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ABSTRACT 

Detecting changes in the response of metal oxide (MOX) gas sensors deployed in an open 

sampling system is a hard problem. It is relevant for applications such as gas leak detection in 

coal mines [1], [2] or large scale pollution monitoring [3],[4] where it is unpractical to 

continuously store or transfer sensor readings and reliable calibration is hard to achieve. 

Under these circumstances it is desirable to detect points in the signal where a change 

indicates a significant event, e.g. the presence of gas or a sudden change of concentration. 

The key idea behind the proposed change detection approach is that a change in the emission 

modality of a gas source appears locally as an exponential function in the response of MOX 

sensors due to their long response and recovery times. The proposed method interprets the 

sensor response by fitting a piecewise exponential function with different time constants for 

the response and recovery phase. The number of exponentials is determined automatically 

using an approximate method based on the L1-norm. This asymmetric exponential trend 

filtering problem is formulated as a convex optimization problem, which is particularly 

advantageous from the computational point of view. The algorithm is evaluated with an 

experimental setup where a gas source changes in intensity, compound, and mixture ratio, and 

it is compared against the previously proposed Generalized Likelihood Ratio (GLR) based 

algorithm [6]. 

 

ALGORITHM 

The proposed algorithm is inspired by the piecewise linear trend filtering proposed in [5]: 
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where y is the sensor response, x is the trend to be estimated, and D is the matrix operator 

that calculates first order differences. λ ≥ 0 is a regularization parameter used to control the 

trade-off between the magnitude of the residuals
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DDx . For the case of piecewise linear filtering, smoothness is encoded as 

minimization of the second derivative DDx , which for a line is exactly equal to zero. It is 

important to notice that the L1-norm is used to induce sparsity in the smoothness term and 

therefore to obtain a function which is “mostly linear” with few sharp kink points. In this 

paper we propose to model, instead of a piecewise linear trend, a piecewise exponential trend 

for capturing the sensor response induced by abrupt changes in the emission of the gas source. 

The kinks between subsequent exponentials in the estimated trend are interpreted as change 

point candidates. Exponential decays are characterized by the relationship 
22 // dtxddtdx  where τ is the time constant of the exponential function. Therefore the 

exponential behavior can be encoded as 
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)( DxDI  . However, MOX sensors have two 

different time constants for the response and recovery phases. In order to account for this, we 

introduce additional variables and constraints obtaining the following optimization problem: 
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where τ+ and τ- are the time constants of response and decay. The variables d+ and d- and the 

corresponding linear inequality constraints were introduced to model the derivative of the 

trend for response and decay phases. The resulting optimization problem is convex, and 

therefore can be solved efficiently and is guaranteed to find the global optimal solution. 

 

RESULTS 

The proposed change point detection algorithm is evaluated on 54 indoor experiments where 

a gas source was placed 0.5m upwind an array of 11 commercial MOX gas sensors. In these 

experiments, the gas source emits ethanol and/or 2-propanol. The experiments include 

different characteristic gas emission profiles with changes in concentration, compound and 

mixture and provide ground truth for the change times. Fig. 1 (left) shows the receiver 

operating characteristic (ROC) curve for a selected MOX sensor, calculated using all the 

experiments and Fig. 1 (right) shows one example execution of the proposed algorithm for an 

experiment where the gas source presents changes in concentration of ethanol.  

 
Figure 1. Left: ROC curves for the trend filtering and the GLR method for different values of the λ parameter (trend 

filtering) and detection threshold (GLR method), respectively. Right: example result of the proposed trend filtering 

method for λ=4 (indicated by a red dot in the left plot) representing a good true to false alarm tradeoff. 

We compared the proposed trend filtering method to the GLR method [6] using the true alarm 

ratio (TAR) with the false alarm ratio (FAR) set to 0.1. The proposed method achieved a 

better performance for 6 out of 11 sensors in comparison to the GLR method (Table 1) using 

an automatically selected parameter λ, and is computationally more efficient since it scales 

linearly with the number of samples instead of quadratically like the GLR. Moreover, as can 

be noticed in Fig. 1 (left) the parameter λ allows a better control over the FAR/TAR tradeoff 

with respect to the detection threshold used by the GLR method. 

Table 1. True alarm ratio (TAR) obtained when the false alarm ratio (FAR) is set to 0.1 for the single sensors. 
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GLR  0,81 0,83 0,59 0,76 0,84 0,69 0,61 0,71 0,61 0,6 0,41 

l1-exp-

trend 
0,84 0,83 0,62 0,77 0,82 0,66 0,66 0,66 0,6 0,63 0,49 
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