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Automatic Relational Scene Representation For Safe Robotic Manipulation
Tasks

Rasoul Mojtahedzadeh, Abdelbaki Bouguerra and Achim J. Lilienthal
Center of Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden

Abstract— In this paper, we propose a new approach for
automatically building symbolic relational descriptions of static
configurations of objects to be manipulated by a robotic system.
The main goal of our work is to provide advanced cognitive
abilities for such robotic systems to make them more aware of
the outcome of their actions. We describe how such symbolic
relations are automatically extracted for configurations of
box-shaped objects using notions from geometry and static
equilibrium in classical mechanics. We also present extensive
simulation results as well as some real-world experiments aimed
at verifying the output of the proposed approach.

I. INTRODUCTION

In robotic manipulation tasks, it is desirable to pick up
and move objects safely to their target position. Essential
for safe robotic manipulation is the ability to predict and
reason about the effects of possible manipulation actions. In
industrial automation the need to predict the effects of actions
on the fly is avoided with known, and well engineered envi-
ronments. However, in non-engineered environments, it is a
challenge to reliably predict the outcomes of robot actions.
One example is dealing with shipping containers, which are
filled with loose, unpredictably stacked and only partially
known goods. Fig. 1 shows two such difficult configurations.
Planning for a safe sequence of unloading actions to empty
the container requires analyzing the relations between the
objects in contact with each other.

(a) (b)

Fig. 1: Two example snapshots of configurations of objects
inside shipping containers at unloading sites.

In artificial intelligence (AI) planning community, it is
usually assumed that symbolic representations of the plan-
ning problem are available (usually encoded by an expert).
We propose a method to relax such an assumption for a spe-
cific class of objects. The key idea is to develop an automatic

cognitive process to enable robotic systems to construct
symbolic relational representations of static configuration of
box-shaped objects. Since the relations between objects in
a scene are independent of the manipulators constraints, the
method is independent of the type of manipulator in use. The
proposed scene representation captures support and action
(reaction) relations between objects (e.g. object A supports
object B), and therefore is useful for high level AI symbolic
reasoning tools such as action planning.

The approach we propose in this paper comprises two
major steps. The first step is a geometric analysis aimed
at extracting act-react relations between those objects that
are in contact with each other. Since the configurations are
assumed to be static, the act-react relations are identified
solely based on analyzing how the weight of one object
might act (push) on another object. In the second step, a more
elaborate analysis based on static equilibrium conditions is
performed. The idea is to check if removing one object in
contact with another can result in a violation of the static
equilibrium of the latter. To do this, we model the problem
as a non-linear optimization program that contains among
its constraints the static equilibrium conditions as well as
constraints about possible unknown friction parameters.

This work is part of a larger research effort aiming at mak-
ing the process of unloading cargo containers autonomous
and with more advanced cognitive abilities1. We emphasize
that we do not address the problem of object detection and
pose estimation, and therefore, we make the assumption
that information about the objects composing the scene is
available to our algorithm as a set of geometrical attributes
(size and pose). Such data, for example, can be obtained
by utilizing object detection and pose estimation algorithms.
Moreover, we only consider rigid box-shaped objects (i.e
carton boxes), which are among the most popular packagings
for shipment of goods in containers [1].

The rest of the paper is organized as follows. Related work
is discussed in Section II. Section III outlines the different
steps used to extract relational representation between blocks.
Section IV presents experimental results of applying the
proposed method on simulated and real scene data. Section V
concludes the paper.

II. RELATED WORK

Existing related research falls mostly in the category of
robotic “bin-picking”, where the goal is to localize and pick

1http://www.roblog.eu
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Fig. 2: Illustration of contact types and the corresponding separating planes (Ps) between two blocks.

objects from a bin using 3D range and visual perception.
While some researchers have focused on developing object
recognition and pose estimation algorithms for bin-picking
systems [2]–[4], some research has been carried out to
address and improve grasping in robotic systems [5]–[7].
In comparison with the types of objects inside shipping
containers, which are usually small to large size carton
boxes, the bin objects are normally small to medium size
rigid mechanical parts to be assembled. A small amount of
displacement of such parts due to picking up one from the bin
is usually tolerable and non-harmful to the parts. In contrast,
a displacement due to unloading an object from a container
may result in some adjacent objects falling down. A robotic
unloading system should have a cognitive level to analyze
the configuration of objects and reasonably plan for a safe
sequence of objects to be unloaded.

Other works address building spatial relational descrip-
tions of scenes, where the focus is more on where objects are
located with respect to each other (e.g., object A is north of
object B) [8]–[10]. Such primitive symbolic descriptors are
originally developed to describe relations between entities
(e.g. buildings) in GIS (Geographic Information System)
maps, and therefore cannot be used to predict the interaction
between objects due to laws of Physics.

III. RELATIONAL SCENE REPRESENTATION

To explain the relational scene representation, we first
present a set of definitions and assumptions that are used
throughout the paper.

• Block is a set of 3D points in R3 inside a rectangular
cuboid. We assume that the center of mass of the block
and the geometric centroid of the cuboid coincide. We
also assume that blocks are rigid and non-deformable,
i.e., they cannot penetrate into each other.

• Flat ground is a large block that cannot be moved and
on which other blocks can sit. Here, we assume that
the gravity force is perpendicular to the flat ground.
In practice this can be, for example, the floor of the
container.

• Configuration is a set of blocks and the flat ground. In
a static configuation, all the blocks are motionless.

• Reference frame, without loss of generality, is a fixed
frame with xz-plane representing the side of the flat
ground facing up, i.e. the gravity force direction is
opposite to that of y-axis.

A. Contact Point-Set Network
Our approach to relational representation of a static config-

uration of blocks relies on extracting contact points between
the blocks. This is motivated by the fact that in a static
configuration (where the earth gravity is the only force acting
on objects, and the gravitational forces between objects are
negligible) the points of action of the weight forces between
objects, and consequently the corresponding torques are
determined by the contact points and the mass distribution
of the objects.

The contact points are used to build a graph structure,
where vertices are the blocks and edges represent the set of
points at contact between the blocks. We call such graph
contact point-set network (CPSN). We consider four major
types of geometrically possible contacts between two blocks
and compute them in the following order:

1) Face-On-Face. This type of contact happens when “a
face of one block and a face of another block partly
or completely coincide”. The result is a polygonal area
with minimum 3 and maximum 8 vertices (see Fig. 2a).

2) Edge-On-Face. This happens when “an edge of one
block partly or completely touches a face of another
block”. The result is a line segment (see Fig. 2b).

3) Vertex-On-Face. This happens when “a vertex of one
block touches a face of another block”. The result is a
single point (see Fig. 2c).

4) Edge-Cross-Edge. This happens when “an edge of one
block intersects with, but is not parallel to an edge of
another block”. The result is a single point (see Fig. 2d)

Since we consider static configurations, we do not consider
unstable contacts such as “a vertex of one block touches a
vertex of another block”.

B. Geometrical Analysis
The objective at this stage is to identify and label blocks

in contact as acting (or reacting) according to the geometric
configuration between two blocks. From Newton’s third law
of motion, we know for two objects A and B in contact, that
if object A exerts a force on B, then B exerts a force, which
is equal in magnitude but opposite in direction on A; we call
A “acting object” and B “reacting object”.

Our geometrical analysis is based on extracting the sepa-
rating plane between two blocks in contact. Since a block is
a convex set, for each pair of blocks in contact, according
to hyperplane separation and supporting hyperplane theo-
rems [11], there exists a separating plane, which divides 3D



space into two half-spaces such that the separating plane
contains (and is identified by) the contact points and each
half-space contains only one of the blocks. Fig. 2 shows
separating planes for the discussed contact types.

In our analysis, we label the two half-spaces as positive
and negative sides of the separating plane. A half-space is
labeled as positive, resp. negative, side, if the y-component
of the separating plane’s normal vector at that side is
strictly positive, resp. negative. In the case of a perpendicular
separating plane to the xz-plane (i.e., the y-component of the
normal vector is zero), the half-spaces are not labeled.

To identify which block acts on another, we first ignore all
the other blocks in contact with the two blocks in question.
The acting block and the reacting block is determined
according to the following proposition.

Proposition 1: For two blocks A and B in contact, if
their separating plane is not perpendicular to the flat ground
(i.e., xz-plane), then the positive side of the separating plane
contains the acting block, and the negative side contains the
reacting block. We represent such a symbolic relation as
ACT(A,B) which is read as “A acts on B”. For a sketch
of the proof of the proposition, see the appendix.

There are many situations where the extracted ACT rela-
tions are not enough to decide which object can be removed
and not cause the other objects to fall. An illustration of
such a case is shown in Fig. 3, where block A is the
only one not reacting to any other block. Such information
can naively used to suggest removing A first. However, the
weight of B produces a torque about the contact axis (B,D)
which is canceled by the action force that A exerts on B
at contact point(A,B). This means that removing A causes
B to fall down. Besides the case where the geometrical
reasoning cannot be applied (i.e., the separating plane is
perpendicular to the flat earth), this example suggests that
interaction between more than two objects requires a more
complex analysis, which we introduce in the next section.

y

x
Flat Ground.z

D

B

A

Fig. 3: An example configuration where geometric analysis
is not enough to predict the effect of removing block A.

C. Static Equilibrium Analysis
We use static equilibrium conditions to anticipate the

effect of removing a block from a static configuration. From
classical mechanics [12], an object is in static equilibrium if
and only if:

• The vector sum of all external forces is zero.
• The vector sum of all torques (due to the external forces)

about any pivot point is zero.
• The linear momentum of the object is zero.
In the context of this paper, if removing block A from

a static configuration leads to unsatisfied static equilibrium

conditions for another block B in contact with A, then A
is said to support B. This relation is symbolically denoted
by SUPP(A,B). It is important to note that two blocks in
contact can both support each other, i.e., it is possible to
extract two relations such as SUPP(A,B) and SUPP(B,A)
(see objects A and B in example configuration in Fig. 3).

In order to determine the static equilibrium of blocks,
values of the necessary physical quantities such as masses
of objects and their distribution, as well as the friction
factors are required to be known. However, in our case
such physical quantities are not available. Moreover, in 3D
space, where the objects are not mathematically idealized
points, configurations of objects often represent a statically
indeterminate mechanical system, i.e., a system in which the
number of unknown forces is greater than the number of
independent equations. Static equilibrium equations are often
insufficient to determine unknown forces acting on a block,
even if the physical quantities are known.

Since we are interested in symbolic relations between
objects and not the exact numeric computation of unknown
forces, we model static equilibrium analysis of a target block
as an optimization problem, where the goal is to find a
feasible solution that satisfies a set of predefined constraints.
First, we define the problem formally as follows,

Problem. Given a target block X , a set of blocks Y =
{Y1, . . . , Yp, Z} in contact with X , the corresponding CPSN
of X , the separating planes between X and Yi, and the set
of ACT relations identified from geometrical reasoning on
X with respect to Yi, determine if X is in static equilibrium
after removing Z from Y.

We assume a unit mass for the target block, and define
a force-group to be a set of forces that a block exerts
on another block at their contact points. Each force-group
contains either one, two, or between 3 to 8 forces depending
on the contact type (see section III-A). Each force in a force-
group is attached to one point that is called a force-point. A
force-point can be the point of a single-point contact, or the
end point of a line-segment contact, or one of the vertices of
a polygon contact (see Fig. 4). The forces in a force-group
are assumed to have the same direction, but their magnitudes
may differ.

For each block Yi in Y, depending on its ACT relation
with X , three possibilities are considered:

a) X acts on Yi: Here, for each force-point j, the corre-
sponding force ~Fi,j ∈ Gi, is resolved into two components
< ~Fn

i,j ,
~F t
i,j >: a perpendicular force to, and a tangential

(friction) force in the separating plane respectively. We limit
the amount of friction by introducing a friction factor, µi,j ,
such that ‖~F t

i,j‖ ≤ µi,j‖~Fn
i,j‖ and µi,j ≤ µMAX. The value

of µMAX is specified as a constraint. The direction of all
the tangential forces is determined by an angle parameter,
αi. To summarize, one optimization parameter for the angle
of friction forces of Gi and three parameters (magnitude of
normal force, magnitude of friction force, and the friction
factor) for each point j in Gi are defined.

b) Yi acts on X: In this case, for each force-point
j in the force-group, Gi, we assign a weight, ~Wi,j =



(0,−wi,j , 0) where wi,j > 0. Thus, for each ~Wi,j one
optimization parameter is defined.

c) The ACT relation between X and Yi is not given:
We neglect friction and consider solely normal forces that Yi
may exert on X . Thus, for each force-point j in the contact
force-group, Gi, one optimization parameter is defined.
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Fig. 4: A force-group Gi with 4 contact force-points pj
(polygon contact type), friction forces F ti, j, normal forces
Fn
i,j and angle αi.

For the sake of modeling, the weight of block X is
represented as the force-group G0 with a single force,
~W0,1 = (0,−g, 0), at the centroid of X where g > 0 is the
magnitude of the earth’s gravity. Mathematically, the static
equilibrium conditions for block X can be written as below,

~Ftotal =

p∑
i=0

 qi∑
j=1

~Fi,j

 = 0

~τtotal =

p∑
i=0

 qi∑
j=1

~ri,j × ~Fi,j

 = 0

where p is the number of force-groups (including the weight
of X), qi is the number of force-points in the i-th force-
group, ~Fi,j is the j-th force in the i-th force-group, ~ri,j is
the moment arm from the centroid of X to the point of action
of ~Fi,j , and consequently ~ri,j × ~Fi,j is the torque about the
centroid of X due to the external force ~Fi,j .

We define the objective function of the optimization prob-
lem to be the sum of the absolute values of the total force
and total torque components along the reference frame axes:

fobj(.) = |Fx|+ |Fy|+ |Fz|+ |τx|+ |τy|+ |τz|

and formally define the optimization problem as

minimize fobj

subject to 0 < µi,j ≤ µmax

‖~F t
i,j‖ ≤ µi,j‖~Fn

i,j‖
0 ≤ αi ≤ 2π

Fx = 0, Fy = 0, Fz = 0

τx = 0, τy = 0, τz = 0

where i = 1, . . . , p; j = 1, . . . , qi, and
fobj(.) The objective function
Fx, Fy, Fz x, y, and z components of ~Ftotal
τx, τy, τz x, y, and z components of ~τtotal
~Fn
i,j The normal component of ~Fi,j

~F t
i,j The friction component of ~Fi,j

µi,j The friction factor at point of action i, j
µmax The maximum acceptable friction factor

The minimum of fobj(.) is zero, which is satisfied if there
exists a consistent solution.

The existence of at least one solution that satisfies all the
constraints of the optimization problem implies that there
exists one possible set of forces and acceptable friction
factors that can satisfy the static equilibrium conditions of
the target block. The implication, however, is valid as long
as the assumptions on friction factors and mass distributions
are close to real values. Thus, finding a solution just tells us
that it is possible that X remains at rest. On the other hand,
if there is no solution for the problem, then it is impossible
for X to preserve its static equilibrium which means that
block Z supports block X. In other words we can state that
SUPP(Z,X) is true.

Please note that if the approach fails to extract a SUPP
relation between two connected blocks A and B, then we
cannot deduce that there is no support relation between A
and B. In such case, the support relation is simply not known
to hold between A and B.

D. Relational Representation Of Configurations of Blocks

The final output of the proposed method is a graph
representing ACT and SUPP relations that exist between the
blocks of the static configuration. The vertices of the graph
represent the blocks, while edges between vertices represent
the ACT and SUPP relations. Examples of such graphs are
shown in Fig. 7. Such symbolic relational representation can
then be used by high-level AI symbolic reasoners to decide
on the safest sequence of unloading a container.

IV. RESULTS

In this section, we present experimental results that we
carried both in simulation and in real world. The aim of the
simulation experiments was to analyze the execution time
of the different stages of the approach on a large number
of random configurations. The real world scenarios aimed at
validating the constructed representation of the scene.

A. Random Configurations

We developed a scene configuration generator based on
physics simulation. The simulator generates random con-
figurations of blocks inside a container (see Fig. 5). The
data of physical quantities such as mass, friction factors and
so forth, in addition to the collision shape description of
the objects (i.e. block dimensions), are set as minimum-
maximum intervals. The attributes of the generated objects
are uniformly sampled from the given intervals.
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Fig. 5: Two configurations generated by the simulator.

We considered a varying number of blocks N (N =
5i, i = 1, . . . , 20), where for each value of N , we generated
20 random configurations, giving a total of 400 configura-
tions. For each configuration, we recorded the time for the
geometrical and static equilibrium analysis. As a figure of
complexity of the generated configurations, we recorded the
number of contacts between blocks, the number of extracted
ACT and SUPP relations, and the number of contact types
(i.e., single-point, line-segment and polygon contacts).
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Fig. 6: Results of randomly generated configuration by the
simulator. In (a) and (b) the vertical axes are time in seconds.
In (c) and (d) the vertical axes are the average of the number
of contact types and relations respectively.

Fig. 6a, resp. Fig. 6b, shows the average time taken
by the geometrical, resp. static equilibrium, analysis. We
can notice that the geometrical analysis takes very short
time and increases linearly with the number of objects. The
static equilibrium analysis requires much more time and
increases polynomially. The time consumption of the static
equilibrium analysis is due to the nonlinear optimization
solver, that is called for each target object. Nevertheless, for
realistic scenarios, we expect the number of objects extracted
by any object-detection algorithm to be small, and thus,
the performance of the static equilibrium analysis remains

acceptable. In addition, the static equilibrium analysis stage
can be parallelized.

Fig. 6c depicts the average number of contact types
with respect to the number of blocks. As expected, the
number of single-point contacts which are the result of less
stable configurations (vertex-on-face and edge-cross-edge) is
noticeably lower than the number of face-on-face and edge-
on-face contact types.

The average number of extracted relations between blocks
is shown in Fig. 6d. The number of support relations
increases linearly. For N < 20, the number of ACT and
SUPP relations are close to each other, that is, for each
ACT(X,Y) relation, it is more probable to have a corre-
sponding SUPP(Y,X) relation. However, as the number
of blocks increases, the number of corresponding support
relations diverges from that of act relations.

B. Real World Configurations

We examined the proposed approach on three real-world
configurations of carton boxes placed in a mock-up container.
The goal was to verify that the generated relations were
consistent with the true configuration of the objects in the
real world. We collected and registered 3D point clouds
using two Kinect sensors placed at two different angles
of views (looking at the scene from left and right sides).
Since the focus of the paper is not on object detection, we
performed the detection of the boxes and their attributes by
a simple procedure consisting of registering models of boxes
to the generated point clouds and manually refining the pose
estimation process. Fig. 7 shows the real-world configura-
tions with their models and the corresponding constructed
relational scene representation.

In the real world configurations, the flat ground is modeled
by a static block (the gray bottom block in Figures 7g to 7i).
The first configuration is simple and contains three boxes
stacked on top of each other (see Fig.7a). Its relational scene
representation is shown in Fig. 7j where each ACT(X,Y)
relation has a corresponding SUPP(Y,X) relation. The sec-
ond configuration (see Fig.7b) has more interactions between
blocks, where more than one block (1 and 2) are acting on
another (block 3), and reacting against other block (block
0). Fig.7k depicts the corresponding representation. In the
third configuration (see Fig.7c) there is a bidirectional SUPP
relation between two blocks (0 and 1). This implies that no
box can be removed without causing another box to fall as
a side effect (see Fig.7l).

V. SUMMARY AND FUTURE WORK

We propose a new approach to analyze and represent
configurations of cuboid-shaped objects in terms of abstract
symbolic relations. The representation uses a minimal set of
relations to capture possible physical interactions between
objects in contact with each other. The proposed symbolic
relational representation can be readily used by high-level
AI reasoning paradigms to predict the effects of moving
objects in contact with each other. To the best of the authors’
knowledge, this issue has not been addressed before. The
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Fig. 7: Results of real world configurations. The first row
shows images of the configurations. The registered point
clouds are shown in the second row. In the third row, the
refined pose of the models are drawn. At the bottom, the
relational scene representations are shown as graphs of ACT
and SUPP relations.

proposed approach constitutes a step forward in terms of
bringing cognitive reasoning abilities to the area of robotic
manipulation. Nevertheless, there are open issues which need
to be addressed in future work. One intention is to extend
the approach to deal with objects that can be supported
by unseen objects due to occlusion and uncertainty in their
attributes (pose and size).

APPENDIX

Proof of Proposition 1 Without loss of generality, we
assume that the positive side of the separating plane contains
object A and the negative side contains B (see Fig. 8). If n
is the normal vector of the separating plane in the positive
side, i.e., the y-component of the normal vector is strictly
positive, and w(0,−w, 0), w > 0 is the weight of a point in
B, we show that none of points in B can exert force on A
due to their weights. To do this, we compute the projection
of the weight, w, on the normal vector n,

wn
proj = (w · n)n = −(wny)n

Since w > 0 and ny > 0, w has no contribution
towards the positive side, and hence no force exertion on
A. Similarly, we can show that for all weights of points
in A, there exists a non-zero force contribution towards the
negative side, i.e, ACT(A,B).
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Fig. 8: Extracting the possible ACT relation between two
blocks A and B in contact (Proposition 1).
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