Sambandet mellan jodkontrastmedel och kontrastmedelinducerad nefropati

Riskfaktorer och förebyggande åtgärder

Författare:
Lihon, Payman

Handledare:
Funk, Eva
Universitetsadjunkt

Örebro Universitet
Sammanfattning

Kontrastmedelinducerad nefropati (KMN) är den tredje vanligaste orsaken till vårdrelaterad akut njurskada. KMN beskrivs som en minskning av glomerulär filtrationshastighet (GFR) efter injektion av jodkontrastmedel. Det innebär att patientens S-kreatinin stigit med ≥25% eller ≥44,2 µmol/l inom tre dygn efter injektion av jodkontrastmedel. KMN förekommer hos upp till 2% patienter med normal njurfunktion och hos 10% - 50% av patienter med nedsatt njurfunktion samt andra riskfaktorer. Syftet med den här litteraturstudien var att undersöka sambandet mellan jodkontrastmedel och KMN, med fokus på att beskriva riskfaktorer samt förebyggande åtgärder. Information och fakta för att få svar på frågeställningarna söktes i tidigare forskning. Studier visar en stark koppling mellan riskfaktorer och utveckling av KMN i samband med injektion av jodkontrastmedel. Patientrelaterade riskfaktorer har visat sig vara nedsatt njurfunktion och diabetes mellitus, vilket är de två största riskfaktorerna. Vårdrelaterade riskfaktorer har visat sig vara volym och typ av jodkontrastmedel. Patient- och vårdrelaterade riskfaktorer i samband med jodkontrastmedel kan orsaka KMN. Andra patientrelaterade riskfaktorer är ålder, kön och hyperkolesterolemi. Volymen av kontrastmedel kan vara både en riskfaktor och åtgärd för att minska risken för KMN. De mest effektiva åtgärder för att minska risken för KMN är hydrieringsmed bikarbonatlösning och att anpassa förhållandet mellan kontrastmedelsvolym och GFR värdet.

Nyckelord: jodkontrastmedel, riskfaktorer, åtgärder, GFR, S-kreatinin, kontrastmedelinducerad nefropati.
Abstract

Contrast-induced nephropathy (CIN) is the third most common cause of hospital-acquired acute kidney injury. CIN is described as a reduction in glomerular filtration rate (GFR) after injection of iodinated contrast media, which means that the patient's serum creatinine increased by $\geq 25\%$ or $\geq 44.2 \, \mu\text{mol} / \text{l}$ within three days after injection of iodinated contrast media. CIN occurs in up to 2% in patients with normal renal function and 10% - 50% in patients with impaired renal function, and other risk factors. The purpose of this literature review was to examine the relationship between iodinated contrast agent and CIN, focusing on describing risk factors and preventive measures. Information and facts to answer the questions were found in previous research. Studies show a strong link between risk factors and the development of CIN associated with iodinated contrast agents. Patient-related risk factors have been shown to be renal impairment and diabetes mellitus, which are the two major risk factors. Healthcare risk factors have been shown to be volume and type of iodine contrast agents. Patient-related and healthcare risk factors with the use of iodinated contrast agent can cause CIN. Other patient-related risk factors include age, gender and hypercholesterolemia. The volume of contrast media can be both a risk factor and a way to prevent CIN. The most effective measures to reduce the risk of CIN are hydration with sodium bicarbonate solution and to adjust the ratio of contrast medium volume and GFR value.

Keyword: iodine contrast media, risk factors, prevention, GFR, serum creatinine, contrast media induced nephropathy.
Innehållsförteckning

Inledning ... 1

Problemformulering ... 1

Bakgrund .. 2

Kontrastmedel .. 2

Den historiska utvecklingen av kontrastmedel .. 2

Jodkontrastmedel ... 2

Njurar .. 3

Njurfunktion ... 3

Glomerulär filtrationshastighet (GFR) ... 4

S-kreatinin .. 5

Relativ och Absolut GFR .. 5

Definition av kontrastmedelinducerad nefropati, (KMN) ... 6

KMN .. 6

KMN patofysiologi ... 6

Syfte .. 7

Frågeställningar ... 7

Metod .. 7

Sökmетод .. 7

Urval .. 8

Etiska överväganden .. 8

Resultat ... 9

Samband och riskfaktorer .. 9

Förebyggande åtgärder ... 10

Diskussion .. 13

Metoddiskussion ... 13

Resultatdiskussion ... 14

Slutsats ... 18
Referenslista ... 19

Bilagor ... 23

 Bilaga 1 .. 23
 Bilaga 2 .. 24
Inledning

Problemformulering

Användning av kontrastmedel kan både bidra till en säker diagnos men också ge negativa effekter på patienten. Kontrastmedel används för att öka och påvisa skillnader mellan kroppens olika vävnader och organ, bland annat patientens urinvägar, lungor, njurar och buk. Ett av de mest använda kontrastmedlen inom radiologi är jodkontrastmedel. Användningen av jodkontrastmedel för med sig biverkningar hos vissa patienter. Trots detta är det i nuläget inte möjligt att utesluta jodkontrastmedel vid dessa röntgenundersökningar, eftersom jodkontrastmedel många gånger har en avgörande roll i samband med diagnostiken. Det är dock av vikt att som röntgensjuksköterska ha nödvändiga kunskaper om vad jodkontrastmedel är, samt hur olika patienter kan påverkas av jodkontrastmedel. En omtalad och studerad biverkning av jodkontrastmedel är kontrastmedelinducerad nefropati, (KMN). Medvetenhet kring detta är av stor betydelse, speciellt när det gäller kunskaper kring identifiering av riskfaktorer hos patienten samt förebyggande åtgärder för att minimera risken för att patienten ska drabbas av KMN.
Bakgrund

Kontrastmedel

Den historiska utvecklingen av kontrastmedel

Jodkontrastmedel

Aspelin och Pettersson (2008) skriver att alla typer av kontrastmedel, som används i radiologiska undersökningar, ska förstärka och påvisa skillnader mellan kroppens olika vävnader. Utifrån detta ska kontrastmedel påverka bilderna och bidra med bästa diagnostiska information med så lite biverkningar som möjligt.

Njurar

Njurfunktion

de produkter som kroppen inte är i behov av utsändras och förs ut ur kroppen via urinen. Detta system bidrar till att njurarna reglerar och upprätthåller en stadig balans av exempelvis salter, vätska och elektrolyter.

Glomerulär filtrationshastighet (GFR)

Tabell 1. Njurinsufficiens i förhållande till GFR

<table>
<thead>
<tr>
<th>Njurfunktion</th>
<th>GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal njurfunktion</td>
<td>GFR ≥ 90 ml/min/1,73 m²</td>
</tr>
<tr>
<td>Lätt minskad njurfunktion</td>
<td>GFR 60-89 ml/min/1,73 m²</td>
</tr>
<tr>
<td>Måttligt minskad njurfunktion</td>
<td>GFR 30-59 ml/min/1,73 m²</td>
</tr>
<tr>
<td>Allvarligt minskad njurfunktion</td>
<td>GFR <30 ml/min/1,73 m²</td>
</tr>
<tr>
<td>Njurinsufficiens/uremi</td>
<td>GFR <15 ml/min/1,73 m²</td>
</tr>
</tbody>
</table>

En ökning av GFR orsakar enligt Henriksson och Rasmusson (2008) en ökning av vätskeflöde i tubuli, vilket i sin tur leder till minskning av reabsorptionen av vissa substanser som vatten
och salter. En minskning av GFR orsakar en ökad reabsorption av dessa substanser, vilka vanligtvis utsöndras från kroppen. Därför är det av vikt att hålla GFR oförändert, för reglering av kroppsvättskans sammansättning.

S-kreatinin

Relativ och Absolut GFR

Det finns två typer av GFR, Relativ och Absolut GFR skriver Nyman och Kristiansen (2008). För att göra en skattning och bedöma om patientens njurfunktion är normal i förhållande till patientens kroppsstorlek, och/eller för att få en översikt av njurfunktionsnedläggning används relativ GFR. Nyman (2008) skriver att en stor individ vanligtvis har en högre njurfunktion i jämförelse med en liten individ, eftersom individens njurfunktion är kopplad till kroppsstorleken. Relativ GFR beskrivs i (mL/min/1.73 m²) och används när en bedömning ska göras om patientens GFR är nedsatt i förhållande till en normal person med en kroppsmass på 1.73 m². Relativ GFR blir på så sätt standard till en viss kroppsmass och utifrån detta blir standardvärdena både för män och kvinnor huvudsakligen detsamma. Den aktuella kroppsstorleken har således inte en utmärkande betydelse för relativ GFR.

Nyman och Kristiansen (2008) skriver att vid tillförsel av kontrastmedel eller andra läkemedel ska GFR beräknas med hjälp av Cockroft-Gaults formel för absolut GFR värde i mL/min. Absolut GFR är ett mått som används vid tillförsel av läkemedel och kontrastmedel som exempelvis gadolinium- och jodkontrastmedel, vilka båda utsöndras via glomerulär

Enligt Nyman och Kristiansen (2008) finns det risk för att relativ GFR bidrar till att små patienter får fel GFR värde, just på grund av att måttet på kroppsytan, 1.73 m² används för alla, vilket leder till att små patienter får mer kontrastmedel medan stora patienter får mindre kontrastmedel än de behöver. Små patienter riskerar att bli överdoserade av kontrastmedel, samtidigt som patienter med stor kroppsstorlek kan riskera att bli underdoserade.

Definition av kontrastmedelinducerad nefropati, (KMN)

KMN

KMN patofysiologi

KMN. Patofysiologin visar sig huvudsakligen genom minskad renal perfusion (njurgenomblodning) och medullär hypoxi. Patofysiologin kan förklaras genom att det sker en snabb vasodilatation (blodkärlsvidgning) i njurarna efter tillförsel av jodkontrastmedel. Vasodilatationen tillsammans med en osmotisk belastning och sekundär natriures (utsöndring av natriumjoner med urinen) ökar återresorptionen av natrium med ökat behov av syre. Detta följs senare av en fördröjd vasokonstriktion (kärlsammandragning), vilket främst drabbar medullan som redan har en låg genomblodning. Detta förklarar varför tillstånd som påverkar genomblodningen i patientens njurar, exempelvis diabetes förknippas ofta med KMN.

Syfte
Syftet med studien var att undersöka sambandet mellan jodkontrastmedel och Kontrastmedelinducerad nefropati (KMN), med fokus på att beskriva riskfaktorer samt förebyggande åtgärder.

Frågeställningar
- Vilket samband finns mellan jodkontrastmedel och kontrastmedelinducerad nefropati?
- Vilka riskfaktorer och förebyggande åtgärder finns i samband med kontrastmedelinducerad nefropati?

Metod

Sökmetod
Artiklarna som används i denna studie söktes i databasen Pubmed som är en omfattande medicinsk databas. Författaren använde sig av olika sökord för att komma fram till de artiklar som ansågs vara relevanta och kunna svara på studiens syfte och frågeställningar. Vid en

Urval

Etiska överväganden
Enligt Bryman (2011) finns det fyra etiska principer som en forskare ska ta hänsyn till, vilka är *informationskravet*, *samtyckeskravet*, *konfidentialitetskravet* samt *nyttjandekravet*. Utifrån dessa principer ska forskaren inta ett etiskt förhållningssätt under hela forskningsperioden. Då studiens insamlade material är offentliga handlingar i form av vetenskapliga artiklar och studier, har det inte varit aktuellt att ta ställning till dessa punkter. Författaren till denna studie har dock intagit ett etiskt förhållningssätt i hela studien, genom att exempelvis översätta texter från originalspråk till svenska på ett så korrekt sätt som möjligt samt objektivt och etiskt granskat och bedömt allt material som har använts i studien. De vetenskapliga artiklar som används i uppsatsens resultat uppfyller etikkraven då de erhållit etiskt godkännande eller informerat samtycke från patienterna.
Resultat

Resultatet baseras på 11 vetenskapliga artiklar som anses vara relevanta för uppsatsens syfte och frågeställningar. Artiklarna är redovisade i löpande text och ordningen baseras på liknande resultat av samband, riskfaktorer och förebyggande åtgärder.

I bilaga 2 presenteras en tabell med artiklarnas syfte, metod samt resultat för att skapa en överblick av artiklarnas innehåll (Se tabell 2).

Samband och riskfaktorer

I en studie av Chong m.fl. (2012) framkom att patientens ålder, kontrastmedelsvolym, nedsatt njurfunktion samt förhöjt kreatininvärde i samband med perkutan coronar intervention (PCI) var fyra utmärkande riskfaktorer för utvecklingen av KMN. Studiens syfte var att granska riskfaktorer hos patienter med nedsatt njurfunktion, vilket även skulle leda fram till
en riskmodell med ett poängsystem, i syfte att förebygga KMN. Av de deltagande patienterna var risken att utveckla KMN betydligt högre hos de som hade nedsatt njurfunktion (GFR mellan 40-60: 6,3 %, GFR 20-40: 17,4%, GFR <20: 40,8%) vilket innebar att ju lägre njurfunktion patienten hade desto större risk fanns det att utveckla KMN. Diabetes visade ingen signifikans vad gäller kopplingen till KMN i denna undersökning. Wang m.fl. (2011) anser att det inte finns någon farmakologisk metod som skyddar eller minskar risken för KMN. Syftet med studien var att granska förhållandet mellan kontrastmedelsvolymen (CMV) till beräknad glomerulär filtrationshastighet (eGFR) hos diabetespatienter som gått igenom planerad PCI och som utvecklat KMN. Studien analyserade retrospektivt kliniska förhållanden som var associerade med att utveckla KMN hos 114 patienter med diabetes, vilka gick igenom en planerad PCI. Av dessa patienter utvecklade 21 personer KMN vilket motsvarar 18,4 %. Dessa patienter hade dessutom en nedsatt njurfunktion. Enligt slutsatsen, kan CMV/eGFR relationen vara ett viktigt mätinstrument för risken att utveckla KMN hos diabetiker med nedsatt njurfunktion. Detta stöds till viss del även Nozue m.fl. (2009) som har gjort en studie där 60 patienter genomgått en planerad PCI. Av dessa patienter utvecklade 13 % KMN. De patienter som utvecklade KMN erhöll högre volym av kontrastmedel samt hade ett lägre GFR värde. CMV/eGFR konstaterades som signifikant högre hos de som utvecklade KMN. Studien visade inga betydande kopplingar vad gäller exempelvis patientens, ålder, kön och diabetes mellitus mellan de patienter som utvecklade KMN och de som inte gjorde det.

Förebyggande åtgärder

Shemirani m.fl. (2012) genomförde en randomiserad klinisk studie som hade till syfte att utvärdera vilken skyddande effekt hydtering hade för att motverka KMN. Detta efter PCI, hos patienter med nedsatt njurfunktion som stod på vätskedyrivarande preparat som ACE-hämmare (kaptopril) eller diuretika (furosemid). Patienterna delades in i fyra grupper (A-D), med 60 patienter i varje grupp. Grupp A och B behandlades regelbundet med ACE-hämmare, och grupp C och D stod på regelbunden diuretika behandling. Behandlingen i grupp A och C avbröts 36 timmar före PCI, varvid deras S-kreatinin nivåer mättes. S-kreatinin nivån mättes även 24 och 48 timmar efter utförd PCI hos alla patienter. Dessutom fick alla patienter 1 ml/kg timme Natriumkloridlösning 12 timmar före samt 24 timmar efter PCI. Efter jämförelser och utvärdering var gruppernas resultat följande: 5 %, i grupp A, 3,3 % i grupp B, 3,3 % i grupp C och 1,6 % i grupp D hade kreatininvärden på > 0,5 mg/dL, som förklarar diagnosen KMN. Då det inte finns en signifikant skillnad i resultatet mellan dessa fyra gruppens olika

Diogo m.fl. (2010) gjorde en multivariat analys där kronisk njursvikt och diabetes mellitus visade sig vara de viktigaste riskfaktorerna för att utveckla KMN. Författarna kom även fram till att koksaltlösning och bikarbonatlösning före hjärtkateterisering förebygger KMN.

fick 162 patienter iodixanol (isoosmolär) kontrastmedel och 162 patienter fick Iomeprol (lågosmolär) kontrastmedel. Resultatet av denna studie visade att även om KMN blev lägre hos patienter som fått Iodixanol (22,2 %), jämfört med den andra gruppen som fick Iomeprol (27,8%), räknades inte skillnaden som statistisk signifikant. Studiens resultat visade att det inte finns något samband mellan isoosmolär kontrastmedel och minskning av nefrotoxicitet jämfört med de lågosmolära kontrastmedelstyperna. Med en höjning av kontrastmedel däremot påvisades en mindre effekt av nefrotoxicitet hos patienter som fått isoosmolär kontrastmedel jämfört med de patienter som fått lågosmolär kontrastmedel.

Brown m.fl. (2010) utförde en studie som hade till syfte att undersöka förhållandet mellan kontrastmedelinducerad akut njurskada och kontrastmedelsvolymer som över- och underskred MACD ”(högsta tillåtna kontrastmedelsdos)”. I undersökningen valdes 10 065 patienter som var inskrivna för att genomgå PCI. Bortfallet var 155 patienter som hade genomgått dialys före PCIn. Undersökningar med olika variabler som utgångsvärde av njurfunktion, kroppsvikt och kontrastmedelsvolym gjordes. Detta för att kunna mäta den effekt som uppstod när MACD överskred for kontrastinducerad akut njurskada. Tjugo procent av deltagarna hade betydande riskfaktorer, och erhöll en dos som överskred MACD. Resultatet visade att 45 % av dessa patienter utvecklade KMN. Enligt studiens slutsats är kontrastmedelsvolygen en betydande riskfaktor för kontrastmedelinducerad akut njurskada. Att överskrida gränser för MACD förknippas med ökad risk för kontrastmedelinducerad akut njurskada, vilket betyder att volygen av kontrastmedel har betydelse för att motverka risken för att utveckla KMN.

I tabell 2 nedan sammanfattas ovanstående 12 forskningsresultat.

Tabell 2. Sammanfattning av artiklarnas resultat.
<table>
<thead>
<tr>
<th>Studie och årtal</th>
<th>Riskfaktorer</th>
<th>Förebyggande åtgärder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown m.fl. 2010</td>
<td>Hög volym av kontrastmedel</td>
<td>Inga förebyggande åtgärder</td>
</tr>
<tr>
<td>Chong m.fl. 2012</td>
<td>Älder, kontrastmedels-volym, nedsatt njurfunktion samt ökning i kreatinin kinas</td>
<td>Inga förebyggande åtgärder</td>
</tr>
<tr>
<td>Diogo m.fl. 2010</td>
<td>Kronisk njursvikt och diabetes mellitus</td>
<td>Hydrering</td>
</tr>
<tr>
<td>From m.fl. 2010</td>
<td>Inga nämnda riskfaktorer</td>
<td>Typ av kontrastmedel</td>
</tr>
<tr>
<td>Meier m.fl. 2009</td>
<td>Inga nämnda riskfaktorer</td>
<td>Hydrering</td>
</tr>
<tr>
<td>Nozue m.fl. 2009</td>
<td>Nedsatt njurfunktion och hög volym av kontrastmedel</td>
<td>Volym av kontrastmedel</td>
</tr>
<tr>
<td>Pakfetrat m.fl. 2010</td>
<td>Diabetes mellitus, hyperkolestrolemi samt kronisk njursjukdom</td>
<td>Inga förebyggande åtgärder</td>
</tr>
<tr>
<td>Shemirani m.fl. 2012</td>
<td>Nedsatt renal perfusion</td>
<td>Hydrering</td>
</tr>
<tr>
<td>Trivedi m.fl. 2009</td>
<td>Nedsatt njurfunktion, ålder, diabetes mellitus</td>
<td>Hydrering</td>
</tr>
<tr>
<td>Wang m.fl. 2011</td>
<td>Diabetes mellitus, nedsatt njurfunktion samt hög kontrastvolym</td>
<td>CMV/eGFR</td>
</tr>
<tr>
<td>Wessely m.fl. 2009</td>
<td>Kronisk njursvikt, diabetes, hög ålder, hypertoni samt hyperlipidemi</td>
<td>Typ och volym av kontrastmedel</td>
</tr>
</tbody>
</table>

Diskussion

Metoddiskussion

Valet att utföra litteraturstudie gjordes efter att syfte och frågeställningar utformats. Denna litteraturstudie är baserad på resultatet av författarens valda artiklar, som endast reflekterar en del av all forskning inom detta specifika ämne. Sökningen av de vetenskapliga artiklar som används för att nå syftet gjordes i databasen PubMed. För att begränsa antalet sökträffar gjordes tre begränsningar i databasen, forskningen skulle vara utförd på människor, forskningen skulle inte vara över fem år gammal och artiklarna skulle ha engelsk text. Tidsbegränsningen baserade författaren på att kontrastmedelsanvändningen tillsammans med utvecklingen av nya metoder inom radiologin ständigt utvecklas och författaren anser att metoden i forskningarna ska vara dagsaktuella.
Uppsatsens styrkor är att de vetenskapliga artiklarna som används i uppsatsen är relativt nya eftersom författaren till denna uppsats begränsat sökningen till 5 år. Informationen i artiklarna kan därför vara aktuella. Artiklar äldre än fem år har inte använts i uppsatsens resultatdel.

Resultatdiskussion

inte hade exakt samma GFR. Det går heller inte att utläsa i studierna att alla patienter i undersökningarna hade exakt samma riskfaktorer, vilket kan ha påverkat studiens resultat.

njursvikt, diabetes och hyperkolestrolemi. Ingen av studierna i denna uppsats tar upp eventuella riskfaktorer som kan ha med faktorer såsom alkohol och rökning. Då dessa studier inte har inkluderat rökning och alkohol är det svårt för författaren till denna uppsats att ta ställning till huruvida alkohol eller rökning kan påverka riskfaktorerna som i sin tur kan öka risken för utveckling av KMN.

Lodhia m.fl. (2009) har nämnt en annan riskfaktor som författaren till denna uppsats inte hittat i någon annan studie. Lodhia m.fl. (2009) anser ascites som en betydande riskfaktor för att utveckla KMN hos levercirrospatienter, men ansåg däremot inte att riskfaktorer som ålder och diabetes hade någon påverkan på utveckling av KMN hos patienter med levercirros. Resultatet kan antas ha blivit annorlunda om det i studierna framkom antal patienter som hade en av de större riskfaktorerna som exempelvis diabetes eller akut njursjukdom, samt om levercirrospatienter med ascites kunde med större säkerhet sättas in i kategorin för de större riskfaktorerna såsom diabetes och akut njursjukdom. Det är nödvändigt med fler studier inom detta område för att kunna diskutera och komma fram till huruvida levercirrospatienter med ascites kan räknas som en riskfaktor för utveckling av KMN.

Enligt majoriteten av studierna är hydrering en av de viktigaste åtgärderna för att förebygga KMN. Olika forskare anser att olika typer av hydrering kan ha en påverkan på resultatet.

I Wesselys m.fl. (2009) studie påvisades ett samband mellan högre volym av kontrastmedel och en minskad effekt av nefrotoxicitet av isoosmolära kontrastmedel. Det fanns dock inget signifikant samband mellan användningen av isoosmolär kontrastmedel och

Slutsats

Olika faktorer i samband med användning av jodkontrastmedel kan öka risken för att utveckla KMN. Dessa kan vara både patientrelaterade eller vårdrelaterade. De två största patientrelaterade riskfaktorerna är diabetes mellitus och nedsatt njurfunktion. Vårdrelaterade risker kan vara volym och typ av jodkontrastmedel. Risken för att utveckla KMN kan minskas genom att ge mindre volym av kontrastmedel ochhydrering, lämpligtvis bikarbonatlösning som visat sig vara mer effektiv. Det behövs mer forskning för att fastställa vilken typ av kontrastmedel som ger säkrast resultat. Det kan även vara av stor vikt att beräkna förhållandet mellan kontrastmedelsvolym (CMV) och GFR-värden för att minska risken för att utveckla KMN.
Referenslista

Baerlocher Mark, Asch Murray & Myers Andy. The use of contrast media. CMAJ, 2010;182(7):697

Bilagor

Bilaga 1

Tabell 1. Litteratursökning i databas PubMed samt antal träffar och -urval

<table>
<thead>
<tr>
<th>Databas</th>
<th>Sökord</th>
<th>Datum</th>
<th>Antal träffar</th>
<th>Urval 1 granskning av titlar</th>
<th>Urval 2 Lästa abstrakt</th>
<th>Urval 3 lästa artiklar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pubmed</td>
<td>prevention contrast-induced nephropathy</td>
<td>2013-04-30</td>
<td>287</td>
<td>23</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Pubmed</td>
<td>Contrast-induced kidney injury</td>
<td>2013-03-30</td>
<td>232</td>
<td>17</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Pubmed</td>
<td>reactions to iodinated contrast</td>
<td>2013-03-31</td>
<td>62</td>
<td>21</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Pubmed</td>
<td>contrast-induced nephropathy</td>
<td>2013-04-02</td>
<td>519</td>
<td>23</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>
Bilaga 2
Tabell 2. Sammanfattning av de studier som ingår i resultatet.

<table>
<thead>
<tr>
<th>Författare/ Titel/ Publikations år/ Tidsskrift</th>
<th>Syfte</th>
<th>Metod/Urval</th>
<th>N= Deltagare</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nozue m.fl.</td>
<td>Contrast medium volume to estimated glomerular filtration rate ratio as a predictor of contrast-induced nephropathy developing after elective percutaneous coronary intervention. 2009. Journal Of Cardiology</td>
<td>Syftet var att granska förhållandet mellan (CMV) och (eGFR) hos patienter med hög riskfaktor som utvecklade KMN.</td>
<td>Nozue m.fl. (2009) har gjort en studie där 60 patienter genomgått en planerad PCI. Av dessa patienter utvecklade 13% KMN.</td>
<td>De patienter som utvecklade KMN erhöll högre volym av kontrastmedel samt hade ett lägre GFR värde. CMV/eGFR konstaterades som signifikant högre hos de som utvecklade KMN. Studien visade inga betydande kopplingar vad gäller exempelvis patientens, ålder, kön och diabetes mellitus mellan de patienter som utvecklade KMN och de som inte gjorde det.</td>
</tr>
<tr>
<td>From M. m.fl.</td>
<td>Iodixanol Versus Low-Osmolar Contrast Media for Prevention of Contrast Induced Nephropathy. 2010. American Heart association</td>
<td>From M.m.fl. (2010) undersökte effekten av iodixanol jämfört med lågosmolär kontrastmedel (LOCM) i syfte att få fördjupade kunskaper kring förebyggandet av kontrastmedelinducerad nefropati.</td>
<td>Analy och granskning av patienterna som inkluderade 7166 patienter av varav 3672 hade fått iodixanol och 3494 patienter LOCM gjordes.</td>
<td>Författaren anser att trots att iodixanol visade vara en bidragande faktor till reducering av kontrastmedelinducerad nefropati enligt analyser som gjorts av flera randomiserade studier i artikeln, menar författaren att det inte finns någon statistisk signifikans i studiens jämförelser av iodixanol och LOCM i stort för att förebygga kontrastinducerad nefropati.</td>
</tr>
<tr>
<td>Artikel</td>
<td>Titel</td>
<td>Syfte</td>
<td>Resultat/Slutslag</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td></td>
</tr>
</tbody>
</table>