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Abstract

This thesis presents a study of the signed distance function as a three-dimen-
sional implicit surface representation and provides a detailed overview of its
different properties. A method for generating such a representation using the
depth-image output from a Kinect camera is reviewed in detail. In order to im-
prove the quality of the implicit function that can be obtained, registration of
multiple sensor views is proposed and formulated as a camera pose-estimation
problem.

To solve this problem, we first propose to minimize an objective function,
based on the signed distance function itself. We then linearise this objective
and reformulate the pose-estimation problem as a sequence of convex opti-
mization problems. This allows us to combine multiple depth measurements
into a single distance function and perform tracking using the resulting surface
representation.

Having these components well defined and implemented in a multi-threaded
fashion, we tackle the problem of object detection. This is done by applying the
same pose-estimation procedure to a 3D object template, at several locations,
in an environment reconstructed using the aforementioned surface representa-
tion.

We then present results for localization, mapping and object detection.
Experiments on a well-known benchmark indicate that our method for lo-
calization performs very well, and is comparable both in terms of speed and
error to similar algorithms that are widely used today. The quality of our sur-
face reconstruction is close to the state of the art. Furthermore, we show an
experimental set-up, in which the location of a known object is successfully
determined within an environment, by means of registration.
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Chapter 1

Introduction

1.1 Registration and SLAM
The problem of building a consistent representation of an environment, from
sensor data, is one that relies heavily on an accurate estimate of the sensor’s
position relative to that environment for success. Often the inverse is also true,
defining what is known as Simultaneous Localization and Mapping (SLAM).
This is one of the most fundamental problems in mobile robotics and has
received much attention since its formulation at the 1986 IEEE Robotics and
Automation Conference [9].

It is largely held that SLAM is still an open problem, in spite of an abun-
dance of algorithms that appear to perform exceptionally well at it. This claim
is chiefly motivated by the restrictions that have to be imposed on either what
is implied by “localization” or the significance of “mapping”. Naturally, neither
map nor position can be encoded to perfect detail in a truly unlimited sense,
but even for the small confines of an apartment, it would be difficult to account
for dynamic and static elements of the environment from a single observation
without knowledge of objects and their properties.

Another claim on the openness of the SLAM problem may stem from the
expectations on what sort of information a map is to provide about the envi-
ronment. For example, it is often the case that a map is not an end in itself,
but only a tool to be used in a subsequent step. This subsequent step might
require only to know which parts of the map are occupied, as is often the case
in navigation. In some cases, however, the map is expected to provide much
more information, such as which room is most likely to contain a particular
object. In the first case, many solutions exist. In the other; very few, if any.

In this work we pose the creation of maps, as a camera-tracking problem,
using a Kinect camera and approach the problem of object detection by means
of registration. By revisiting the problem of SLAM and attempting to extend

1



2 CHAPTER 1. INTRODUCTION

it with object detection, we aim to take a step towards semantic maps, 3D
model synthesis of real-world objects or performing 3D mapping in robotic
applications.

Until recently, much of the research in camera tracking has focused on
either summarizing the available data from sensors, or discarding all but the
most salient features in order to estimate the camera’s position. During the
past couple of years, we have seen the advent of dense methods that make use
of all the available data both for representing the world, as well as solving the
camera pose estimation problem under real-time constraints. The feasibility of
such methods is owed to some degree to the lower cost and availability of more
powerful graphics hardware and multi-core CPUs, but also to innovations in
parallel algorithms.

1.2 Related Work
This work bears many similarities to that of Newcombe et al. in KinectFusion
[25] in the methods used for generating a 3D signed distance function repre-
sentation of space from depth-images. It differs in that our implementation
follows an alternative approach to solving the implied registration problem
and in that our objective is ultimately an attempt at object recognition. Our
method for registration is more akin to one presented as Fast ICP [8], which
computes a distance transform of one set of points to aid in the alignment of
another. For sake of speed and in order to facilitate the inclusion of new data as
we build our map, we choose to avoid a full distance transform. Registration,
using a distance function representation of objects has also been extended to
deal with non-rigid template matching by Fujiwara et al. [15], which is related
in light of research directions we wish to explore in our future work.

Although SLAM is not our main motivation, the method outlined in this
work can be used for such purposes too. The 3D representation of our choice
for this work is a variant on the Signed Distance Function, as proposed by
Curless and Levoy [7].

1.3 Outline
The remainder of this thesis is organized as follows:

Chapter 1 is a short introduction to SLAM and a very brief overview of
related work. It also contains this Outline.

Chapter 2 gives a thorough definition of Signed Distance Functions in the
context of implicit three dimensional surface representation. Some note-
worthy properties are explained in detail, as well as a method for how
such an implicit surface representation can be generated from depth data.
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Chapter 3 presents a method for estimating the 6 DoF camera pose within
an intuitive and effective convex optimization framework. Practical con-
siderations are made and notes about implementation are also included

Chapter 4 proposes a simple method for registration-based object detection,
giving a motivation and a direction for more complex algorithms

Chapter 5 shows experimental results and benchmarks

Chapter 6 offers our conclusions





Chapter 2

Signed Distance Functions

The Signed Distance Function (SDF), also referred to as the Signed Distance
Transform, or simply Distance Transform has been widely applied to the pro-
cessing or visualization of volumetric 3D data. Commonly used in the field
of computer graphics as an acceleration structure for speeding up ray-casting
operations [16] it can also be used as a 3D model representation. Other appli-
cations include collision detection [14] and haptic feedback [23], among others
[19][38].

The SDF is usually implemented as a voxel-based (or pixel-based in the
two-dimensional case) representation, in which each cell contains the distance
to the nearest surface in the scene. The signed part indicates whether the voxel
(or pixel) is on the outside (positive) or inside (negative) an object.

2.1 Definition
We will now elaborate on the above definition. Let there be a function

D(x) : RN → R,

mapping positions in N-dimensional space to scalar values. For our purposes
we will most often be interested in N = 3, but in some cases we will make
analogies in N = 2, for illustrative purposes. Consider, for example, the circle
defined by

r = 2,

x2 + y2 = r2, (2.1)

or, to use a notation more consistent with our function definition,

‖x‖22 = r2, (2.2)

5



6 CHAPTER 2. SIGNED DISTANCE FUNCTIONS

Figure 2.1: This figure shows a plot of all the points with distance equal to r
from the origin (r = 2)

equivalent to,
‖x‖2 − r = 0, (2.3)

with x =

[
x
y

]
and ‖·‖2 signifying the L2-norm (Euclidean distance).

This equation can be expressed, verbally, as the geometric locus in R2 that
has a distance of r units from the origin, r being the circle’s radius. Figure 2.1
shows a plot of the points that satisfy equation 2.3.

However, let us focus on the first term of the equation and plot the value
of ‖x‖2 as a function of x and y. The result, as can be seen in Fig. 2.2, is a
smoothly varying gradient that becomes lighter (higher-valued) further away
from the origin, in every direction.

If we now subtract r from ‖x‖2, as in 2.3 and plot the resulting values,
we have the result seen in Fig. 2.3. Now the distance is relative to the edge of
the circumference. It is a positive value whenever outside, negative whenever
inside and zero exactly on the edge of the circle. This means that the common
definition for a circle conforms precisely to the definition of a signed distance
function. The intuition behind this is that the equation for a circle can be
thought of as the intersection between a plane and a cone standing on its tip.
Everything below the plane is negative and above, positive.

In fact, expressions exist for several primitive geometries, also in higher
dimensions [26][13]. Furthermore, composing several such geometric shapes
together is very easily achieved using min and max operations on the outputs
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Figure 2.2: Points in 2D, plotted with brightness proportional to the L2-norm
of vector that points to them

of their respective distance functions (SDF’s are closed under min and max
operations).

In the general case, and especially when dealing with sensor data, we do not
have an explicit formulation for the SDF, needing to estimate it from discrete
samples in some N-dimensional metric space.

2.2 Properties
In this section we will describe some properties of the SDF that will be of use
to us later.

2.2.1 Intersection test
Since the SDF represents a surface, it is desirable to have a test to determine
where a given ray intersects this surface. This is necessary for rendering images
of the representation (including depth-images). It is also useful for sampling
points on the surface without resorting to a sweep through the entire voxel-
space. Therefore, given a ray,

αρ = α

ρ1

ρ2

ρ3
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Figure 2.3: Points in 2D, plotted with brightness proportional to the L2-norm
of vector that points to them, minus the radius

where ρ is a unit-norm vector and α a scalar. We wish to find a scalar value α?
such that D(α?r) = 0. There is a simple and elegant procedure called sphere-
tracing that does exactly this. Algorithm 1 has some similarities to Newton’s
Method for successive approximation of roots (Secant Method). In essence it
iteratively rescales a ray by adding the current value of the SDF to α.

Algorithm 1 Sphere tracing.
Require: ρ

1: α0 ← 0

2: for k = 1 to kmax do
3: αk ← αk−1 +D(αk−1 · ρ)
4: if (

D(αk−1 · ρ) > 0 and D(αk · ρ) ≤ 0) or
(D(αk−1 · ρ) < 0 and D(αk · ρ) ≥ 0)) then

5: return αk−1 − D(αk−1·ρ)
D(αk·ρ)−D(αk−1·ρ) · [αk − αk−1]

6: end if
7: end for
8: return + inf.
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The algorithm terminates after a maximum number of steps or if the func-
tion has been evaluated at two successive points with opposite signs. This
means that the ray has stepped across the surface (either from the inside, go-
ing out or the outside, going in). The returned scaling of the ray that represents
the intersection point is obtained by linear interpolation (step 5, Algorithm 1).
If the maximum number of steps was reached, + inf is returned, indicating that
the ray didn’t intersect a surface in the given number of steps.

Since the SDF is defined as the distance to the nearest surface, each step
along the ray can be thought of as moving to the edge of the largest sphere
that fits at the current point in space. An illustration of the algorithm is given
in Fig. 2.4. When searching in this way, for a surface, it is practical to have
an early stopping condition at some smallest allowed step-size is set. This
early stopping (at a positive value) can speed up rendering, but can also be
used to dilate objects, making them appear arbitrarily thicker. Conversely,
late-stopping can be used to make objects thinner.

Figure 2.4: Sphere tracing. The dots represent the points at which the function
D(x) is evaluated and the maroon lines represent the scalar value returned by
the function. Note that the information of where the nearest surface is located
is not available, only the distance to it.

2.2.2 Normal vector estimation
Having a method for computing the intersection is enough to generate a depth-
image or point-cloud from any given viewpoint in the SDF. To safely grasp
an object with a manipulator, or to perform object recognition based on 3D
features, the orientation of the surface is often needed. For an SDF with an
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analytical expression, the components of the normal vector are simply obtained
by partial derivatives of the SDF with respect to each spatial dimension1.

n(x) = ∇xD(x)T =

∂D(x)/∂x1

∂D(x)/∂x2

∂D(x)/∂x3

 (2.4)

For our circle example we have:

∂

∂x1
‖x‖2 − r =

x1

‖x‖2
,

∂

∂x2
‖x‖2 − r =

x2

‖x‖2
,

resulting in

n =
[
x1 x2

]
· 1

‖x‖2
.

We note here that there is no restriction on the domain of ∇xD(x), i.e., the
gradient is not only defined at points pertaining to surfaces, but can be com-
puted wherever D(x) is defined.

As mentioned before, an explicit expression like the one given for the circle
will often not be available. In such cases the gradient vector can be found by
finite differences. For our voxel-based SDF we will use central differences to
compute gradients.

2.2.3 Inside - Outside test
A test to see if a given point is inside or outside an object can be made simply
by evaluating the sign of the SDF. A function for an inside-outside test can be
defined as the following:

Inside(x) =

{
1 D(x) < 0
0 otherwise (2.5)

2.2.4 Curvature
If the first derivative of the SDF, with respect to position, produces the gra-
dient toward the surface, then the second derivative (a measure of how this
gradient changes with position) is the curvature. More precisely,

Curv(x) = ∇2
xxD(x). (2.6)

1We adopt the convention that the derivatives, relative to to each dimension, are stored
in separate columns, resulting in a row-vector (hence the transpose).
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The second-order derivative of a vector field, also known as the Laplacian. In
3D, it can be computed as

∇2
xxD(x) =

∂2D(x)

∂x2
1

+
∂2D(x)

∂x2
2

+
∂2D(x)

∂x2
3

. (2.7)

In practice, our finite-difference approach to evaluating gradients requires sev-
eral memory look-ups. Derivatives (especially of higher orders) therefore tend
to be costly to compute. An approximation that gives an indication of cur-
vature, and also has the benefit of being normalized in the range [0, 1] is the
projection of adjacent gradient vectors onto each-other. So instead we have,
for the curvature along dimension xi,

∇2
x,iD(x) ≈ 1− [n(x+ di)]

Tn(x)

‖n(x+ di)‖2 · ‖n(x)‖2
, (2.8)

where n(x) is the surface normal at x. The vector di is simply a displacement
consisting of zeros in all but the component denoted by the subscript, the
latter being a small positive value instead. The normalized dot product is
equal to the cosine of the angle between the vectors. So the result of this
operation is that if two nearby points in space have gradients oriented in
different directions, the measure of curvature will be high (closer to one). If
the adjacent gradients instead have the same orientation, the curvature will
be closer to zero. Computing the curvature for each dimension and storing the
result as the entries in a 3-element vector, produces a vector that indicates
the direction of “bending” at that point in space. The divisor in the above
expression can be omitted if it can be ensured that the norm of the gradient
is always equal to one. In practice, this is not always the case.

2.3 Signed Distance Functions From Depth Im-
ages

Now that we have defined signed distance functions and some of their proper-
ties, we shall continue with a method that can be employed for computing a
SDF from depth images. This method is proposed in [7] and is also employed
in [25] with some minor differences.

2.3.1 Input data
The input data is a depth image (also called depth-map). A depth image is
very much like an ordinary gray-scale image in the sense that it is a two-
dimensional array of elements, i.e., pixels or picture elements. Each pixel in
a depth image stores a numeric value that either directly or through some
conversion corresponds to the distance at which a surface was measured along
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Figure 2.5: Microsoft Kinect camera

a ray passing through that particular pixel. These rays are usually arranged so
that they originate from a common point, called the sensor origin. The diagram
in Fig. 2.6 shows a drawing, explaining the relationship between depth images
and the measured space.

Although we say that measurements are made along rays (in green), it is
customary to re-scale these range values by the cosine of the angle that these
rays make with the view axis. This produces what is called ’z-depth’ which, in
the drawing, is shown as being the points along the view axis where it is inter-
sected by the vertical blue lines. By convention, depth images denote images
with measurements along the viewing axis. Images that contain measurements
along rays are usually referred to as ’range-images’. Throughout this work we
shall only be concerned with depth images, however.

Note that to recover the original three-dimensional coordinate of the surface
measurement, from a depth image, the focal length of the sensor must be
known.

In this work, input data are obtained from a Kinect [24] camera, as depicted
in Fig. 2.5 though any other device (e.g. [27][2]) that outputs depth images
could be used just as well. In fact, for the purposes of the algorithms in this
work, sensor systems, such as time-of-flight (ToF) cameras or actuated laser
range-finders can potentially be used, with similar expected performance. It
has been shown by Stoyanov et al. that Kinect-like sensors, time of flight
cameras and actuated Laser Range finders are comparable in terms of error
under certain conditions [34]. The main requirement for the success of the
method we propose in this thesis is that depth image data is provided from
viewpoints with a sufficient amount of overlap.

The Kinect camera is a type of sensor known as a structured (or coded) light
sensor. The measurement principle is (very simply stated) based on projecting
a light pattern whose appearance, when viewed by a camera, can be related
to a distance. As an example, in Fig. 2.7 a depth and color image of an office
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Figure 2.6: Diagram showing the relationship between a depth image and the
surfaces at which measurements are taken, under a pinhole camera model

(a) depth image (b) color image

Figure 2.7: Depth and color images of the same office desk

desk are shown. The images are part of a publicly available dataset [35]. The
depth image has been contrast-adjusted to improve visualization.
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2.3.2 Notation
To introduce some useful notation and formalize the previous statements, we
will consider an image as a subset M of the two-dimensional plane i.e,M ⊂
R2.

• Let there be a scalar function zn that assigns a ’z-depth’ value to each
element of M for every nth image. Since measurements cannot be ob-
tained from behind or exactly at the sensor origin, zn is a strictly positive
function.

zn : M → R+

• Let sn be a (vector-valued) function that defines a 3D surface point
associated with each element on the image plane and its depth, when
given the nth depth image, or formally

sn : R2 × R→ R3,

sn(m) =


m1−cx
fx

zn(m)
m2−cy
fy

zn(m)

zn(m)

 , (2.9)

where m = (m1,m2) ∈ M , and cx, cy, fx, fy ∈ R are intrinsic camera
parameters of a pinhole camera model. Here cx and cy are the coordinates
in M where the view-axis crosses the image-plane. The parameters fx
and fy are the horizontal and vertical focal lengths (see Fig. 2.6). Usually,
cx and cy are half the number of columns and rows of M , respectively.
Furthermore, if the pixels are square, we also have fx = fy.

In addition (for convenience) we define s̄n(m) as a homogeneous coor-
dinate vector

s̄n(m) =

[
sn(m)

1

]
=


m1−cx
fx

zn(m)
m2−cy
fy

zn(m)

zn(m)
1

 . (2.10)

• Let π be a (vector-valued) function that perspective-projects 3D points
to the image plane, or formally

π : R3 → R2,

π(x) =

[
x1

x3
fx + cx

x2

x3
fy + cy

]
, (2.11)

where x = [x1, x2, x3]T ∈ R3. Note that m = π(sn(m)).



2.3. SIGNED DISTANCE FUNCTIONS FROM DEPTH IMAGES 15

Normal vector estimation from input data

Given the above notation, we can formally present the standard method for
estimating normal vectors at surface points, directly from an input depth im-
age. Although we have a method for computing normal vectors from signed
distance functions, we shall see that estimating normal vectors from the raw
sensor data can be a useful step in generating the SDF itself. The estimation
of surface normals here is based on the assumption that each surface point is
located within a locally planar region. We can obtain two vectors that span
the plane by evaluating the difference between sn(m) and two surface points
adjacent to it. The estimated normal vector n̂n(m) is the cross product of
these vectors:

n̂n(m) = (sn(m1 + 1,m2)− sn(m))× (s(m1,m2 + 1)− sn(m)) (2.12)

To reduce the amount of noise present in the final estimate, the surface normals
can be computed, instead, from a bilateral-filtered [36] version of the depth
image, as proposed by [25]. Bilateral filtering is an edge-preserving blurring
operation.

(a) Estimated surface normals (b) Estimated surface normals from a
smoothed depth image

Figure 2.8: The cross product between vectors pointing to adjacent pixels
produces an estimate for the normal vector at each surface point. In the images,
the three spatial dimensions (x,y,z) of the vectors have been mapped to red
green and blue, respectively, to give a qualitative indication of the estimated
surface orientation. Note that there is noise in the result, even with smoothing.
The vertical bands are an artefact of the sensor output.
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2.3.3 Creating the SDF
The goal of this section is to define an implicit signed distance function based
on sensor-data. Let us consider this a function that maps points in three-
dimensional space to scalar values,

D(x) : R3 → R,

and, for later convenience,
D̄(x̄) : R4 → R,

D̄(x̄) := D(x) (2.13)

The second definition merely states that when D̄(x̄) is evaluated with a vector
represented in homogeneous coordinates, it discards the last element of the
input and returns the result of D(x).

To create a SDF from a depth image, we first initialize a discrete voxel grid
of extension sizex × sizey × sizez ∈ N+ with a spatial resolution of τ . This to
say that each voxel represents a cube in space, each cube measuring τ meters
in length, width and height.

We shall once again rely on two-dimensional analogies for visualization
purposes. In Fig. 2.9 we illustrate a newly initialized voxel grid, next to the
depth image from the previous example. Note that the focal length of the
sensor, in this example, is three units and τ is assumed to be one unit.

Figure 2.9: The voxel grid is initialized over the 3D space from where mea-
surements were obtained.
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The spatial coordinates to the center of each voxel are then perspective
projected, using π, into the image plane (see Fig. 2.10). For all coordinates
whose projection falls within the subset of R2 occupied by M , we look up
the value zn(m) stored in the nearest pixel. We then compute the difference
between this value and the distance to the voxel (measured along the view
axis). The resulting difference is stored in the voxel itself. See Fig. 2.11 for a
graphical example. Formally, our definition of an element D(d) is,

D(d) = zn(π(d))− d3 (2.14)

where d = [d1, d2, d3]T ∈ N3
0 (i.e., the natural numbers, including zero) are the

integer coordinates of each voxel ranging from zero to sizex,sizey,sizez.
Evidently, this produces values that are positive, zero or negative depending

on whether the center of the voxel is outside, at or behind surfaces, respectively.
Voxels whose perspective projection falls into pixels with bad measurement
data or outside the depth image are not updated. In the illustrations, these
cases are labelled with question marks. Lastly, the values stored in the grid are
not in strict adherence to the definition of a true signed distance function, i.e.,
that the value represents the (Euclidean) distance to the nearest surface. This
is because distances are computed along the line of sight. Euclidean metrics
are therefore only produced towards surfaces that are exactly perpendicular to
the viewing angle. However, by incorporating measurements from several view-
points we can still construct a function that decreases monotonically towards
surfaces, at which the value of the function is zero.

By interpolating between voxels and drawing a surface at the boundary
between positive and negative values, we get the result seen in Fig. 2.12. Com-
pared to the arrangement of (2D) objects in Fig. 2.6 we note that much of the
resulting surface is false.

To avoid this, we truncate the values that can be written into the voxel grid
at a small positive value Dmax and a small negative value Dmin. If we would
consider, for instance Dmax and Dmin to be +1 and −1 we would get the
surfaces seen in Fig. 2.13. This has the added benefit of allowing local changes
without the need for updating distance values in remote voxels. Throughout
the remainder of this thesis we will refer to the signed distance function (SDF),
meaning this truncated version.

It is important to mention that Dmax and Dmin need not be symmetric
around zero. It might be desirable, for instance, to have a large value for Dmax

for collision avoidance or to speed up rendering, by allowing the sphere-tracing
algorithm to make larger jumps. The value of Dmin, on the other hand, is often
desired to be as small as possible, since it will determine the minimum thickness
of objects that can be reconstructed.
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Figure 2.10: The coordinates of each voxel center is projected into the image
plane. Note that not every projection will fall within the subset of the plane
where the depth image is defined.

Figure 2.11: Voxels are updated with the difference between the depth im-
age value and the distance to the respective voxel from the sensor, along the
viewing direction.
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Figure 2.12: By interpolating between voxels we can obtain a surface, defined
as the boundary between positive and negative values.

In this example however, we use the aforementioned values and note that
the resulting surface fits much better with the measured data. The truncated
distance is formally defined as,

Dt(d) = max(min(zn(π(d))− d3, Dmax), Dmin) (2.15)

When querying Dt(x), x may be out of bounds (since the underlying voxel
grid only contains a subset of R3). In this case we simply return the value
Dmax. When x is within bounds, the returned value is a tri-linear interpolation
between the nearest 8 values of Dt(d). So even if the actual data-structure of
Dt(x) is a discrete array, we can treat it as a continuous function in R3 for
queries.

Furthermore, since we are working with sensors that provide video streams,
we receive new data that affect the information currently used to represent
Dt(x). Instead of simply replacing old values with new, it is proposed by [7]
to compute a weighted average of the data coming from the sensors. For this
purpose, let there be a function W (w) with w = [w1, w2, w3]T ∈ N3

0,

W : w → R



20 CHAPTER 2. SIGNED DISTANCE FUNCTIONS

Figure 2.13: By interpolating between voxels we can obtain a surface, defined
as the boundary between positive and negative values, only values in the range
[−1, 1] are considered.

representing the weight of the data stored in D. An update of a single element
in D and W is then done by

Dt(d)n+1 =
Dt(d)nW (w)n +Dt(d)W (w)

W (w)n +W (w)
, (2.16)

W (w)n+1 = min(W (w)n +W (w),Wmax) (2.17)

W (w) may be computed according to an error model for the sensor, for each
zn(m). For structured light sensors we have,

W (w) =
cosθ

err(zn(π(w)))
(2.18)

where θ is the angle between the estimated surface normal and the ray through
m from the sensor origin (the green rays in Fig. 2.6). Note that the surface
normal here has to be estimated directly from the raw input data.

This tells us that we are most certain about measurements perpendicular
to surfaces that are close to the sensor and that error increases according to
an error model for the sensor that varies with distance. For structured light
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technologies in general this can be modelled as a linear function of z [37].
Specifically for the Kinect sensor, a more accurate model, taking into account
quantization effects, has been proposed [30], which is approximately quadratic
with respect to z.

err(z) =
qpix · b · f

2
·

[
1

round(
qpix·b·f

z − 0.5)
− 1

round(
qpix·b·f

z + 0.5)

]
(2.19)

where

qpix subpixel resolution of the device (8 for Kinect)
f focal length of the device, in pixels ( ca. 520 for Kinect)
b baseline, between projector and IR camera, in meters (0.075 for Kinect)

Figure 2.14: Model of the systematic error of the kinect sensor, with respect
to depth.

With regard to the computation of W ; a simplifying assumption that we
make use of, instead of Eq. (2.18), is to set W = 1. We thereby reduce the
weighted update to a rolling average (rolling, due to the saturation at Wmax).
This saves the cost of having to produce an estimate n̂ of the surface normals
from the depth image, which would be needed to compute cosθ.

Before we go through an algorithmic overview of this section, a few words
about the initialization of Dt and W . Since we choose to truncate positive
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distances at Dmax, this value is also our most natural choice for the value
representing empty space. The initial weight attributed to each voxel is just as
naturally chosen as being zero since, at the start, nothing has been measured.
Although an empty and unobserved space are both represented by a distance
of Dmax, the weight of zero (in the unseen space) can be used to distinguish
between the two cases.

Algorithm 2 SDF initialization.
1: for all d ∈ Dt do
2: Dt(d)← Dmax

3: end for
4: for all w ∈W do
5: W (w)← 0
6: end for

Algorithm 3 Truncated SDF update function, with rolling average.
Require: zn(M) 6= NaN
1: for all d ∈ Dt do
2: w ← d
3: weight← 1.0
4: distance← max(min(zn(π(d))− d3, Dmax), Dmin)

5: Dt(d)← Dt(d)W (w)+weight·distance
W (w)+weight

6: W (w)← min(W (w) + weight,Wmax)
7: end for

To give a concrete example, consider Fig. 2.15; an example depth image of
a wall with an adjoining corridor. We initialize a voxel grid of 200× 200× 200
elements, with a spatial resolution τ = 0.05m. We allow the SDF update
function to include new measurements for several minutes, and there is no
visible change in the implicit surface represented by Dt(x) = 0.

For visualization we use algorithm 1 (sphere-tracing) to produce an image
from a virtual camera. The colour at each point is given by the dot product
between the vectors ρ and n(x) as defined in section 2.2. Another example is
given in Fig. 2.16, made by taking a 200 × 200 slice from the voxel grid and
treating it as a two-dimensional image. The same colour coding scheme is used
as before (see the circle example in section 2.1). Negative values are mapped
to red (brighter further from zero), positive values are mapped to green, with
the same interpretation for variation in brightness. Completely unseen voxels
are mapped to dark gray.
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(a) depth image (b) grayscale image (not used)

Figure 2.15: Depth image of a hallway. The grayscale image is included as a
visual aid for the reader, but not actually used in any of our algorithms. Black
values in the depth image are unsuccessful measurements and are returned as
NaN (not a number).

(a) SDF rendered through sphere-tracing (b) A slice of the voxel grid, displayed as
an image

Figure 2.16: Visualizations of the generated SDF.

2.4 Discussion
We have reviewed one of the standard methods for generating a signed dis-
tance function from depth images, as a voxel-based representation of three-
dimensional surfaces. As can be seen from the results presented in this chap-
ter, the quality of the reconstructed surface leaves a lot to be desired. First of
all, we note that even though the generated SDF is based on the average of
many depth images, the resulting surfaces are not smooth. A possible source
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for this error, one could imagine, is that we pick only the closest pixel in the
depth image when performing the perspective projection. Why not interpolate
between the pixels in the depth image instead? From experiments we have
noted that this does not result in any visible improvement to surface quality,
but comes with a number of drawbacks. One is that interpolation over sur-
face discontinuities produces what is known as jump-edge points. Jump edge
points are measurements that erroneously appear in the empty space between
two separate surfaces, along their boundaries. Even if we interpolate only be-
tween pixels that are relatively close in depth, it would still have the effect of
rounding off sharp corners, blurring out details that might be of interest in
the reconstruction. We would also have to exclude interpolation between valid
pixels and NaN’s.

A more likely explanation for the lack of surface smoothness is the lim-
ited detail in the structured light sensor’s illumination pattern, as well as
quantization errors in its depth estimation, which is a systematic (repeatable,
non-stochastic) error.

Another point that is of interest is that the resulting distance function is
not Euclidean, as can be seen from the orientation of the gradient (note how
the dark stripes all point to the origin of the green “cone”) in Fig. 2.16, b. The
resulting distance field is better described as consisting of projective or line of
sight distances.

The projective distances can be corrected, close to planar surfaces, by mul-
tiplying the distance values by cosθ [12] (defined earlier in this section). This
correction can be applied when integrating the sensor data into the SDF, based
on the estimated surface normals (see Fig. 2.8). We include the information
about how projective distances can be corrected for completeness and note
that the additional computation required to produce the estimate (and filter-
ing) of the normal vectors is not justified by any increase in performance in
subsequent camera pose-estimation (according to benchmarks done with an
RGBD dataset [35] with known ground-truth).

The surface reconstruction can be vastly improved by making measure-
ments from different points of view. However, to have any use for data at
different view-points, we need to know the position of the camera. This will
be the topic of Chapter 3.



Chapter 3

Registration

This chapter presents the camera pose-estimation as a series of convex opti-
mization problems that, each in turn is no harder than solving a simple system
of linear equations. To arrive at these easy to solve problems, we start with
an initial formulation that very literally states what we wish to achieve. We
then make one key simplifying assumption about the nature of the problem
and devise an approximation based on our 3D representation.

3.1 Problem statement
To register two (or more) sets of surface measurements, is to align them so
that the parts that are commonly seen in both sets overlap as well as possible.
The problem of registration can more precisely be stated as that of finding
a transformation T that will put these corresponding parts into alignment.
Additionally, due to the often impossible task of perfect alignment, we look for
a transformation that minimizes some distance measure between corresponding
parts in the measurements of the surfaces instead. Let T ∈ R4×4 denote a
homogeneous transformation matrix i.e.,

T =

[
R t
0T 1

]
, (3.1)

where R is a 3 × 3 rotation matrix, t ∈ R3 is a translation vector and 0T

is a row-vector of appropriate dimensions. This matrix represents a com-
plete three-dimensional, rigid-body transformation, including both rotation
and translation. To transform an arbitrary 3D point, in frame of reference A,
e.g. pA = (x, y, z)T to frame of reference B we simply re-write pA in homoge-
neous coordinates, i.e., p̄A = (x, y, z, 1)T . The transformation from A to B is
then,

p̄B = TBAp̄A.

25
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When computing the optimal transformation T (an optimality criterion will
follow shortly) it will be convenient to have a more compact representation
for it than the 12 combined parameters of the rotation matrix and translation
vector. Since we know that there are only actually 6 DoF (yaw, pitch, roll, up-
down, back-forth and left-right) we would like to have 6 parameters as well.
One such parametrization can be made using Lie groups and Lie algebra (see
[28] pp. 34–42, [21] pp. 34–37). The 3D rigid body transformation T belongs
to the Special Euclidean Lie group of dimension 3,

T ∈ SE(3),

and can be parametrized in a neighbourhood around the identity transforma-
tion, by ξ ∈ se3, which is the Lie algebra associated with SE(3). Conceptually
ξ can be regarded as a vector “stacking” angular velocities ω = (ω1, ω2, ω3)T

and linear velocities v = (v1, v2, v3)T ,

ξ =

[
ω
v

]
. (3.2)

The mapping from the parameter vector ξ to the transformation T is done
through the exponential map,

T (ξ) = eξ̃∆t, (3.3)

requiring a couple more definitions, namely that

ξ̃ =

[
ω̃ v
0T 0

]
, (3.4)

where ω̃ is a skew-symmetric (or antisymmetric) matrix i.e.,

ω̃ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , (3.5)

and that ∆t ∈ R denotes a time interval. In our application, we can suppose
that ∆t is always 1.0 and let any scaling it would have performed on ξ̂ be
incorporated in the norm of ξ itself. Lastly e denotes the matrix exponential.

The exponential mapping is only guaranteed to yield a distinct transfor-
mation matrix close to ξ = 0, so we cannot increment ξ indefinitely. For this
reason, we periodically re-set ξ to zero, using it to represent only incremental
transformations in pose.

Incrementing one transformation with another is straightforward. Recall
the earlier transformation, from frame of reference A to B. Now, imagine that
we want to take a point from A to C, having already transformed it into frame
of reference B,

p̄C = TCBp̄B.
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Since matrix multiplication is associative, we can define the transformation
from A to C directly as,

TCA = TCBTBA,

without needing to keep any intermediate transformations.

3.2 Objective function
We begin the elaboration on our objective function, which is a formal way of
expressing “the thing we want to minimize”, in the context of two sequential
depth images taken from slightly different viewpoints. We can intuitively state
that our objective should be to minimize the norm of the differences between
all the three-dimensional surface points sn(m) and sn+1(m), squared. Recall
that s is simply a point, obtained by projection of a pixel from a depth image
into 3D space (see Equation (2.9)) and that n denotes the nth image in stream
of depth images. Let M = {m1, . . . ,mK}, i.e., M has K elements. We then
define,

K∑
j=1

‖sn(mj)− sn+1(mj)‖22, (3.6)

To introduce a means for influencing the outcome of this sum, we include
T (ξ) and use homogeneous coordinates s̄(m) to enable manipulating one set
of points relative to the other. We now have a proper objective function, stating
that we wish to find the transformation T that makes the second set of points
move as close as possible to the first set,

minimize
ξ

K∑
j=1

‖s̄n(mj)− T (ξ)s̄n+1(mj)‖22. (3.7)

Since we do not have an explicit list of correspondences, we follow an ap-
proach similar to the Iterative Closest Point algorithm where, instead of trying
to match points to their exact correspondences, we simply try to move them to
closest point in the previous scan. Since our truncated signed distance function
is an approximate measure of the distance to this closest point (and since it
is constructed based on previous measurements), we can make the following
approximation:

s̄n(m)− T (ξ)s̄n+1(m) ≈ D̄t(T (ξ)s̄n+1(m)), (3.8)

so that we instead have the following function,

minimize
ξ

K∑
j=1

‖D̄t(T (ξ)s̄n+1(mj))‖22. (3.9)
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This objective function accurately expresses our desire to minimize the
distance between the new surface measurement and the surface implied by
the previous measurement through a rigid-body transformation applied to the
new data. Unlike the initial formulation, however, it does not require explicit
correspondences to be fixed between points. Furthermore and due to the accu-
mulation of data into Dt, we are implicitly comparing sn+1(m) with all past
s instead of just the previous frame.

3.3 Solution

3.3.1 Linearisation
To make the subsequent notation easier to read we shall define the following
alias

f(ξ,m) = D̄t(T (ξ)s̄n+1(m)). (3.10)

We know that the above expression represents a non-linear function. However,
for sufficiently small rotations and translations, we can approximate f by a
function that is linear with respect to our optimization parameter, ξ. This can
be done by replacing f with the first two terms of its power series expansion
around ξ = 0.

f(ξ,m) ≈ f(ξ,m)|ξ=0 + ∇ξf(ξ,m)|ξ=0 ξ, (3.11)

remembering that T (ξ) = eξ̃∆t and the definition behind f(ξ,m), we can
expand the above equation,

f(ξ,m) ≈ D̄t(e
ξ̃∆ts̄n+1(m))

∣∣∣
ξ=0

+ ∇ξD̄t(e
ξ̃∆ts̄n+1(m))

∣∣∣
ξ=0

ξ. (3.12)

Noting that e0 is an identity matrix we can omit it entirely in the above
expression (due to the evaluation at ξ = 0). It then simplifies to:

f(ξ,m) ≈ D̄t(s̄n+1(m)) +∇ξD̄t(s̄n+1(m))ξ. (3.13)

We point out that the second term of the function is a matrix, containing the
partial derivatives of D̄t(s̄n+1(m)) with respect to the vector ξ, multiplied by
a vector. This matrix is what is commonly known as the Jacobian matrix (or
simply Jacobian) of the function. As it will require some attention, we define
it as:

J(m) = ∇ξD̄t(s̄n+1(m)). (3.14)

The linearised version of (3.9) is then

minimize
ξ

K∑
j=1

‖J(mj)ξ + D̄t(s̄n+1(mj))‖22. (3.15)
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3.3.2 The Jacobian Matrix
The Jacobian matrix, is the derivative of our SDF with respect to the parameter-
vector that defines the rigid-body transformation, T . We already know, from
section 2.2, that we can compute a derivative (or gradient) of the SDF with
respect to its spatial dimensions, i.e.,

∇xD̄t(x̄) =
∂D̄t(x̄)

∂x̄
=
[
∂
∂x1

D̄t(x̄) ∂
∂x2

D̄t(x̄) ∂
∂x3

D̄t(x̄)
]
, (3.16)

by numerically differentiating D̄t(x̄) (e.g. by central differences) over x1, x2,
and x3 (again, x̄ simply denotes homogeneous coordinates x̄ = [x, 1]T . This,
however, does not include any derivation with respect to ξ. To arrive at a
complete expression for J(x̄) we use the chain rule:

J(x) =
∂D̄t(x̄)

∂ξ
=
∂D̄t(x̄)

∂x̄

∂x̄

∂ξ
. (3.17)

This leaves us with the need for an expression for how the position of a given
point varies with our parameter vector. This is easily obtained by analysing
the resulting change in eξ̃∆tx with respect to a change in each element of ξ.
For any given point x we have;

∂x

∂ξ
=

 0 x3 −x2 1 0 0
−x3 0 x1 0 1 0
x2 −x1 0 0 0 1

 . (3.18)

3.3.3 The Normal Equations
Having defined all the components of the objective function in (3.15), we ex-
pand it to

minimize
ξ

K∑
j=1

[J(mj)ξ + D̄t(s̄n+1(mj))]
T [J(mj)ξ + D̄t(s̄n+1(mj))], (3.19)

and carry out the product to arrive at:

minimize
ξ

K∑
j=1

ξTJ(mj)
TJ(mj)ξ+2ξTJ(mj)D̄t(s̄n+1(mj))+D̄t(s̄n+1(mj))

2.

(3.20)
Carrying out the summation over M for the terms dependent on ξ we can
form the following matrix and vector pair,

H =

K∑
j=1

J(mj)
TJ(mj) ∈ R6×6. (3.21)
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g =

K∑
j=1

J(mj)
T D̄t(s̄n+1(mj)) ∈ R6. (3.22)

Clearly H is a symmetric matrix. Furthermore, it is very likely for it to be
positive definite due to the large number of linearly independent vectors added
(one per pixel in the depth image). For H to be full-rank, we only really need
six linearly independent vectors when forming it. Substituting H and g back
into (3.20) leads to,

minimize
ξ

ξTHξ + 2ξTg +

K∑
j=1

D̄t(s̄n+1(mj))
2. (3.23)

This is a quadratic (strictly convex, since H > 0) function of ξ. To find its
minimum we derive the objective function with respect to ξ and equate the
resulting expression with zero. This is analogous to finding the inflection point
on a parabola with positive curvature (see Fig. 3.1). Finding the optimal ξ can
be done by computing the inverse of H, as shown in the example, or through
any standard linear least-squares solver.

Figure 3.1: As an analogous example, the minimum of a quadratic function
can be found by solving its derivative for zero and substituting the resulting
value into the original function.
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2Hξ + 2g = 0, (3.24)
ξ? = −H−1g (3.25)

Since we have made quite a number of simplifications along the way and
relied only on local information around each 3D point, this solution is unfortu-
nately only the first step towards an accurate registration. To get a satisfactory
result, the transformation parametrized by ξ? is applied to the points, and the
procedure is repeated. A stopping condition is typically set when the change
in the parameter falls below some threshold.

3.4 Practical Considerations

3.4.1 For speed
As the reader may have noticed, most of the calculations needed for the SDF
generation/update and registration are completely independent of each other.
The SDF is updated per voxel (with no regard for what is happening to neigh-
bouring cells), likewise, most of the computations in the registration is done
for each pixel in the depth image.

The matrixH and the vector g are the results of sums over all pixels. This
implies some sort of synchronization and amalgamation of data, but even this
is solved efficiently as a parallel reduction, using a series of intermediary sums.
The final step of solving the 6× 6 linear system is fast and done relatively few
times throughout the process. Due to these characteristics it is very straight-
forward to implement both the localization and mapping as a multi-threaded
work-sharing algorithm.

A common way of both speeding up the solution and avoiding getting
stuck in a local minima is to iterate on a coarse to fine level of detail. The
standard approach [4] to this implies blurring some image with a Gaussian filter
and then sub-sampling it in several steps, forming what is called a “Gaussian
Pyramid”. In our case we skip the blurring operation and simplify the coarse
to fine iteration scheme by merely computing the derivatives of the SDF (when
forming the Jacobian) using central differences between voxels that are further
apart and by sub-sampling M to use 1/16, 1/4 and 1/1 of the pixels. The
result of this is that we can make a larger number of inexpensive iterations
that converge fast, and reduce the number of iterations as we include more
data. To support this, we perform the registration over several hundred frames
and compute the mean rate of convergence. We measure this by the norm of
the change in the parameter vector between consecutive iterations. Figures
3.2, 3.4 and 3.2 show the performance when registration is done only on the
finest scale, when using sub-sampling on the input data and finally when sub-
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sampling both the input and computing derivatives in the SDF over a greater
number of voxels.

Figure 3.2: The convergence at fine scale is characterized by relatively large
initial change, that drops quickly.

Figure 3.3: The convergence in the coarse-to-fine setting is similar to that
of fine-scale registration initially. Note that the change is somewhat larger
initially and consider also that the initial steps (on the coarsest level) take
only a fraction of the time of the fine-scale registration.

Also, considering the fact that our measure for distance (D̄t(x̄)) is trun-
cated at a value Dmax from the surface, it makes no sense to consider points
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Figure 3.4: The amount of change that occurs in the first iterations of the
coarse-to-fine setting, where numerical derivatives are also computed with sub-
sampling, is larger still since it truly overlooks small details in the initial phase.
The rate of change is not as smooth, however.

beyond that. This is because any gradient computed there is likely to be mis-
leading, and the distance value is not informative. We definitely know that we
would like to skip points where the SDF evaluates to Dmax. To make sure we
do not use a truncated value when computing our derivatives also, we tend
to be even more restrictive. This is because derivatives are computed with an
offset on either side of the point of interest. Skipping points that are invali-
dated by this distance criteria reduces some of the computational burden but
is mainly done to ensure robustness to outliers.

Using our chosen parametrization for T , we can extrapolate and interpolate
between nearby transformation matrices. We can use this to hot-start the
optimization for the next incoming data-frame by initializing ξn as

ξn = s · (ξn−1 − ξn−2)

instead of zero. Here, s ∈ R is a scalar representing how far we wish to extrap-
olate the last movement. When the movement is smooth, this leads to much
faster convergence, since we tend to start closer to the optimal solution for the
next frame. If the movement is non-smooth (or if the frame-rate is very low)
this method can lead to over-shoots which do more harm than good.

Finally, as has been mentioned earlier, we do not perform an estimate of
surface normals directly from the input data. This means that we also discard
any computations that could be based on these. This saves time, and does
not have any noticeable effect on the quality of the registration or surface
representation.
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3.4.2 For accuracy
Robust statistics

Besides rejecting data points that obviously have no benefit to the registration,
we can take into consideration that our distance field is not quite Euclidean,
except for very close to a surface (where the approximation is better). To do
this, we can borrow a concept from statistics, called an M-estimator [39], which
can be cheaply implemented as iteratively re-weighted least squares (IRLS).
Consider, for example, Tukey’s estimator:

w(r) =

{
if |r| ≤ c [1− ( rc )2]2

if |r| > c 0
(3.26)

with c being a constant threshold (lower than Dmax) and r being a measure for
the residual (in our case, represented by the SDF) we have a weight that can
be computed and factored into each summand of equations (3.21) and (3.22).
Note that the weight for points above the threshold is zero. This essentially says
that we want to reformulate our parameter estimation problem to disregard
points that are not close to surfaces and to reduce the influence of points that
are further from the surface when computing our solution.

The use of robust estimators has been shown to widen the convergence
basin during registration [8], and comes at virtually no added computational
cost, which is why we employ this method in our algorithm.

Hw =

K∑
j=1

w(D̄t(s̄n+1(mj)))J(mj)
TJ(mj), (3.27)

gw =

K∑
j=1

w(D̄t(s̄n+1(mj)))J(mj)
T D̄t(s̄n+1(mj)). (3.28)

Handling Discontinuities

Another, important fact to consider is that, when computing the gradient of
D̄t(x̄) outside a surface, it points toward the surface (which is what we expect).
However, when computing the gradient at a point behind a surface, due to the
unseen regions being valued Dmax, this may flip the gradient in the wrong
direction. In practice we can solve this by either taking the absolute value of
D̄t(x̄) throughout the entire registration step, effectively making it unsigned.
Or by expanding the negative region of the SDF further (and avoiding the
region of the SDF close to Dmin).

It’s worth mentioning that even with an unsigned distance function, the
quadratic approach is still a valid alternative. Without it we would have a
linear function to minimize, but with no bounds on our parameter. A work-
around would be to expand the power series in equation (3.15) to a second order
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approximation, but this requires less numerically stable (and more costly to
compute) second-order derivatives of the SDF.

Regularization

By adding ‖ξ‖22 = ξT ξ to equation (3.23) we can express that we also want
to minimize the norm of ξ, as part of the objective function. In other words,
making the parameter itself part of the objective. The result of doing so is
that the optimal parameter is one that not only minimizes the sum related to
distances, but also keeps itself as small as possible. To add different penalties to
the elements of the parameter vector, e.g., if we have prior knowledge about the
magnitude of translation compared to rotation, we can include this information
in the appropriate entries of a diagonal matrix,

Γ ∈ R6×6,

which instead adds a weighted norm, i.e., ξTΓξ into the objective function.
We can change the expression for Hw to reflect this,

Hw+r =

K∑
j=1

(
w(D̄t(s̄n+1(mj)))J(mj)

TJ(mj)
)

+ Γ. (3.29)

If Γ is set to be the identity matrix, the regularization is done on the what
is called the unweighted norm of the parameter. If set to zero, we revert to the
un-regularized solution. This is a very commonly used regularization method
(called Tikhonov regularization) in regression analysis.

3.5 Summary
The algorithm used here is, in its essence, an application of the Lucas-Kanade
algorithm in 3D [22]. The mathematical notation and basic problem formu-
lation here is similar to that of Steinbrücker et al. [33]. Due to the many
alternatives and possible modifications that can be applied to the algorithms
outlined in this work, we hereby offer the reader a summary of the implemen-
tation that we use for the main evaluations done in the next section. A simple
flowchart is shown in Figure 3.5 and further described in the next paragraphs.

3.5.1 Measurements
The only information computed from the input depth-map are the 3D surface
points that each pixel represents, according to equation (2.9). We do not esti-
mate surface normals from the input data. We also keep the depth image, as
it is needed in the reconstruction step (after which it may be discarded).
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Measurements
Compute

surface points

input: zn(M)

Pose Estimation
minimization of

[D̄n−1
t (T (ξ)s̄n(M))]2

Reconstruction
Integrate mea-
surements into
truncated SDF

sn(M)

Tn(ξ?)

Dn−1
t (x)

Figure 3.5: An overview of the main components and variables that make up
the algorithm.

3.5.2 Pose Estimation
The pose estimation is done by first forming Hw+r and gw, as described
in equations (3.29), (3.28) and solving the subsequent system of equations.
The resulting transformation is applied to each surface point and the form-
ing/solving step is repeated. We use the coarse-to-fine approach outlined earlier
in this section to ensure faster convergence. The actual solution is done using
a Robust Cholesky decomposition, provided in Eigen [17], valid for positive
semi-definite matrices.

3.5.3 Reconstruction
The update of the truncated signed distance function is performed using Al-
gorithm 3. The weight and distance are computed as indicated there, due to
the lack of estimates for incidence angles (since we skipped the estimation of
surface normals). We may still choose to set the weight to 1

err(z) instead of
(2.18), of course.



Chapter 4

Towards Object Detection
using SDF models

To perform object detection, we first generate a SDF of the environment in
which our object of interest is located. In our method for object detection,
we use a reference template representing the object we are looking for. This
template is simply an array of 3D points uniformly spaced over the surface of
the object, centred in its own coordinate system.

The procedure is then to very coarsely move the object template in fixed
steps (roughly half the characteristic length of the object) throughout the SDF
and attempt to register it to the environment model at each step. Although this
brute-force approach may appear to be an exceedingly time-consuming process,
many of the steps will typically initialize in either unseen or empty space (where
the entire object is located in the truncated region). Regardless of where the
template is initialized, we will have to iterate through each point pertaining
to the template, at least once, and evaluate the SDF at each individual point.
If every evaluation in the SDF produces a value of Dmax we can safely skip
ahead since this means that the object is not near a surface. The time spent
on such an event is proportional to the number of points used to represent
the object. Quite possibly, this may be in the same order of magnitude as the
number of surface elements contained in a typical depth image (some hundred
thousand) or less.

When the template is near a surface, we attempt a registration. Due to
the arbitrary orientation that we initialize the template with, we typically
have to perform a larger number of iterations in this process, compared to
when registering a sequence of frames from the depth-camera. one registration
attempt may take between 0.5 to 10 seconds, depending on the number of
points, the criteria for convergence and if the coarse to fine registration scheme
is employed. The total time spent searching will also be influenced heavily on
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how much clutter there is in the scene, how large the target object is, and so
on. A complete search though a space of a few cubic meters can therefore take
anywhere between a few seconds to several minutes.

When the registration is completed, we compute the sum of the residuals of
the registration to evaluate how well the template matched to the environment
at that particular location. Clearly, it would be ideal if the sum of residuals
would be zero for the registration, as this would indicate that we have found a
location for which each point on the surface of the template corresponds exactly
to a surface in the environment. Seeing how most objects do not find themselves
suspended in mid-air, we tend to find that objects are partially occluded where
in contact with some supporting surface. The presence of other objects or an
incomplete view of the environment will lead to further occlusions and unseen
regions. The consequence of this is that not all of the surface of our object of
interest is available for matching against the template.

Indeed, we can easily imagine a situation in which an object of similar-
shaped geometry will do better than the target object itself, especially if the
latter is heavily occluded (or even absent).

Before concluding this chapter, we merely note that this method for object
detection requires virtually no modification from our present methods of reg-
istering frames. An experimental analysis on this approach will be presented
in Chapter 5

4.1 Narrowing the Search Space
Searching through a small, mostly empty, space for a large object might be
a feasible task, using a brute-force approach. However, in the interest of gen-
eralizing our object detection to be applicable to, for instance, finding small
objects in large, cluttered spaces we need to employ different methods. An ad-
ditional argument to support this is that if we attempt to detect objects that
are highly variant with regards to orientation, our problem gains an added de-
gree of combinatorial complexity, as we would need to test different locations
and orientations. Currently, our registration-based method lacks information
about colour and texture, which are known to be important when telling apart
instances of objects pertaining to the same class (e.g., a soccer ball from a bas-
ketball).

To deal with the issues involved in scaling the object detection up to more
complex applications we see the need for exploring the use of feature descrip-
tors.

4.1.1 About Feature Descriptors
Feature descriptors are one or more set of numbers (often arranged in a vec-
tor) that encode one or more local properties in a given representation of an
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object or scene. The representation may be a photograph, in which the feature
descriptor is the result of computations done over a neighbourhood of pixels.
The representation may also be in 3D, with the corresponding feature being a
series of numbers related to properties of the chosen representation.

To give an idea of what a feature descriptor might consist of, the following
paragraphs give a brief summary of some common descriptors applicable to
3D representations.

• Fast Point Feature Histogram [31] (FPFH) is a feature based on a 3D
point-cloud representation. In our notation a point-cloud can be defined
as a vector containing all the sn(m) of a particular depth image, stored
in an array, and their estimated normal vectors. The feature descriptor is
based on computing pairwise relationships between these surface points
and aggregating the results into a histogram.

• 3D Spin Images [18] is the name of a representation that is also developed
based on oriented points, i.e., points with associated estimates of surface
normals. Spin images are computed by choosing one point as a reference,
then parametrizing the position of the surrounding points, using two
variables. These two variables are then used as indices to generate a so
called Spin Image.

• Depth-Kernel Descriptors [5], are an application of a machine-learning
concept called “kernel functions” to object recognition. The kernel func-
tions are defined as measures of similarity between two image patches but
can be redefined as features, computed over a single patch. Kernel func-
tions are useful because they make use of the fact that densely grouped
data often becomes sparse and easy to separate in higher dimensions.
This can make classification problems simpler to solve.

Feature descriptors such as these can be used to avoid exhaustive searches,
both of locations in space, and among candidate objects. The standard way of
using feature descriptors in object detection can, in broad strokes, be described
by the following process;

1. Acquire and pre-process sensor data

2. Find regions of interest in the data

3. Compute features at the regions of interest

4. Combine the features into a descriptor

5. Match the descriptor against a database of descriptors related to objects

Note that several descriptors in the database can be used to indicate a number
of different poses of the same object. This means that the above process, when
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successful, provides an estimate for the location of an object and possibly even
a rough initial estimate for its orientation.

In the same way that we find it desirable to use feature descriptors to
narrow our search for objects, it is also assumed (as indicated in step 2) that
there exists some criteria by which to narrow down the locations at which we
compute the feature descriptors themselves.

A criteria by which to do this selection can be based on several properties.
For example, in many applications applied to 2D images, features are com-
puted at the crossing between two edges (a corner). In Chapter 5 we show a
preliminary result of generalizing the concept of corners to 3D, by employing
the measure for curvature that we introduced in Chapter 2.

Which feature descriptor to employ, among the numerous alternatives avail-
able, is still a question that remains unanswered. We note that there are many
options that directly relate to 3D sensor data, for which standard implemen-
tations are available. Considering, however, that our 3D representation is, in
essence, the same as an digital image (or a stack of images, to be more pre-
cise) we could also consider extending some of the popular 2D descriptors (e.g.
[3],[6]) into an additional dimension.



Chapter 5

Results

In this section we present some results, divided into three categories.

1. Localization. We test our algorithm on a well-known data-set from the
CVPR lab at the Technical University of Munich [35]. This data-set
is popular for evaluating and comparing localization and scene recon-
struction algorithms based on RGB+Depth data. We choose a video
sequence, captured from a Kinect camera, in which the camera rapidly
browses an office scene and we compare the pose and trajectory esti-
mation with ground-truth data. The ground-truth is determined from
a motion-capture system, using markers on the camera. We make some
remarks on the failure modes of the system and robustness to missing
data.

2. Mapping. We show some qualitative results from on-line 3D reconstruc-
tions of different scenes and illustrate the properties detailed in Chapter
2. Some comments are given on the numerous parameters of the system
and what effect the change of these parameters seem to have on the
quality of mapping (which is inextricably linked to the quality of the
localization).

3. Object detection. We show the result of attempting to detect a simple
object, in an environment, through registration.

5.1 Localization
Since the tracking works by querying an implicit function, represented by dis-
crete samples, it comes as no great surprise that the quality of any position
estimate, based on this function will be dependent on its discretization inter-
val τ (voxel resolution). However, since our SDF returns linear interpolations
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Table 5.1: Statistics about the translational and rotational errors along the
path of the camera, relative to ground truth data.

ermse emean emedian estd.dev. emin emax
Absolute
Translational[m] 0.0402 0.0332 0.0279 0.0228 0.0019 0.1139
Relative
Translational[m] 0.0477 0.0391 0.0273 0.0273 0.0037 0.1304
Relative
Rotational[◦] 4.545 3.308 0.041 3.117 0.192 15.110

between the values in its cells, this error is related to how well the represented
geometry can be described by planar approximations. Large flat structures
such as floors and walls can be very well approximated with relatively low
resolution for this reason.

In the benchmarks presented here, we chose to use a fixed number of iter-
ations on each level of sub-sampling. The levels being defined by taking every
4th, every 2nd and every pixel in each direction with the respective number of
iterations on each level equal to 12, 8 and 2. We found that this worked bet-
ter for this particular data-set than running the optimization until absolute
convergence is achieved. The reason behind this is that some sequences in the
data set depict scenes that do not adequately constrain the solution. In these
cases we gain much more in terms of absolute trajectory error from stopping
early, than we lose at not running the optimization to convergence in all other
scenes.

What we mean by an adequately constrained solution is that there needs
to be enough variation in the geometry in the scene to lock down each of our
six degrees of freedom (related to our six parameters). For example, given only
a plane (such as a large featureless wall or closely cropped view of a table), we
can only lock down three degrees of freedom. In-plane rotation and translation
in two directions is still possible. In these cases, the matrix that represents
the system of equations to be solved during the registration would be close to
singular (rank-deficient). A more flexible solution, that looks for these under-
constrained cases specifically, could be devised based on this knowledge. The
result of the camera pose estimation can be seen in Fig. 5.1 and 5.2. Statistics
about the errors computed along the trajectory are shown in table 5.1. The
graphs and numerical results were produced by a script, provided along with
the data-set.

Apart from the number of iterations in the registration algorithm, we must
mention some other parameters that influence the system performance. The
number of voxels storing the SDF was set to 200×200×200 and the resolution,
τ , equal to 2cm. This means that the map created and used for localization
corresponds to a metric space of 4m×4m×4m. Lower errors are possible, given
higher resolutions, more cells and more iterations on the fine scale. All at the
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Figure 5.1: The absolute trajectory error is the integral of all the relative errors
in translation made throughout the entire trajectory. The estimated poses are
centred over the ground truth to account for differences in initial starting
points.

expense of computation time, however. The outlined configuration produces
an algorithm that runs reliably at 3 frames per second (fps) on the 4 cores of
an Intel Core i7 Q720 processor. The following paragraphs give a quick review
of similar algorithms and their reported performance on the same data-set.

• RGBD-SLAM [10] Uses a random sample consensus [11](RANSAC)-
based registration to estimate poses and builds a map by storing surface
measurements as point-clouds with associated camera poses. The final
estimate of the camera poses and map relies on a post-processing step
of global optimization over camera poses, using g2o [20]. The reported
running time is similarly to ours, 2.86 fps with parallel execution on a
quad-core CPU. The reported errors on the same data-set are, for rel-
ative translation: ermse = 0.049m and relative rotation ermse = 2.43◦.
Since global optimization is intended as a post-processing step, sensor
data must be kept and therefore tends to accumulate over time.

• NDTF-registration [1], is an algorithm for frame to frame tracking that
performs pose estimation based on generating normal distribution trans-
forms around the neighbourhoods of corresponding points. It then mini-



44 CHAPTER 5. RESULTS

Figure 5.2: The relative pose error is computed as the difference between pairs
of consecutive pose estimates.

mizes the distance between the resulting Gaussian mixture models. The
reported execution speed is of 14fps on a single core of an Intel Q6600
processor, which is a lot faster than our algorithm. The reported rela-
tive translational errors are; emean = 0.0165m, emedian = 0.0122m. The
relative rotational errors are emean = 1.1567◦ emedian = 0.909◦.

• Visual Odometry using RGBD [33] is an algorithm for frame to frame
tracking that, instead of comparing the distances between points in
space, perspective-projects both sets of points into an RGB image. The
registration is done by minimizing the difference in brightness between
corresponding points in this image plane. The reported frame-rate of
their algorithm is of 12.5fps on one core of an Intel Xeon E5520 CPU.
The reported relative translational error is emedian = 0.0053m. The rel-
ative rotational error is emedian = 0.0065◦.

• Generalized ICP [32] (GICP) Is a method that performs registration by
extending the iterative closest point (ICP) algorithm to include a point-
to-plane distance metric, that relies on the estimate of the surface orien-
tations. Generalized ICP is, in the above cases, referred to as the current
state of the art, and therefore a good base for comparison. The following
values are repeated from [33], tested on the same data-set as our algo-
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rithm. The reported relative translational error is emedian = 0.0103m.
The relative rotational error is emedian = 0.0154◦. The standard GICP
implementation takes 7.52 s per match on one core of an Intel Xeon
E5520 CPU.

The results show that we are on a similar level of performance as RGBD-
SLAM, both in terms of speed and accuracy. This is likely due to the common
maintenance of a map structure, which effectively lowers the frame-rate of
RGBD-SLAM, as well as ours. In RGBD-SLAM, a volumetric occupancy map
is obtained as a post-processing step (after the global optimization). In our
case, we can obtain a similar map immediately, by thresholding the SDF at
some arbitrarily small distance. Similar to the findings of [25], we note that
since we compute a weighted sum of inputs when fusing data into our model
we need not store sensor data, meaning that our algorithm can run indefinitely,
without needing to discard information. The weighted summation also means
that small changes in the scene will be averaged out to represent more recent
configurations. Such a mechanism is not easy to implement in a point-cloud
based world representation.

Although the relative pose errors and computational time are lower for
the remaining algorithms (with the exception of the slower GICP), it would
be interesting to also compare the absolute trajectory errors. As can be seen
from our results, although the absolute trajectory error increases at times, the
availability of a map allows us to reduce this error as the camera re-observes
the scene. In pure frame-to-frame tracking applications, this is not possible. A
single bad pose-estimate in an otherwise good camera-tracking sequence may
therefore have large, undesirable effects on the absolute position estimate.

To test how well our system performs with missing data we can chose to
input every other, every third, fourth etc. frame and measure the error to
see how much it increases. The reason for doing this is that, unless provided
with serious brute-force computing power, the execution time of this algo-
rithm will not be on par with the frame-rate of a typical video-capture device.
This limits the field of application to either slow-moving cameras or off-line
scene-reconstruction/pose-estimation. In Fig. 5.3 we see how the relative trans-
lational and rotational error behaves when an increasing number of frames are
omitted. Note that here we use the same fixed number of iterations as before,
to make the comparison more meaningful. The increase in error is obviously
non-linear with the skipping of frames.

Naturally, we would expect to require more iterations to reach the same
quality of registration when the baseline between measurements is larger. This
presents a bit of a dilemma, however. If we are having trouble keeping up
with the inflow of data, should we spend more time, to attempt to achieve a
good registration, on each individual frame, or should we settle for sub-optimal
registration in favour of processing more data which will be closer together?
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Our experiments with reconstruction in an on-line scenario seem to indicate
that the truth is closer to the latter alternative.

Figure 5.3: Rotational and translational error increase with loss of data. The
peak in error that occurs when using every fourth frame is due to a particularly
unfortunate combination of inputs, and not a feature of the algorithm.

5.1.1 Failure modes
The scenarios under which we have found the localization to be most error-
prone are listed here

• Insufficient constraints. The geometry in the scene does not provide con-
straints for all six degrees of freedom. To solve this, additional data
would be needed, such as texture. This failure can be detected by the
near-singularity of the equations that need to be solved during the reg-
istration.

• Repetitive patterns. Geometrically identical objects, with dimensions
and spacing that roughly correspond to the inter-frame camera motion
are very problematic. In this case it is very likely that the solution gets
stuck in a local minima. If there are other, large structures in the scene,
they may still drive the solution to a correct registration. If the repetitive
elements are dominant, even with color information, it would be a hard
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problem to solve. A possibility is to hot-start the solution of the next
iteration registration with some “inertia” from the previous step, but this
introduces a smoothness assumption that may not always hold.

• Insufficient overlap. This can be caused by too rapid camera motion
leaving too few surfaces, too far apart to achieve a good registration.
Another cause for this scenario can be related to the sensor technology.
The Kinect camera typically returns very few measurements in cases
where highly specular or brightly illuminated surfaces are present.

• A non-static environment. Although the scene reconstruction is able to
filter out noise and even large structural changes, over time. It depends on
most of the scene being mostly stationary in order to gauge the relative
motion of the camera with respect to the environment.

• Small features. If the geometric features in the scene are smaller than
the voxel resolution used to represent the SDF, we are again faced with
insufficient constraints.

• Although our system displays some robustness to noisy data, prolonged
motion blur and distortions due to electronic shutter effects are likely to
cause failures too.

5.2 Mapping
This section shows some qualitative results of mapping (or 3D reconstruc-
tion). Since the SDF representation stores distances rather than occupancy
information it is possible to represent surfaces that lie on a linearly interpo-
lated position between measurements. This allows for the reconstructions of
surfaces at arbitrary positions within voxels. However, since we always need at
least one negatively signed measurement behind the surface, there is a lower
limit on the thickness of the geometry that can be represented. The Figures
5.4 and 5.5 show a mapping of a kitchen environment and a sample from the
associated SDF. Here we use the same convention as we established earlier,
with brightness indicating distance, color indicating sign and dark regions are
labelled as unseen.

The colors in Fig 5.4 are obtained by first using the sphere-tracing algo-
rithm, from a virtual camera, (Algorithm 1) to find a surface intersection. At
that point the gradient is computed, using equation (2.4). Since this produces
a vector in R3 we we can associate each of its component with one of the
colors red, green and blue. The effect of this is that surfaces facing the similar
directions will be visualized with similar colors. Since the color space is limited
to positive values, we disregard the sign of the gradient vector’s elements.
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Figure 5.4: A Kitchen. The reconstruction is performed from a single point of
view with small panning movements of the camera. This is already sufficient
to smoothen surfaces considerably.

Figure 5.5: By taking a two-dimensional slice from the three-dimensional voxel
grid that represents the reconstruction of the kitchen, we can see how the
surfaces are defined at the boundary between positive and negative distances.
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The remaining figures in this section show further examples from on-line
reconstructions of objects and environments, using a hand-held camera, at
different scales and resolutions.

Figure 5.6: A possible application for 3D template-matching is facial recogni-
tion.

Figure 5.7: A two dimensional slice from the SDF voxel grid, taken in plane
orthogonal to the viewing direction.
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Figure 5.8: Although this scene seems more advanced due to its many details,
the fact that it has surfaces in all main orientations and is abundant in non-
repetitive geometric structure makes it easier to compute good estimates of
the camera pose.

The difference between reconstructing an environment the size of an entire
kitchen and a single flower pot is that the resolution (τ), the maximum and
minimum values stored in the SDF (Dmax, Dmin can be set to much smaller
values in the latter. The smaller resolution (and smaller Dmin) mean that
we can better represent fine details and thinner objects. The smaller value for
Dmax has an effect on ray casting (see algorithm 1), making it both slower and
more accurate, since we have a lower risk of over-stepping surfaces where the
line of sight distances are too large, relative to the angle of the ray. However,
Dmax also influences the maximum translation that the localization algorithm
can cope with, since points offset by more than this value will be considered to
be in completely empty space. Note that we can still have a large Dmax, and
use the c parameter of the Tukey M-estimator (3.26) to discard points that
have too high residuals.

A possibility is to completely decouple the localization and mapping by
using separate SDFs for each task. We feel that this somehow defeats the pur-
pose of the proposed solutions here, but it might be a justifiable solution when
reconstructing e.g., small objects with a lot of repetitive structure. In such a
case, cues from the background (represented at lower resolution, perhaps) will
be necessary to achieve a good result.

5.3 Object Detection
Figure 5.9 shows a photo of an environment and a partial reconstruction.
The target object is the large cardboard box, for which we have synthetically
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(a) Simple scene containing an object of
interest

(b) Partial reconstruction of the scene

Figure 5.9: The environment in which we are interested in detecting an object.
Here, the object of interest is the large cardboard box.

generated a template based on measurements of its length, height and width.
The template object is a set of 3D points, describing the surface of a rectangular
prism of the same size as the box. It includes all 6 sides of the object, since no
occlusions are assumed to be known in advance.

Initializing the template at 64 uniformly spaced locations throughout the
volume and computing the residual of the final registration at each, produces
the red graph seen in 5.10. The residual is calculated, relative to the value that
would be obtained if each point on the template evaluated to Dmax within the
SDF. Of the 64 locations at which the template was initialized, 33 were skipped
due to being too far from any surface.

The blue line, overlaid atop the residuals, indicates how big a fraction, of
the total number of points on the template, that was useful. By “useful” we
mean that, when queried in the SDF, these returned returned a value other
than Dmax. In other words, the blue line gives a measure of how many points
were participated in the final registration. Points that were not used, were
either in an empty or unseen region.

In this experiment, the pose for which the lowest residual is produced, is
shown in Figure 5.11. We see that it corresponds to the correct location of the
object of interest. This need not always be the case, however.

One interesting feature to observe about the best-matched attempt (marked
with a small black circle in the graph), is that the number of points that are in
the truncated region i.e., returned a value of Dmax when queried in the SDF,
and the residual are very nearly symmetric about 50%. In this particular case,
it means that the points that did not match against a surface only failed to do
so, because the surface where they would have matched was unseen. Whether
or not a point is in unseen or empty space can be disambiguated by the weight
used to update the SDF. Unseen regions remain with a weight equal to zero.
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Figure 5.10: The graph shows the attempted matchings in 64 locations inside
the reconstructed environment.

Figure 5.11: The figure shows the estimated pose of the template, inside the
environment, at the pose where the minimal residual is produced. We note
that it coincides with the object of interest.

Evaluating the registration by this criteria can help us disregard cases
that might otherwise wrongly lead to the conclusion that we have successfully
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Figure 5.12: The figure shows a situation in which the registration converges
at a local minimum near, but not quite coincident, to the target. Most regis-
trations converge to erroneous states.

detected the object. Even through this analysis, we can still not safeguard
against some unfortunate situations, such as the template of small box being
registered into the corner of a much larger box in the environment, or objects
that have similar geometry in general.

5.3.1 Finding salient features
It is apparent that the testing of many possible candidate locations is somewhat
inefficient. The results shown in this section have also revealed the that a
registration may be inconclusive in determining the presence and type of a
particular object. This motivates an interest in computing features about our
environment. As an experiment, in search for locations at which to possibly
compute descriptive features, we evaluate the surface curvature according to
the method defined in section 2.2.4. Applying the same relationship between
color and orientation as we have done before, and disregarding curvatures
below a certain threshold, we produce the results seen in Figs. 5.13 and 5.14.
As stated in Chapter 4, a common choice for a location to compute features
in 2D images is typically at “corners”. We can define a corner in 3D as being
regions where surfaces exhibit strong curvature in more than one direction. In
the figures of this section, these are the regions where one color transitions
into another.
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(a) reconstruction of a chair, color related
to surface orientation

(b) estimated curvature, color related to
orientation of folding

Figure 5.13: The low voxel resolution makes for large differences in orientation
when evaluated at neighbouring points. This results in high curvature values.

(a) reconstruction of a potted plant, color
related to surface orientation

(b) estimated curvature, color related to
orientation of folding

Figure 5.14: The higher voxel resolution makes for small differences in orien-
tation when evaluated at neighbouring points, highlighting only the sharpest
of edges. The small cell-size also leads to noise at a finer scale in the curvature
estimation. The plant is part of the same data-set as used for the localization
benchmark.



Chapter 6

Conclusion

6.1 Results and Contributions
This work contains a study of the signed distance function (SDF) and the
truncated signed distance function as implicit 3D surface representations. The
concepts exposed in this study are explained in sufficient depth to serve as
a reference for the reader interested in making their own implementation or
seeking to better understand work currently done in the field of computer vision
and robot perception. We show the results of reconstructing different scenes
in this representation, both from a single point of view and by adequately
combining data from several vantage points. We show that the latter results
in a vast improvement in the accuracy of the reconstructed surfaces.

Another major part of this thesis is the development and multi-threaded
implementation of an efficient convex optimization scheme that uses the scene
representation directly as part of the estimation of camera poses. Directly us-
ing a truncated SDF for on-line pose estimation and scene reconstruction is,
to the best of our knowledge a novel contribution. The use of the SDF as a 3D
representation has the advantage of both offering a good approximation to the
position and orientation of surfaces and, in registration, providing an intuitive
and simple objective to minimize. Furthermore, the minimization can be done
fast, without the need for explicitly matching corresponding points while being
robust to outliers. We identify the discontinuities that occur when consider-
ing a truncated SDF representation, and offer solutions to avoid numerical
instability when using it for registration.

It is worth noting that during the elaboration of this thesis, a sizeable
amount of time was devoted to creating an efficient multi-core implementation
of all the system components, to be integrated in the ROS package maintained
by the Mobile Robotics & Olfaction lab [29] at Örebro University. This effort
has led to insights in memory management and execution scheduling in a
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parallel programming paradigm. The resulting implementation is fast enough,
even in on-line setting, to cope with camera movements that can comfortably
be performed by a human operator.

The final section of this thesis is dedicated to an application to object detec-
tion. The presented methods represent a preliminary result, which highlights
that we are still far from being able to perform well in real-world applications.
The evident scalability issues in brute-force object detection approaches mo-
tivate a future interest in applying feature descriptors in the SDF space. To
this end we present a method for finding salient features in the geometry that
may be used to guide the computation of descriptors to points that are more
meaningful than the rest.

6.2 Future work
To be able to effectively perform object detection, it would be of great use
to have feature descriptors that could narrow down the number of candidate
poses and locations to test for a potential registration. Having a good esti-
mate of the surface position, its orientation and curvature could provide a
good starting point for shape-based feature descriptors. Enriching the current
scene representation with information about color (available from the sensor
employed in this thesis) should provide additional discriminative power.

Another interesting field of research that could be explored using a distance-
based scene representation is that of complex physics simulation, especially
where vector fields and gradients in the empty space around objects are of
importance.
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