy”).

A comparison of the results can be seen in Table 1. The first column specifies 
in which cases the BFE was chosen as the source position estimate instead of the 

Table 1. Gas source localisation error obtained with the SABEC1 strategy 

strategy (when to choose BFE) tf , tA/S [cm]

never -, - 26.2 ± 20.9

if av. prediction error < tf 0.0470, - 22.2 ± 15.5

if av. prediction error < tf and CA/CS > tA/S (SABEC1) 0.0575, 8.0 17.8 ± 10.4
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CME and the second column shows the optimal threshold parameters found. Fi-
nally, the average distance between the estimate and the true source location is 
given in the third column. The obtained accuracy was 15% better compared to us-
ing only the CME if the BFE was always selected in case a good fitness, and it was 
32% lower if the BFE was selected with the SABEC1 strategy that additionally 
considers the asymmetry of the fit result. Note that only a weak dependency of the 
obtained accuracy on the values of the threshold parameters was observed. Thus, 
the exact choice of these values was found to be not critical.

SABEC2 Results

The accuracy obtained with the SABEC2 strategy and the percentage rnp of gas 
distribution maps, for which no prediction of the gas source location was made, are 
shown in Figure 9 depending on the chosen fitness threshold tf and using a constant 
value of tA/S = 8.0. As an example, a fitness threshold of tf = 0.055 corresponded to 
an average error of (14.8 ± 7.3) cm while a prediction of the gas source location 
was refused for 31% of the gas distribution map snapshots. The graph also shows 
the level of accuracy that was obtained using the CME only.

The monotonic evolution of the average error shown in Figure 9 demonstrates 
that the obtained fitness value is a suitable measure for the confidence about the 
gas source location estimate obtained from either the CME or the BFE. Thus, it 

Figure 9. Dependency of the average error of gas source prediction on the fitness 
threshold tf when the SABEC2 strategy is applied to determine whether the CME or 
the BFE is chosen as the final source location estimate, or a prediction is refused 
(crosses). The rate of gas distribution maps for which no prediction was made is 
also indicated (filled circles). The value of tA/S was set to 8.0.
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seems possible to compute from the fitness value a radius of an area around the 
estimate position where the source is expected with high certainty, or to choose a 
fitness threshold depending on the required accuracy.

CONCLUSION

The method presented in this chapter is visually summarized in Figure 10. It com-
putes an estimate of the location of a single gas source from a set of localized gas 
sensor measurements and consists of three steps.

In the first step, a statistical model of the gas distribution is computed from a 
sequence of localized gas sensor measurements using the Kernel DM algorithm. 
This model represents the spatial structure of the time-averaged gas distribution in 
a two-dimensional grid map and averages out the transitory effects of turbulent gas 
dispersal. In this work, gas sensor readings and the corresponding position data 
were collected with a mobile robot while it was driven according to a particular 
exploration strategy.

In the second step, the parameters of an analytical model of the time-averaged gas 
distribution are learned by nonlinear least squares fitting of the analytical model to 
the statistical gas distribution map using Evolution Strategies. The analytical model 

Figure 10. Summary of the proposed method to estimate the location of a single 
gas source
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is based on a physical model that describes the time-averaged gas distribution under 
the assumptions of isotropic and homogenous turbulence, a constant, uniform wind 
field, and a constantly emitting point source on the floor. Accordingly, the fitting 
procedure includes an analysis of the statistical gas distribution map, which allows 
interpreting the shape of the statistically modeled gas distribution by quantitative 
means. This enables us to distinguish gas distribution maps according to different 
airflow conditions.

As a result of the second step we obtain the parameters of the best analytical 
model and the respective fitness value. The parameters of the best fitting analytical 
model include the coordinates of the source position (best fit estimate, BFE), and 
the asymmetry ratio CA/CS. These values are used in the third step, to determine 
whether the BFE or the CME is deemed more reliable. The SABEC1 strategy that 
always selects either the CME or the BFE is described and the SABEC2 strategy that 
might also refuse to output a source location estimate is also detailed. The third step 
formalizes the analysis of the observed conditions, particularly the airflow conditions.

The proposed method was evaluated based on a total of 34 hours of mapping 
experiments. Using the SABEC1 strategy, the obtained estimate of the gas source 
location was found to be 32% more accurate than the CME. Moreover, it was 
demonstrated that an even better accuracy can be obtained by using the SABEC2 
strategy at the cost of an increasing rate of gas distribution maps for which no 
prediction about the gas source location is made. The BFE was found to be more 
reliable than the CME if the mapping experiment was performed under conditions 
of a relatively strong constant air current, indicated by a high asymmetry ratio CA/
CS of the best fitting analytical model. Finally, it was found that the quality of the 
best fitting analytical model (in terms of the achieved fitness value) can be used as 
a confidence measure for approximating the source position. If the observed airflow 
is heavily deviating from the assumption of a uniform, constant flow, the best fitness 
is expected to be still comparatively poor and this indicates that the source loca-
tion estimate obtained from the parameters of the best analytical model is not very 
reliable. In fact, it was found that if the best fitting analytical model approximated 
the gas distribution map rather poorly, both BFE and CME were found to be less 
accurate than in cases where the average deviation between the best fit model and 
the statistical gas distribution grid map was small.

FUTURE RESEARCH DIRECTIONS

The proposed method can be extended in several ways. First, a more sophisticated 
algorithm than Kernel DM can be used to build the statistical gas distribution model 
from a sequence of localized gas sensor measurements. In particular, algorithms that 
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estimate both the mean field and a predictive variance are of interest, such as Kernel 
DM+V (Lilienthal et al., 2009) or the method using Gaussian Process mixtures pro-
posed by (Stachniss et al., 2009). The maximum of the predictive variance provides 
an additional estimate of the gas source location. Another interesting extension is to 
use wind information collected together with the gas sensor readings for building 
the statistical gas distribution model as in (Reggente & Lilienthal, 2009a).

Wind information could also be used in the second step of the approach intro-
duced in this chapter, for example as initial guess for the corresponding parameters 
of the analytical model or as an alternative means to determine the best estimate of 
the gas source location by distinguishing different airflow conditions. Based on a 
model of the wind field, more involved analytical models of gas dispersal could be 
used instead of the model described.

The proposed approach builds a two-dimensional statistical gas distribution 
model from the gas sensor measurements, which were collected according to a pre-
defined exploration strategy. A further possibility for future research is therefore 
to investigate adaptive exploration, i.e. strategies that determine where to collect 
future measurements based on the current gas distribution model. Ultimately, a 
three-dimensional approach needs to be developed. An initial step is to build three-
dimensional statistical gas distribution models based on gas sensor measurements 
such as in (Reggente & Lilienthal, 2009b). On the long run, building the gas dis-
tribution model should consider all available relevant information, including, for 
example, the temperature distribution and the spatial outline of the environment.

ACKNOWLEDGMENT

This work has partly been supported by the EC under contract number FP7-224318-
DIADEM: Distributed Information Acquisition and Decision-Making for Environ-
mental Management.

REFERENCES

Blackmore, B. S., & Griepentrog, H. W. (2002). A future view of precision farm-
ing. In Proceedings of PreAgro Precision Agriculture Conference (pp. 131-145), 
Müncheberg, Germany, Center for Agricultural Landscape and Land Use Research 
(ZALF).

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology. MIT Press/
Bradford Books.



274  Improved Gas Source Localization with a Mobile Robot

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DustBot Consortium. (2006). DustBot-networked and cooperating robots for urban 
hygiene. Retrieved from http://www.dustbot.org

Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. New 
York, NY: Springer.

Hinze, J. O. (1975). Turbulence. New York, NY: McGraw-Hill.

Holland, J. H. (1975). Adaptation in natural and artificial systems. MIT Press.

Ishida, H., Nakamoto, T., & Moriizumi, T. (1998). Remote sensing of gas/odor 
source location and concentration distribution using mobile system. Sensors and 
Actuators. B, Chemical, 49, 52–57. doi:10.1016/S0925-4005(98)00036-7

Kowadlo, G., & Russell, R. A. (2003). Naive physics for effective odour localisa-
tion. In Proceedings of the Australian Conference on Robotics and Automation.

Lilienthal, A. J., & Duckett, T. (2003a). A stereo electronic nose for a mobile inspec-
tion robot. In Proceedings of the IEEE International Workshop on Robotic Sensing.

Lilienthal, A. J., & Duckett, T. (2003b). An absolute positioning system for 100 
Euros. In Proceedings of the IEEE International Workshop on Robotic Sensing.

Lilienthal, A. J., & Duckett, T. (2003c). Creating gas concentration gridmaps with 
a mobile robot. In Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (pp. 118–123).

Lilienthal, A. J., & Duckett, T. (2004a). Building gas concentration gridmaps with 
a mobile robot. Robotics and Autonomous Systems, 48(1), 3–16. doi:10.1016/j.
robot.2004.05.002

Lilienthal, A. J., & Duckett, T. (2004b). Experimental analysis of gas-sensitive Braiten-
berg vehicles. Advanced Robotics, 18(8), 817–834. doi:10.1163/1568553041738103

Lilienthal, A. J., Loutfi, A., Blanco, J. L., Galindo, C., & Gonzalez, J. (2007). A 
Rao- Blackwellisation approach to GDM-SLAM integrating SLAM and gas distri-
bution mapping. In Proceedings of the European Conference on Mobile Robotics, 
(pp. 126–131).

Lilienthal, A. J., Reggente, M., Trincavelli, M., Blanco, J. L., & Gonzalez, J. (2009). 
A statistical approach to gas distribution modelling with mobile robots–the Kernel 
DM+V Algorithm. In Proceedings of the IEEE/RSJ International Conference on 
Intelligent Robots and Systems, (pp. 570-576).



Improved Gas Source Localization with a Mobile Robot  275

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Lilienthal, A. J., Streichert, F., & Zell, A. (2005). Model-based shape analysis of 
gas concentration gridmaps for improved gas source localisation. In Proceedings of 
the IEEE International Conference on Robotics and Automation, (pp. 3575–3580).

Nakamoto, T., Ishida, H., & Moriizumi, T. (1999). A sensing system for odor plumes. 
Analytical Chemistry News & Features, 1, 531–537.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach 
Prinzipien der biologischen Evolution. Fromman-Holzboog.

Reggente, M., & Lilienthal, A. J. (2009a). Using local wind information for gas 
distribution mapping in outdoor environments with a mobile robot. In Proceedings 
of IEEE Sensors, (pp. 1715-1720).

Reggente, M., & Lilienthal, A. J. (2009b). Three-dimensional statistical gas distribu-
tion mapping in an uncontrolled indoor environment. AIP Conference Proceedings 
Volume 1137: Olfaction and Electronic Nose - Proceedings of the 13th International 
Symposium on Olfaction and Electronic Nose (ISOEN), (pp. 109-112).

Roberts, P. J. W., & Webster, D. R. (2002). Turbulent diffusion. In Shen, H., Cheng, 
A., Wang, K.-H., Teng, M. H., & Liu, C. (Eds.), Environmental fluid mechanics-
theories and application. Reston, VA: ASCE Press.

Russell, R. A. (1999). Odour sensing for mobile robots. World Scientific.

Schwefel, H.-P. (1981). Numerical optimization of computer models. New York, 
NY: John Wiley & Sons, Inc.

Shraiman, B., & Siggia, E. (2000). Scalar turbulence. Nature, 405, 639–646. 
doi:10.1038/35015000

Stachniss, C., Plagemann, C., & Lilienthal, A. J. (2009). Learning gas distribution 
models using sparse Gaussian process mixtures. Autonomous Robots, 26(2-3), 
187–202. doi:10.1007/s10514-009-9111-5

Wandel, M. R., Lilienthal, A. J., Duckett, T., Weimar, U., & Zell, A. (2003). Gas 
distribution in unventilated indoor environments inspected by a mobile robot. In 
Proceedings of the IEEE International Conference on Advanced Robotics, (pp. 
507–512).



276  Improved Gas Source Localization with a Mobile Robot

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ADDITIONAL READING

Mobile Robot Olfaction
Lilienthal, A. J., Loutfi, A., & Duckett, T. (2006). Airborne Chemical Sensing with 
Mobile Robots. Sensors (Basel, Switzerland), 6, 1616–1678. doi:10.3390/s6111616

Russell, R. A. (1999). Odour Sensing for Mobile Robots. World Scientific.

Environmental Monitoring
Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. 
Wiley.

Fluid Dynamics
Ferziger, J. H., & Peric, M. (2001). Computational Methods for Fluid Dynamics. 
Springer.

Hinze, J. O. (1975). Turbulence. New York: McGraw-Hill.

Evolution Strategies
Schwefel, H.-P. (1995). Evolution and Optimum Seeking. Wiley & Sons.

ENDNOTES

1  Please note that because of calibration issues with gas sensors the sensor re-
sponse is typically normalised but otherwise modelled directly. To emphasize 
this procedure we use the term “gas distribution map” while, if the input is 
given in absolute concentration values, we call the resulting representation a 
“gas concentration map”. Accordingly, in the former case, the term “concentra-
tion maximum estimate” does not imply that the absolute concentration value 
could be precisely estimated. The location of the concentration maximum will 
be estimated correctly, however, assuming that the response of all involved 
sensors depend on the concentration in the same, monotonous way.

2  Not to confuse with the kernel width σ in Equation (2.1), for example.


