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When Robots are Late:
Con guration Planning for Multiple Robots with Dynamic Goals

Maurizio Di Roccd and Federico Pecoraand Alessandro Saf otti

Abstract— Unexpected contingencies in robot execution may of Sven's apartment, which can only host one robot, then
induce a cascade of effects, especially when multiple robots that robot would have to wait untiRout has left (resource
are involved. In order to effectively adapt to this, robots need reasoning); and so on.

the ability to reason along multiple dimensions at execution The t f . fi d ab h b idel
time. We propose an approach to closed-loop planning capable € lypes or reasoning mentioned above have been widely

of generating con guration plans, i.e., action plans for multi- ~ Studied in the eld of Articial Intelligence (Al), namely
robot systems which specify the causal, temporal, resource in the area of planning. In fact, planning in Al was born
and information depe_ndencies between individual sensing, com- as an exploration of logical reasoning for robots [1]. In
putation, and actuation components. The key feature which qer 1o help a robot to accomplish tasks in unstructured,
enables closed loop performance is that con guration plans are .
represented as constraint networks, which are shared between eY,e_fyday environments, an Al planner should possess capa-
the planner and the executor and are continuously updated bilities that go beyond the ones most commonly addressed
during execution. We report experiments run both in simulation  in the Al planning community. Namely, it should: (1) pos-
and on rez_;ll robots, in which a fault in one robot is Compensated sess knowledge and reason about the physical aspects of
through different types of plan modi cations at run time. the domain, like time, space, information requirements and
|. INTRODUCTION resources; (2) generate plans that enable a suf cient degree
of exibility to accommodate unexpected contingencies and
dynamic goals during execution whenever possible; and
(3) deal with multiple robots and devices, as well as multiple
devices inside each robot, and with their physical and logical
dependencies. Some planners exist today that exhibit some
of the above features, and we discuss them section VI, but
no single system provides all of them. This paper is a rst
step toward the construction of such a system.
We present acon guration planner a system that gen-
eratescon guration plansfor robotic systems that consist
of mixed ecologies of robots and devices [2]. Con gura-
tion plans are ne-grained plans for robotic systems which
to rst perform that chore and then me®&out specify the causal, temporal, resource anq information dg-
endencies between the sensing, computation, and actuation

This vignette illustrates two interesting points. First, Whe'ﬁomponents in one or multiple robots. Con guration planners

facing an unexpected contingency, a robot needs to pen‘orlrﬂave been proposed before [3], [4], but they cannot deal

reasoning- e.g., to understand the causal consequences gy myitiple dynamic goals, and lack explicit treatment

t_he contingency, to project Fhese consequences forvxl/ard.étp time and resources. By contrast, our planner can ac-
time, and'to replan its actlyltles f':\cco.rdmgly. Reasoning ISommodate time, resources, multiple dynamic goals, and
needed ﬁlndce not all possible d5|tuat|_0nT can k_)e coded Eible execution. Moreover, our planner reacts to new goals
precompiled responses. Second, a single contingeéncy Mayy contingencies by making only minor adjustments to the

have complex ramications, which require reasoning on.,ent pjan, when this is possible. This is achieved by: (1)
different types of knowledge. In our example, the GPS fa'lur?epresenting a (con guration) plan as a constraint network:

calls for reasoning about information requirements: how t ) de ning the con guration planning process as a search

obtain the self-localization estimate needed by the navigatqu the space of such networks; and (3) sharing the constraint

system. The change in the information source results in fetwork between the planner and the executor. The rst
delay, which in turns calls for reasoning about time and timR/vo steps allow for the integration of multiple facets in

dependencies. When propagatedRia, this delay induces a o yianning problem, e.g., time, resources, and information
rescheduling. In other situations this delay may have d'ﬁere%pendencies; the third one allows for exible execution,
consequences: iRin needed the groceries to perform its lan adjustment and dynamic goal posting

chore, then this task would not have been anticipated (cau a?lln the next section we present our representation of plans

reasoning); if another robot were required at the entrancg,y a1 operators. We then describe the algorithms for plan

1Center for Applied Autonomous Sensor Syster@sebro University, generation and Update’ illustrate them on a few examples,
SE-70182 Swederf.modo, fpa, asaffio g@aass.oru.se compare our planner to related works, and conclude.

A routine robot delivery is ongoing #ngen, a
senior residential facility in central SwedeRout,
an outdoor robot, is bringing some groceries to
the door of Sven's apartment, where the indoor
robot Rin will take them. WhileRout is en route,
its GPS fails; the navigation system Bbutis then
recon gured to use laser-based localization. This
requires that speed be considerably reduced, which
will causeRoutto arrive at Sven's apartment ten
minutes later. CorrespondinglyRin, which had
planned to pick up the groceries and then attend
to another domestic chore, reschedules its activities



II. REPRESENTATION represents a temporal fact about the robot's location.

Our approach is grounded on the notionstdte variable Henceforth, we indicate wit)(® an element of the ve-
which models elements of the domain whose state in time f§ple pertaining to activit. The pair(x(®;v(®) of an ac-
represented by a symbol. State variables, whose domains Hyély a asserts a particular stateof the state variable; the
discrete sets, represent parts of the real world that are releva@ible temporal intervall () represents possible temporal
for the con guration planner's decision processes. Thes@tervals of occurrence of the staté of state variable(®.
include the actuation and sensing capabilities of the robotNote also that a pair of activitig®; b) is possibly concurrent
systems, and the various aspects of the environment that &rd @ \ 1® 6 ;. A pair (a;b) of possibly concurrent
meaningful. For instance, a state variable can represent thgtivities thus indicates that state variabté® andx(® can
capabilities of a physical device such as a robot, whodee, respectively, in states® andv(" at the same time.
meaningful states might be “navigating”, “grasping” and Unspeci ed parameters of an activity are indicated with
“idle”. Similarly, a state variable can represent the interesting) — €.9.,(x; ;I;u; In; Out) indicates a predicate asserting
states of the environment, e.g., the state of a light which cdhat state variable« can be in any state during interval
be “on”, “off” or “broken”. Let S be the set of state variables Using resources as indicated byetc.
in a given application scenario. Activities can be bound byemporal constraintswhich

Some devices require resources when they are in giveestrict the occurrence in time of the predicates. Temporal
states. We employ the concept mfusable resourgei.e., constraints can be of two types:

a resource with a limited cap.acity which is fully available Binary temporalconstraints in the forna Cb prescribe
when not required by a device. An example of reusable  the relative placement in time of activitiesb — these
resource is power: a maximum wattage is available, and  constraints are relations in Allen's Interval Algebra [5],

devices can simultaneously require power so long as the sum  anq restrict the possible bounds for the activities' ex-
of requirements is less than the maximum power. We denote  jpje temporal intervals ( and| ®;

with R the set of all resource identi ers. Given a resource  ynary temporalconstraints in the form & prescribe

R 2R, its capacity is a valu€ap(R) 2 N. bounds on the start or end time of an activiy—
Finally, devices in our domain may serve the purpose these constraints are commonly referred toralsase
of providing or requiring certainnformation contentsFor time constraintsand deadlines

instance, a software component may require range data fro

a laser range nder, and provide localization information. Letr&jlZ:i]c?nlsntt?(;\t/v%:a(reilailg?en:/azlisre r:gfﬂé?'rf‘eigcggzz,bl(e)te“r:]nporta!,
the set of all information contents be denotéd ' y P P), ‘Meets

(m), “overlaps” (0), “during” (d), “starts” (s), “ nishes” (f),

A. Representing Con guration Plans and Goals their inverses (e.g., #), and “equals” (). For example, the
We employactivitiesto represent predicates on the possirelationa;ma; represents that the above activety ends as
ble evolution of state variables: soon as activitya; starts.
De nition 1: An activity a is a tuple(x;v;1;u; In;Out), When state variables are used to represent a system, the
where overall temporal evolution of such system is described by a
X 2 S is astate variable constraint network
v is apossible statef the state variable; De nition 2: A constraint networks a pair(A; C), where
I = [ls;le] is a exible temporal interval within A is a set ofactiviiesand C is a set ofconstraintsamong
which the activity can occur, wheflg = [ls;us];1e =  activities inA.

[le; Uel; Is=e; Us=e 2 N represent, respectively, an inter- A constraint network can be used to represeroa g-
val of admissibility of the start and end times of theyration plan Con guration plans are said to bfeasibleif

activity; they are consistent with respect to the resource, state, and
u:R! N species theresources usebly the activity; temporal requirements. Speci cally,
In IC is a set ofrequired information contents De nition 3: A con guration plan(A; Q) is feasibleiff:

Out IC is a set ofprovided information contents . . . .
the constraint network igemporally consistenti.e.,

For example, the activity there exists at least one allocation of xed bounds to
a1 = (MoveFromTo :kitchen _livingroom : intte_r\_/tgls sugh thattall temporal constraints are satis_ed;
! o N pctivities do not over-consume resources, i.e.,
[[10; 10]{3Q 50} ;  f positiong; ;) LAUD(R) Cap(R);8R 2 R, whereA A is
represents the temporal fact that the navigation functionality —a set of possibly concurrent activities;
MoveFromTo is in the state of being moving from kitchen activities do not prescribe that state variables assume
to living room in a time interval starting at 10 and ending different states in overlapping temporal intervals, i.e.,
anytime between 30 and 50. This functionality does notuse v® 6 v(®:;8(a;b) 2 A A : x® = x®  where
any resource, it needs position information, and it does not A A is a set of possibly concurrent activities.

produce any information. The activity A goal for a con guration planning problem is also

a, = (RobotLocation ; kitchen ;[[0; 0]; [10; 101} ;::3) represented as a constraint network, therefore expressing



temporal, resource, state and information requirements. Typvant when the constraint network contains an activity
ically, a goal (Ag; Cq) is an under-speci ed con guration (MoveFromTo;kitchen _livingroom ; ; ; ; ), i.e., when a
plan. Initial conditions are feasible sub-networks of a goalsub-)goal stating that the robot must move from the kitchen
Maintaining constraints on the con guration plan rather tharno the living room is present in the network. The operator also
committing to a speci ¢ con guration plan directly enablesprescribes the temporal relations that must exist between the
dynamic goal posting, execution monitoring, and incrementactivities, namely that thloveFromTo functionality should
adaptation to contingent events, as we show in Section llloccur during the availability of the position datada; ), that
B. Domain it shquld be met by the precondition of the robot being in
’ the kitchen &m 'ay), and that it meets the effect of the
Given a goal(Ag; Cy) and a con guration plan(A;C)  ropot being in the living roomamas).
which contains the goal, the feaSIblllty of the con guration An Operator can a|so be used to represent a means to

plan is not a suf cient condition for achieving the goal. Thisachieve certain information requirements. For example, the
is because feasibility does not enforce information and causgberator

requirements. The way these requirements are to be enforced

. a = (VisualSLAM ; runnin
depends on @omain ( 9

; ;u(CPU) =10 ; ;fposition g)

i . . . . Ap = fai;a29;Ae = ;;where
De nition 4: A con guration planning problems a pair ar=( frange_datag)
((Ag;Cq); D), where(Ag; Cy) is a goal constraint network, az=(:::: :fref frameg)

andD is adomain The domain is a collection afperators

which describe the information and causal dependencies . ) . .
between activities speci es one way to achieve the necessary information re-

i , ) quirement (position) for thdloveFromTo operator, namely

De nition 5 An operat.orls a pair(a; (A; C)) where through visual SLAM. This localization functionality re-
a=(x;v;;; ;0ut) is theheadof the operator; quires (1) a functionality which provides range data, (2) a
A= Ap[ Ae[f agis a set of activities, where reference frame for the computation of the position estimate,

— A, is a set ofpreconditions i.e., requirements, in and (3) 10% of theCPU resource. Also, the operator states
terms of state variable values, information inputthat range data should be available during the entire duration
and resource usage, needed to achieve thewslte of the localization process, and that the reference frame is
of state variablex® and to producedut®; needed at the beginning of the process.

— A is a set ofeffects i.e., state variable values The above operator does not specify how to obtain the
entailed by the achievement of staté’) of state needed information inputs. For instance, the range data might
variablex(®; be provided through the following operator:

C is a set of temporal constraints among activities in 5 = (stereoCamDriver :on; ;u(Caml) =1 ; :frange.datag)

A. Ap = faig;Ae = ;;wherea; = (Light ;on; ; ; ;)
Computing a con guration plan consists in selecting and in- ¢ = fadaig
stantiating operators from the domain into the goal constraiin operator may also specify that the reference frame is
network. Unlike in classical planning [6], the relevance obbtainable by invoking a functionality of the stereo camera's
an operator (1) is not determined by unifying effects with pan-tilt unit:
sub-goals, rather by the unication of an operator's head a= (PanTilt :retumn _ref frame ; ;
with a sub-goal. The head of an operator is a non-ground A = ::a.=;:C=;
activity which describes the value of a state variable and the : :
information provided as a result of applying the operator, The abave operators can be applied tq obtain a con gura-
Preconditions and effects are nevertheless modeled, as tHigP plan from the following goal constraint network:
presence in the constraint network is dealt with differently A = fao =(MoveFromTo ;kitchen _livingroom ;lo; ; ;)g;
at execution time (see Section V). C=:

An operator can be used to specify the information respeci cally, a particular application of the above operators

quirements needed for achieving a given functionality. Famay re ne the given constraint network to the following:
instance, théMoveFromTo operator, which does not provide

any information content, requires the current position of the

C = fada;;am taxg

; ; fref_frameg)

A = fap = (MoveFromTo ;kitchen _livingroom ;lo;;;;:;)
a = (VisualSLAM ;running ;I1;u(CPU) =10 ;

robot: f ref_frame; range_datag; f position g)
a = (MoveFromTo ;kitchen _livingroom ;; ; ;;) a, = (RobotLocation ;kitchen ;12;;;;;;)
Ap = fag;a29;Ae = fazg; where az = (RobotLocation ;livingroom ;l3;;;;;;)
ar=(;;;; :fpositong) aq = (StereoCamDriver ;on;lg;
ap = (RobotLocation ;kitchen ; ; ; ;) u(Caml) =1 ;;;frange_datag)
az = (RobotLocation ;livingroom ; ; ; ;) as = (PanTilt ;return _ref frame ;lIs;;;

C = fadaj;am !ay;amasg

The head of the operator is a predicate on the func-
tionality MoveFromTo. The operator is considered rel-

;; fref_frameg)
as = (Light ;on;ls;;;;;;)0;
C = fapdai;apm Yay;aomas;a; das;a; mas;as dasg



This network represents a temporally consistent con guranstantiates into the constraint network relevant operators
tion plan in which resources are never used beyond thdin the form of activities and temporal constraints) so as to
capacity, and state variables are never required to assuerdorce the information dependencies.

different values in overlapping temporal intervals. The plaCausal reasonerOperators in the domain also model causal
is therefore feasible. Furthermore, the plan contains activitie®pendencies between states. This solver instantiates into
providing the required information contents as determinethe constraint network relevant operators (in the form of
by the operators in the domain. However, not all causalctivities and temporal constraints) so as to enforce the causal
dependencies are necessarily achieved by construction. dépendencies of the con guration plan.

e.g., the initial condition does not state that the light is on, As noted, resource over-consumption and multiple con-
the con guration planner would regard the activéy as yet current states are averted by imposing temporal constraints
another sub-goal to satisfy, and might do so by applying thehich sequence potentially concurrent activities; trivially,

following operator: there are alternative sequencing decisions that can be made to
a=(Light ;on; :: ;) resolve such a conict, e.g., enforcirmpb or ap !b. Also
Ap = ;iAe = faig;wherea; = (LightController ;on; ;;: ;) operator selection is subject to alternative choices, as more
C=fap laig than one operator may provide the necessary information

. ) . output and/or support the necessary causal dependency (e.g.,
This operator models an actuation processght rep- he presence of light in the environment may be obtained as
resents an environment variable), and its applicatiog reqit of invoking the light controller or by opening the
would re ne the con guration plan by adding an activ- yjings ) Note that only temporal feasibility enforcement is

ity a; = (LightController ;on; |17; 11337 to the network, o qypject to multiple choices, as the problem is tractable.
along with the constraingsp “a7, prescribing that the |, o+ approach, all requirements which may entail alter-

LightController be in stateon before the light is required na4ve courses of action are seen decision variablesin

to be on. Note that the I'?ah§ control functionality has no, high_level Constraint Satisfaction Problem (CSP). Given

information requirementsir*™’ = ;). a decision variablel, its possible values constitute a nite
ll. CONSTRAINT-BASED SEARCH domain = f(Af;Cf)1;:::; (A Cf)ng, whose values are

The planning process used in our approach is incremenalfmative constraint networks, calledsolving constraint
: P 9p! PP ; ﬁ‘ tworks The individual solvers are used to determine re-
in nature, and yields a re ned constraint network, which

: . . ) _“"solving constraint networkgAY; C9);, which are iterativel
itself represents a feasible con guration plan which achieve g BAr: Cr)i y

the given goal. The resulting constraint network represenfﬁlsdded to the goal constraint netwaiy; Co).
one or more temporal evolutions of the state variables i i
that guarantee the achievement of the goal under nomindlinctionBacktrack( Ag: Cq) - success or failure
conditions. Feasible and goal-achieving con guration plang § , 1908 (Agi Cg). hvar)

if d6 ; then
are obtained in our approach by means of four interacting d=f(Ad;CY); i (A CHng
solvers: 4 while geé do
Temporal solver. The temporal consistency of the constraint® (Ar;Cr)i ~ Choose( d, hva) .
. . . 6 if (Ag[ AY;Cgq[ C[) is temporally consisterthen
network is checked through temporal constraint propagation | retun Backtrack( Ag[ AS;Cq[ CY)
by means of a Simple Temporal Problem (STP) [7] solvery d dnf(Ad:CY)ig

The solver propagates temporal constraints to re ne theg return failure
bounds]ls; us]; [le; ue] of the activities in the network, and 1o return success
returns failure if and only if temporally consistent bounds
cannot be found. . .

. In order to search for resolving constraint networks, we
Resource scheduler.This solver enforces that resources

. o employ a systematic search (see Algoritfdacktrack ),
are never over-consumed. The maximum capacities of re- pioy Y ( 9 )

. . S hich occurs through standard CSP-style backtracking. The
sources restrict which activities can occur concurrently, and = . . . . .
. . . ecision variables are chosen according to a variable ordering
this solver posts temporal constraints to the constraint net

. . L euristic hy,r (line 1); the alternative resolving constraint
work enforcing that over-consuming peaks of activities are . . I
avoided [8] networks are chosen according to a value ordering heuristic

State variable scheduler.State variable scheduling ensure hval (line 5). The former decides which (Sub-)goals to attempt

L . o ) i .g. f ionali lyi
that activities do not prescribe conicting states in over?[0 satisfy rst, e.g., to support a functionality by applying

L o .another rator, or resolv hedulin nict. Th
lapping intervals. Similarly to the resource scheduler, thla other operator, or to resolve a scheduling con ict €

solver posts temporal constraints which impose a tem or%\tter decides which value to attempt rst, e.g., whether to
P P - . P P Srefer one operator over another. Note that adding resolving
separation between con icting activities.

X . constraint networks may entail the presence of new decision
Information dependency reasonerOperators model the in- y P

formation dependencies between functionaliti§his solver variables to be considered.
P The possible values for resource contention or unique state

lIn our approach, the domain is such that information dependenci&_eCISIOn Va”able_s are tefmporallp.recedepces among activi-
constitute an acyclic propositional Horn theory. ties. Values for information decision variables are ground




operators, as shown in the previous Section. Lastly, valuesNote that this allows to keep the computational impact
for causal decision variables are either ground operatorsf replanning at a minimum (e.g. operator application need
or uni cations with activities that already exist in the con- not occur if scheduling is suf cient, scheduling need not
straint network. Two activitiesa and b can be unied if occur if temporal propagation is suf cient). This mechanism
x(®@ = x® A y@ = y(@ ynications are enforced by is what enables dynamically posted goals, as in other tempo-
imposing a temporal equality constraiat b among the ral constraint-based continuous planners [9], [10], but here
activities. Supporting uni cation is obviously necessary tove also deal with resources, sensor data and information
allow the search to build on previously added activitiegonstraints.

— e.g., leveraging that the light has already been turned All the components so far described post activities and/or
on to support a previously branched-upon causal depecenstraints into the temporal network and their relations
dency. More importantly, uni cation also allows to accom-can be compared to the ones existing between components
modate on-going sensing and execution monitoring process&sa classical control system. The dynamic goal posting

during con guration planning. For instance, activiy =  corresponds to the desired state for the system to control;
(Light;on;1®);;:-::) could be supported by unication in order to achieve this state, that can possibly change
with an activity asenseq= (Light ;on;[[0;0][13 13]};;;;;;) over time, several solvers try to manipulate, i.e. formulate
which models the temporal interval within which a lightcontrol signals, the temporal network. Once decisions are
source was sensed by a sensor in the environment. taken, control signals are injected into the state if they did
not lead to temporal inconsistencies (validation performed

IV. PLAN EXECUTION AND DYNAMIC PLAN UPDATE by the temporal solver). Finally the state of the world is

3 _ S continuously fed-back to the system through the observer.
The ability to support on-line sensing is directly enablech schematic representation of this comparison is depicted

by the constraint-based representation: sensing is redugfdrig.1. We show an example of this behavior in the next
to dynamically updating the constraint network with newsection.

activities and constraints representing the sensed state of the
environment; the same mechanism also supports prediction
(i.e., “sensing in the future”) and other on-line plan mod-
i cations, such as temporal delays and dynamically posted
goal constraint networks.
Our approach is based on the alternation of planning
and plan execution monitoring. The former consists of the
planning procedure shown above. The latter consists of two
processessensingand plan update The sensing process
adds to the constraint network activities and temporal con-
straints representing the current view of the environment
as provided by sensors. The plan update process maintains
and updates temporal constraints which bound on-going
activities (sepsed stgtt_as or fuqctionalities in gxecution) witpig. 1. High level reasoners (causal reasoner, information de-
the current time. This is done i@(n?) through incremental pendency reasoner, schedulers) modify the constraint network so
temporal constraint propagation [7], whereis the number as to achieve the dynamically changing desired state (dynamic

L : ; oal posting). Their decisions are temporally validated (temporal
of activities in the constraint network. Also, this prOcesgeasoning) and sent to the system as control signals. Reasoning

imposes constraints that verify the existence of preconditioRgcounts for the current state of the system, which is continuously
and trigger the manifestation of effects contained in the plamaintained in the constraint network (observer).

Speci cally, the presence of a precondition is veried by
attempting to unify the activity representing the precondition
with a sensed activity. If the uni cation is not possible, the V. EXPERIMENTS
precondition is delayed by inserting a temporal constraint, In this section we show experiments inspired by the
and is re-evaluated at the next iteration. The process enfordagroductory scenario. It is time for lunch, and the outdoor
the occurrence of activities representing effects by postin@bot, Rout delivers groceries to Sven's domestic rolRin,
temporal constraints which x their start time to the curreniwhich is waiting at the door. Sven is in the kitchen; this is a
time. The effect of the constraints posted by these processgaall environment, and at most one robot can be there at any
is that functionalities start when possible, are delayed unffloint in time, i.e., the kitchen is modelled as a resource with
the preconditions hold, and their effects are imposed wheasapacity one which is used by all activities which bring a
necessary. This step also requires polynomial computationobot to the kitchen. We show two variants of the scenario:
In our current implementation, all solvers monitor the netin the rst, Sven's apartment is equipped with one robot
work for new decision variables. Thus “re-planning” occuravhich, upon receiving the goods, delivers them to Sven;
by temporal propagation, resource or state variable schedin-the second, Sven possesses two indoor roliits]l and
ing, or operator application, depending on the situation. Rin2 with similar capabilities. All robots are equipped with



software modules for localization and navigatidgtoutcan dynamically posted, namely to deliver pills to Sven within

employ either a GPS module or a laser range nder, while tha certain deadlingé; both Rinl and Rin2 are equipped with

indoor units are equipped with Kinects. The rst variant wasa pill dispenser. The planner synthesizes a plan which is

executed with real robots, experiments in the second variasgamlessly merged with the existing constraint network. The

were performed on the Gazebo simulator [11]. All robotglanner allocateRinl for accomplishing the pill delivery,

run ROS [12], and the communication with the planner ishus exploiting the path thaRinl is going to traverse to

realized through the light-weight PEIS middleware [2]. deliver the groceries. During execution, at time 70, the

. ) . . . planner is informed thaRoutis delayed (see Fig. 4-b). This

A. Variant 1. Reacting to Information Requirement Failure§gs4s to a temporal failure, as the extent of the delay makes
delivering the pills within timed impossible. This failure
cannot be adjusted through temporal propagation alone, and
the planner is faced with the following three options:

1) Multi robot execution. The planner allocates tRin2,
which is so far idle and also equipped with a pill
dispenser, the task of reaching Sven in the kitchen
while Rinlis waiting for the groceries (see Fig. 4-c).
Note that this solution requires scheduling to manage
the possible concurrent access Rinl and Rin2 to

Fig. 2. Experimental setup: a) map of the environment with the the kitchen: due to the one-robot requirement in the

related waypoints; b) outdoor robot, c) indoor robot. kitchen, Rin1 will wait for Rin2 to return to its base
station before proceeding to the kitchen.

) Task rescheduling. In order make the deadline, the
planner can rst sendRinl to deliver the pills, and
successively come back to fetch the groceries once
Rout is at the door. This procedure, although more
expensive in terms of makespan, allows the planner

In the rst scenario, we employ two robotic platforms: an  ,
ATRV-Jr for Rout and a Turtlebot-1 foRin. Fig. 2 shows a
map of the environment and the two robots used.

The plan generated for delivering groceries to Sven, who
is in the kitchen, is shown in Fig. 2-a: under nominal
conditions,Routis expected to navigate towards the meeting to still use one robot (see Fig. 4-d).
point, MP, relying on the GPS signal for localizatidRin 3) Causal dependency changeAnother way to ful ll
is expected to reach MP as soon Reut has reached an the goal of getting Sven to eat lunch is to send an
intermediate point E. Once both robots are in N&# and

Rout exchange the groceries through the actiamdoad fetch a prepared meal. Thus another option for the
andgrab, respectively. Note that this plan contains required planner is to nd an alternative way to fulll the

concurrency. This is achieved through temporal constraints . sal dependency: to dispatBfinl to achieve both
which model the fact that both robots cannot terminate the meal acquisition and pill delivery (see Fig. 4-e), thus

respective operations before the exchange has happened. In adapting on-line the ful liment of a causal dependency
addition to delivering the grocerieRjn must also accomplish due to a temporal contingency.

ther taskOTHER withi tain deadline.
another task0 R within a certain deadiin Which option is chosen by the planner depends on which

hortl i i PS fails. Thi
Shortly after execution beginsRouts GPS fails ~ uiding heuristic has been implemented. A video showing a

Ieadg the con guration plgnn_er to support Fhe informatiorgazebo execution in which case 1 was selected is available
requirement ofRouts navigation module with the laser- Ehttp'//youtu be/adiwuywxEiM

based localization module. However, navigation speed mu?
be reduced to collect reliable readings from the laser. As
a consequence, the expected time at whRdut will reach
MP increases compared to the nominal plan. This violates Much research in robotics aims to deploy robots in dy-
the deadlined for the OTHER task, hence the planner re- namic, uncontrolled environments which require systems to
schedules the execution of this taks to occur wiflleutis  be very adaptive. The work presented in this paper enables
reaching the meeting point. A video showing a real executiothe generation and run-time adaptation of con guration
of the above scenario is availabletdtp://aass.oru. plans, yielding robust closed loop performance in the face
se/ ~modo/IROS2013/iros2013.html . of perturbations such as delays, resource collapse, exogenous
) . events, and new goals. An important tenet of our approach
B. Variant 2: The Consequences of Being Late is that plans are only modi ed to the extent which is neces-
In this variant we assume that the overall task consistary. For example, a new goal can often be accommodated
of two goals. The rst is to deliver the groceries to Svenby simply adding actions to the current plan; and delays
using one of the two indoor robots. This goal is posted tor resources unavailability can often be remedied by re-
the con guration planner, which allocates the taskRml scheduling. Indeed, full re-planning is most often necessary
The timelines showing how the plan was executed up to timehen assumed causal requirements fail to materialize, e.g.,
t = 20 is shown in Fig. 4-a. At this time, a second goal isan object is not where it was expected to be.

indoor robot to the senior living facility's canteen to

VI. DIscussION ANDCONCLUSIONS



Fig. 3. Plan execution for the grocery delivery scenario with real robots (variant 1): a) plan exploiting the navigation with GPS before thetfajlure at
b) navigation with laser that respects the deadtine

Fig. 4. Plan execution for the grocery delivery scenario with real robots (variant 2): a) execution of the initial plan — &ttiineghe rst goal is

posted and the plan is further enriched at titrre 20 ; b) the delay induced by the delivery makes the plan fail due to the failure of the deadline; c) after
plan failure another robot joins the plan execution d) the delay is absorbed detouring the robot to execute rst the delivery of the pills and then sending it
back to fetch the package; e) the fetching of the package is substituted by an equivalent causal action which allows to complete the plan.

Several approaches have been proposed in the Al planniagecution monitoring, and the approach has been success-
literature to cope with temporal contingencies [13], [14]fully employed with real robotic systems. In [15], execution
[10], most of which rely on temporally exible plans which monitoring takes into account resource usage, and the tech-
can be adapted in low-order polynomial time to temporahique is exempli ed on single robot navigation tasks. These
uncertainty. In [9], temporal planning has been coupled witeystems have proved the effectiveness of constraint reasoning






