
Change detection in an array of MOX sensors
Sepideh Pashami, Achim J. Lilienthal and Marco Trincavelli

Centre for Applied Autonomous Sensor Systems, Örebro University, Örebro, SE - 70182, Sweden
Email: {sepideh.pashami, achim.lilienthal, marco.trincavelli} @oru.se

http://www.aass.oru.se/

Abstract—In this article we present an algorithm for online
detection of change points in the response of an array of metal
oxide (MOX) gas sensors deployed in an open sampling system.
True change points occur due to changes in the emission modality
of the gas source. The main challenge for change point detection
in an open sampling system is the chaotic nature of gas dispersion,
which causes fluctuations in the sensor response that are not
related to changes in the gas source. These fluctuations should
not be considered change points in the sensor response. The
presented algorithm is derived from the well known Generalized
Likelihood Ratio algorithm and it is used both on the output of
a single sensor as well on the output of two or more sensors on
the array. The algorithm is evaluated with an experimental setup
where a gas source changes in intensity, compound, or mixture
ratio. The performance measures considered are the detection
rate, the number of false alarms and the delay of detection.

I. INTRODUCTION

Change point detection algorithms that analyze the response
of an array of gas sensors and detect a change in the exposure
of the array to a gas mixture can bring a significant leap
forward in the construction of systems for monitoring of
hazardous or pollutant gaseous compounds in e.g. harbors [1]
or landfills [2]. In such applications, gas sensors are often
deployed in an open sampling system (OSS) since it is often
crucial to provide quick detection and restriction in costs and
payload pose stringent limitations on the hardware that can be
considered. Moreover, it is often desirable to expose sensors
directly to the environment to be analyzed since the dynamic
response of the gas sensors contains crucial information on
the gas plume and in particular on the location of the gas
source [3]. However, the OSS configuration entails additional
problems, mainly due to the slow dynamics of most gas
sensing technologies compared to the fast fluctuations in
the concentration profile to which the sensor are exposed.
The fluctuations in the concentration profile are due to the
mechanisms of gas dispersion, which, in natural environments
characterized by a high Reynolds number, are dominated
by turbulence and advection [4]. This results into a gas
distribution which is characterized by a fine and unpredictable
structure.

Up to now, most of the work with gas sensors in an OSS,
without a sensing chamber that controls the exposure of the
sensors to the gas and other variables like temperature and
humidity, has been developed under simplified assumptions
such as steady air flow and a gas source emitting a single
compound with constant emission rate for the whole duration
of the experiments. Unfortunately, these assumptions rarely

hold in scenarios of interest for practical applications. In this
work, in an attempt to move towards realistic scenarios, we
deal with a single gas source that changes compound, intensity
or mixture of compounds in the course of a single experiment.
The problem we investigate is the detection of the changes in
the exposure of an array of metal oxide (MOX) gas sensors
due to changes in the activity of the gas source. MOX sensors
are the most common in OSS [3], mainly because of their com-
mercial availability and the high sensitivity to non-hazardous
compounds like alcohols that facilitate experiments. However,
MOX gas sensors are particularly slow and therefore seldom
reach a steady state when used in an OSS. Therefore the
problem of detecting points of exposure change is particularly
hard since they have to be distinguished from fluctuations in
the sensor response due to turbulent gas dispersion. We present
an algorithm for change detection derived from the well known
Generalized Likelihood Ratio algorithm [5] and we evaluate it
using three performance measures, namely the detection rate,
the false alarm rate, and the delay of detection.

The detection of changes in the activity of a gas source
based on the response of an array of MOX gas sensors has, to
the best of our knowledge, not been studied so far. Wang et
al. [11] address anomaly detection in the response of a sensor
network deployed in coal mines. They propose a Bayesian
Network approach to identify events and focus on combination
of sensor data. However, they neglect problems entailed with
chemical sensing such as the cross correlation among the
response of gas sensors of different type.

We can also relate the change point detection problem
addressed in this paper to the analysis of multivariate time
series. Change detection in multivariate time series has a
wide range of applications such as quality control, segmen-
tation of signals, monitoring of production processes or ve-
hicles. Probably the simplest solution for change detection
is detecting when the measurements fall out of a predefined
range. This solution has been proposed for quality control
applications [6]. Other techniques estimate change points by
investigating the behaviour of the measurements of the time
series before and after a hypothetical change point. The most
common algorithms, inspired by frequentist inference, are the
Generalized likelihood Ratio (GLR) test [5], the Marginal-
ized Likelihood Ratio (MLR) [7] and the CUmulative SUM
(CUSUM) algorithm [5]. If a prior on the time of the change
point can be assumed, Bayesian inspired algorithm have also
been proposed [8]. Also, change point detection algorithms
inspired by machine learning approaches such as one class



Support Vector Machine [9] have been proposed.
Finally, the ability to detect changes in the activity of a

distant gas source with an OSS can substantially improve
algorithms previously proposed in literature, e.g. gas source
localization [10].

The rest of this paper is organized as follows: Section II
describes the experimental setup on which the algorithms are
designed tested, Section III explains the change point detection
algorithm, Section IV presents the results and, finally, Sec-
tion V draws the conclusions and gives an outline of future
works.

II. THE EXPERIMENTAL SETUP

We carried out the experiments in a 5m × 5m × 2m
closed room with static sensors where an artificial airflow of
approximately 0.05 m/s is induced. The airflow is created
using two arrays of four fans (standard microprocessor cooling
fans), one placed on the floor and one on the wall. The gas
source is an odour blender a device developed by Nakamoto
et al. [12] that allows fast switches in between different
mixtures of compounds with a variable concentration. The
outlet of the olfactory blender is placed on the floor 0.5 m
upwind with respect to an array of 9 metal oxide gas sensors
(Figaro TGS2600, TGS2602, TGS2611, TGS2620 and e2v
MiCS2610, MiCS2710, MiCS5521, MiCS5121, MiCS5135).
The airflow at the outlet of the odour blender is set to 1 l/min.
The sensors are sampled at 4 Hz. Figure 1 shows a picture of
the experimental setup.

Fig. 1. Experimental setup with gas source and the sensor arrays used to
detect changes.

The two compounds selected for these experiments are
ethanol and 2-propanol. Both ethanol (molecular weight
46 g/mol) and 2-propanol (molecular weight 60 g/mol) are
heavier than air (average molecular weight 29 g/mol), and
therefore will tend to create a plume at the ground level. The
two substances have a similar saturated vapor pressure, namely
5.8 kPa for ethanol and 4.2 kPa for 2-propanol, which means
that they have a similar tendency to evaporate. Moreover MOX
gas sensors have comparable sensitivity to the two substances.
This is important in order to obtain similar sensor responses

Fig. 3. Block diagram explaining the on-line GLR algorithm.

for both analytes thus avoiding to address a trivial instance of
the change detection problem.

In order to create a database that allows to study the
dynamic behaviour of the sensors when consecutively exposed
to different analytes, seven different odour emitting strategies
have been applied. In all the emitting strategies the gas source
emits clean air for two minutes and the signal of sensors during
this period is assumed as a baseline. Also, at the end of all the
experiments the source emits clean air for 2 minutes. Figure 2
shows the intensity profile for the gas source in the various
emission strategies. The control signal of the odour blender is
used as a ground truth for the change point time. However,
this control signal provides us the time in which the source
changes the emission modality. In order to have the change
point time at the sensors location we need to estimate the
time the gas takes to travel from the gas source to the sensor
location. change times at the source location, therefore, we
need to calculate change times at the sensor location. Since
the sensors are placed at 0.5 m distance from the location
of the source outlet and a steady air flow of 0.05 m/s is
induced, the delay time between change times at source and
sensor location is estimated to be 10 s.

III. CHANGE POINT DETECTION ALGORITHM

The task of the change point detection algorithm is to
identify changes in the exposure of the sensor array through
the analysis of the multivariate time series constituted by the
sensor measurements. In particular, in this work changes in
the exposure are due to a change in the intensity of the gas
source, a change in the chemical compound the gas sensor
is exposed to, and a change in the gas mixture by analyzing
the sequence of local measurements. No prior information is
assumed about the position of change points. Besides, since
no information about the length of the monitoring process is
not available, an algorithm that process data on-line is chosen.
Because of these reasons, we are using an adaptation of the
well known Generalized Likelihood Ratio (GLR) algorithm
[5]. The presented algorithm is schematically shown in Fig. 3.
In the next sections the data preprocessing, the GLR algorithm
and the performance measures used to evaluate the algorithms
are described.

A. Data Preprocessing

Before running the GLR algorithm to detect change points
the sensor measurements are preprocessed with an Exponential
Moving Average (EMA) low pass filter [13] and normalized
with a linear transformation in order to bring the value to



(a) Steps (b) Ascending Stairway (c) Descending Stairway (d) Random Stairway

(e) Random Switching (f) Mixture Stairway (g) Random Mixture

Fig. 2. Gas source emission strategies. Strategies (a)-(d) are displayed only for ethanol (they are repeated identically also with 2-propanol as target gas). For
the randomized strategies, i.e. (d), (e), and (g), only one instance is displayed.

the [0, 1] interval. The cut-off frequency of the EMA filter is
selected to be 0.44 Hz which is higher than the one applied
by the MOX sensors themselves. In this way this filter mainly
removes the noise due to the electronics.

B. GLR Algorithm

Given the smoothed and normalized sensor response ś1...k
where k is the current time index, the GLR algorithm calcu-
lates the likelihood ratio between the hypotheses of having a
change point at sample j versus the hypothesis of not having
a change point:

Λkj =

∏j−1
i=1 pθ0(śi)

∏k
i=j pθ1(śi)∏k

i=1 pθ0(śi)
=

k∏
i=j

pθ1(śi)

pθ0(śi)
(1)

where the likelihoods are based on a parametric probability
distribution pθ function which is governed by a set of pa-
rameters θ. Since no prior information on the sensor noise
is available, the most natural choice for pθ is the Gaussian
distribution, which is governed by two parameters, namely the
mean and the variance. θ0 denotes the mean/variance estimated
using all samples in the time interval to be checked for change
points. θ1 denotes the mean/variance estimated using only the
samples collected after sample j, which is the location of
the hypothetical change point that have to be checked. For
numerical reasons, it is more convenient to calculate the log-
likelihood value Skj instead of the likelihood Λkj itself:

Skj = sup
θ1

k∑
i=j

ln
pθ1(śi)

pθ0(śi)
(2)

The decision function gk is obtained by taking the maximum
with respect to the possible change point time j:

gk = max
i≤j≤k

Skj (3)

If gk is above a pre-selected threshold h, then a change-point
is declared and the data collected before the change point are
not considered any longer to detect new change points. In case
of detected change point, k is the alarm time.

C. Performance Measures

In order to define the performance measures we first define
the concepts of true alarm, false alarm, and delay of detection.
A true alarm is defined as the first alarm after a change point.
Any other alarm coming after the true alarm and before the
next change point is defined as a false alarm. The delay of
detection is defined as the difference between the alarm time
of a true alarm and the time of the change point.

The first performance measure we consider is the true alarm
ratio (TAR) which is given by the total number of true alarm
divided by the number of change points. Clearly, the value of
this performance measure is bounded between 0 and 1. The
second performance measure is the false alarm ratio (FAR)
which is calculated as the total number of false alarms divided
by the number of change points. Notice that this performance
measure is unbounded above. The third performance measure
is the mean delay of detection (MDD) and is defined as the
average of the delay of detection.

IV. RESULTS

As an illustrative example of the kind of signals we are deal-
ing with in this work, Figure 4 displays the sensor response
obtained for one experiment. The true alarm ratio (TAR), mean
delay of detection (MDD) and selected thresholds when the
maximum false alarm ratio (FAR) is set to 0.1 are reported
in Table I, Table II and Table III respectively. According to
Table I, the sensor achieving the overall best performance is
the MiCS 2710 that achieves a true alarm ratio of 0.90. More
specifically, the MiCS 2710 is the best sensor for detecting



Fig. 4. Sensor response obtained for the Random steps emission strategy. In
these experiments the gas source emits ethanol and 2-propanol in alternation
with random intensity. The sensor response is defined as the instantaneous
sensor resistance divided by the value of the resistance measured during the
baseline acquisition.

TABLE I
TRUE ALARM RATIO (TAR),

FALSE ALARM RATIO (FAR) SET TO 0.1

Model All Change Change Change
Concentration Compound Mixture

TGS 2600 0.73 0.86 0.77 0.47
TGS 2602 0.73 0.87 0.68 0.51
TGS 2611 0.49 0.64 0.45 0.25
TGS 2620 0.66 0.83 0.70 0.34
MiCS 2610 0.83 0.81 1.00 0.77
MiCS 2710 0.90 0.90 0.95 0.86
MiCS 5521 0.55 0.72 0.52 0.27
MiCS 5121 0.74 0.78 0.84 0.59
MiCS 5135 0.85 0.82 0.99 0.80

changes in concentration and mixture, while for what concerns
changes in compound the MiCS 2710 is the third best after the
MiCS 2610 and MiCS 5135. Table IV provides further details
presenting the best sensor for each kind of change point and
each of the two compounds considered. The MiCS 2710 gives
best performance as a single sensor in 14 out of 14 experiments
that involve only changes in concentration and the compound
is ethanol. The TGS 2600 and MiCS 5135 instead prove
best for detecting changes in concentration of 2-propanol.
Changes in compound are detected best by the MiCS 2610,
while sensor MiCS 2710 proves best in detecting changes in
mixture. However, considering the delay of detection reported
in Table II we can observe that the MiCS 2710 has a high
detection delay, while sensors MiCS 2610 and MiCS 5521
prove to be relatively fast. Probably the sensors providing the
best trade-off between the performance measures are the MiCS
5135 and MiCS 2610 sensors.

TABLE II
MEAN DELAY OF DETECTION (MDD) IN SECONDS,

FALSE ALARM RATIO (FAR) SET TO 0.1

Model All Change Change Change
Concentration Compound Mixture

TGS 2600 56.5 52.3 51.0 67.1
TGS 2602 69.9 70.5 72.2 67.5
TGS 2611 79.5 84.4 91.8 63.1
TGS 2620 56.2 54.8 59.2 56.6
MiCS 2610 48.7 51.7 40.8 48.4
MiCS 2710 70.1 71.0 65.7 71.1
MiCS 5521 52.5 55.7 53.5 46.3
MiCS 5121 55.6 53.5 55.0 59.8
MiCS 5135 53.3 53.5 48.6 55.9

TABLE III
SELECTED THRESHOLD WITH FALSE ALARM RATIO (FAR) SET TO 0.1

Model Threshold
TGS 2600 355
TGS 2602 455
TGS 2611 660
TGS 2620 390
MiCS 2610 350
MiCS 2710 400
MiCS 5521 385
MiCS 5121 390
MiCS 5135 375

V. CONCLUSION

This paper has investigated for the first time the problem of
change detection for an array of MOX gas sensors. Changes in
the exposure of the gas sensors are caused by changes in the
emission modality of the gas source. The gas source produces
changes in gas concentration, chemical compound or mixture
ratio between two compounds. A change point detection algo-
rithm based on the Generalized Likelihood Ratio algorithm has

TABLE IV
BEST SENSORS CHOSEN BASED ON TRUE ALARM RATIO (TAR) FOR THE

DIFFERENT GAS SOURCE EMISSION STRATEGIES,
FALSE ALARM RATIO (FAR) SET TO 0.1

Category Experiments Ethanol 2-Propanol

Change in

Steps All Sensors
All Sensors

Concentration

Except
TGS 2611

Ascending TGS 2600
TGS 2600

Stairway MiCS 2710
Descending

MiCS 2710 MiCS 5135
Stairway
Random

MiCS 2710 TGS 2600
Stairway

Change in Random
MiCS 2610

Compound Steps

Change in

Mixture
MiCS 2710

Mixture

Stairway
Random

MiCS 2710
Mixture



been proposed. The algorithm has been evaluated with respect
to three performance measures. Future improvements to the
results presented here include the extension of the proposed
algorithm to consider the response of the sensor array as
a multivariate time series instead of considering the sensors
individually. This would also open the path for development
of algorithm for selecting the most appropriate sensors to
include in the sensor array. Further future developments will
also include testing the proposed algorithms under conditions
that are to be expected for real applications, for example
when the sensor array is mounted on a mobile robot or when
it is deployed in an outdoor uncontrolled environment with
typically stronger airflow and larger turbulence levels. An
example of a scenario where it can be very interesting to test
the change point algorithms in the future is the Air Quality
Egg project for monitoring pollution in towns [14].
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