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Abstract—An important aspect of the navigation of mobile
robots is the avoidance of static and dynamic obstacles. This
paper deals with obstacle avoidance using artificial potential
fields and selected traffic rules. The potential field method is
optimized by a mixture of fuzzy methods and market-based
optimization (MBO) between competing potential fields of mobile
robots. Here, depending on the local situation, some potential
fields are strengthened and some are weakened. The optimization
takes place especially when several mobile robots act in a small
area. In addition, to avoid an undesired behavior of the mobile
platform in the vicinity of obstacles, central symmetrical potential
fields are ’deformed’ by using fuzzy rules.

I. INTRODUCTION

In the last two decades several methods of robot navi-
gation and obstacle avoidance have been discussed. One of
the most prominent methods for obstacle avoidance is the
artificial potential field method (see [1]). Borenstein and Koren
gave a review on this method addressing its advantages and
disadvantages with respect to stability and deadlocks (see [2]).
Another approach can be found in ( [3]) where local groups
of robots share information on common potential field regions
for navigation among static and dynamic obstacles. Further
research results regarding navigation of non-holonomic mobile
robots can be found in [4] and [5]. The execution of robot
tasks based on semantic domain-knowledge has been reported
in detail by [6].

These few examples show the variety of methods for
performing different subtasks like

- reaching a target
- avoiding obstacles
- following traffic rules

under the assumption of stable trajectories. A most successful
method to cope with obstacle avoidance is the fuzzy logic
approach which has been widely used for mobile robots
since the early ninetieth. Martinez et al described a system
of heuristic rules based on interaction of mobile robots and
traffic rules [7]. A fuzzy obstacle controller using so-called
negative-fuzzy rules is reported by Lilly [8] where a negative
rule is a rule like ”IF A THEN DO NOT B” in contrast to a
positive rule ”IF A THEN DO B”. Stingu and Lewis combined
a motion control fuzzy rule base using an occupancy map of
the environment similar to an artificial potential field within
which the robots interact [9].

Trying to achieve different tasks at the same time makes a
decentralized optimization necessary, which generates differ-
ent weights for the tasks. Decentralized methods like multi-
agent control can handle optimization tasks for a large number

of complex local systems more efficiently than centralized
approaches. Mobile robot navigation is a important application
for agent based control. One popular example is the flow
control of mobile platforms in a manufacturing plant using
intelligent agents (see [10]). One of the most interesting and
promising approaches to cope with large decentralized systems
is the market-based optimization (MBO). MB algorithms imi-
tate economical systems where producer and consumer agents
both compete and cooperate on a market of commodities.

[11] give an overview on MB multi-robot coordination,
which is based on bidding processes. The method deals
with motion planning, task allocation and team cooperation,
whereas obstacles are not considered. [12] describe a MB
recource allocation method for vehicle routing applications.
This method is based on auction mechanisms where the trucks
and the auctioneer are modeled as local agents with planning
and bidding capabilities.

In order to improve the performance of safe navigation of
multiple robots based on artificial potential fields the present
paper adopts many ideas from [7], [13], [14], [15], [16], and
[17] in order to combine fuzzy methods and MBO methods.

In the context of MB navigation, combinations of competing
tasks, that should be optimized, can be manifold, for example
the presence of a traffic rule and the necessity for avoiding
an obstacle at the same time. Another case is the accidental
meeting of more than two robots within a small area. This
requires a certain minimum distance between the robots and
appropriate (smooth) maneuvers to keep stability of trajec-
tories to be tracked. This paper addresses exactly this point
where optimization takes place between ”competing” potential
fields of mobile robots: Some potential fields are strengthened
and some are weakened by a combination of MBO and fuzzy
methods depending on the local situation. Repulsive forces
both between robots and between robots and obstacles are
computed under the assumption of central symmetrical force
fields meaning that forces are computed between the centers
of mass of the objects considered.

Section II addresses the navigation principles applied to the
task. In Section III navigation and obstacle avoidance using po-
tential fields and fuzzy rules in the framework of a multi-robot
system is outlined. Section IV gives an introduction to the
MB optimization used in this paper. The connection between
the MB approach and the system to be controlled is outlined
in Section V. Section VI shows simulation experiments and
Section VII draws conclusions and highlights future work.



II. NAVIGATION PRINCIPLES

A multi-robot system is constituted of individual mobile
robots whose functions can be arranged with the help of
a control hierarchy architecture which adopts the idea of a
control hierarchy for industrial robots introduced by [18].

The navigation of a mobile robot is more or less located
in the control levels ”High level control” and ”Trajectory
Planner” receiving information from higher and lower control
levels, and from the environment that consists of targets,
obstacles, moving objects (e.g. other robots), and possible
team members. To illustrate the navigation problems, let n
mobile platforms (autonomous mobile robots) perform special
tasks in a working area like loading materials from a starting
station, bringing them to a target station and unloading the
materials there. The task of the platforms is to reach their
targets while avoiding obstacles and other platforms.

Fig. 1. Platform area

Navigation principles for a mobile robot (platform) P i are
meant to be heuristic rules to perform a specific task under
certain restrictions originating from the environment, obstacles
Oj , and other robots Pj . As already pointed out, each platform
Pi is supposed to have an estimation about position/orientation
of itself and the target Ti. The position of another platform
Pj relative to Pi can be measured if it lies within the sensor
cone of Pi. Four navigation principles are used here

1. Move in direction of target Ti

2. Avoid an obstacle Oj (static or dynamic) if it appears in
the sensor cone at a certain distance. Always orient platform
in direction of motion

3. Decrease speed if dynamic (moving) obstacle O j comes
from the right

4. Move to the right if the obstacle angles β (see [19]) of
two approaching platforms are small
(e.g. β < 10) (see Fig. 2)

Let, for example, mobile robots (platforms) P1, P2, and P3

be supposed to move to targets T1, T2, and T3, respectively,
whereas collisions should be avoided (see Fig. 1 ).

Apart from the heading-to-target movement all other naviga-
tion calculations and actions take place in the local coordinate

system of platform Pi. The positions of obstacles (static or
dynamic) Oj or other platforms Pj are also formulated in the
local frame of platform Pi.

III. NAVIGATION AND OBSTACLE AVOIDANCE USING

POTENTIAL FIELDS

A. Modeling of the system

The kinematic of the non-holonomic vehicle is described by

q̇i = Ri(qi) · ui

qi = (xi, yi, θi, φi)
T (1)

Ri(qi) =

⎛
⎜⎜⎝

cos θi 0
sin θi 0

1
li
· tanφi 0

0 1

⎞
⎟⎟⎠

where
qi ∈ �4 - state vector
ui = (u1i, u2i)

T ∈ �2 - control vector, pushing/steering force
xip = (xi, yi)

T ∈ �2 - position vector of platform Pi

θi - orientation angle
φi - steering angle
li - length of vehicle
Subscript d denotes the desired variable.

The tracking velocity is designed as a control term

vti = kti(xip − xti) (2)

xti ∈ �2 - position vector of target Ti

kti ∈ �2×2 - gain matrix (diagonal)

Repulsive forces exist between platform Pi and obstacle Oj

leading to repulsive velocities

vijob = −cijob(xjp − xjob)dij
−2
ob (3)

vijob ∈ �2 - repulsive velocity vector between platform P i

and obstacle Oj

xjob ∈ �2 - position vector of obstacle Oj

dijob ∈ � - Euklidian distance between platform Pi and
obstacle Oj

cijob ∈ �2×2 - gain matrix (diagonal)

Repulsive forces also appear between platforms Pi and Pj

from which we get the repulsive velocities

vijp = −cijp(xip − xjp)dij
−2
p (4)

vijp ∈ �2 - repulsive velocity between platforms Pi and Pj

dijp ∈ � - Euclidian distance between platforms Pi and Pj

cijp ∈ �2×2 - gain matrix (diagonal)

The resulting velocity vdi is the sum

vdi = vti +

mob∑
j=1

vijob +

mp∑
j=1

vijp (5)



Fig. 2. Geometrical relationship between platforms

where mob and mp are the numbers of contributing ob-
stacles and platforms. It should be emphasized that the force
fields are switched on/off according to the actual scenario:
distance between interacting systems, state of activation ac-
cording to the sensor cones of the platforms, positions and
velocities of platforms w.r.t. to targets, obstacles and other
platforms. All calculations of the velocity components (1)-(5),
angles and sensor cones are formulated in the local coordinate
systems of the platforms (see Fig. 2).

B. ”Deformation” of potential fields using fuzzy rules

Potential fields of obstacles (static and dynamic) act nor-
mally independently of the attractive force of the target. This
may cause unnecessary repelling forces especially in the case
when the platform can ”see” the target.

Fig. 3. Deformation of potential field

Another situation occurs when the tracking velocity |v ti|
becomes zero for some reason. In this case a platform would
be pushed away from an obstacle even if it should keep
its position. The goal is therefore to ”deform” the repulsive

Fig. 4. Fuzzy table for potential field

Fig. 5. Fuzzy membership functions

potential field so that it is strong if the obstacle hides the
target and weak if the target ”can be seen” from the platform.
In addition, the potential field should also be strong for a high
tracking velocity and weak for a small one (see Fig. 3). These
requirements can be achieved by introducing a coefficient
coefij ∈ [0, 1] that is multiplied to vijob to obtain a new
vijob as follows

vijob = −coefij · cijob · (xip − xjob)dij
−2
ob (6)

The coefficients coefij can be calculated by a set of 16
fuzzy rules like

IF |vti| = B AND αij = M (7)

THEN coefij = M

where αij is the angle between vijob and vti. The set of
16 rules can be summarized in a table shown in Fig. 4. Z -
ZERO, S - SMALL, M - MEDIUM, B - BIG are fuzzy sets
(see [20]). The corresponding membership functions µα, µvt,
and µcoef are triangular and shown in Fig. 5.

Finally can (5) be rewritten into

vdi = vti +

mob∑
j=1

wijfuzzvijob +

mp∑
j=1

vijp (8)



where

wijfuzz = coefij =

∑s
l=1 µ

l(|vti|, αij) · coef l
ij∑s

l=1 µ
l(|vti|, αij)

(9)

µl = min(µvt, µα)

s - number of rules.

IV. MB APPROACH

The behavior of the multiple mobile robot system is
optimized by an appropriate weighting of the repulsive
forces/velocities vijob and vijp using MBO methods. The
desired motion of platform Pi is then described by

vdi = voi +

mp∑
j=1,i�=j

wijvijp +

mob∑
j=1,i�=j

wijobvijob (10)

where voi is a combination of

- tracking velocity depending on distance between plat-
forms i and goals i

- Traffic rules

wij - weighting factors for repelling forces where∑mp

j=1,i�=j wij = 1
wijob - weighting factors for repelling forces between
platform i and obstacle j.

The first objective is to change the weights wij so that
all contributing platforms show a smooth dynamical behavior
during avoiding each other. One possible option for tuning the
weights wij is to find a global optimum over all contributing
platforms. This, however, is rather difficult especially in the
case of many interacting platforms. Therefore a multi-agent
approach has been preferred. The determination of the weights
is done by producer-consumer agent pairs in a MB scenario
that is presented in the following.

Assume that to every local system Si (platform) belongs a
set of m producer agents Pagij and m consumer agents Cagij .
Producer and consumer agents sell and buy, respectively, the
weights wij on the basis of a common price pi. Producer
agents Pagij supply weights wijp and try to maximize specific
local profit functions ρij where ”local” means ”belonging
to system Si”. On the other hand, consumer agents Cag ij

demand for weights wijc from the producer agents and try
to maximize specific local utility functions Uij . The whole
”economy” is in equilibrium as the sum over all supplied
weights wijp is equal to the sum over all utilized weights
wijc .

m∑
j=1

wijp(pi) =
m∑
j=1

wijc(pi) (11)

A ’trade’ between a producer and consumer agent is man-
aged by cost functions for both types of agents. We define a
local utility function for the consumer agent Cag ij

Utility = benefit− expenditure

Uij = b̃ijwijc − c̃ijpi(wijc)
2 (12)

where b̃ij , c̃ij ≥ 0 , pi ≥ 0. Furthermore a local profit
function is defined for the producer agent Pag ij

profit = income− costs

ρij = gijpi(wijp)− eij(wijp)
2 (13)

where gij , eij ≥ 0 are free parameters which determine the
average price level. It has to be stressed that both cost functions
(12) and (13) use the same price pi on the basis of which the
weights wij are calculated.

From the system equation (10) we define further a local
energy function to be minimized

J̃ij = vTdi
vdi

= aij + bijwij + cij(wij)
2 → min (14)

where J̃ij ≥ 0, aij , cij > 0 .

Fig. 6. Energy and utility function

The question is how to combine the local energy function
(14) and the utility function (12) , and how are the parameters
in (12) to be chosen? An intuitive choice

b̃ij = |bij |, c̃ij = cij (15)

guarantees wij ≥ 0. It can also be shown that, independently
of aij , near the equilibrium vdi = 0, and for pi = 1 , the
energy function (14) reaches its minimum, and the utility
function (12) its maximum, respectively (see Fig. 6).

With (15) the utility function (12) becomes

Uij = |bij |wijc − cijpi(wijc)
2 (16)

Maximization of the local utility function (16) leads to

wijc =
|bij |
2cij

· 1

pi
(17)

Maximization of the local profit function (13) yields

wijp =
pi
2ηij

where ηij =
eij
gij

(18)



Substituting (17) and (18) into (11) gives the prices p i for
the weights wijp

pi =

√∑m
j=1 |bij |/cij∑m
j=1 1/ηij

(19)

Substituting (19) into (17) yields the final weights w ij to
be implemented in each local system. Once the new weights
wij are calculated, each of them has to be normalized with
respect to

∑m
j=1 wij which guarantees the above requirement∑m

j=1 wij = 1 .

V. MB OPTIMIZATION OF OBSTACLE AVOIDANCE

A. MBO between active mobile platforms

In the following the optimization of obstacle avoidance
between moving platforms by MB methods will be addressed.
Coming back to the equation of the system of mobile robots
(10)

vdi = voi +

mp∑
j=1,i�=j

wijvijp (20)

where voi is a subset of the RHS of (5) - a combination of
different velocities (tracking velocity, control terms, etc.), v ijp
reflects the repelling forces between platforms Pi and Pj . The
global energy function (14) reads

J̃i = voTi voi + 2voTi

mp∑
j=1,i�=j

wijvijp (21)

+ (

mp∑
j=1,i�=j

wijvijp)
T (

mp∑
j=1,i�=j

wijvip)

The local energy funcion reflects only the energy of a pair
of two interacting platforms Pi and Pj

J̃ij = voTi voi + (

mp∑
k=1,k �=i,j

wikvikp)
T (

mp∑
k=1,k �=i,j

wikvikp)

+ 2

mp∑
k=1,k �=i,j

wikvo
T
i vikp

+ 2wij(vo
T
i +

mp∑
k=1,k �=i,j

wikvik
T
p )vijp (22)

+ w2
ij(vij

T
p vijp)

Comparison of (22) and (14) yields

bij = 2(voTi +

mp∑
k=1,k �=i,j

wikvik
T
p )vijp

cij = (vij
T
p vijp) (23)

while neglecting aij because aij does not contribute to the
MBO process.

B. MBO between active mobile platforms
and passive obstacles

In this subsection the MBO between platforms will be
extended by the MBO between a mobile platform P i and
several obstacles Oj (j = 1...mob). The motivation for this
is that with the usual potential fields the platforms move
normally as close as possible around the obstacles which
might be an undesired behavior. Sometimes it would be better
if the platform would navigate in a more conservative way
so that there remains always an area around the platforms
giving more space for additional unforseen maneuvers. In the
last subsection, the MBO of repulsive velocities between the
platforms has been described, whereas each involved agent
(platform) is able to react actively. However, considering
MBO between active platforms and passive obstacles active
reactions from the obstacles cannot be expected. Therefore
the MBO approach has to be adapted to the application to
passive obstacles. In the following the optimization of obstacle
avoidance by MBO methods between platforms on the one
hand and between platforms and passive obstacles on the
other hand will be addressed. Splitting up repulsive velocities
between platforms vijp on the one hand and between platforms
and passive obstacles vijob on the other hand leads to the
equation of the system of mobile robots plus passive obstacles

vdi = voi +

mp∑
j=1,i�=j

wijvijp +

mob∑
j=1

wijobvijob (24)

where

- voi - subset of the RHS of (5), a combination of different
velocities (tracking velocity, control terms, etc.)

- wijob - weights for repulsive velocities vijob.

The difference between (24) and (20) is that in (20) the
repulsive velocities between platforms and obstacles v ijob are
included in voi whereas in (24) vijob appear explicitely. For
wijob = 1 the results of (24) and (20) are the same which is
however not the case for wijob �= 1.

Then the global energy function (14) reads

J̃i = voTi voi + 2voTi (

mp∑
j=1,i�=j

wijvijp +

mob∑
j=1

wijobvijob)

+ 2(

mp∑
j=1,i�=j

wijvijp)
T (

mob∑
j=1

wijobvijob)

+ (

mp∑
j=1,i�=j

wijvijp)
T (

mp∑
j=1,i�=j

wijvip) (25)

+ (

mob∑
j=1

wijobvijob))
T (

mob∑
j=1

wijobvijob)

The local energy funcion reflects only the energy of a pair
of two interacting platforms Pi and Pj



J̃ij = voTi voi + (

mp∑
k=1,k �=i,j

wikvikp)
T (

mp∑
k=1,k �=i,j

wikvikp)

+ (

mob∑
k=1

wikobvikob)
T (

mob∑
k=1

wikobvikob)

+ 2voTi (

mp∑
k=1,k �=i,j

wikvikp +

mob∑
k=1

wikobvikob) (26)

+ 2wijvij
T
p (voi +

mp∑
k=1,k �=i,j

wikvik
T
p +

mob∑
k=1

wikobvikob)

+ w2
ij(vij

T
p vijp)

Comparison of (26) with (14 yields

bij = 2vij
T
p (voi +

mp∑
k=1,k �=i,j

wikvikp +

mob∑
k=1

wikobvikob)

cij = vij
T
p vijp (27)

The local energy funcion considers only the energy of one
platform Pi with respect to obstacle Ol

J̃il = vTdi
vdi

= voTi voi + (

mp∑
k=1,k �=i

wikvikp)
T (

mp∑
k=1,k �=i

wikvikp)

+ (

mob∑
k=1,k �=l

wikobvikob)
T (

mob∑
k=1,k �=l

wikobvikob)

+ 2voTi (

mp∑
k=1,k �=i

wikvikp +

mob∑
k=1,k �=l

wikobvikob) (28)

+ 2(

mp∑
k=1,k �=i

wikvikp)
T (

r∑
k=1,k �=l

wikobvikob)

+ 2wilobvil
T
ob(voi +

mp∑
k=1,k �=i

wikvikp +

mob∑
k=1,k �=l

wikobvikob)

+ w2
ilvil

T
obvilob

Comparison of (28) and (14 yields

bil = 2vil
T
ob(voi +

mp∑
k=1,k �=i

wikvikp +

mob∑
k=1,k �=l

wikobvikob)

cil = vil
T
obvilob (29)

Here one has to mention some exception when dealing with
weights wijob for the repulsive velocities vijob of the objects:
If one would use the computation of weights as before, then
weights of the repulsive velocity of an object could appear to
be much lower than 1. This would possibly lead to a strong
weakening of potential fields resulting in collisions between
platforms and obstacles since obstacles cannot actively avoid.

Therefore the weight resulting from MBO is changed into its
’negation’

w̃ijob = Cob(1− wijob) (30)

where Cob is a positive design parameter. The simulation
shows the practicability of the method.

VI. SIMULATION RESULTS

The following simulation results consider mainly the obsta-
cle avoidance of a multi-robot system (restricted to 3 platforms
without loss of generality) in a relatively small area. The
sensor cone of a platform amounts to +/- 170. Inside the cone
a platform can see another platform within the range of 0-140
units. The platforms P1 and P3 are approaching head-on. At
the same time platform P2 crosses the course of P1 and P3

a right before their avoidance maneuver. If there were only
platforms P1 and P3 involved, the avoidance maneuver would
work without problems. According to the built-in traffic rules
both platforms would move some steps to the right (seen from
their local coordinate system) and keep heading to their target
after their encounter. Platform P2 works as a disturbance since
both P1 and P3 react on the repulsive potential of P2 which
has an influence on their avoidance manoeuver. The result
is a disturbed trajectory (see Fig. 7) characterized by drastic
changes especially of the course of P3 during the rendezvous
situation. A collision between P1 and P3 cannot be excluded
because of the crossing of the courses of P1 and P3. This
also shows up in the plot Fig. 8, (subplot B31, timestep 190)
where we notice quite high repelling forces between platforms
P2 and P3 causing in turn high avoidance movements.

Fig. 7. Approach, no MB optimization

When activating the MBO, we obtain a behavior that follows
both the repulsive potential law for obstacle avoidance and
the traffic rules during approaching head-on (see Fig. 9).
There is no crossing of tracks between P1 and P3 any more
which comes from the MB optimization of the repelling forces
between platforms P1, P2, and P3 and a respective tuning
of the weights wij . Figure 10 shows the resulting weights.
We also notice that w12 and w13, w21 and w23, and w31

and w32 are pairwise mirror-inverted due to the condition



Fig. 8. forces, no MB

∑m
j=1,i�=j wij = 1 (see also eq. (10)). Since the platforms

hold a certain distance from each other, the repelling forces
between the platforms are lower than without MBO (see Fig.
11), (subplot B31, timestep 190).

Fig. 9. Approach, with MB optimization

Fig. 10. weights, with MB

In further simulations the platforms are required to move
on circles with different speeds, similar diameters and center
points while avoiding other platforms and static obstacles on

Fig. 11. forces, with MB

their tracks. To determine the smoothness of the trajectories,
the averages of the curvatures along the trajectories of the
platforms were calculated. Figures 12 and 13 show the actual
corrected trajectories of the platforms where the circular
reference trajectories are not explicitly shown. It turned out
that the use of MBO leads to a significant improvement of the
smoothness of trajectories.

Furthermore, the influence of MBO on the behavior between
platforms and obstacles can be shown by an example depicted
in Figs. 14 and 15 where platform P2 passes the obstacles in
a much larger distance if MBO is switched on.

0 50 100 150 200 250 300 350 400 450 500

0

200

400

600

800

1000

1200

1 

2 

3 

p1 

p2 

p3 

x

y 
No MB optimization between platforms 

curv1 =224.4767 
curv2 =86.4355  
curv3 =335.1066 

Fig. 12. moving on circles, no MB

VII. CONCLUSIONS

Navigation and obstacle avoidance of mobile robots can be
performed by a variety of principles like artificial potential
fields, traffic rules, and control methods. It has also been
shown that a ’deformation’ of central symmetry by using fuzzy
rules may be helpful because it takes better the robot-object
scenario into account. An important aspect is the market-
based optimization (MBO) of competing potential fields of
mobile platforms. MBO imitates economical behavior and
the competition between consumer and producer agents. By
means of MBO some potential fields will be strengthened
and some weakened depending on the actual scenario. This
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Fig. 13. moving on circles, with MB
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Fig. 14. No MBO between platforms and obstacles

is required when more than two robots compete within a
small area which makes a certain minimum distance between
the robots and appropriate maneuvers necessary. Therefore,
MB navigation allows smooth motions in such situations.
Simulation experiments with simplified robot kinematics and
dynamics have shown the feasibility of the presented method.
A future aspect of this work is the implementation of the
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Fig. 15. With MBO between platforms and obstacles

algorithm on a set of real mobile robots.

REFERENCES

[1] O. Khatib. Real-time 0bstacle avoidance for manipulators and mobile
robots. IEEE Int. Conf. On Robotics and Automation,St. Loius,Missouri,
1985, page 500505, 1985.

[2] Y. Koren and J. Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. Proceedings of the IEEE
Conference on Robotics and Automation, Sacramento, California, pages
1398–1404, April 7-12, 1991.

[3] J.L. Baxter, E.K. Burke, J.M. Garibaldi, and M. Norman. Multi-robot
search and rescue: A potential field based approach. Autonomous Robots
and Agents Series: Studies in Computational Intelligence , Vol. 76,
Mukhopadhyay, Subhas; Sen Gupta, Gourab (Eds.), Springer-Verlag,
pages 9–16, 2007.

[4] M. J.Sorensen. Artificial potential field approach to path tracking for
a nonholonomic mobile robot. Proceedings of the 11th Mediteranean
Conference on Control And Automation. Rhodes, Greece, 2003, 2003.

[5] J.Alonso-Mora, A. Breitenmoser, M.Rufli, P. Beardsley, and R. Sieg-
wart. Optimal reciprocal collision avoidance for multiple non-holonomic
robots. Proc. of the 10th Intern. Symp. on Distributed Autonomous
Robotic Systems (DARS), Switzerland, Nov 2010.

[6] A. Bouguerra. Robust execution of robot task-plans: A knowledge-based
approach. Ph.D. Thesis,Oerebro University, 2008.

[7] A. Martinez, E. Tunstel, and M. Jamshidi. Fuzzy logic based collision
avoidance for a mobile robot. Robotica, Vol. 12, Part 6.:pp. 521–527,
Nov.-Dec. 1994.

[8] John H. Lilly. Evolution of a negative-rule fuzzy obstacle avoidance
controller for an autonomous vehicle. IEEE TFS, Vol. 15, No. 4,, pages
719–839, Aug. 2007.

[9] P. E. Stingu and F. L. Lewis. Motion path planning for mobile robots. Re-
port:University of Texas at Arlington, Automation and Robotics Research
Institute., http://arri.uta.edu/acs/ee5322/lectures/Motion/planning.pdf.:1–
7, April 2007.

[10] A. Wallace. Flow control of mobile robots using agents. 29th
International Symposium on Robotics Birmingham, UK, pages 273–276,
1998.

[11] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz. Market-based multirobot
coordination: a survey and analysis. Proceedings of the IEEE, vol. 94,
no. 7, pages 1257–1270, July 2006.

[12] C.Gerber, C.Russ, and G.Vierke. On the suitability of market-based
mechanisms for telematics applications. Proceedings of the 3rd Intern.
Conf. on Autonomous Agents, Seattle, USA, pages 409–409, 1-5 May
1999.

[13] S.H. Clearwater (ed.). Market-based control: A paradigm for distributed
resource allocation. Proceedings of the 38th CDC, Phoenix, Arizona
USA., World Scientific, Singapore., 1996.

[14] O.Guenther, T.Hogg, and B.A.Huberman. Controls for unstable struc-
tures. Proceedings of the SPIE, San Diego, CA, USA, pages 754–763,
1997.

[15] H.Voos and L.Litz. A new approach for optimal control using market-
based algorithms. Proceedings of the European Control Conference
ECC99, Karlsruhe, 1999.

[16] R. Palm. Synchronization of decentralized multiple-model systems by
market-based optimization. IEEE Trans Syst Man Cybern B, Vol. 34,
pages 665–72, Feb 2004.

[17] R.Palm and A. Bouguerra. Navigation of mobile robots by potential
field methods and market-based optimization. ECMR 2011, Oerebro,
Sweden., Sept. 7-9, 2011.

[18] J. Albus, Ch. McLean, A. Barbera, and M. Fitzgerald. An architecture
for real-time sensory-interactive control of robots in a manufacturing
facility. IFAC Information Control Problems in Manufacturing Technol-
ogy, USA, pages 81–90, 1982.

[19] B. R. Fajen and W. H. Warren. Behavioral dynamics of steering, obstacle
avoidance, and route selection. Journal of Experimental Psychology:
Copyright by the American Psychological Association, Inc. Human
Perception and Performance, Vol. 29, No. 2, page 343362, 2003.

[20] R.Palm, D.Driankov, and H.Hellendoorn. Model based fuzzy control.
Springer-Verlag Berlin New York Heidelberg, 1997.


