
���������$�1�1�) �) �)��������	�����������	�(�������&

�������������	�
��

�������������������������	�
�
����������������������������������	�����	�����������������������������	�������� �� �� ���� ���������	�
�����	��
�����	������� ���	���������	���������	�����	�
�������������	�

���������
������	�����������
����������������������

���	�������	���
����������������������	���	�
���������������	�������������������� ��

�� ������ ���
�
�������� �����������
�����	���������������	�������������������� ���������������

�!�������������"���������	�������#�	�����$���%���������&�'���	�������������(�	���������&�������������'�(�������(���������"���������)�����������*���	�+���
���,���	�(����

�-���$���������������.�/���.���.�/����� �����-�0�0�0

�-�0�0�0���-�����������	���������	�(���%���������������
�����������-�������(�(���&�������������"���������	���������*�������+��

�����������$�1�1�������������&�1�������������/�1�-�� �2���������������3�3�/�4�����5

�6���7�����! ���������
���������&�������������) �����8�����
�����������������������&�����	�(�����'�"�(���������������	��������

�����������
���
�������	�
���������������	�������������	���
��
���������$�1�1�'�������8�"�������1���������(����9�'�����:�'�����$���"���$�����$�����'�$������	�������.���5

When Robots are Late:
Con�guration Planning for Multiple Robots with Dynamic Goals

Maurizio Di Rocco1 and Federico Pecora1 and Alessandro Saf�otti1

Abstract— Unexpected contingencies in robot execution may
induce a cascade of effects, especially when multiple robots
are involved. In order to effectively adapt to this, robots need
the ability to reason along multiple dimensions at execution
time. We propose an approach to closed-loop planning capable
of generating con�guration plans, i.e., action plans for multi-
robot systems which specify the causal, temporal, resource
and information dependencies between individual sensing, com-
putation, and actuation components. The key feature which
enables closed loop performance is that con�guration plans are
represented as constraint networks, which are shared between
the planner and the executor and are continuously updated
during execution. We report experiments run both in simulation
and on real robots, in which a fault in one robot is compensated
through different types of plan modi�cations at run time.

I. I NTRODUCTION

A routine robot delivery is ongoing aẗAngen, a
senior residential facility in central Sweden.Rout,
an outdoor robot, is bringing some groceries to
the door of Sven's apartment, where the indoor
robot Rin will take them. WhileRout is en route,
its GPS fails; the navigation system ofRoutis then
recon�gured to use laser-based localization. This
requires that speed be considerably reduced, which
will causeRout to arrive at Sven's apartment ten
minutes later. Correspondingly,Rin, which had
planned to pick up the groceries and then attend
to another domestic chore, reschedules its activities
to �rst perform that chore and then meetRout.

This vignette illustrates two interesting points. First, when
facing an unexpected contingency, a robot needs to perform
reasoning– e.g., to understand the causal consequences of
the contingency, to project these consequences forward in
time, and to replan its activities accordingly. Reasoning is
needed since not all possible situations can be coded in
precompiled responses. Second, a single contingency may
have complex rami�cations, which require reasoning on
different types of knowledge. In our example, the GPS failure
calls for reasoning about information requirements: how to
obtain the self-localization estimate needed by the navigation
system. The change in the information source results in a
delay, which in turns calls for reasoning about time and time
dependencies. When propagated toRin, this delay induces a
rescheduling. In other situations this delay may have different
consequences: ifRin needed the groceries to perform its
chore, then this task would not have been anticipated (causal
reasoning); if another robot were required at the entrance

1Center for Applied Autonomous Sensor Systems,Örebro University,
SE-70182 Sweden.f modo, fpa, asaffio g@aass.oru.se

of Sven's apartment, which can only host one robot, then
that robot would have to wait untilRout has left (resource
reasoning); and so on.

The types of reasoning mentioned above have been widely
studied in the �eld of Arti�cial Intelligence (AI), namely
in the area of planning. In fact, planning in AI was born
as an exploration of logical reasoning for robots [1]. In
order to help a robot to accomplish tasks in unstructured,
everyday environments, an AI planner should possess capa-
bilities that go beyond the ones most commonly addressed
in the AI planning community. Namely, it should: (1) pos-
sess knowledge and reason about the physical aspects of
the domain, like time, space, information requirements and
resources; (2) generate plans that enable a suf�cient degree
of �exibility to accommodate unexpected contingencies and
dynamic goals during execution whenever possible; and
(3) deal with multiple robots and devices, as well as multiple
devices inside each robot, and with their physical and logical
dependencies. Some planners exist today that exhibit some
of the above features, and we discuss them section VI, but
no single system provides all of them. This paper is a �rst
step toward the construction of such a system.

We present acon�guration planner: a system that gen-
eratescon�guration plans for robotic systems that consist
of mixed ecologies of robots and devices [2]. Con�gura-
tion plans are �ne-grained plans for robotic systems which
specify the causal, temporal, resource and information de-
pendencies between the sensing, computation, and actuation
components in one or multiple robots. Con�guration planners
have been proposed before [3], [4], but they cannot deal
with multiple dynamic goals, and lack explicit treatment
of time and resources. By contrast, our planner can ac-
commodate time, resources, multiple dynamic goals, and
�exible execution. Moreover, our planner reacts to new goals
and contingencies by making only minor adjustments to the
current plan, when this is possible. This is achieved by: (1)
representing a (con�guration) plan as a constraint network;
(2) de�ning the con�guration planning process as a search
in the space of such networks; and (3) sharing the constraint
network between the planner and the executor. The �rst
two steps allow for the integration of multiple facets in
the planning problem, e.g., time, resources, and information
dependencies; the third one allows for �exible execution,
plan adjustment and dynamic goal posting.

In the next section we present our representation of plans
and plan operators. We then describe the algorithms for plan
generation and update, illustrate them on a few examples,
compare our planner to related works, and conclude.

II. REPRESENTATION

Our approach is grounded on the notion ofstate variable,
which models elements of the domain whose state in time is
represented by a symbol. State variables, whose domains are
discrete sets, represent parts of the real world that are relevant
for the con�guration planner's decision processes. These
include the actuation and sensing capabilities of the robotic
systems, and the various aspects of the environment that are
meaningful. For instance, a state variable can represent the
capabilities of a physical device such as a robot, whose
meaningful states might be “navigating”, “grasping” and
“idle”. Similarly, a state variable can represent the interesting
states of the environment, e.g., the state of a light which can
be “on”, “off” or “broken”. Let S be the set of state variables
in a given application scenario.

Some devices require resources when they are in given
states. We employ the concept ofreusable resource, i.e.,
a resource with a limited capacity which is fully available
when not required by a device. An example of reusable
resource is power: a maximum wattage is available, and
devices can simultaneously require power so long as the sum
of requirements is less than the maximum power. We denote
with R the set of all resource identi�ers. Given a resource
R 2 R , its capacity is a valueCap(R) 2 N.

Finally, devices in our domain may serve the purpose
of providing or requiring certaininformation contents. For
instance, a software component may require range data from
a laser range �nder, and provide localization information. Let
the set of all information contents be denotedIC.

A. Representing Con�guration Plans and Goals

We employactivitiesto represent predicates on the possi-
ble evolution of state variables:

De�nition 1: An activity a is a tuple(x; v ; I; u; In; Out) ,
where

� x 2 S is a state variable;
� v is a possible stateof the state variablex;
� I = [I s; I e] is a �exible temporal interval within

which the activity can occur, whereI s = [ls; us]; I e =
[le; ue]; ls=e; us=e 2 N represent, respectively, an inter-
val of admissibility of the start and end times of the
activity;

� u : R ! N speci�es theresources usedby the activity;
� In � IC is a set ofrequired information contents;
� Out � IC is a set ofprovided information contents.

For example, the activity

a1 = (MoveFromTo ; kitchen livingroom ;

[[10; 10][30; 50]]; ; ; f positiong; ;)

represents the temporal fact that the navigation functionality
MoveFromTo is in the state of being moving from kitchen
to living room in a time interval starting at 10 and ending
anytime between 30 and 50. This functionality does not use
any resource, it needs position information, and it does not
produce any information. The activity

a2 = (RobotLocation ; kitchen ; [[0; 0]; [10; 10]]; ; ; ; ; ;)

represents a temporal fact about the robot's location.
Henceforth, we indicate with(�)(a) an element of the �ve-

tuple pertaining to activitya. The pair(x (a) ; v (a)) of an ac-
tivity a asserts a particular statev of the state variablex; the
�exible temporal intervalI (a) represents possible temporal
intervals of occurrence of the statev (a) of state variablex(a) .
Note also that a pair of activities(a; b) is possibly concurrent
if I (a) \ I (b) 6= ; . A pair (a; b) of possibly concurrent
activities thus indicates that state variablesx(a) andx(b) can
be, respectively, in statesv (a) andv (b) at the same time.

Unspeci�ed parameters of an activity are indicated with
(�) — e.g.,(x; �; I; u; In; Out) indicates a predicate asserting
that state variablex can be in any state during intervalI ,
using resources as indicated byu, etc.

Activities can be bound bytemporal constraints, which
restrict the occurrence in time of the predicates. Temporal
constraints can be of two types:

� Binary temporalconstraints in the forma Cb prescribe
the relative placement in time of activitiesa; b — these
constraints are relations in Allen's Interval Algebra [5],
and restrict the possible bounds for the activities' �ex-
ible temporal intervalsI (a) and I (b) ;

� Unary temporalconstraints in the form Ca prescribe
bounds on the start or end time of an activitya —
these constraints are commonly referred to asrelease
time constraintsanddeadlines.

Allen's interval relations are the thirteen possible temporal
relations between intervals, namely “precedes” (p), “meets”
(m), “overlaps” (o), “during” (d), “starts” (s), “�nishes” (f),
their inverses (e.g., p� 1), and “equals” (�). For example, the
relationa2ma1 represents that the above activitya2 ends as
soon as activitya1 starts.

When state variables are used to represent a system, the
overall temporal evolution of such system is described by a
constraint network:

De�nition 2: A constraint networkis a pair(A ; C), where
A is a set ofactivities and C is a set ofconstraintsamong
activities inA .

A constraint network can be used to represent acon�g-
uration plan. Con�guration plans are said to befeasibleif
they are consistent with respect to the resource, state, and
temporal requirements. Speci�cally,

De�nition 3: A con�guration plan(A ; C) is feasibleiff:

� the constraint network istemporally consistent, i.e.,
there exists at least one allocation of �xed bounds to
intervals such that all temporal constraints are satis�ed;

� activities do not over-consume resources, i.e.,P
a2 A u(a) (R) � Cap(R); 8R 2 R , whereA � A is

a set of possibly concurrent activities;
� activities do not prescribe that state variables assume

different states in overlapping temporal intervals, i.e.,
v (a) 6= v (b) ; 8(a; b) 2 A � A : x(a) = x (b) , where
A � A is a set of possibly concurrent activities.

A goal for a con�guration planning problem is also
represented as a constraint network, therefore expressing

temporal, resource, state and information requirements. Typ-
ically, a goal (Ag; Cg) is an under-speci�ed con�guration
plan. Initial conditions are feasible sub-networks of a goal.
Maintaining constraints on the con�guration plan rather than
committing to a speci�c con�guration plan directly enables
dynamic goal posting, execution monitoring, and incremental
adaptation to contingent events, as we show in Section III.

B. Domain

Given a goal(Ag; Cg) and a con�guration plan(A ; C)
which contains the goal, the feasibility of the con�guration
plan is not a suf�cient condition for achieving the goal. This
is because feasibility does not enforce information and causal
requirements. The way these requirements are to be enforced
depends on adomain:

De�nition 4: A con�guration planning problemis a pair
((Ag; Cg); D), where(Ag; Cg) is a goal constraint network,
andD is a domain. The domain is a collection ofoperators,
which describe the information and causal dependencies
between activities.

De�nition 5: An operator is a pair(a; (A; C)) where
� a = (x ; v ; �; �; �; Out) is theheadof the operator;
� A = Ap [Ae [f ag is a set of activities, where

– Ap is a set ofpreconditions, i.e., requirements, in
terms of state variable values, information input,
and resource usage, needed to achieve the statev (a)

of state variablex(a) and to produceOut (a) ;
– Ae is a set ofeffects, i.e., state variable values

entailed by the achievement of statev (a) of state
variablex(a) ;

� C is a set of temporal constraints among activities in
A.

Computing a con�guration plan consists in selecting and in-
stantiating operators from the domain into the goal constraint
network. Unlike in classical planning [6], the relevance of
an operator (� 1) is not determined by unifying effects with
sub-goals, rather by the uni�cation of an operator's head
with a sub-goal. The head of an operator is a non-ground
activity which describes the value of a state variable and the
information provided as a result of applying the operator.
Preconditions and effects are nevertheless modeled, as their
presence in the constraint network is dealt with differently
at execution time (see Section IV).

An operator can be used to specify the information re-
quirements needed for achieving a given functionality. For
instance, theMoveFromTo operator, which does not provide
any information content, requires the current position of the
robot:

a = (MoveFromTo ; kitchen livingroom ; �; �; �; ;)
A p = f a1 ; a2g; A e = f a3g; where

a1 = (�; �; �; �; �; f position g)
a2 = (RobotLocation ; kitchen ; �; �; �; �)
a3 = (RobotLocation ; livingroom ; �; �; �; �)

C = f a da1 ; a m� 1 a2 ; a ma3g

The head of the operator is a predicate on the func-
tionality MoveFromTo. The operator is considered rel-

evant when the constraint network contains an activity
(MoveFromTo; kitchen livingroom ; �; �; �; �), i.e., when a
(sub-)goal stating that the robot must move from the kitchen
to the living room is present in the network. The operator also
prescribes the temporal relations that must exist between the
activities, namely that theMoveFromTo functionality should
occur during the availability of the position data (a da1), that
it should be met by the precondition of the robot being in
the kitchen (a m� 1 a2), and that it meets the effect of the
robot being in the living room (a ma3).

An operator can also be used to represent a means to
achieve certain information requirements. For example, the
operator

a = (VisualSLAM ; running ; �; u(CPU) = 10 ; �; f position g)
A p = f a1 ; a2g; A e = ; ; where

a1 = (�; �; �; �; �; f range datag)
a2 = (�; �; �; �; �; f ref frameg)

C = f a da1 ; a m� 1 a2g

speci�es one way to achieve the necessary information re-
quirement (position) for theMoveFromTo operator, namely
through visual SLAM. This localization functionality re-
quires (1) a functionality which provides range data, (2) a
reference frame for the computation of the position estimate,
and (3) 10% of theCPU resource. Also, the operator states
that range data should be available during the entire duration
of the localization process, and that the reference frame is
needed at the beginning of the process.

The above operator does not specify how to obtain the
needed information inputs. For instance, the range data might
be provided through the following operator:

a = (StereoCamDriver ; on ; �; u(Cam1) = 1 ; �; f range datag)
A p = f a1g; A e = ; ; wherea1 = (Light ; on ; �; �; �; �)
C = f a da1g

An operator may also specify that the reference frame is
obtainable by invoking a functionality of the stereo camera's
pan-tilt unit:

a = (PanTilt ; return ref frame ; �; �; �; f ref frameg)
A p = ; ; A e = ; ; C = ;

The above operators can be applied to obtain a con�gura-
tion plan from the following goal constraint network:

A = f a0 = (MoveFromTo ; kitchen livingroom ; I 0 ; �; �; �)g;
C = ;

Speci�cally, a particular application of the above operators
may re�ne the given constraint network to the following:

A = f a0 = (MoveFromTo ; kitchen livingroom ; I 0 ; ; ; ; ; ;)
a1 = (VisualSLAM ; running ; I 1 ; u(CPU) = 10 ;

f ref frame; range datag; f position g)
a2 = (RobotLocation ; kitchen ; I 2 ; ; ; ; ; ;)
a3 = (RobotLocation ; livingroom ; I 3 ; ; ; ; ; ;)
a4 = (StereoCamDriver ; on ; I 4 ;

u(Cam1) = 1 ; ; ; f range datag)
a5 = (PanTilt ; return ref frame ; I 5 ; ; ;

; ; f ref frameg)
a6 = (Light ; on ; I 6 ; ; ; ; ; ;)g;

C = f a0 da1 ; a0 m� 1 a2 ; a0 ma3 ; a1 da4 ; a1 ma5 ; a4 da6g

This network represents a temporally consistent con�gura-
tion plan in which resources are never used beyond their
capacity, and state variables are never required to assume
different values in overlapping temporal intervals. The plan
is therefore feasible. Furthermore, the plan contains activities
providing the required information contents as determined
by the operators in the domain. However, not all causal
dependencies are necessarily achieved by construction. If,
e.g., the initial condition does not state that the light is on,
the con�guration planner would regard the activitya6 as yet
another sub-goal to satisfy, and might do so by applying the
following operator:

a = (Light ; on ; �; �; �; �)
A p = ; ; A e = f a1g; wherea1 = (LightController ; on ; �; ; ; �; �)

C = f a p� 1 a1g

This operator models an actuation process (Light rep-
resents an environment variable), and its application
would re�ne the con�guration plan by adding an activ-
ity a7 = (LightController ; on; I 7; ; ; ; ; ;) to the network,
along with the constrainta6 p� 1 a7, prescribing that the
LightController be in stateon before the light is required
to be on. Note that the light control functionality has no
information requirements (In (a1) = ;).

III. C ONSTRAINT-BASED SEARCH

The planning process used in our approach is incremental
in nature, and yields a re�ned constraint network, which
itself represents a feasible con�guration plan which achieves
the given goal. The resulting constraint network represents
one or more temporal evolutions of the state variables
that guarantee the achievement of the goal under nominal
conditions. Feasible and goal-achieving con�guration plans
are obtained in our approach by means of four interacting
solvers:
Temporal solver. The temporal consistency of the constraint
network is checked through temporal constraint propagation
by means of a Simple Temporal Problem (STP) [7] solver.
The solver propagates temporal constraints to re�ne the
bounds[ls; us]; [le; ue] of the activities in the network, and
returns failure if and only if temporally consistent bounds
cannot be found.
Resource scheduler.This solver enforces that resources
are never over-consumed. The maximum capacities of re-
sources restrict which activities can occur concurrently, and
this solver posts temporal constraints to the constraint net-
work enforcing that over-consuming peaks of activities are
avoided [8].
State variable scheduler.State variable scheduling ensures
that activities do not prescribe con�icting states in over-
lapping intervals. Similarly to the resource scheduler, this
solver posts temporal constraints which impose a temporal
separation between con�icting activities.
Information dependency reasoner.Operators model the in-
formation dependencies between functionalities1. This solver

1In our approach, the domain is such that information dependencies
constitute an acyclic propositional Horn theory.

instantiates into the constraint network relevant operators
(in the form of activities and temporal constraints) so as to
enforce the information dependencies.
Causal reasoner.Operators in the domain also model causal
dependencies between states. This solver instantiates into
the constraint network relevant operators (in the form of
activities and temporal constraints) so as to enforce the causal
dependencies of the con�guration plan.

As noted, resource over-consumption and multiple con-
current states are averted by imposing temporal constraints
which sequence potentially concurrent activities; trivially,
there are alternative sequencing decisions that can be made to
resolve such a con�ict, e.g., enforcinga pb or a p� 1 b. Also
operator selection is subject to alternative choices, as more
than one operator may provide the necessary information
output and/or support the necessary causal dependency (e.g.,
the presence of light in the environment may be obtained as
a result of invoking the light controller or by opening the
blinds.) Note that only temporal feasibility enforcement is
not subject to multiple choices, as the problem is tractable.
In our approach, all requirements which may entail alter-
native courses of action are seen asdecision variablesin
a high-level Constraint Satisfaction Problem (CSP). Given
a decision variabled, its possible values constitute a �nite
domain� d = f (Ad

r ; Cd
r)1; : : : ; (Ad

r ; Cd
r)n g, whose values are

alternative constraint networks, calledresolving constraint
networks. The individual solvers are used to determine re-
solving constraint networks(Ad

r ; Cd
r) i , which are iteratively

added to the goal constraint network(Ag; Cg).

FunctionBacktrack(A g ; Cg) : success or failure

d Choose((A g ; Cg), hvar)1
if d 6= ; then2

� d = f (A d
r ; C d

r)1 ; : : : ; (A d
r ; C d

r)n g3
while � d 6= ; do4

(A d
r ; C d

r) i Choose(d, hval)5
if (A g [A d

r ; Cg [Cd
r) is temporally consistentthen6

return Backtrack(A g [A d
r ; Cg [Cd

r)7

� d � d n f (A d
r ; C d

r) i g8

return failure9

return success10

In order to search for resolving constraint networks, we
employ a systematic search (see AlgorithmBacktrack),
which occurs through standard CSP-style backtracking. The
decision variables are chosen according to a variable ordering
heuristic hvar (line 1); the alternative resolving constraint
networks are chosen according to a value ordering heuristic
hval (line 5). The former decides which (sub-)goals to attempt
to satisfy �rst, e.g., to support a functionality by applying
another operator, or to resolve a scheduling con�ict. The
latter decides which value to attempt �rst, e.g., whether to
prefer one operator over another. Note that adding resolving
constraint networks may entail the presence of new decision
variables to be considered.

The possible values for resource contention or unique state
decision variables are temporal precedences among activi-
ties. Values for information decision variables are ground

operators, as shown in the previous Section. Lastly, values
for causal decision variables are either ground operators,
or uni�cations with activities that already exist in the con-
straint network. Two activitiesa and b can be uni�ed if
x(a) = x (b) ^ v (a) = v (a) . Uni�cations are enforced by
imposing a temporal equality constrainta � b among the
activities. Supporting uni�cation is obviously necessary to
allow the search to build on previously added activities
— e.g., leveraging that the light has already been turned
on to support a previously branched-upon causal depen-
dency. More importantly, uni�cation also allows to accom-
modate on-going sensing and execution monitoring processes
during con�guration planning. For instance, activitya =
(Light ; on; I (a) ; ; ; ; ; ;) could be supported by uni�cation
with an activity asensed= (Light ; on; [[0; 0][13; 13]]; ; ; ; ; ;)
which models the temporal interval within which a light
source was sensed by a sensor in the environment.

IV. PLAN EXECUTION AND DYNAMIC PLAN UPDATE

The ability to support on-line sensing is directly enabled
by the constraint-based representation: sensing is reduced
to dynamically updating the constraint network with new
activities and constraints representing the sensed state of the
environment; the same mechanism also supports prediction
(i.e., “sensing in the future”) and other on-line plan mod-
i�cations, such as temporal delays and dynamically posted
goal constraint networks.

Our approach is based on the alternation of planning
and plan execution monitoring. The former consists of the
planning procedure shown above. The latter consists of two
processes:sensingand plan update. The sensing process
adds to the constraint network activities and temporal con-
straints representing the current view of the environment
as provided by sensors. The plan update process maintains
and updates temporal constraints which bound on-going
activities (sensed states or functionalities in execution) with
the current time. This is done inO(n2) through incremental
temporal constraint propagation [7], wheren is the number
of activities in the constraint network. Also, this process
imposes constraints that verify the existence of preconditions
and trigger the manifestation of effects contained in the plan.
Speci�cally, the presence of a precondition is veri�ed by
attempting to unify the activity representing the precondition
with a sensed activity. If the uni�cation is not possible, the
precondition is delayed by inserting a temporal constraint,
and is re-evaluated at the next iteration. The process enforces
the occurrence of activities representing effects by posting
temporal constraints which �x their start time to the current
time. The effect of the constraints posted by these processes
is that functionalities start when possible, are delayed until
the preconditions hold, and their effects are imposed when
necessary. This step also requires polynomial computation.

In our current implementation, all solvers monitor the net-
work for new decision variables. Thus “re-planning” occurs
by temporal propagation, resource or state variable schedul-
ing, or operator application, depending on the situation.

Note that this allows to keep the computational impact
of replanning at a minimum (e.g. operator application need
not occur if scheduling is suf�cient, scheduling need not
occur if temporal propagation is suf�cient). This mechanism
is what enables dynamically posted goals, as in other tempo-
ral constraint-based continuous planners [9], [10], but here
we also deal with resources, sensor data and information
constraints.

All the components so far described post activities and/or
constraints into the temporal network and their relations
can be compared to the ones existing between components
of a classical control system. The dynamic goal posting
corresponds to the desired state for the system to control;
in order to achieve this state, that can possibly change
over time, several solvers try to manipulate, i.e. formulate
control signals, the temporal network. Once decisions are
taken, control signals are injected into the state if they did
not lead to temporal inconsistencies (validation performed
by the temporal solver). Finally the state of the world is
continuously fed-back to the system through the observer.
A schematic representation of this comparison is depicted
in Fig.1. We show an example of this behavior in the next
Section.

Fig. 1. High level reasoners (causal reasoner, information de-
pendency reasoner, schedulers) modify the constraint network so
as to achieve the dynamically changing desired state (dynamic
goal posting). Their decisions are temporally validated (temporal
reasoning) and sent to the system as control signals. Reasoning
accounts for the current state of the system, which is continuously
maintained in the constraint network (observer).

V. EXPERIMENTS

In this section we show experiments inspired by the
introductory scenario. It is time for lunch, and the outdoor
robot,Rout, delivers groceries to Sven's domestic robotRin,
which is waiting at the door. Sven is in the kitchen; this is a
small environment, and at most one robot can be there at any
point in time, i.e., the kitchen is modelled as a resource with
capacity one which is used by all activities which bring a
robot to the kitchen. We show two variants of the scenario:
in the �rst, Sven's apartment is equipped with one robot
which, upon receiving the goods, delivers them to Sven;
in the second, Sven possesses two indoor robots,Rin1 and
Rin2, with similar capabilities. All robots are equipped with

software modules for localization and navigation:Rout can
employ either a GPS module or a laser range �nder, while the
indoor units are equipped with Kinects. The �rst variant was
executed with real robots, experiments in the second variant
were performed on the Gazebo simulator [11]. All robots
run ROS [12], and the communication with the planner is
realized through the light-weight PEIS middleware [2].

A. Variant 1: Reacting to Information Requirement Failures

Fig. 2. Experimental setup: a) map of the environment with the
related waypoints; b) outdoor robot; c) indoor robot.

In the �rst scenario, we employ two robotic platforms: an
ATRV-Jr for Rout, and a Turtlebot-1 forRin. Fig. 2 shows a
map of the environment and the two robots used.

The plan generated for delivering groceries to Sven, who
is in the kitchen, is shown in Fig. 2-a: under nominal
conditions,Routis expected to navigate towards the meeting
point, MP, relying on the GPS signal for localization.Rin
is expected to reach MP as soon asRout has reached an
intermediate point E. Once both robots are in MP,Rin and
Rout exchange the groceries through the actionsunload
andgrab, respectively. Note that this plan contains required
concurrency. This is achieved through temporal constraints
which model the fact that both robots cannot terminate the
respective operations before the exchange has happened. In
addition to delivering the groceries,Rinmust also accomplish
another task,OTHER, within a certain deadlined.

Shortly after execution begins,Rout's GPS fails. This
leads the con�guration planner to support the information
requirement ofRout's navigation module with the laser-
based localization module. However, navigation speed must
be reduced to collect reliable readings from the laser. As
a consequence, the expected time at whichRout will reach
MP increases compared to the nominal plan. This violates
the deadlined for the OTHER task, hence the planner re-
schedules the execution of this taks to occur whileRout is
reaching the meeting point. A video showing a real execution
of the above scenario is available athttp://aass.oru.
se/ ˜ modo/IROS2013/iros2013.html .

B. Variant 2: The Consequences of Being Late

In this variant we assume that the overall task consists
of two goals. The �rst is to deliver the groceries to Sven
using one of the two indoor robots. This goal is posted to
the con�guration planner, which allocates the task toRin1.
The timelines showing how the plan was executed up to time
t = 20 is shown in Fig. 4-a. At this time, a second goal is

dynamically posted, namely to deliver pills to Sven within
a certain deadlined; both Rin1 andRin2 are equipped with
a pill dispenser. The planner synthesizes a plan which is
seamlessly merged with the existing constraint network. The
planner allocatesRin1 for accomplishing the pill delivery,
thus exploiting the path thatRin1 is going to traverse to
deliver the groceries. During execution, at timet = 70, the
planner is informed thatRoutis delayed (see Fig. 4-b). This
leads to a temporal failure, as the extent of the delay makes
delivering the pills within timed impossible. This failure
cannot be adjusted through temporal propagation alone, and
the planner is faced with the following three options:

1) Multi robot execution. The planner allocates toRin2,
which is so far idle and also equipped with a pill
dispenser, the task of reaching Sven in the kitchen
while Rin1 is waiting for the groceries (see Fig. 4-c).
Note that this solution requires scheduling to manage
the possible concurrent access ofRin1 and Rin2 to
the kitchen: due to the one-robot requirement in the
kitchen, Rin1 will wait for Rin2 to return to its base
station before proceeding to the kitchen.

2) Task rescheduling. In order make the deadline, the
planner can �rst sendRin1 to deliver the pills, and
successively come back to fetch the groceries once
Rout is at the door. This procedure, although more
expensive in terms of makespan, allows the planner
to still use one robot (see Fig. 4-d).

3) Causal dependency change.Another way to ful�ll
the goal of getting Sven to eat lunch is to send an
indoor robot to the senior living facility's canteen to
fetch a prepared meal. Thus another option for the
planner is to �nd an alternative way to ful�ll the
causal dependency: to dispatchRin1 to achieve both
meal acquisition and pill delivery (see Fig. 4-e), thus
adapting on-line the ful�llment of a causal dependency
due to a temporal contingency.

Which option is chosen by the planner depends on which
guiding heuristic has been implemented. A video showing a
Gazebo execution in which case 1 was selected is available
at http://youtu.be/adiwuywxEiM .

VI. D ISCUSSION ANDCONCLUSIONS

Much research in robotics aims to deploy robots in dy-
namic, uncontrolled environments which require systems to
be very adaptive. The work presented in this paper enables
the generation and run-time adaptation of con�guration
plans, yielding robust closed loop performance in the face
of perturbations such as delays, resource collapse, exogenous
events, and new goals. An important tenet of our approach
is that plans are only modi�ed to the extent which is neces-
sary. For example, a new goal can often be accommodated
by simply adding actions to the current plan; and delays
or resources unavailability can often be remedied by re-
scheduling. Indeed, full re-planning is most often necessary
when assumed causal requirements fail to materialize, e.g.,
an object is not where it was expected to be.

Fig. 3. Plan execution for the grocery delivery scenario with real robots (variant 1): a) plan exploiting the navigation with GPS before the failure att f ;
b) navigation with laser that respects the deadlined.

Fig. 4. Plan execution for the grocery delivery scenario with real robots (variant 2): a) execution of the initial plan — at timet = 0 the �rst goal is
posted and the plan is further enriched at timet = 20 ; b) the delay induced by the delivery makes the plan fail due to the failure of the deadline; c) after
plan failure another robot joins the plan execution d) the delay is absorbed detouring the robot to execute �rst the delivery of the pills and then sending it
back to fetch the package; e) the fetching of the package is substituted by an equivalent causal action which allows to complete the plan.

Several approaches have been proposed in the AI planning
literature to cope with temporal contingencies [13], [14],
[10], most of which rely on temporally �exible plans which
can be adapted in low-order polynomial time to temporal
uncertainty. In [9], temporal planning has been coupled with

execution monitoring, and the approach has been success-
fully employed with real robotic systems. In [15], execution
monitoring takes into account resource usage, and the tech-
nique is exempli�ed on single robot navigation tasks. These
systems have proved the effectiveness of constraint reasoning

