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Summary 

To study gas dispersion, several statistical gas distribution modelling approaches have been proposed 
recently. A crucial assumption in these approaches is that gas distribution models are learned from 
measurements that are generated by a time-invariant random process. While a time-independent random 
process can capture certain fluctuations in the gas distribution, more accurate models can be obtained by 
modelling changes in the random process over time. In this work we propose a time-scale parameter that 
relates the age of measurements to their validity for building the gas distribution model in a recency 
function. The parameters of the recency function define a time-scale and can be learned. The time-scale 
represents a compromise between two conflicting requirements for obtaining accurate gas distribution 
models: using as many measurements as possible and using only very recent measurements. We have 
studied several recency functions in a time-dependent extension of the Kernel DM+V1 algorithm (TD 
Kernel DM+V2). Based on real-world experiments and simulations of gas dispersal (presented in this 
paper) we demonstrate that TD Kernel DM+V improves the obtained gas distribution models in dynamic 
situations. This represents an important step towards statistical modelling of evolving gas distributions.  

Methods and Results 
To build a time-scale dependent model, we apply an extension of the Kernel DM+V algorithm, which we 
call TD Kernel DM+V. It combines the spatial extrapolation of the basic Kernel DM+V algorithm with 
temporal extrapolation weighted by a time-dependent term defined with a time-scale factor. The time-
scale is learned together with the other meta-parameters by optimizing the NLPD (Negative Log 
Predictive Density) value of the predictive model3. To evaluate different time-scale dependent modelling 
approaches, we have developed a gas dispersal simulation engine4 that integrates OpenFOAM fluid flow 
simulation and a filament-based gas propagation model5. Simulated data provide ground truth information 
to evaluate gas dispersion models.  
Two simulation experiments were performed in a wind tunnel (16×4 m2) to simulate the gas dispersion 
under effect of predominantly laminar and turbulent flow, illustrated in Fig 1(a) and Fig 1(b) respectively. 
Turbulence is particularly created in one experiment by placing an obstacle in the tunnel. Measurements 
in both experiments have been collected at random locations for 16s from the beginning of gas emission 
(with the frequency of 1s-1).  A predictive model is learned by cross-validation over the training set, 
optimizing the NLPD value. The model is then used to estimate the gas distribution for the 20th second.   
The corresponding predictive mean (top) and predictive variance (bottom) using Kernel DM+V (left) and 
TD Kernel DM+V (right) are illustrated for the first and second experiment in Fig 2 and Fig 3 
respectively. The NLPD comparison presented in Tab. 1 shows a substantial improvement with the 
proposed time-scale dependent approach. 
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Figure 1: Gas dispersal simulation of the two experiments performed in the wind tunnel (16×4 m2) with the inlet on 
the left (approx. 1 m/s): (a) gas dispersion in predominantly laminar flow with no obstacle and (b) gas dispersion in 
turbulent flow created by placing an obstacle in the tunnel (the blue rectangle). An ethanol gas source is placed at 
(1m, 2m) from the bottom left corner indicated by a filled circle. 

Figure 2: Predicative mean (top) and variance (bottom) maps created for the first experiment shown in Fig 1(a): 
Kernel DM+V (left) and TD Kernel DM+V (right). The gas source location is indicated by white circle. 

 
Figure 3: Predictive mean (top) and variance (bottom) maps created for the second experiment shown in Fig 1(b): 
Kernel DM+V (left) and TD Kernel DM+V (right). The gas source location is indicated by white circle. 

 

Table 1: NLPD comparisons of models built with Kernel DM+V and TD Kernel DM+V for the two experiments: 
shown in Fig 1 (a) and Fig 1 (b). More negative NLPD values correspond to better gas distribution predictions. 
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No obstacle -6.43 0.200 0.050 -14.43 0.160 0.074  0.218 

With obstacle -5.80 0.200 0.050 -11.97 0.209 0.050 0.235 
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