
  

  

Abstract— This paper presents a sampling strategy for 

mobile gas sensors. Sampling points are selected using a 

modified artificial potential field (APF) approach, which 

balances multiple criteria to direct sensor measurements 

towards locations of high mean concentration, high 

concentration variance and areas for which the uncertainty 

about the gas distribution model is still large. By selecting in 

each step the most often suggested close-by measurement 

location, the proposed approach introduces a locality constraint 

that allows planning suitable paths for mobile gas sensors. 

Initial results in simulation and in real-world experiments with 

a gas-sensitive micro-drone demonstrate the suitability of the 

proposed sampling strategy for gas distribution mapping and its 

use for gas source localization. 

 
Index Terms—autonomous UAV, chemical sensing, gas 

distribution modelling, gas source localization, gas sensors, 

mobile sensing system, quadrocopter, sensor planning, artificial 

potential field. 

 

I. INTRODUCTION 

as distribution modelling and gas source localization 
play an important role in environmental management 

applications such as leak detection and landfill monito-
ring [1], for example. The response of many gas sensors, 
however, is caused by direct interaction with the chemical 
compounds and thus represents only a small area around the 
sensor surface. For practical applications either a large 
number of stationary sensors or mobile sensors are required.  
In this paper we consider the case of gas sensors carried by a 
mobile robot, which offers a number of advantages including 
rapid deployment, adaptation to changing environmental 
conditions, and the possibility to move to areas of high 
concentration, to name but a few. A crucial element for gas-
sensitive mobile robots is a sensor planning strategy that 
selects preferable sampling locations based on the current 
knowledge about the environment and more specifically the 
current knowledge about the gas distribution. The purpose of 
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the sensor planning component is to reduce the time that is 
necessary to converge to the final gas distribution model or 
to reliably identify important parameters of the distribution 
such as areas of high concentration, for example. Sensor 
planning is especially important in the case of a flying gas-
sensitive robot such as the one considered in this paper due 
to its limited battery life time. 

In this paper, we adapt a newly developed sensor planning 
approach by introducing locality constraints to plan the path 
for a micro-drone. The sensor planning algorithm uses 
information about the target area and previous sampling 
locations. In addition, it considers the current statistical gas 
distribution model to direct sensor measurements towards 
locations of high mean concentration, high concentration 
variance and areas for which the uncertainty about the gas 
distribution model is still large. The different objectives are 
combined in an Artificial Potential Field (APF) in a way that 
allows to include additional objectives, e.g. from human 
operators, in an intuitive and straightforward way. In 
addition to the introduction of the modified APF-based 
sensor planning algorithm and the demonstration on a gas-
sensitive micro-drone, we also demonstrate that the peak in 
the predictive variance model can provide an accurate 
estimation of the location of a stationary gas source. 

In the reminder of this paper, we first describe the APF-
based approach for sensor planning and its modification to 
provide meaningful search paths for a mobile gas sensor 
(Sec. II). Next, we describe the robotic platform used 
(Sec. III) and the experimental set-up (Sec. IV). Finally we 
present the results (Sec. V), draw conclusions and identify 
directions of future work (Sec. VI). 

II. SENSOR AND PATH PLANNING 

A. Statistical Gas Distribution Modelling 

The first step in the proposed algorithm is to create a 
statistical gas distribution model using the Kernel DM+V/W 
algorithm introduced by Reggente and Lilienthal [6]. The 
input to this algorithm is a set of measurements 
D = {(x1,r1,v1), …, (xn,rn,vn)} with gas sensor measurements 
ri and airflow measurements vi collected at locations xi. The 
output is a grid model that computes an estimate of 
distribution mean and variance for each cell. We use the 2D 
version of the Kernel DM+V/W algorithm as basis for the 
APF sensor planning algorithm to avoid the higher 
computational complexity of the 3D Kernel DM+V/W 
algorithm [7] and because of the limited battery capacity of 
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the micro-drone, which does not permit a full 3D search. In 

the experiments, the drone was kept in a single 2D plane. 

The Kernel DM+V/W algorithm works as follows. In the 

first step, it computes weights ωi
(k)

 that model the 

information content of measurement i at grid cell k. This is 

done by evaluating a two-dimensional, multivariate Gaussian 

kernel N at the distance between the location of the 

measurement i and the center x
(k)

 of cell k: 

 

. (1) 

 

The shape and orientation of the kernel depends on the 

local airflow vector v and on two meta-parameters that 

determine a spatial scale (σ) and a wind scale (γ). If no wind 

is measured (or if no wind information is available), the 

Gaussian kernel has a circular shape. In case of a non-zero 

wind measurement the kernel takes the shape of an elongated 

ellipse with the semi-major axis rotated in wind direction and 

stretched according to the strength of the wind. 

Second, weights ωi
(k)

, weighted sensor readings ωi
(k)⋅ri, and 

weighted variance contributions ωi
(k)

(ri - r
(k(i))

)
2
 are integrated 

and stored in temporary grid maps.  
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The variance contributions are computed using the 

difference between the actual measurements ri and the 

corresponding prediction of the model r
(k(i))

, i.e. the 

predictive mean for the grid cell k(i) closest to the point at 

which ri was measured. 

Third, a confidence map α(k)
 is computed from the 

integrated weights Ω(k)
 using another scaling parameter σΩ as 

a soft threshold: 

 

. (5) 

 

The confidence map expresses an increased confidence at 

locations for which we have a large number of sensor 

readings in the close vicinity (“close” is to be understood 

relative to the kernel width σ).  

Finally, the map estimate of the mean r
(k)

 and the 

corresponding variance estimate v
(k)

 is calculated using (6) 

and (7) as 
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The final estimate is obtained by linear interpolation 

between the map prediction and an a priori estimate for cells 

with low confidence. For the mean, the a priori estimate r0 is 

computed as the average concentration over all sensor 

readings. Similarly, the average over all variance 

contributions v0 is used to estimate the distribution variance 

in regions far away from measurement points.  

B. Artificial Potential Field (APF) based Sensor Planning 

In each step, the sensor planning component suggests a 

selectable number nsp of locations to place sensors in the area 

of interest in the next iteration. The algorithm uses 

information about the target area, previous sampling 

locations, and the current statistical gas distribution model 

(described in the previous section). The selection process 

considers three objectives to direct the sensor towards areas 

of (1) high predictive mean, (2) high predictive variance and 

(3) areas in which the model uncertainty is high.  

The first two objectives implement exploitation of the 

information in the gas distribution model. They are realized 

with an attractive potential generated by charges placed in 

each grid cell center. The strength of these charges is given 

by the corresponding predictive mean and variance. Accor-

dingly, two APF contributions are computed for each cell k 

as 

 

,         (8) 

 

.         (9) 

 

The third objective that corresponds to exploration is 

implemented by a repulsive potential generated by placing 

charges at all |D| = n previous measurement locations: 

 

.             (10) 

 

Associating the sensors to be placed as negative charges, 

the virtual charge q has to be negative as well. In the current 

implementation, we assign the same repulsive force to all 

previous measurements and select q = -1. Finally, the APF 

contributions are additively combined with importance 

factors βM, βV, and βR for each objective: 

 

.     (11) 

 

Finally, nsp locations are identified iteratively by selecting 

the location at which the potential takes its minimum as a 

suggested measurement point and updating the APF by 

temporarily placing an additional measurement charge at the 

selected location. Theoretically it could happen that the 

attractive forces towards an increased mean in one direction 

and towards and increased variance in the opposite direction 

cancel themselves out. In practice, we did not observe such 



  

an effect. It is unlikely that the attractive forces are 

completely balanced at the position of the sensor, and if they 

are not the sensor will be directed towards one of the 

directions so that in the next step the symmetry is broken. 

C. Selection of the Next Measurement Location 

The sensor planning approach detailed in the previous 

section distributes its suggestions over the target area without 

any spatial order. Moving the mobile gas sensor directly to 

these locations could create a seesaw movement, which tends 

to empty the batteries sooner, resulting in fewer 

measurements. Therefore, we add a locality constraint by 

selecting out of the nsp suggestions from the sensor planning 

component the most often suggested close-by measurement 

location. This is implemented by a matrix S that has the same 

discretization as the gas distribution model. For each grid 

cell S
(k)

 it counts how often the cell was suggested since it 

was actually visited the last time. The next measurement 

point is ultimately selected as the one with the highest ratio 

S
(k)

/d(k), where d(k) is the distance between the current 

position of the sensor and grid cell k. Thus, a location far 

away from the current position will only be selected if it is 

frequently suggested.  

In the current implementation, we increase not only the 

counter for a suggested cell but also the counter of 

neighboring cells within a radius of 0.5 m by one, which 

corresponds to the scale of the drainage area below the drone 

(that has a diameter of 1m). 

D.  Path Planning Algorithm for the Micro-Drone 

The initial measurement location is chosen randomly in the 

target area. Then the following steps are iteratively 

performed: 

 

− collect gas sensor and wind measurements while 

keeping the drone at a fixed position for a prolonged 

time (here: 20 s); 

− average the wind measurements over the measurement 

time (20s); 

− compute the predictive gas distribution model using the 

Kernel DM+V/W algorithm (Sec. II.A), the input to the 

algorithm are the current positions and gas sensor 

readings and the averaged wind measurement; 

− derive an estimate of the source location from the 

predictive gas distribution map (detailed below); 

− determine the nsp suggested sampling locations with the 

APF based sensor planning component (Sec. II.B); 

− update the matrix S and select a sampling location that 

maximizes the ratio S
(k)

/d(k) as described in Sec. II.C; 

− fly the drone autonomously to the chosen sampling 

location and repeat with the first step. (Measurements in 

between two sampling locations are not used to 

decrease the influence of a memory effect in the sensor 

response due to the slow sensor recovery.) 

 

The algorithm terminates either if the battery runs out or 

the confidence map α(k)
 is above a defined threshold for each 

cell k. 

III. ROBOTIC PLATFORM 

Federal Institute for Materials Research and Testing 

(BAM), in cooperation with Airrobot GmbH & Co. KG, has 

developed a mobile and flexible measurement system as part 

of an R&D project funded by the Federal Ministry of 

Economics and Technology [2], [3], [4]. The result of the 

project is a gas-sensitive sensor module (approx. 200 g) for 

the Airrobot drone AR100-B (Fig. 1). The drone can be 

flown by line of sight, via onboard video camera and video 

goggles as well as by autonomous waypoint tracking.  

The Inertial Measurement Unit (IMU) is an important part 

of the drone. It provides the basis for flight control and wind 

vector estimation and can be read out during operation. The 

IMU consists of three orthogonally arranged accelerometers, 

which detect linear accelerations along the x-, y- and z-axis, 

and three orthogonally arranged rotation rate sensors, which 

measure angular accelerations along the x-, y- and z-axis. 

Magnetic field sensors (compass) and GPS are used to 

improve the accuracy of the IMU and to compensate for 

sensor drift. The IMU of the drone also contains a 

barometric pressure sensor to control the drone’s altitude.    

A commercially available gas detector (Dräger X-am 

5600), which was originally designed as a handheld device 

for personal safety, is the base unit of the gas sensitive 

payload. Depending on the scenario, it can measure many 

combustible gases and vapors with the catalytic sensor as 

well as different (toxic) gases, e.g. O2, CO, H2S, NH3, CO2, 

SO2, PH3, HCN, NO2, and Cl2 with electrochemical and 

infrared sensors. 

An additional electronic circuit controls the 

communication between the gas detector and the drone via 

appropriate device interfaces. A temperature and humidity 

sensor was also integrated as both factors may affect the 

measurement data (however, no compensation for varying 

temperature or humidity was applied in the experiments 

presented in this paper). The casing of the gas detector is 

protected against water and dust according to IP 67 (see [5] 

for further information) and therefore capable of working 

outdoors. 

 
Fig. 1.  Pollution source and micro-drone during one of the experiments.   

 



  

IV. EXPERIMENTAL SETUP 

All experiments were carried out inside an 8 x 12 m
2
 area 

in an outdoor environment with a micro-drone equipped with 

electrochemical CO sensors. Gas concentration and wind 

measurements were recorded with 1 Hz. Measurements were 

taken at each measurement position for about 20 s, which is 

of the same order as the T90 response times of the used 

sensors. The wind vector was then averaged over all the 

measurements collected at the measurement point. Each gas 

sensor measurement was then included into the gas 

distribution model as if it was acquired together with a 

measurement of the average wind vector, i.e. the average 

wind vector was used for all individual gas sensor 

measurements acquired at the measurement position. 

The parameters of the Kernel DM+V/W algorithm were 

heuristically set to c = 0.15 m (grid cell size), σ = 0.40 m 

(kernel width), σΩ = N(0, σ = 0.4) ≈ 1.0, and γ = 0.2 s
-1

. 

Equal importance factors βM, βV, and βR were chosen for the 

APF contributions. The flight speed of the drone between the 

measurement positions was set to 1 ms
-1

. Because of the low 

flight height of about 1 m, the height of the drone was 

controlled manually during the experiments. Each run took 

around 14 – 19 minutes to complete. A barbecue filled with 

burning coal and fresh, damp wood was used as a pollution 

source (Fig. 1) and was placed approximately in the middle 

of the experimental area (at approx. (6.3, 3.8) m from the 

bottom left corner). The drone was set to autonomous 

waypoint mode directly after take-off, which started the 

experiment. 

V. RESULTS  

The results presented in Fig. 2 and Table I demonstrate 

the suitability of the proposed algorithm for gas distribution 

mapping and its use for localization of a stationary gas 

source. Table I shows for all five runs the distance between 

the true gas source location and three different estimates 

after the last measurement point. The first estimate is derived 

by selecting grid cells in which the predictive mean is larger 

than 90% of the maximum. The center of this area is taken as 

the source location estimate and the maximum extension in 

x- or y-direction is used to specify a confidence interval. In 

the same way the other two estimates are computed using the 

variance (second result) or the product of mean and variance 

(third result). The true source location was within the mean 

estimation area only in one trial and within the variance 

estimation area in two trials. This is in line with previous 

observations that the concentration variance often provides a 

better indication of the gas source location [8] than the mean. 

Fig. 2 shows the final snapshot of run number 3 after 31 

measurement points. The first four diagrams are related to 

the Kernel DM+V/W algorithm and show the weight map 

Ω(k)
, the confidence map α(k), the mean distribution map r

(k)
, 

and the variance distribution map v
(k)

. The last two diagrams 

show the measurement positions suggested by the sensor 

planning component (green dots) together with the predicted 

source location (red dot) and the APF map. Fig. 3 shows 

exemplarily the trajectory produced by the SP algorithm in 

run 3 with starting position (x, y) = (11.02, 7.00) m (compare 

with Fig. 2). 

 Keeping the gas emission rate constant over time with the 

chosen gas source was difficult. A re-ignition of the almost 

extinguished source in run #4 for example (after the 20th 

measurement) created an intense emission that likely caused 

very high concentrations also far away from the source. The 

21st measurement taken at position (x, y) = (8.85, 4.95) m 

was affected by this outburst, which caused a strong change 

in the gas source location estimate and is therefore. Results 

 
Fig. 2.  The top row shows the weight map !(k) (left) and the confidence 

map "(k) computed with the Kernel DM+V/W algorithm (right). The middle 

row shows the corresponding mean distribution map r(k) (left) and variance 

distribution map v(k) (right). Bottom row, left: area with the suggested next 

measurement points (green dots) and the source location estimate (red dot). 

Bottom row, right: visualization of the APF. All plots were created after the 

last time step of the SP algorithm (run 3, measurement 31). 

 

 

 
Fig. 3.  Calculated sample trajectory of the SP algorithm (run 3) with 

starting position (x, y) = (11.02, 7.00) m. 

  

 

TABLE I 

RESULTS OF THE EXPERIMENTS 

run 
measurement 

points 
distance to true source location, 

estimate using mean / variance / mean⋅variance 

1 27 (1.66±0.75) m / (1.52±0.71) m / (1.57±0.50) m 

2 24 (2.64±0.65) m / (2.84±0.68) m / (2.75±0.46) m 

3 31 (0.68±0.77) m / (0.25±0.80) m / (0.46±0.57) m 

4 20 

34 

(3.01±2.43) m / (2.05±0.89) m / (1.89±0.64) m* 

(1.84±1.32) m / (2.51±0.50) m / (2.28±0.49) m 

5 32 (1.72±0.80) m / (0.74±0.86) m / (1.41±0.55) m 

 

 



  

are given in Table I for the 20 measurement points up to this 
event, marked with an asterisk (*), and for the full duration 
of the experiment. Another difficulty, which should be 
mentioned here, is the slow sensor decay. Flying from one 
measurement position to another directly over the source can 
also lead to wrong source estimates when the sensor still 
responds to the high concentrations close to the source. 

VI. CONCLUSIONS AND FUTURE WORK 

Statistical gas distribution modelling indicates areas of 
high mean and variance and the respective maxima suggest 
areas that are good candidates for further inspection. The 
proposed APF-based approach balances objectives related to 
exploration and exploitation. The repulsive part prevents 
repeated measurements at the same locations and thus 
promotes exploration. The attractive part directs the attention 
to areas for which higher gas accumulation or higher 
variance in the predictive gas dispersion is predicted 
(exploitation). Through the introduction of a locality 
constraint, implemented by selecting in each step the most 
often suggested close-by measurement location, the results of 
the sensor planning component could be used to plan 
suitable paths for a mobile gas sensor. The proposed 
algorithm was tested in real-world experiments with a gas 
sensitive micro-drone. The initial results presented in this 
paper show the potential of this approach for gas distribution 
mapping and highlight that the produced maps can provide 
good estimates of the gas source location.  

The method presented in this paper leaves ample room for 
future work. With respect to real-world applications, it 
should be investigated how robust the proposed approach is 
with respect to changing wind directions and to different 
levels of turbulence.  

The current implementation does not take into account the 
time when the measurements were made. We will study 
therefore an extension of the approach proposed in this paper 
that introduces time-dependency at two points. First, a time 
dependent statistical gas distribution modeling algorithm will 
be used, for example the Time-Dependent (TD) Kernel 
DM+V/W algorithm introduced in [9]. Second, the charge q 
that scales the strength of the repulsive potential exerted 
from previous measurement points should also be time-
dependent, namely it should be lower for earlier 
measurements. We also plan to study an extension to a 3D 
approach.  

Finally, we will investigate methods to select optimal 
relative weights (β parameters) for the different objectives in 
Eq. (11), and include more real-world experiments and 
simulations to test the algorithm.  
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