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Abstract

Robert Krug (2014): Optimization-based Robot Grasp
Synthesis and Motion Control. Orebro Studies in Technology 61.

This thesis investigates the questions of where to grasp and how to grasp a
given object with an articulated robotic grasping device. To this end, aspects of
grasp synthesis and hand motion planning and control are investigated. Grasp
synthesis is the process of determining a palm pose with respect to the target
object, as well as a hand joint configuration and/or grasp contact points such
that a successful grasp execution is allowed. Existing methods tackling the grasp
synthesis problem can be categorized in analytical and empirical approaches.
Analytical approaches are based on geometric, kinematic and/or dynamic for-
mulations, whereas empirical methods aim at mimicking human strategies.

An overarching idea throughout this thesis is to circumvent the curse of di-
mensionality, which is inherent in high-dimensional planning problems, by
incorporating empirical data in analytical approaches. To this end, tools from
the field of constrained optimization are used (i) to synthesize grasp families
based on available prototype grasps, (i) to incorporate heuristics capturing
human grasp strategies in the grasp synthesis process and (iii) to encode demon-
strated grasp motions in primitive motion controllers.

The first contribution is related to the computation and analysis of grasp
families which are represented as Independent Contact Regions (ICR) on a
target object’s surface. To this end, the well-known concept of the Grasp
Wrench Space for a single grasp is extended to be applicable for a set of grasps.
Applications of ICR include grasp qualification by capturing the robustness of a
grasp to position inaccuracies and the visual guidance of a demonstrator in a
teleoperating scenario. In the second main contribution of this thesis, it is
shown how to reduce the grasp solution space during the synthesis process by
accounting for human approach strategies. This is achieved by imposing appro-
priate constraints to a corresponding optimization problem. A third contribu-
tion in this dissertation is made to reactive motion planning. Here, primitive
controllers are synthesized by estimating the free parameters of corresponding
dynamical systems from multiple demonstrated trajectories. The approach is
evaluated on an anthropomorphic robot hand/arm platform. Also, an extension
to a Model Predictive Control (MPC) scheme is presented which allows to in-
corporate state constraints for auxiliary tasks such as obstacle avoidance.

Keywords: Robot Grasping, Grasp Synthesis, Grasp Planning, Motion Control,
Model Predictive Control, Independent Contact Regions, Obstacle Avoidance,
Motion Planning.

Robert Krug, School of Science and Technology
Orebro University, SE-701 82 Orebro, Sweden, robert.krug@oru.se
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Chapter 1
Introduction

In 1920, Czech writer Karel Capek published the play R. U. R. (Rossum’s Uni-
versal Robots), which deals with the ethical implications of using artificially
created people as cheap labor. This work is regarded as the origin of the term
robot which comes from the Czech word robota, meaning “hard work”. And
indeed, nowadays robots have become an indispensable centerpiece of auto-
mated manufacturing processes. In industrial settings, where cost-effectiveness
is paramount, they reliably carry out a plethora of tasks such as welding, paint-
ing, machining, material transport, assembly and packaging. In this context, an
often cited acronym characterizes the tasks a robot should perform as the three
D’s — Dull, Dangerous and Dirty. In recent years robots have become available
as consumer products in other domains such as service and entertainment. Suc-
cessful examples include Sony’s Aibo [1], which is a series of robotic pets, and
iRobot’s Roomba [2], a robotic vacuum cleaner.

An important aspect in many robot applications across all domains is the
interaction with the environment. The interface between a robot manipulator
(arm) and the environment is provided in form of end-effectors. Today, the ma-
jority of end-effectors, such as suction cups and parallel-jaw grippers, is simple
and tailored to carry out specific tasks on specific objects. In order to avoid
the need for changing end-effectors on a task-to-task basis, versatile and dex-
terous end-effectors are required. A solution is offered in form of articulated
multi-fingered hands [3]. These are grasping devices which possess the ability to
reconfigure themselves for performing different grasps. Such mechanisms were
built first in the early 1980’s. Among them are the Stanford/JPL hand [4] and
the Utah/MIT hand [5], the latter of which is shown in Fig. 1.1(a). One line of
research has focused on devising anthropomorphic (human-like) devices which
attempt to mimic the human hand with its unsurpassed dexterous grasping and
manipulation capabilities. An example is the hand/arm system in [6], which is
engineered by the German Aerospace Center (DLR) and depicted in Fig. 1.1(b).
Devices in this mould are advantageous for applications such as teleoperation,
prosthetics and for service robots in a human environment. However, anthro-
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Figure 1.1: Articulated Grasping Devices: (a) The Utah/MIT hand, one of the first multi-
fingered hands. (b) The DLR hand/arm system is one of the most advanced anthropo-
morphic platforms today. (c) The 3-fingered Barrett hand features break-away transmis-
sions in the distal joints which allows for robust grasping. (d) The lightweight high-
speed hand by Namiki et al. [7] allows for real-time visual feedback control. (e) The
underactuated SDM hand is a low-cost compliant grasping device using a single actua-
tor only.

pomorphism is neither necessary nor sufficient to achieve dexterity. There exist
many impressive grasping and manipulation devices with alternative mechan-
ical structures. Examples include the Barrett hand [8] (see Fig. 1.1(c)), which
has become a popular research tool, and the high-speed hand in [7], which
can perform highly dynamic tasks such as catching objects and is depicted in
Fig. 1.1(d). Underactuated grippers comprising less actuators than Degrees of
Freedom (DoF), such as the SDM hand [9] shown in Fig. 1.1(e), provide inter-
esting and cost-effective alternatives. Here, the mechanisms are designed such
that certain desired grasping/manipulation features are preserved.

In most robotic applications today, behaviors and motions are pre-pro-
grammed. In order for robots to leave the structured environments of industrial
or laboratory settings and to succeed in uncontrolled scenarios, it has become
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clear that they need to be endowed with a sufficient level of autonomy. To
purposefully interact with its environment, and as a prerequisite for any subse-
quent manipulation, a robot needs to be able to autonomously grasp objects in
a robust manner which is the focus of this dissertation.

1.1 The Challenges of Autonomous Robot Grasping

The DARPA Robotics Challenge (DRC) is a prestigious competition funded
by the US Defense Advanced Research Projects Agency with the aim to push
the boundaries regarding supervised autonomy in an emergency-response scen-
ario for mobile, mostly humanoid robots. In this context, supervised autonomy
means that there is a human teleoperator in the loop which can issue com-
mands, albeit under the constraint of a limited bandwidth. The DRC trials held
in 2013, the year before writing this thesis, included manipulation tasks such
as opening a door or closing a valve. Even the most successful robots used up at
least half of their 30 minutes time limit per challenge and a significant number
of attempts failed. The purpose of the above example is to highlight the sub-
stantial difficulty of achieving even only partial autonomy in robot grasping and
manipulation and the big gap between the capabilities of fictional robots and
currently existing systems. With respect to humans, Neuroscience has shown
that the largest fraction (30-40%) of the motor cortex, 1i. e., the region of the
brain responsible for movement planning and execution, is dedicated to the
control of the hand [3]. For a robot, successfully grasping an object entails
solving the problems of object perception and grasp synthesis, as well as hand
and manipulator motion planning.

Object perception estimates the pose of the target object and, if not known a
priori, its geometry from potentially incomplete and noisy sensor data. Solving
this problem is aggravated by factors like occlusions of the target object by the
environment or the robot itself, and varying light conditions across different
scenarios which necessitate different calibrations/setups of the employed range
sensing devices. Once a representation of the object is built by means of the
available sensor inputs, it is necessary to address the grasp synthesis problem.
Here, the goal is to determine a hand palm pose with respect to the object, as
well as a joint configuration and/or grasp contact points such that a successful
grasp can be achieved by an appropriate hand closing motion. This process is
not trivial, especially considering uncertainties in the target object’s pose and
the achievable positioning accuracy of the robot platform. The purpose of hand
motion planning is to generate a coordinated grasp movement which is parti-
cularly relevant when complex hands with many DoF are considered. Finally,
manipulator motion planning is concerned with finding a collision-free path
leading the grasping device from the initial pose to the grasping pose.
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Problem Statement
At this point, the general problem of interest in this dissertation can be stated.

Problem: Given the pose and geometry of an object to be grasped with an ar-
ticulated robotic grasping device, determine an appropriate set of contact
points, palm pose and gripper joint configuration such that a coordinated
grasp closing motion results in a stable grasp.

Loosely speaking, the addressed question is where to grasp and how to grasp
a given object. To this end, aspects of grasp synthesis and hand motion plan-
ning are investigated. The experiments presented in this work were conducted
by using existing solutions for object perception and manipulator motion plan-
ning. A central tenet in this thesis is to circumvent the curse of dimensionality,
which is inherent in high-dimensional planning problems, by incorporating em-
pirical data in analytical approaches. Most of the proposed algorithms encapsu-
late a notion of optimality in the context of the tackled sub-problem. Therefore,
the use of tools from numerical optimization is a second central aspect in this
dissertation.

1.2 Outline

The rest of this thesis is organized as follows.

Chapter 2 puts the dissertation in the context of the two EU-funded projects
in whose scope the presented work was carried out. Furthermore, the
necessary background, as well as the utilized hardware and robots are
discussed.

Chapter 3 provides an overview of relevant related work in the fields of grasp
synthesis and reactive motion generation.

Chapter 4 introduces algorithms for synthesizing contact-level grasp families
based on a prototype grasp and a notion of expected disturbances.

Chapter 5 gives a numerical evaluation and application examples of the me-
thods presented in the previous chapter. The range of applications in-
cludes grasp qualification, guided teleoperation, interactive grasp transfer
and finger gait planning.

Chapter 6 presents an optimization-based grasp synthesis and execution scheme
which is tailored to the specifics of an underactuated grasping device. The
approach incorporates empirical data in form of grasp strategies observed
in humans.

Chapter 7 discusses a reactive real-time framework for generating coordinated
hand motions. The method is based on data provided in form of human
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demonstrations and can be extended to incorporate auxiliary goals such
as obstacle avoidance.

Chapter 8 finally concludes this dissertation and summarizes the major contri-
butions and directions of future research based on the presented work.

1.3 Contributions

The major contributions of this thesis, as outlined in the previous section, can
be summarized as follows:

Grasp synthesis algorithms which extract a family of similar contact-level grasps
from a provided prototype and allow to prioritize specified fingers.

An open-source C++ library implementing the aforementioned algorithms.

Practical applications of contact-level grasp families ranging from grasp quali-
fication to visually guided teleoperation, interactive grasp transfer and
finger gait planning.

An optimization-based grasp synthesis framework which incorporates heuristics
based on human grasp strategies.

A grasp execution routine using the active surfaces of a gripping device for in-
hand manipulation to increase the stability of an initial grasp.

A reactive motion generation framework whose output resembles human demon-
strations.

A control scheme which allows for real-time obstacle avoidance.

1.4 Publications

The core of the work presented in this dissertation has either been published in
various peer-reviewed articles, or is under review at the time of writing. The fol-
lowing list summarizes all the publications accomplished during the course of
working towards this thesis, as well as the particular chapters of this work that
each article contributed to. Author’s copies of the publications are available
online at http://www.aass.oru.se/Research/Learning/rtkg.html.

e Robert Krug, Krzysztof Charusta and Dimitar Dimitrov, “Constructing
Independent Contact Regions based on the Exertable Wrench Space: The-
ory, Implementation and Applications to Robot Grasping”, International
Journal of Robotics Research (IJRR), 2014, under review.

‘ Main part of Chapters 4 and 5 ‘
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e Robert Krug and Dimitar Dimitrov, “Model Predictive Motion Control
based on Generalized Dynamical Movement Primitives”. Journal of Intel-
ligent & Robotic Systems (JINT), Special Issue on the 16" International
Conference on Advanced Robotics, 2014, under review.

’ Main part of Chapter 7 ‘

e Robert Krug, Todor Stoyanov, Manuel Bonilla, Vinicio Tincani, Narunas
Vaskevicius, Gualtiero Fantoni, Andreas Birk, Achim J. Lilienthal and
Antonio Bicchi, “Improving Grasp Robustness via In-Hand Manipula-
tion with Active Surfaces”, In IEEE Int. Conf. on Robotics and Automa-
tion (ICRA) — Workshop on Autonomous Grasping and Manipulation:
An Open Challenge, 2014, under review.

Part of Chapter 6

® Robert Krug, Todor Stoyanov, Manuel Bonilla, Vinicio Tincani, Narunas
Vaskevicius, Gualtiero Fantoni, Andreas Birk, Achim ]. Lilienthal and
Antonio Bicchi, “Velvet Fingers: Grasp Planning and Execution for an
Underactuated Gripper with Active Surfaces”, In Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA), 2014, to appear [10].

’ Main part of Chapter 6 ‘

¢ Robert Krug and Dimitar Dimitrov, “Representing Movement Primitives
as Implicit Dynamical Systems learned from Multiple Demonstrations”,
In Proc. of the Int. Conf. on Advanced Robotics (ICAR), 2013 [11].

’ Part of Chapter 7 ‘

® Robert Krug, Dimitar Dimitrov, Krzysztof Charusta and Boyko Iliev, “Pri-
oritized Independent Contact Regions for Form Closure Grasps”, In
Proc. of the IEEE/RS] Int. Conf. on Intelligent Robots and Systems (IROS),
2011 [12].
’ Part of Chapter 4 ‘

¢ Robert Krug, Dimitar Dimitrov, Krzysztof Charusta and Boyko Iliev, “On
the Efficient Computation of Independent Contact Regions for Force Clo-
sure Grasps”, In Proc. of the IEEE/RS] Int. Conf. on Intelligent Robots
and Systems (IROS), 2010 [13].

Part of Chapter 4 ‘

Not included in this dissertation:

® Krzysztof Charusta, Robert Krug, Dimitar Dimitrov and Boyko Iliev, “In-
dependent Contact Regions Based on a Patch Contact Model”, In Proc.
of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2012 [14].
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® Krzysztof Charusta, Robert Krug, Todor Stoyanov, Dimitar Dimitrov and
Boyko Iliev, “Generation of Independent Contact Regions on Objects Re-
constructed from Noisy Real-World Range Data”, In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2012 [15].

e Erik Berglund, Boyko Iliev, Rainer Palm, Robert Krug, Krzysztof Charusta
and Dimitar Dimitrov, “Mapping between different kinematic structures
without absolute positioning during operation”, In Electronics letters,
2012 [16].

¢ Erik Berglund, Boyko Iliev, Rainer Palm, Robert Krug, Krzysztof Charusta
and Dimitar Dimitrov, “Mapping between different kinematic structures
without absolute positioning”, In IEEE Int. Conf. on Robotics and Au-
tomation (ICRA) — Workshop on Autonomous Grasping, 2011 [17].

In all articles for which I am first author, I performed the relevant software
implementations and tests, as well as the major part of analyzing and reporting
the obtained results. In the paper in [10], Todor Stoyanov and Narunas Vaske-
vicius were responsible for object modeling, object database maintenance and
perception. Manuel Bonilla and Vinicio Tincani provided support for manipu-
lator motion planning and performing test runs. For the works with Charusta
et al. [14, 15], I collaborated in the design of algorithms and dissemination. To
the works of Berglund et al. [17, 16], I contributed in form of discussions.






Chapter 2
Background

The research presented in this dissertation was carried out in the context of
two EU-FP7 projects: “Handle” and “RobLog”. The former aimed at endow-
ing a complex anthropomorphic hand/arm platform with skilful grasping and
manipulation capabilities. Here, the focus was on understanding how humans
conduct everyday tasks and to find compact representations of the underlying
strategies in a Teaching by Demonstration (TbD) setting. Roblog, the second
project, is still ongoing at the time of writing this thesis. It is aimed at au-
tonomous unloading of shipping containers in a logistics scenario. Surprisingly,
this is a task which is still mostly carried out by manual labor, despite of its
strenuous and hazardous nature. Here, the goal is to use an underactuated
gripper with a low number of actuated degrees of freedom to robustly grasp
geometrically simple objects such as boxes, barrels or coffee sacks.

Despite their fundamentally different nature, it showed that the underlying
idea of this thesis — combining empirical with analytical approaches based on
optimality criteria — is applicable to common sub-problems arising in both of
these projects. Defining a contact-level grasp in terms of discrete contact points
on the surface of the target object and assuming one contact point per fingertip
allows to solve the grasp analysis problem independent of the grasping de-
vice [18]. This makes the underlying theory applicable to any dexterous hand.
However, the subsequent problems of finding suitable palm poses and hand
joint configurations to execute that grasp inherently depend on the specifics of
the considered gripping device and necessitate dedicated solutions. The resul-
ting overall problem tackled in this thesis can be categorized as follows:

e Grasp contact point synthesis,
e Palm pose synthesis,
e Hand joint configuration synthesis,

e Hand motion planning and control.
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()

Figure 2.1: Polybedra and Polytopes: (a) According to (2.1), a hyperplane J;, is defined
by its normal unit vector ay and offset by,. Also indicated are the associated closed inner
and outer half-spaces in Equations (2.2) and (2.3) respectively. (b) Shown is the polyhe-
dron formed by the intersection of interior half-spaces I NH; NH; corresponding to
the three depicted hyperplanes. (c) A polytope formed by the convex hull in (2.4) over
the points in X = {x,...,X4}.

In accordance with the above structure and starting with Chapter 4, at the be-
ginning of each chapter an indication is given as to which specific sub-problem
is addressed.

In principal, successful grasping requires the solution of an additional prob-
lem — determining appropriate contact forces [19]. In this work, instead of
explicitly calculating and controlling these interaction forces, the experiments
described in Sections 7.5.2 and 6.3.3 were generated via simple stiffness-based
interaction control [20] using low-gain joint level position controllers.

2.1 Polyhedra

Here we summarize some of the relevant concepts and terminology regarding
polyhedra, which are the fundamental geometric objects used in this thesis.
Due to their importance in a wide range of applications they have been studied
extensively [21, 22, 23]. Let us define a hyperplane in k-dimensional space by
means of the equality

Hn={x e R*:alx+b, =0}, (2.1)

where a;, € R* denotes a unit normal vector and by, € R is a scalar offset as
shown in Fig. 2.1(a). Figure 2.1(b) exemplary depicts a polyhedron which can
be defined as the intersection of closed half-spaces associated to a finite number
of u hyperplanes in (2.1). In this context, a closed inner half-space is given via
the inequality

K, ={xeR*:alx+bn >0}. (2.2)

Similarly, a closed outer half-space is denoted as

K, = {x e R*:alx+bn <0}. (2.3)
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Collecting its hyperplane normals in the matrix A = [ay, ..., a,]" € R**¥ and
the corresponding offsets in the vector b = [by,..., b.]" € R* allows to denote
a polyhedrons H-representation as the pair (A, b). If a polyhedron is bounded,
it is referred to as a polytope.

Consider the finite set of k-dimensional vectors X = {x1,...,Xc}, Xi € R¥.
A cone is defined as the set of all conic combinations of elements in X

cone(X) = {inoq eER 0 >0, i= 1,...,c},
i=1

where the coefficients «; € R are positive real numbers. In a similar fashion,
the convex hull can be formalized as the set of all convex combinations of the
elements in X

c Cc
conv(X) = {inoq € R¥: Zoci =1, 4 20, i= 1,...,c} . (2.4)
i=1 i=0

In the above definition, the coefficients o; € R additionally have to sum up
to one. The convex hull over a set of points X forms a convex polytope as
illustrated in Fig. 2.1(c). A face of a k-dimensional polytope is described as any
intersection of this polytope with a half-space, such that none of the polytope’s
interior points lie on the boundary of that half-space. Faces are denominated
according to their dimensions: a vertex is a 0-dimensional face, an edge is a
1-dimensional face, a ridge is a k — 2-dimensional face and a facet is a k — 1-
dimensional face. Each ridge connects two facets. In this thesis, it is assumed
that convex polytopes are are given in simplicial form, i.e., a facet is spanned
by k vertices. The reason for this assumption will become clear in Section 4.6.2.
Furthermore, we denote the face lattice as the partially ordered set of all faces
of a convex polytope, the ordering is by set inclusion.

2.2 Grasps and Independent Contact Regions

In this dissertation, the surface of a target object is discretized and represented
as a set of points whose indices are collected in the set O = {1,...,0}. For a
specific grasping device, a f-fingered grasp

G=(P,q) (2.5)

is denoted as a pair of hand joint configuration vector q = [q1,...,q:]" and
palm pose P € R®, which can be written in terms of three Euler angles and a
position vector. Additionally, we define a contact-level grasp

G={gi€0:i=1,...,f} (2.6)

as a set of contact point indices. This definition does not depend on the specifics
of any grasping device. For given hand kinematics and geometry, a contact-level
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grasp G can be expressed via the forward kinematics map as a function of a
grasp G, i.e., §=9G(G(P,q)).

One prevalent concept in this dissertation is to associate a contact-level
grasp with a set of ICR on the target object’s surface, such that one such region
is associated with each fingertip (see Fig. 4.1 for an illustrative example). These
regions are constructed such that each member of the family of contact-level
grasps formed by placing every finger anywhere within its respective region
is guaranteed to qualify for pre-specified tasks. This representation provides
robustness in front of object modeling, perception and finger positioning in-
accuracies since it is unrealistic to assume that a gripping device can contact
the object precisely at prescribed locations. The computation of these regions
is detailed in Chapter 4 and allows to incorporate empirical data in form of a
provided prototype grasp in order to synthesize a family of similar grasps.

2.3 Dynamical Movement Primitives

The reactive motion generation framework presented in Chapter 7 is based
on the concept of Dynamical Movement Primitives (DMP), which was orig-
inally proposed by Ijspert, Nakanishi and Schaal [24]. Essentially, a DMP is
a Dynamical System (DS) which constitutes a policy over the state space and
acts as an online trajectory generator for one DoE. Usually, the DS parameters
are learned from empirical data provided in form of demonstrated trajectories.
During execution, a motion profile is generated via integrating the correspon-
ding DS. This allows to incorporate state feedback in real-time and thus a DMP
can be seen as a mid-level controller with the ability to instantaneously react to
state disturbances. To execute the generated trajectory, an additional low-level
tracking controller generating appropriate motor commands is necessary.

2.4 Hardware and Robots used in this Dissertation

Human demonstrations served as inputs to the grasp synthesis algorithms in
Chapters 4 and 3, as well as the reactive motion generation method presented
in Chapter 7. Demonstrated data was collected by means of the sensorized
glove depicted in Fig 2.2(a). Additionally, a magnetic 6D pose sensor was em-
ployed to extract palm poses for teleoperation purposes. Most of the algorithms
which are proposed and evaluated in this dissertation can be easily generalized
to different robots. The hand motion controllers proposed in Chapter 7 were
tested on the Shadow Robot platform [25] shown in Fig. 2.2(b), which is ope-
rated by the Institut des Systémes Intelligents (ISIR) lab at University Pierre and
Marie Curie (UPMC) in Paris, France. It comprises a pneumatic 4 DoF arm
and a hand with 20 actuated DoF. Five ATI-Nano17 6D force/torque sensors
embedded in the fingertips enable tactile sensing. For evaluating the grasping
pipeline described in Chapter 6 we employed the underactuated Velvet Fingers
gripper [26, 27], which implements active surfaces by conveyor belts on each
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Figure 2.2: Utilized Hardware and Robots: (a) An Immersion Cyberglove-18 was used
to record joint angles while demonstrating static prototype grasps and grasp trajectories.
Additionally, in combination with the attached WinTracker 6D pose sensor, the glove
was used to teleoperate the Shadow Robot platform. (b) In the Handle project, the
anthropomorphic Shadow Robot hand/arm platform was used. (c) The Velvet Fingers
gripper mounted on a KUKA lightweight arm used in the RobLog project. (d) Also
utilized in RobLog was the Parcelrobot equipped with the Velvet Fingers Gripper.

of its two fingers. To this end we used the platform depicted in Fig. 2.2(c) at
the Centro E. Piaggio, University of Pisa, Italy. The system comprises the Velvet
Fingers gripper with 3 actuated DoF (one for open/close movement and one
per finger for conveyor belt actuation) and a 7-DoF KUKA lightweight arm.
Perception is done with an ASUS Xtion structured light camera mounted on
the gripper. An additional set of test runs was done on the Parcelrobot plat-
form which can be seen in Fig. 2.2(d). It is located at the Bremer Institut fiir
Produktion und Logistik GmbH (BIBA) in Bremen, Germany. Equipped with
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the Velvet Fingers gripper, it is a dedicated system for automatically unloading
shipment containers filled with randomly packed goods. The kinematic struc-
ture comprises linear and rotary axes that cover a cylindrical workspace.

2.5 Abbreviations

Abbreviations which are used throughout this manuscript are summarized in

Table 2.1.

Table 2.1: Table of Abbreviations: Abbreviations commonly used throughout this thesis

DoF Degree of Freedom

TbD | Teaching by Demonstration
ICR Independent Contact Region
CoM | Center of Mass

GWS | Grasp Wrench Space

TWS | Task Wrench Space

OWS | Object Wrench Space

EWS | Exertable Wrench Space

LP Linear Program

NLP | Nonlinear Program

QP Quadratic Program

SQpP Sequential Quadratic Program
TSDF | Truncated Signed Distance Field
GMM | Gaussian Mixture Model

GBF Gaussian Basis Function

LWR | Locally Weighted Regression
MSE | Mean Square Error

STD Standard Deviation

ODE | Ordinary Differential Equation
DS Dynamical System

GAS Global Asymptotic Stability
DMP | Dynamical Movement Primitive
MPC | Model Predictive Control
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2.6 Notations

Some common notations and symbols used throughout this dissertation are
shown in Table 2.2. Common symbols are used whenever possible in all chap-
ters, with concepts introduced inline with the text.

Table 2.2: Table of Notations: Notations commonly used throughout this thesis

General Notation

a,...,z | Scalar quantities

Oyeney

a,...,z | m-dimensional column vectors

Ky.oy W

A,...,Z | m x n-dimensional matrix quantities

A,....Q

xT, YT Transpose of the vector x; transpose of the matrix Y

[Ix]|2 Euclidean norm of vector x — i. e, [|x|l2 = /x3 + ... +x2,

[Ix]1 Ly norm of vector x —i.e., ||x[[1 = [x1|+ ...+ [xm]

x* Solution of an optimization problem with decision variable x
Set Notation

R Set of real numbers

Z Set of integer numbers

A,...,Z | Generic sets

ACB A is a subset of B

AUB Union of the sets A and B

ANB Intersection of the sets A and B

A®B Minkowski sum of the sets A and B - 1i. e., the set formed by
adding each element in A to each element in B

AN\ B Set difference between A and B - 1. e., all elements of

A which are not in B







Chapter 3
Related Work

3.1 Grasp Synthesis

Synthesizing grasps which are appropriate for the considered robotic platform
has long been in the focus of research and is a central aspect in this dissertation.
Methods operating on a grasp contact level are often referred to as analytic
approaches [28]. Here, stable grasps are constructed by defining fingertip loca-
tions on the surface of the target object [29, 30]. Often, these methods rely on
precise knowledge of hand kinematics, object geometry and the relative pose of
hand and object. Ferrari and Canny [31] form grasp quality criteria which are
subsequently used for synthesizing optimal grasps. Borst et al. [32, 29] suggest
heuristics for the fast generation of large sets of stable grasps based on random
sampling. In [33], the authors synthesize grasps by optimizing a differentiable
quality metric. A review on the topic is provided by Bicchi [34].

In this thesis, to incorporate the notion of uncertainty in the synthesis pro-
cess, we adopt the ICR paradigm which was introduced by Nguyen [35]. He
defined the set of optimal independent regions with the largest minimal radius,
which yield a force-closure grasp if each finger is placed anywhere within its re-
spective region. Ponce et al. [36] extended the concept to the computation of in-
dependent regions for 3-fingered grasps on planar objects and 4-fingered grasps
on polyhedral objects [37]. The number and distribution of points shaping ICR
is not unique and depends on the underlying construction principle. To over-
come the combinatorial nature of this problem, Pollard [38, 39] centered the
ICR computation around an affine transformation of the GWS corresponding
to an initial prototype grasp. This is a central idea in the algorithms we present
in Chapter 4. The construction procedure in [39] is based on geometric re-
asoning. It incorporates a task related grasp quality measure to synthesize sets
of whole-hand grasps which are similar to a prototype grasp comprising a large
number of contacts on discretized 3-dimensional objects. Charusta et al. [15]
consider a patch contact model in the region construction procedure, a way
to compute continuous ICR on target objects represented in closed-form was

17
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introduced in [40]. In a work closely related to ours, Roa and Sudrez [41] sug-
gested a fast approach which grows independent regions for precision grasps on
discretized objects, but the presented computation scheme is overly restrictive.
An extension of [41] which loosens the dependence of the resulting regions on
the necessary seed grasp was recently proposed in [42]. A detailed comparison
between the works in [41, 42] and the work conducted in this thesis is given in
Section 4.6.3.

As argued in the previous chapter, for a practical grasp synthesis system it
is not sufficient to only plan contact locations. Also appropriate palm poses
and hand joint configurations need to be found. In the RobLog project, a data-
driven approach [43, 44, 45] which accounts for empirical data in the synthesis
process has been adopted. Data-driven methods generate grasp hypotheses for
a given object in a knowledge database and often provide a minimalistic grasp
definition, e. g., only the approach vector [46]. Combined with appropriate
heuristics for grasp execution and/or learning schemes [47], in many cases this
has been shown to be robust to uncertainties inherent in a robotic system.
To simplify the grasp synthesis and subsequent retrieval from the database,
it has been suggested to approximate the target object with primitives or su-
perquadrics [48, 49, 50]. A commonly used strategy to compute the underlying
grasp hypotheses is to sample the surface or bounding-box normals of the tar-
get object and to use them as approach vectors in a simulation where the fingers
are closed once the gripper’s palm contacts the object [51, 52]. A wrench-based
geometric quality criterion, such as the one in [31], is usually used to rank the
grasps. Alternatively, as discussed in Chapter 6, suitable pre-grasps can be cre-
ated by minimizing an appropriate energy function as demonstrated in [53, 54].
Again, the final grasp quality evaluation is usually done after auto-closure of
the fingers in a static simulation (i.e., using a spatially fixed object and only
performing forward kinematics and collision checks while ignoring interaction
forces) [54, 45]. However, for underactuated simple grippers as the one used
in the RobLog project, this strategy is unsuitable because it fails to accurately
predict the final grasp configuration which depends on the interaction between
gripper and object. We refer to Bohg et al. [55] for a complete recent review on
data-driven grasp synthesis approaches.

The goal of the RobLog project is to autonomously unload shipment con-
tainers filled with randomly packed goods. This requires grasp synthesis and
execution in cluttered scenes, which is subjected to intrinsic difficulties due to
the fact that many pre-planned grasps are not reachable in such environments.
In chapter 6 we adopt an approach similar to the one in Berenson et al. [56],
who address this problem by online computation of a grasp score based on
heuristics. The approach in [57, 58] allows for simultaneous contacts of the
gripping device with multiple objects. Pushing actions are used to manipulate
otherwise non-graspable objects. Saxena et al. [59] present a vision-based ap-
proach which accounts for uncertainty in the target object’s location during
planning and grasp selection.
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3.2 Reactive Motion Planning and Obstacle
Avoidance

Dynamical systems have become a popular framework for encoding motions.
Our motion generation system, which was used in the Handle project to gene-
rate hand joint motions, is described in Chapter 7 and is based on the DMP
framework [24]. Here, the underlying DS (usually referred to as the transfor-
mation system) consists of a predefined stable linear DS which is modulated
by a nonlinear forcing function that decays over time ensuring Global Asymp-
totic Stability (GAS). Arbitrarily many DoF can be synchronized via a phase
variable (whose evolution is governed by the so called canonical system) which
acts as a substitute of time. The learning problem is usually solved by fixing
the nonlinear parameters of the forcing function and fitting only the linear pa-
rameters with Locally Weighted Regression (LWR) [60]. The DMP framework
(see [61] for a recent review) can be used to generate point-to-point motions
as well as periodic movements and lends itself well to reinforcement learning
techniques [62, 63, 64, 65, 66]. Although DMP offer a compact way of cap-
turing the dynamics of a single demonstration, the actual underlying dynamics
can differ substantially in regions of the state space not covered by this demon-
stration. Hence, it is desirable to account for multiple different demonstrations
to increase generalization.

In this thesis, we use embedded optimization to generalize over a set of
demonstrations capturing a movement. Most works aiming at generalization
of DMP are based on statistical learning techniques. Pastor et al. [67] build a
library of template primitives which can be used for sequencing movements.
Matsubara et al. [68] learn DMP from multiple demonstrations and combine
them using a style parameter. In [69], a statistical movement representation
using Gaussian Mixture Regression is proposed. Ude et al. [70] suggest to keep
multiple demonstrated trajectories in memory and to synthesize new primitives
using LWR in order to compute local models. This approach was extended
in [71] to make it feasible for online computation by directly representing
demonstrations as DMP and utilizing Gaussian Process Regression to com-
pute new DMP parameters depending on a given desired goal point. Similarly,
in [72] striking movements for table tennis are learned by mixing primitives via
a gating network.

An alternative DS model structure was proposed by Gribovskaya et al. [73].
Here, the authors define a locally stable DS via a probabilistic representation
of the demonstrations as a Gaussian Mixture Model (GMM). Their system is
time-independent which, depending on the application, can increase robust-
ness in the presence of temporal perturbations. Furthermore, only one DS is
learned which potentially allows to capture coupling effects between different
DoF. Extending the work in [73], Khansari-Zadeh et al. [74] introduce the Sta-
ble Estimator of Dynamical Systems (SEDS) approach. Here, the parameters of
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the GMM are estimated by solving a Nonlinear Programming Problem (NLP).
As in [73], SEDS learns a single time-independent coupled DS with additional
constraints guaranteeing that the system is GAS. However, as stated by the au-
thors in [74], with increasing number of DoF the learning problem can become
intractable.

In a reactive planning setting based on DS, obstacles are typically dealt with
locally by augmenting the DS formulation with repelling potential fields [75,
76]. Alternatives include the use of coupling feed-forward terms [77] and ap-
propriate modulation of the original DS depending on the distance of the cur-
rent state to the obstacles [78, 79]. With increasing maturity of online optimiza-
tion algorithms and solvers, it is becoming feasible to formulate obstacles di-
rectly as constraints in the state space [80, 81]. In Chapter 7, we present a MPC-
based approach to motion control in the presence of obstacles. Approaches in
this mould require online solution of optimization problems during motion exe-
cution, in order to ensure that the constraints are obeyed at each point in time.
Variants of this concept have recently been successfully applied to on-line path
planning schemes for autonomous/semi-autonomous vehicles [82, 83].



Chapter 4
Synthesizing Grasp Families
from Prototypes

Grasp contact point synthesis

This chapter deals with the construction of contact-level grasp families, which
are represented as independent contact regions on the discretized surface of a
target object. The computation is based on an available prototype grasp and
an appropriate task specification. Contributions include an in-depth analysis
about the geometric relations in the context of independent contact regions
and the development of efficient parallelizable algorithms to compute these re-
gions using convex optimization techniques. Furthermore, compared to exi-
sting approaches, the dependence on the necessary initial grasp is loosened for
special cases. This allows to prioritize desired fingers/regions and to produce
ICR which are shaped to befit the considered application.

4.1 Introduction

An important goal of the robot grasp selection process is to choose contact
points which are suitable for the application at hand. Here, evaluating the
“goodness” of a given multi-fingered grasp while accounting for the capabilities
of the grasping device is an important issue and there have been many quality
measures proposed in the literature (see [84] for a survey). For a large class of
grasps the force closure property is desirable. Loosely speaking, force closure
means the ability of the grasp to immobilize the grasped object influenced by an

21
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Figure 4.1: Exemplary Contact Regions: Shown are the ICR constructed from a 4-
fingered prototype grasp. The grasp is provided by a human demonstrator via teleope-
ration in a virtual environment as described in Section 5.3.2.

arbitrary external disturbance, if the manipulator is capable of exerting suffi-
ciently large forces through frictional contacts on the object [85]. Reuleaux [86]
coined the term form closure for the related ability of a grasping/fixturing de-
vice to fully prevent motions of an object via unilateral frictionless contact con-
straints. For analysis purposes, contact force vectors and resulting torque vec-
tors are commonly concatenated to wrench vectors. Mishra et al. [87] showed
that a grasp is force/form closure, if the convex hull spanned by the contact
wrenches stemming from bounded contact forces contains a neighborhood of
the origin. The wrench set described by this convex hull is commonly referred
to as the Grasp Wrench Space (GWS).

In many cases force closure is just a necessary, and not a sufficient require-
ment - a good grasp should be task oriented and be able to efficiently withstand
forces, which are likely to occur during the performed task as stated by Li and
Sastry [88]. In their work, the problem of incorporating knowledge of a task
into the grasp analysis is addressed by formulating an ellipsoidal wrench set in
order to describe probable disturbances. However, they conclude that it is dif-
ficult to model the ellipsoid with regard to specific tasks. If nothing about the
task is known, a common measure is the radius of the largest origin-centered
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insphere of the GWS, which was proposed by Kirkpatrick et al. [89]. Several
works have integrated disturbance forces acting on the target object in the grasp
evaluation [38, 90, 30].

From the viewpoint of a grasping device, not only the ability to resist distur-
bances, but also the robustness of a grasp to modeling, perception and positio-
ning inaccuracies is an important factor. In this chapter, we present algorithms
constructing ICR, which are designed to cope with uncertainties, while taking
pre-specified disturbances into account. An illustrative example is shown in
Fig. 4.1. To overcome the combinatorial nature of the problem, our compu-
tation schemes are centered around affine transformations of the GWS corre-
sponding to a provided initial prototype grasp as discussed in Section 4.6.2.
This prototype grasp can be computed by one of the contact-level planners
discussed in Section 3.1, or be provided in form of a human demonstration.
Demonstrated grasps usually are of high quality and naturally incorporate task
specific constraints. Furthermore, anthropomorphic robotic hands are, at least
to some extent, designed to replicate such grasps. Here, we do not account for
the problem of finding appropriate palm poses and hand joint configurations
corresponding to the computed regions. In the context of ICR, these problems
have been addressed in [91]. Roa et al. [92] provide a solution to the related
problem of ensuring that the regions are reachable by a given grasping device.

The rest of this chapter is organized as follows: below we state the tac-
kled problem and assumptions before detailing the utilized contact models in
Section 4.3. The presented framework builds upon the geometric relations re-
garding the grasp and task formulations which we discuss in Section 4.4. In
Section 4.5 we introduce an extension of the GWS to families of grasps before
we proceed to describe the developed ICR computation schemes in Section 4.6.
Finally, we draw conclusions in Section 4.7.

4.2 Problem Description and Assumptions

Nomenclature

Indices
c Contact point index, ¢ € {1,...,0}
i Grasp contact index, 1 € {1,...,f}
j Primitive wrench index, j € {1,...,1}
h Hyperplane index, h € {1,...,u}
t Sub-task index, t € {1,...,n}
General
Pe Contact point on an object’s surface, ¢ € {1,...,0}
ne Contact normal at p., c € {1,...,0}
fe Contact force at p,, c €{1,...,0}
wj(p.) | j-th primitive contact wrench at p.,j € {1,...,1}
k Dimension of the wrench space, k € {3, 6}
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o Static friction coefficient, pu > 0
o Soft finger torque coefficient, p > 0
(A, b) | H-representation of a GWS, A € R“*k b ¢ R"
(E, s) | H-representation of an EWS, E € R4*k s ¢ R%
Sets
Q] Contact point index set, O = {1,..., 0}
S Contact-level grasp, § ={g; € 0:1=1,...,f}
Ri Index set of contacts forming the i-th ICR, R; C O
W Set of primitive wrenches generated at p,.
Wy, Primitive wrench set generated at pg,
W, Primitive wrench set corresponding to contacts in R;
Zi Set formed by the indices of those facets of GWS;;;
which contain w;(pg,)
8i Search zone associated to wj(p,, )
Vi Set of wrenches spanning the h-th facet of GWS;;;
Vi Set of wrenches in Vy, generated at p 9
Un i Set of wrenches in Vi, not generated at pg,
Fn Finger indices associated to the h-th facet of GWS;;;
Ry, Contacts in regions R; corresponding to fingers in F},

The surface of a target object is assumed to be discretized and described as a
polygonal mesh (or polygonal chain in the case of planar objects) with vertices
p. which, henceforth, are referred to as contact points. The contact point in-
dices are collected in the set O = {1,...,0}. Each point p. has an associated
inward-pointing unit normal n. and neighboring points, defined as the ones
connected to p. by an edge of the mesh. Thus, this representation can be seen
as a graph, where nodes represent mesh vertices p. and edges define the neigh-
boring relation between these vertices.

A f-fingered contact-level grasp G ={gi € O : i =1,...,f} and correspon-
ding independent contact regions R; C O are specified in terms of contact point
indices. For convenience, contact-level grasps are simply referred to as grasps
in the rest of this chapter. A constructive definition of the regions R; is stated
in Equation (4.12) in Section 4.6.1. We define the notion of viable grasps as

Definition 4.2.1 (Viability).
Viable grasps are force closure grasps which comprise one contact drawn from
each region R; and are suitable to resist expected disturbances (see Section 4.4.2).

It is assumed that the target object is sufficiently discretized to capture lo-
cal curvature, ensuring that grasps with contacts on mesh facets spanned by
the discrete points forming regions R; are also viable grasps. Furthermore, we
presume that quasi static conditions prevail.

The aim is to develop efficient algorithms for the synthesis of grasp families,
represented as regions R, based on user-input provided in form of an initial
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(a) (b)

Figure 4.2: Friction cone Discretization: (a) To avoid slippage, contact forces f. have to
lie in the cone formalized in (4.1). (b) Approximation of the friction cone as a convex
polytope resulting from an exemplary discretization with 1 = 9 forces.

viable grasp G- Also, we want to investigate what is the set of disturbances
that every viable grasp is guaranteed to resist, if desired regions R; themselves
are defined by a user beforehand.

4.3 Contact Modeling

We first consider frictional point contacts between the target object and the
fingers of the gripping device. Static friction is taken into account via Coulomb’s
model, which states that slippage between two contacting surfaces does not
occur if the following condition is satisfied

[(I—nenl) felr < pnlfe), (4.1)

where f. is the contact force, i > 0 denotes the static friction coefficient and I
is the (appropriately dimensioned) identity matrix. We discretize the nonlinear
friction cone in (4.1) with 1 forces, such that one force acts along the contact
point normal n. and the remaining ones are distributed equidistantly around
the cone’s base as depicted in Fig. 4.2. The discretization forces at a contact
point p. are denoted in matrix notation as F. = [f1(p.),...,fi(pc)] which
allows to express a contact force f. as a conic combination of forces in F. or
formally f. = Feax. : & > 0. The force f. creates a torque T, = (p. X fc).
Force and torque vectors can be concatenated to form a wrench

_| fe Koy
we = |:Tc/)\:| eR", A= mgx(HpCHz), (4.2)
where the wrench dimension k = 3 for planar target objects and k = 6 in
case of 3-dimensional objects. Dividing the torque parts by the largest possible
torque arm A guarantees scale invariance [38]. The wrenches generated by the
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forces in F. are referred to as primitive wrenches. For a given contact point p..,
the set of primitive wrenches is defined as

We ={wi(pe), - ,wilp)}- (4.3)

The soft finger contact model according to [3] allows for additional tor-
sional moments around the local contact normal n.. To this end, the set of

L : . ) T
primitive wrenches in 4.3 is augmented with the wrenches [n], pnl/A] " and

ng, —pnl /A]T, where p > 0 is a positive scalar. In the soft finger contact
model, scaling the wrench vectors by the largest possible torque arm A does
not grant scale-invariance any more. This is due to the fact, that the additional
wrenches do not depend on the object geometry. Still, scaling imparts invariance
to the chosen units of length.

In the case of the frictionless point contact model, the friction coefficient
w is zero and f. acts along the surface normal. In this case, the set W, just
contains one wrench generated by the respective normal force.

Form closure grasps on 3-dimensional objects require a minimum of seven
frictionless contacts, since fewer than seven wrenches cannot positively span
R®. For some objects with rotational symmetries it is not possible to achieve
the form closure property with frictionless contacts. Regarding force closure
grasps, considering the frictional hard- and soft finger contact models, a re-
spective number of three and two contacts is always necessary. Some objects
require four frictional hard-finger contacts which are always sufficient [93].

4.4 Physically Relevant Grasp and Task Modeling

In this section we want to address the following questions which, according to
Borst et al. [30], are paramount in static grasp synthesis:

e What forces can a given grasp exert on the object?
e Which disturbances are expected to act on the object?
e How well can the grasp resist the expected disturbances?

In the scope of this thesis we adhere to the nomenclature established in the
literature and refer to wrench sets such as the GWS as wrench spaces, although
they are not actual vector spaces since the axioms of the identity element of
addition and the inverse elements of addition do not necessarily hold.

4.4.1 The Grasp Wrench Space

With respect to the first of the above questions, the GWS describes the set of all
wrenches generated by forces that can be applied to an object through a grasp
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G. Formally, the discrete GWS is defined as the polytope given by the convex
hull over the primitive wrenches associated to all grasp contacts in §

GWS — conv({w weW,, Ve e 9}). (4.4)

The above definition implies that the summed magnitudes of the contact forces
f., which generate the wrenches in (4.2) forming the primitive wrench sets ac-
cording to (4.3), is bounded. In this work, we consider a bound ||f.||, = g on
the grasp contact forces. Since the applied forces are proportional to the cur-
rent in the grasping device’s actuators, this can be seen as a limitation due to
a common power source and an appropriate value for g can be derived from
the kinematic structure and torque limitations of the considered device [31]. It
is worth noting that all primitive wrenches spanning a GWS lie on its bound-
ary. However, not necessarily all of these wrenches constitute vertices of the
GWS, e.g., when a grasp G contains multiple points on the same planar sur-
face, some of its associated wrenches may lie on ridges (see Section 2.1) of the
corresponding GWS. This is considered in the implementations used to gene-
rate the results presented in Chapter 5. In the following derivations however,
to avoid notational clutter and without loss of generality, we assume that all
primitive wrenches in (4.4) constitute vertices of the GWS.

The related concept of the Object Wrench Space (OWS) was introduced by
Pollard in [38]

OWS:com}({w:WGWC, Ve € O}) (4.5)

It is defined as the convex hull over the primitive wrenches associated to all
points of the mesh describing the geometry of an object. As such, it describes
the best possible grasp for a given object and each GWS is a subset of the OWS.

4.4.2 The Task Wrench Space

In the presented framework, tasks are represented as sets of wrenches necessary
to counteract expected disturbance forces/torques acting on the object, i.e.,
task wrenches are the mirror image of expected disturbance wrenches. Given n
tasks Ty, we denote the Task Wrench Space (TWS) as the convex hull over the
Minkowski sum of these tasks

TWS — conv({'fl @ ...@‘In}>. (4.6)

Similar to the formulation of the GWS in (4.4), in the above definition it is
assumed that the sum magnitude of the forces generating the wrenches forming
a sub-task T is bounded.

If the exact task specification is unknown, it is reasonable to assume that
the grasp at least should be able to withstand the disturbances introduced by
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OWS e

(a) (b) ()

Figure 4.3: Wrench Spaces: Illustrated is an abstract 2-dimensional wrench
space. (a) The OWS is formed by the convex hull over all primitive wrenches that can
be applied to the object through grasp contacts. (b) Shown is a GWS corresponding to a
three-fingered grasp with friction cone discretization 1 = 2, i. e., two primitive wrenches
are generated at each grasp contact point pg. . (c) To fulfill the task requirements, the
grasp has to be able to apply the task wrenches, 1. e., the GWS has to contain the TWS.

gravity and contacts between the object and the environment [30]. A popular
way of representing these requirements is to formulate the TWS as the largest
origin-centered insphere of the GWS corresponding to the considered grasp.
This sphere contains the largest wrench the grasp is able to counteract in any
direction and relates to the grasp quality criterion proposed by Kirkpatrick et
al. [89]. Yet, this gives only weak protection against disturbance forces on the
extreme parts of the object geometry and might pose unnecessary restrictions
by protecting against disturbances which are unlikely to occur. This is due to
the fact that torques are typically caused by forces acting on the boundary of the
object and therefore a general TWS is not uniform [30]. Pollard [38] suggested
a physically better motivated way to describe a task T; by wrenches resulting
from any possible disturbance of magnitude d that can act on any point p,
on the objects surface. This way of modeling a task incorporates the object
geometry in the grasp evaluation and is equivalent to mirroring and scaling the
OWS in (4.5) and we denote the corresponding set of wrenches as T7¢.

Combining multiple independent sub-tasks usually involves the computa-
tionally expensive Minkowski sum according to Equation (4.6). However, Borst
et al. [30] have shown that disturbances caused by gravitational forces of any
direction acting in the object’s Center of Mass (CoM) with magnitude m can
be easily incorporated in 79 if the CoM is used as wrench origin. The resulting
gravitational wrenches have zero torque parts and, as well as T9, are tightly
enclosed by a sphere in the force domain. Thus, it is possible to simply scale the
force domain of T9 by a factor 1 +m/d in order to account for the combined
effects of forces corresponding to surface disturbances and gravity.

An example of the wrench sets constituting the OWS, GWS and TWS is
shown in Fig. 4.3. For simplicity, a hypothetical 2-dimensional illustration of
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EWS:GWSH;;{ """ B

(a)

Figure 4.4: The Exertable Wrench Space: (a) The EWS equals the GWS; ;. since each
region R; only contains the initial grasp contacts in Gj;;. (b) Adding new points to
region R, i. e., adding new primitive wrenches to its corresponding set Wz, according
to (4.9) allows for new grasps to be formed by combinations of contact points in the
independent regions. (c) The EWS is defined as the intersection of all grasp wrench
spaces corresponding to viable grasps, facets of the EWS are coplanar to facets of the

limiting GWS.

wrenches is adopted, although they are 6-dimensional in the general case and
3-dimensional for planar grasps.

4.5 The Exertable Wrench Space

Here, we introduce a generalization of the GWS which is associated to a single
grasp, to the Exertable Wrench Space (EWS) for a family of grasps. Let us for
the moment assume that a family of grasps is already defined in terms of f
ICR. If the sets Ry,...,R; forming these regions are are disjoint, the number
of viable grasps v according to Definition 4.2.1 is given by the product of the
cardinalities of R;

V= [Ry] X ... X Rl (4.7)

In the case of partially overlapping sets R;, which is admissible in the scope of
this work, (4.7) gives an upper bound. This allows for a formal definition of
the EWS as the intersection of all grasp wrench spaces corresponding to viable

grasps.
EWS = (GW51 n...N GWSV). (4.8)

Analogue to the GWS, which is composed of the wrenches a single grasp
can exert, the EWS represents the set of wrenches which every viable grasp can
apply to the target object. Figure 4.4 shows the relation between the EWS and
the contact points in the ICR. Let us denote the wrenches associated with the
contacts in R; as

Wz, ={w:w e W, Vc € Ri}. (4.9)
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Every point added to a region R; contributes wrenches to its associated set W,
in (4.9) and limits the EWS.

The mirror image of the EWS provides an exact formulation of the distur-
bance wrenches each of the viable grasps is guaranteed to withstand. However,
from Equations (4.7) and (4.8) it follows that a brute-force approach via com-
puting and intersecting the convex hulls of all possible grasps is prohibitive in
the general case, since it requires the computation and intersection of v convex

hulls.

4.6 Computation of Independent Contact Regions

Now we consider the problem of computing ICR when given a viable exam-
ple grasp Ginir and a task specification in form of a TWS as discussed in Sec-
tion 4.4.2. In the light of the above, it is evident that these regions need to be
constructed such that the corresponding EWS contains the TWS, 1. e., each via-
ble grasp needs to be able to at least exert the task wrenches. Thus, the goal is
to approximate the EWS and compute regions R; which fulfil this requirement.

Let the H{-representation of the prototype’s GWS in (4.4) be given as (A, b),
where A = [ay,...,a,]" € R**¥ is a matrix containing the inward-pointing
unit normals to the bounding hyperplanes. Vector b = [by,...,b,] € R* con-
tains the corresponding distances to the origin (see Section 2.1). Analogously,
the matrix E = [eq,...,ey]" € R%*¥ and the vector s = [sq,...,s.] € RY
describe the H-representation of the EWS.

4.6.1 Exploiting Task Redundancy

By definition, the GWS of a viable prototype grasp contains the TWS of in-
terest. Therefore, grasp Gi,;; is redundant with respect to the task. The idea is
to trade-off this redundancy for the possibility to generate a family of viable
grasps, such that each member of this family still respects the task require-
ments [15]. This trade-off can be formalized with an affine transformation of
the GWS associated with G;;, 1. €., an approximation of the EWS by a new
polytope related to the GWS. The process of transforming the GWS leads to
the definition of zones in the wrench space. Pollard [38, 39] provided the key
idea of “populating” independent regions R; with those contacts which con-
tribute wrenches lying in these search zones. Here, we interpret the underlying
principle in the context of visibility, which is a well known concept in the field
of computational geometry [23].

Consider a convex polytope P. By convexity, P is fully contained in every
closed inner half-space in (2.2) which is defined by a hyperplane corresponding
to any of its facets. A facet h is said to belong to the visible region of a point X, if
that point lies in the outer half-space in (2.3) which is defined by the hyperplane
Hy, supporting that facet, i.e., X “sees” facet h.
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Figure 4.5: Visible Region: (a) Depicted is a polytope P, facets which are seen from
vertex x are highlighted in yellow. (b) Zone 8 is formed by the intersection of closed
outer half-spaces defined by H; and H, according to (2.3). Since point X lies in 8, the
polytope {P \ x, X} fully contains P and thus X can safely substitute x.

Proposition 4.1 (Visibility).
(a) P C{P\x, x} if all facets which are visible from x are also visible from X.
(b) The convex hull over multiple sets containing P also contains P.

Proposition 4.1(a) is illustrated in Fig. 4.5. It states, that the polytope resul-
ting from replacing a vertex x of P with a point X will fully contain P, if the
visible region of x on P is seen by X as well. Let zone 8 be the intersection of all
outer half-spaces defined by hyperplanes corresponding to facets which contain
vertex x of P. An equivalent interpretation of 4.1(a) is, that P is preserved if
substitution point X lies in zone 8. Note that it is possible for X to see more
facets of P than x. Proposition 4.1(b) is a direct consequence of convexity.

In this light, the requirements for a point on a target object’s surface to be
included in one of the independent regions R; are illustrated in Fig. 4.6. The
core concept is based on finding substitutes for wrenches inside their respective
search zones, such that the EWS which contains the task is preserved. To for-
malize the notion of search zones, we need to define f1 sets holding the indices
of those facets of the prototype grasp’s GWS which contain the j-th primitive
wrench generated at the i-th grasp contact

Zij={heZ,:afwj(pg)+bn=0}. (4.10)

Assuming that an EWS is available (methods for appropriately approximating
the EWS under consideration of given tasks will be discussed in Section 4.6.2),
the definition in (4.10) allows to describe search zones in the wrench space

8ij={weR:efw+s, <0, VheZ}. (4.11)

Here, each primitive wrench spanning the prototype grasp’s GWS is associated
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Figure 4.6: ICR Construction: Shown is the ICR construction procedure in an abstract 2-
dimensional wrench space for a 3-fingered grasp with friction cone discretization 1 = 2.
(a) The prototype grasp’s GWS and it’s confining hyperplanes. (b) The light shaded area
illustrates an EWS approximation computed as an affine transformation of the proto-
type’s GWS as discussed in Section 4.6.2. The EWS contains the provided TWS which is
signified by the dark shaded region. (c) The union of EWS facets which are visible from
wi(pg,) and wy(pg, ) is highlighted in yellow. Corresponding search zones are formed
according to (4.11). According to (2.3), 85 is the intersection of the closed outer half-
spaces of EWS planes (ey, s1) and (e, s2), 83, contains the intersection of closed outer
half-spaces associated to (e, s;) and (e3, s3). (d) The same EWS facets are visible from
the wrenches generated at p; and pg, . Thus, as a consequence of Proposition 4.1, con-
tact point p, can safely replace pg, in a grasp and ¢ qualifies for inclusion in region R;.
(e) Not all EWS facets which are visible from the wrenches generated at p,, are seen
by the wrenches corresponding to p¢. Therefore, & does not qualify for inclusion in R;.
(f) The cyan shaded areas illustrate the search zones 8;; corresponding to all prototype
grasp contacts g;. As stated in (4.12), regions R; are formed by contacts which can con-
tribute convex combinations of primitive wrenches lying in search zones 8;; and 8;, (or
the intersection of these zones).

with one search zone 8;; in (4.11). With reference to Fig. 4.6(f), note that
any wrench lying inside 8;; can substitute a prototype grasp contact wrench
Wj(pg,) which results in a GWS that still contains the EWS and thus the TWS.
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Algorithm 1: ICR Computation - Full

Input: EWS approximation (E, s ), search zone index sets {Z;}, target object {p, nc}
Output: set of f regions Ry

for c + 1to o do /* Loop over all contact points of the object */
for i<+ 1to fdo /* Loop over all f fingers */

if InclusionTest(c, {Zy1,. .., Zi1}, EWS, target object) then
L | Riec /* c qualifies as a member of Ry */

return {Rq,..., R¢}

Algorithm 2: ICR Computation - BFS

Input: EWS approximation (E, s), prototype grasp Gj,i¢, search zone index sets {Z;},
target object {p., nc}
Output: set of f regions Ry

queue + 0

for i < 1to f do /* i.e., for each contact point gi € Ginit */
(Ri «— 0
Ri + gi /* Prototype grasp contact g; qualifies by definition as member of R; */
queue < push neighbors of g; /* Enqueue the neighbors of contact g; */
while queue # () do
c < pop queue /* Dequeue the first element in the list */
if InclusionTest(c, {Zi1,. .., Zi1}, EWS, target object) then
Ri <+ ¢ /* c qualifies as a member of R; */
L queue < push neighbors of ¢ /* Enqueue the neighbors of contact ¢ */

return {Rq,..., R¢}

This observation motivates the following Proposition for qualifying contacts as
ICR members.

Proposition 4.2 (Inclusion condition - CC).

Index ¢ € O is included in region R; if there exist convex combinations of
corresponding primitive wrenches W lying in each of the | search zones 8
associated with g.

We can use the above Proposition to state a formal definition of the regions
R; which form ICR

Ri = {C €0: E|(Xj e R's.t. WCO(]' S Si,j, (4.12)
j = 1,...,1, (Xj 2 0, ”0‘]'”1 = ].}

Evaluating the inclusion condition in Proposition 4.2 requires the solution of
a feasibility problem which can be formulated as a Linear Program (LP) [39].
In [41], Roa and Sudrez formulated a computationally cheaper but less strin-
gent condition. They only check the discrete primitive wrenches associated with
a contact point for inclusion in the corresponding search zones which leads to
the following Corollary
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Algorithm 3: InclusionTest - CC

Input: contact ¢ to be tested for inclusion in Ry, search zone index sets {Zi 1,..., 21},
EWS approximation (E,s), target object {p., nc}
Output: boolean indicating success or failure

/* Check for convex combinations of wrenches in W, lying in each search zone */
forj < 10 ldo
Solve the following linear program:
minimize z
;R zeR

subject to e}TLWC o5 +sp <z, VheZy;

leilli =1, o520, z<0
if z > 0 then
| return false /* Test for inclusion in R; has failed */
return true /% Test for inclusion in R; has succeeded */

Corollary 4.1 (Inclusion condition - PW).
Index ¢ € O is included in region R; if there exist primitive wrenches in W,
lying in each of the 1 search zones 8; ; associated with g;.

To summarize, the ICR construction procedure consists of approximating
the EWS (see Section 4.6.2) under consideration of a given TWS, forming f1
search zones according to (4.11) and sequentially test contact points for in-
clusion in regions R; according to either Proposition 4.2 or Corollary 4.1. In
Algorithm 1, all o contacts are checked for inclusion in every region R, which
might lead to non-neighboring points to be included in the same region R;. Re-
call that the target object is represented as a graph. Therefore, for each region
Ri, it is alternatively possible to explore contact points via a simple breadth-first
tree search with the respective initial grasp contact point pg, as root node [41]
as shown in Algorithm 2. Both algorithms require time O(o f), can be con-
ducted independently for each finger and thus are parallelizable . The contact
point inclusion test routines according to Proposition 4.2 and Corollary 4.1 are
represented in Algorithm 3 and Algorithm 4 respectively. In Algorithm 3, up to
1 linear programs need to be solved which can be done in polynomial time. The
inclusion test according to Algorithm 4 requires time O(1%).

Constructing ICR by finding wrenches in the intersection of closed outer
half-spaces forming the search zones in (4.11) and mapping them back to con-
tact points yields a family of grasps which is similar to the provided prototype
as stated in [39]. Here, we state an explicit definition of similarity opposed to
the informal one given in [39]

Definition 4.6.1 (Similarity).
Two grasps are similar if the face lattices of their corresponding grasp wrench
spaces are isomorphic.
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Algorithm 4: InclusionTest - PW

Input: contact ¢ to be tested for inclusion in Ry, search zone index sets {Zi 1,..., 21},
EWS approximation (E,s), target object {p., nc}
Output: boolean indicating success or failure

/* Check if there exist wrenches w; (p) lying in each search zone */
for q «+ 10 ldo
success « false
forj < 1to L do
/* Check if the j-th wrench at contact c lies in the q-th search zone 8; 4 */
T < max({e] w;(p.) + sn, Yh € Ziq})

if < 0 then
success < true

break
if =success then
L return false /* Test for inclusion in R; has failed */
return true /* Test for inclusion in R; has succeeded */

Loosely speaking, the face lattice of a convex polytope describes its topology
as discussed in Section 2.1. Thus, the above definition implies that the GWS of
similar grasps comprise the same topological structure in a sense that there
exists a homeomorphism between their faces. A more detailed discussion can
be found in [22].

4.6.2 Affine Transformations to Approximate the EWS

So far, we have postponed the issue of how to approximate the EWS when
given a prototype grasp and a TWS to preserve. This is a prerequisite for the
Algorithms discussed in the previous section and we address this problem by
deriving appropriate affine transformations of the prototype grasp’s GWS.

Parallel Shifting

A straightforward way of performing this transformation was introduced by
Pollard [38, 39]. In her work, the hyperplanes defining the GWS of a prototype
are parallely shifted inwards until they are tangent to the TWS. Here, we for-
mulate the shifting procedure as a LP which minimizes the offset s, of the h-th
hyperplane
minimize Sp (4.14)
shER

subject to T'ep 4 1sp, > 0,

where T € R**Z is a column matrix of the z task wrenches contained in
the TWS in (4.6) and 1 denotes an appropriately dimensioned column vector
of ones. This transformation leaves the GWS facet normals unchanged, i.e.,
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Figure 4.7: ICR Example - Parallel Shifting: Exemplary ICR construction for a 4-
fingered prototype grasp based on an EWS approximation by parallel shifting. Red
squares represent the prototype’s grasp contact points, blue squares the regions R;. The
regions were constructed considering frictional hard-finger contacts. The illustrated ex-
ample incorporates a TWS formed by a scaled task 79 to account for the combined
effects of gravity and disturbances acting on the object’s surface as described in Sec-
tion 4.4.2. Utilized parameters: p=0.8,1=8,g =10, m=1.5,d = 0.6.

Algorithm 5: EWSApproximation - Parallel Shift

Input: prototype grasp Gj,;.» task wrenches T, target object {p., nc}
Output: EWS approximation (E,s)

Compute the GWS of G;;; in JH-representation (A, b) according to (4.4)
E+~ A /* Parallel shifting does not affect the facet normals */
for h < 170 udo /* Loop over all u facets of the GWS */

| Compute the shifted offset sy, by solving the LP in (4.14)
return (E,s)

en = ap, h = 1,...,u. Note that (4.14) allows to omit forming the convex
hull over the task wrenches in (4.6). The procedure of approximating the EWS
by parallel shifting is summarized in Algorithm 5. It requires the computation
of a convex hull over f1 primitive wrenches. Considering the QuickHull algo-
rithm [94], this step has a complexity of O ((f1)?/6) for six-dimensional input.
According to [21], an upper bound for the number of facets of the resulting
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GWS can be given as u < (f1)3/6. Subsequently for each of the u facets the LP
in (4.14) needs to be solved, which can be done in polynomial time. In order to
incorporate a spherical TWS as discussed in Section 4.4.2, the iterative solution
of the LP in Algorithm 5 can be omitted, since the offset sy, in (4.14) equal the
radius of the considered sphere. An example of constructing ICR considering
an EWS approximated via parallel shifting is shown in Fig. 4.7.

Prioritizing Fingers

Using parallel shifting to approximate the confining hyperplanes of the EWS
and forming associated search spaces provides a computationally efficient way
of generating ICR. However, it is by no means unique. The only requirement
is that the intersection of inner half-spaces associated with the EWS hyper-
planes forming search spaces contains the TWS. This requirement is fulfilled
by infinitely many hyperplanes if the constraint of parallelism is relaxed and
inclination of these hyperplanes is allowed.

In this line of thought, we propose a method to prioritize single fingers
in the ICR construction procedure. Given again a prototype grasp Gin;; and a
TWS, the goal is to enlarge the region R; corresponding to a specific finger by
reducing the number of points in the remaining f — 1 regions. The key idea is to
approximate the EWS by “tilting” those facets of the prototype’s GWS which
contain wrenches corresponding to the prioritized finger until they are tangent
to the TWS. To this end, for each of the h facets of the prototype’s GWS, we
formulate the set of primitive wrenches spanning the h-th facet

Vi ={we{Wg,...., Wy, }:afw+by =0}. (4.15)

Due to the prerequisite that polytopes are represented in simplicial form, the set
in (4.15) contains k primitive wrenches. Those vertices of the h-th facet which
correspond to finger i form the set

Vii={we Wy, :afw+br=0}. (4.16)
Finally, Equations (4.15) and (4.16) allow to define the set
uh,i = Vh \ Vh,i- (417)

It contains those primitive wrenches which are vertices of the h-th facet but are
not associated to finger 1.

The core concept of the tilting procedure is illustrated in Fig. 4.8. Here,
the EWS is approximated by the maximum-margin separating hyperplanes be-
tween wrenches in the TWS and elements in the sets Vi, ; in (4.16). An efficient
solution to this problem is provided in the framework of Support Vector Ma-
chines (SVM) [95]. It requires solving the Quadratic Programing (QP) problem
stated below
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\'\WZ (pgl ) TWS

Wi (pgl )

Wi (pg3) () (b)

Figure 4.8: EWS Approximation - Prioritize Finger: Illustrated is the exemplary con-
struction of one approximating hyperplane of the EWS with finger i = 1 prioritized.
(a) Shown are the prototype grasp’s GWS, the considered TWS and hyperplane 3,
which defines a facet containing a primitive wrench associated with grasp contact point
Py, - (b) The EWS hyperplane according to (4.18) and (4.19). It separates the wrenches
in the TWS from V11 = wi(pg,) in (4.16) with maximum margin while pivoting around
ul’l =W (pgz) in (417)

1

minimize lex I3 (4.18)
€/ cRk, s/ €R | 2
subject to
~Vien—1s, > 1,
TTe, +1s;, >0,
U}Tme}/I +1s;, =0.

In the above problem, the constraint column matrices Vi, ; € R**/Vnil and
Uy, ; € R**Unil contain the elements of the respective sets according to (4.16)
and (4.17), matrix T € R¥*# holds the task wrenches in the TWS and 1 denotes
appropriately dimensioned column vectors. Vector e, and scalar s, denote the
normal and offset of the h-th approximated EWS facet scaled by the norm of
e, i.e.,
e s
el " el
hll2 hll2

(4.19)

Algorithm 6 summarizes the EWS approximation procedure. As in Algo-
rithm 5, the computation of a convex hull over the primitive grasp wrenches
is necessary. Subsequently, for all u facets of this GWS, a convex QP needs to
be solved which requires polynomial time. Approximating the h-th EWS facet
via the maximum-margin hyperplane according to (4.18) and (4.19) not neces-
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Figure 4.9: ICR - Parallel Shifting vs. Prioritizing Fingers: ICR construction for a 3-
fingered prototype grasp with frictional hard-finger contacts. Prototype grasp contact
points py. are indicated by large spheres. The considered TWS contains the zero-wrench
and one wrench generated by the gravitational force which acts in negative vertical di-
rection. (a) ICR constructed from an EWS approximated by parallel shifting according
to Algorithm 5. (b) ICR constructed with an EWS approximation according to Algo-
rithm 6. The finger corresponding to the region depicted in blue is prioritized which
results in an enlarged region. As a trade-off, regions associated with non-prioritized
fingers contain fewer contacts. Utilized parameters: p = 0.5,1=9,g =1, m = 0.1.

Algorithm 6: EWSApproximation - Prioritize Finger

Input: prototype grasp Gj;;, task wrenches T, finger 1i to prioritize, target object {p, nc}
Output: EWS approximation (E,s)

Compute the GWS of G ;¢ in F{-representation (A, b) according to (4.4)

for h «+ 1t0 udo /* Loop over all u facets of the GWS */
Form the sets Vy, ; and Uy, ; according to (4.16) and (4.17) from the GWS
Solve the QP in (4.18) /* Compute the normal direction */
Compute ey, according to (4.19)
Compute sy, by solving the LP in (4.14) /* Compute the offset by parallel shifting */

return (E,s)

sarily makes this facet tangent to the TWS. Therefore, and in order to possibly
open up search zones corresponding to regions associated with non-prioritized
fingers, the final offset sy, of facet h is computed via parallel shifting along
the tilted normals. Thus, Algorithm 6 also necessitates the solution of u LP’s
according to (4.14). An exemplary comparison of ICR resulting from EWS ap-
proximations by parallel shifting according to Algorithm 5 and prioritizing one
finger according to Algorithm 6 is depicted in Fig. 4.9.



40 CHAPTER 4. SYNTHESIZING GRASP FAMILIES FROM PROTOTYPES

Prioritizing Contact Points

As a final method to approximate the EWS we suggest a method which accepts
as user-input a TWS and desired regions R; in addition to a prototype grasp
Ginit- The motivation is to loosen the conditioning on the prototype’s GWS by
directly specifying independent regions whose shape and distribution befit the
considered application. Here, for reasons which will become clear in the fol-
lowing, we only consider frictionless hard-finger contacts. Considering the sets
of k-dimensional wrenches W, in (4.9) associated to the contacts in regions
Ry, let us formulate

Proposition 4.3 (EWS facets).
In the case of frictionless contact constraints, the facets of the EWS lie on hy-
perplanes each of which is spanned by wrenches from k different sets Wx, .

According to (4.8), the EWS is formed by the intersection of all GWS as-
sociated to viable grasps. Therefore, the facets of the EWS lie on hyperplanes
which also contain certain limiting GWS (see Fig. 4.4(c)). Recall, that the facets
of polytopes are given in simplicial form. Thus, in the frictionless case where
only a single wrench is generated at any grasp contact point, the hyperplanes
containing these facets have to be spanned by wrenches from k different sets
Wx, by definition which validates the above proposition.

Here, the core idea is to approximate the h-th confining hyperplane of the
EWS by a maximum-margin separation of the task wrenches from the wrenches
associated to contacts in those predefined regions R, which are associated to
the k fingers contributing wrenches which span the h-th facet of GWS;,;; (see
Fig. 4.10). To this end, we define the sets containing the indices of those fingers
which contribute primitive wrenches spanning the h-th facet of GWS;;;

Fn={ie{l,...,f}: Vs £0}. (4.20)

In the formulation above, the set V1, ; according to (4.16) holds those vertices
of the h-th facet which correspond to finger i. Expression (4.20) allows to for-
mulate contact sets

Ry, = {CGU:RB Vie?h}, (4.21)

which contain the union of independent regions associated with the fingers in
Fn. Again, the problem of finding the maximum-margin separating hyperplane
can be formulated by a linearly constrained convex QP

minimize 1||e;L||% (4.22)
e, cR¥,s| cR, 2
subject to
—w(p.) e, —sp =1, Ve e Ry,
T e, +1s;, > 0.
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Figure 4.10: EWS Approximation - Prioritize Contacts: Illustrated is the exemplary con-
struction of one approximated hyperplane of the EWS with predefined regions R; for
frictionless contact constraints. (a) Shown are the prototype grasp’s GWS, the consid-
ered TWS, the wrench sets Wx, in (4.9) corresponding to the predefined regions R;
and hyperplane H; which defines a facet of GWS;;;. (b) Depicted is the maximum-
margin hyperplane (e, s1) yielded by solving (4.22). For the presented example, the set
Fn ={1, 2} according to (4.20) and thus Ry, in (4.21) is Ry UR,. The separating margin
amounts to As; = 1/ e; ||, and thus is maximized by minimizing ||e; ]|, as in (4.22).

Algorithm 7: EWSApproximation - Predefined Regions

Input: prototype grasp Gj,i¢, task wrenches T, desired regions {Ry, ..., R¢},
target object {p., nc}
Output: EWS approximation (E,s)

Compute the GWS of G;;; in J-representation (A, b) according to (4.4)

for h < 10 udo /* Loop over all u facets in GWS; ;. */
From the GWS, compute the sets F}, and Ry, according to (4.20) and (4.21)
Solve the QP in (4.22) /* Compute the normal direction */

if QP in (4.22) is not feasible then
L return false /* TWS and the wrenches associated with Rg, are not separable x*/

Compute ey, and sy, according to (4.19)
return (E,s)

In the above problem, w(p.) € R¥ is the wrench generated by the normal
force at contact point p, matrix T € R¥*Z contains the task wrenches and Ry,
is the contact set defined in (4.21). The final hyperplane representation (ey, sy )
can be computed from the scaled quantities in (4.22) via Equation (4.19). An
illustration of the construction procedure is depicted in Fig. 4.10.

The corresponding affine transformation yielding the approximated EWS
is summarized in Algorithm 7. Invalid user-specified ICR are detected if not
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all wrench sets corresponding to Ry, are linearly separable from the TWS.
Again, as an initial step, the convex hull over the prototype’s grasp contact
wrenches needs to be computed. Since, in the considered frictionless case only
a single wrench is generated at each grasp contact, this requires time of order
0O(f3/6) [94] for 6-dimensional input. An upper bound for the maximum num-
ber of facets of GWS;,;, and thus for the QP’s to be solved in Algorithm 7,
can be given as u < f3/6 [21]. Forming the index sets F}, and Ry, accor-
ding to (4.20) and (4.21) respectively, can be done in linear time. Figure A.2 in
Appendix A shows an example of sequentially computing the hyperplanes con-
fining the EWS given the regions R; predefined on the discretized ellipse shown
in Fig. A.1.

The above described way of approximating the confining hyperplane of the
EWS does not guarantee for Proposition 4.3 to hold true. It is possible that the
number of wrenches which act as support vectors of the h-th approximated
hyperplane is smaller than k. The computation just tries to maximize the mar-
gin between the TWS and the respective wrench sets corresponding to R,
in (4.21). This can cause the EWS approximation to be unnecessarily limited
in some areas (see Fig. A.2(c)). Furthermore, if not all viable grasps are simi-
lar according to Definition 4.6.1 (which cannot be verified a priori), the grasp
wrench spaces confining the actual EWS can comprise vertices generated by
different fingers than those indexed by F, in (4.20). Again, this can result in
unnecessarily restrictive approximating hyperplanes. However, the following
is guaranteed: by construction, all wrenches corresponding to R, lie in the
closed outer half-space of the associated maximum-margin hyperplane. Thus,
the definition of independent regions R; according to (4.12) — contacts qualify
for inclusion in region R; if their corresponding wrenches lie in the intersec-
tion of closed outer half-spaces associated with prototype grasp contacts p,, -
holds true. Hence, the method is conservative in a sense that no false positives
are generated (i.e., no grasps are classified as being able to preserve a given
TWS if they are not).

Expecting a user to specify sets R; which yield a non-empty approximated
EWS is a stringent requirement. Therefore, instead of predefining ICR, a user
can provide a logic for sequentially including points in regions R; in order
to “grow” them from the corresponding initial grasp points. Consider adding
points to region R; by exploring the mesh which represents the target object’s
surface according to a simple breadth-first tree search with p,, as root node.
Each time a point is added, Algorithm 7 is used to update the EWS approxima-
tion. If the point is feasible (i.e., the EWS approximation contains the TWS),
the neighbors of the point are enqueued in the search. The procedure stops
when no more feasible points are found. Regions R; can be prioritized ac-
cording to their position in the sequence. In particular, choosing the sequence
i=(1,...,f) provides an alternative way of computing ICR which, compared
to the method of parallel shifting, yields larger regions for the same TWS as
illustrated in Fig. 4.11(a).
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Figure 4.11: ICR - Parallel Shifting vs. Prioritizing Contacts: Shown are ICR for a 7-
fingered prototype grasp with contact points p,. considering frictionless point contact
constraints and a TWS consisting of the zero-wrench. (a) Comparison between regions
RPS constructed from an EWS approximation via parallel shifting, and regions ®FC
computed by sequentially adding contacts and approximating the EWS via Algorithm 7.
(b) Exemplary growing ICR with five contacts fixed beforehand results in enlarging the
two remaining regions.

If the position of certain initial grasping points pg, is known precisely, e. g.,
when there are several locator pins to hold a workpiece [41], it is possible
to exclude the corresponding regions R; from the sequence. This allows for
more points to be included in the remaining regions. An example is shown in
Fig. 4.11(b), where contacts are only added to two out of seven regions R;.

At this point, we want to elaborate on the restriction to the frictionless point
contact model when approximating the EWS via prioritizing contact points.
Incorporating frictional contact constraints necessitates to separate the task
wrenches from a convex combination of the primitive wrenches corresponding
to each contact in the set Ry, in (4.21). As a consequence, the QP in (4.22)
needs to include the vectors of convex combination coefficients &, € R' among
the decision variables resulting in

o 1, 1,
) minimize =lenlls
€, €R*, s} €R |, {X ER':cERS, ) 2
subject to
TWT o/ '
—a.Wee, —s, 21, VeeRg,
T ’ !
T e, +1s,, >0,

where W, € R**! collects the 1 primitive wrenches wj(p.) generated at con-
tact p.. However, this results in a non-convex quadratic constraint in the above
QP. As a consequence, solving the problem requires increased computational ef-
fort and, in general, it is only possible to find a local minimum. Therefore, we
decided not to pursue this approach in this work.
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Figure 4.12: ICR Comparison: lllustrated are ICR computed for a 4-fingered proto-
type grasp Gin;; with frictional hard-finger constraints. Large dots indicate the proto-
type grasp’s contact points pg, , a spherical TWS of radius 0.8 times the radius of the
largest origin-centered insphere of GWS;;; is considered. Regions computed according
to Algorithms 2, 4 and 5 are indicated by magenta dots, magenta diamonds signify ICR
produced by the construction method according to [42]. Arrows highlight the contact
points pg, of the invalid grasp whose GWS is shown in Fig. 4.13(d). Employing the
approach in [41] yields empty regions R; for this example. Utilized parameters: 1 = 0.8,
g=1,1=2.

4.6.3 Comparison with Existing Works

Here, we want to put the presented methods in the context of existing works.
We provide a comparison with previous approaches which rely on the same
prerequisites, i. e., available user-input in form of a prototype grasp Gi,;; and a
set of task wrenches suitable to counter expected disturbances.

From Pollard [38, 39], we adopt the ideas of spanning the search zones
in (4.11) belonging to primitive wrenches of G;.;;, and to qualify contacts for
inclusion in independent regions R; in (4.12) by checking whether convex com-
binations of their associated primitive wrenches lie in corresponding search
zones. In her work, she provides no explicit notion of the EWS and only con-
siders implicit approximations via parallelly shifting the facets of GWS;;; a
predefined margin.

Roa and Sudrez [41] compute ICR by constructing search zones based on
parallelly shifting the facets of GWS;,;; until they are tangent to a sphere of
a given radius. In order to qualify contacts for inclusion in regions R;, they
introduce the efficient but less stringent alternative to exclusively check if cor-
responding discrete primitive wrenches exist in search zones as stated in Corol-
lary 4.1. Compared with [38, 39] and our work, they construct search zones
in a conservative but overly restrictive manner which is sensitive to the choice
of friction coefficient p in the applied contact model. For the i-th finger, as ex-
emplary illustrated in Fig. 4.6(c), the search zones in [41] are formed by the
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Figure 4.13: ICR Comparison - Wrench Space: lllustrated are the geometric relations
in the wrench space for the example on the ellipse shown in Fig. 4.12. (a) The OWS
according to (4.5) of the considered ellipse. (b) The prototype’s GWS. Vertices are color-
coded to match the corresponding grasp contact points pg, in Fig. 4.12. (c) For one
region R;, polyhedral search zones according to (4.11) are depicted in cyan. They are
formed such that contained wrenches satisfy Proposition 4.1. Note, that the intersection
of these search zones as in [41] is empty. Red dots indicate the corresponding primitive
wrenches whose associated contacts form region RS in Fig. 4.12. Not all of the prim-
itive wrenches indicated by red diamonds, which are declared eligible by the method
in [42], fulfill Proposition 4.1. As a consequence, the EWS (and thus the TWS contained
in the EWS) is not necessarily a subset of the GWS of every member of the resulting
grasp family. One example is the GWS corresponding to the grasp with contact points
Py, in Fig. 4.12. As shown in (d), it does not fully contain the EWS.



46 CHAPTER 4. SYNTHESIZING GRASP FAMILIES FROM PROTOTYPES

intersection of the 1 search zones in (4.11) as {8i,1 U ... U 8;,}. This is admis-
sible, since a wrench lying in this intersection also lies in each search zone 8 ;
and thus the corresponding contact qualifies for inclusion in R;. However, it
leads to the paradox that the number of elements in regions R; decreases with
increasing friction coefficient. This is due to the fact that the intersection of
search zones “moves away” from the OWS and is therefore often empty as
shown in Fig. 4.13(c).

In a recent work, Dang-Vu et al. [42] suggest a method to compute regions
R; which lessens the restrictiveness of [41]. They use this ICR as seeds for an
algorithm which extends them based on a criterion proposed in [37]. However,
their way of computing these seed ICR via search zones constructed by parallel
shifting of GWS;,;’s confining hyperplanes is not conservative. It potentially
allows for members of the resulting grasp family to violate the posed task re-
quirements. As sketched in Fig. 4.6(e), in [42] a contact qualifies for inclusion in
region R; if it contributes primitive wrenches lying in outer half-spaces of every
confining EWS hyperplane associated to the i-th finger of the prototype grasp.
This allows to violate the visibility concept formulated in Proposition 4.1. Fig-
ure 4.12 shows an exemplary comparison between the seed ICR computed ac-
cording to [42] and our ICR computation based on an EWS approximation via
parallel shifting. The corresponding geometric relations in the wrench space are
depicted in Fig. 4.13, which makes evident that the approach in [42] can lead
to grasps which are not viable according to Definition 4.2.1. For clarity, in the
presented example only 1 = 2 primitive wrenches are generated at a contact p..,
1. e., the corresponding wrench set W, does not contain the wrench generated
by the contact normal force as stated in Section 4.3 which, however, does not
qualitatively change the result.

4.7 Discussion

In this chapter, following the central tenet of this thesis, we incorporate empir-
ical user input in form of a prototype grasp to synthesize grasp families rep-
resented as ICR. The introduced algorithms are largely based on the solution
of convex optimization problems and can be efficiently parallelized. The sug-
gested methods allow to incorporate physically motivated tasks in the synthesis
process. Furthermore, it is shown how to incorporate additional user-input in
order to allow prioritization of single fingers or desired grasp contact regions.

The ICR paradigm operates on a grasp contact-level and thus does not con-
stitute a solution to the full grasp synthesis problem, which involves determin-
ing an appropriate palm pose and hand joint configuration. However, it can be
useful in various auxiliary roles during the synthesis process as shown in the
following chapter.



Chapter 5
Evaluation and Applications of
Independent Contact Regions

Grasp contact point synthesis
Palm pose synthesis

The main contribution presented in this chapter is an open-source C++ li-
brary called icrcpp, in which most of the algorithms discussed in the previous
chapter are implemented. Also given are numerical evaluations of these algo-
rithms. Furthermore, we demonstrate applications of the ICR paradigm in the
grasp synthesis context including employment as a grasp quality and scoring
metric, visual guidance for teleoperation, interactive grasp transfer and as a
support tool in finger gait planning.

5.1 Introduction

Modeling its wrench space provides an elegant way to evaluate a grasps sta-
bility properties in a physically meaningful way in terms of disturbances which
can be resisted. A multitude of wrench space-based quality criteria have been
proposed in the literature (see [84] for an overview). In this context, rather
than representing a single grasp, ICR constitute a family of similar grasps con-
structed in a way that each member of this family is guaranteed to resist speci-
fied disturbance wrenches. Therefore, the ICR paradigm augments the expres-
siveness of wrench-based criteria with a notion of uncertainty in finger place-
ment which is represented by the number and distribution of points contained

47
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Figure 5.1: icrcpp - Evaluation Objects: All objects comprise approximately 2500 ver-
tices and 5000 triangles.

in the individual independent regions. Recently, ICR were employed in a grasp
planning framework [96] in order to account for finger placement uncertainties.

An intuitive way to obtain high quality grasps is to utilize human demon-
strations. Aleotti and Caselli [97] showed how to incorporate a wrench space-
based quality criterion in a TbD scenario where a human operator teleoperates
a model of the grasping device in a virtual environment. They propose the Func-
tional Wrench Space (FWS), which is designed to capture the operator’s intent
by describing the union of GWS corresponding to a set of demonstrated grasps.
In this line of thought, Roa et al. [92] used ICR to provide visual feedback to
the operator during the demonstration process. Pollard [39] utilized the concept
to demonstrate whole-hand grasps with many contacts and transferred them to
similar novel objects. Here, the underlying search zones in the wrench space
were used to project a class of grasps equivalent to the demonstrated one onto
the new object. However, the key question of how to choose an appropriate
reference frame location for this novel object was not addressed in [39].

Below, we present a C++ library which efficiently implements the concepts
discussed in the previous chapter and provide a numerical evaluation. In Sec-
tion 5.3 we present ICR application examples including employment as a grasp
quality and scoring measure, visual guidance in virtual and real teleoperation
scenarios, interactive grasp transfer and finger gait planning. Finally, in Sec-
tion 5.4, we discuss the obtained results.

Nomenclature

Grasp contact index, 1 € {1,...,f}

Contact point index set, O ={1,...,0}
Contact-level grasp, § ={gi € 0:1=1,...,f}
Index set of contacts forming the i-th ICR, R; C O
Static friction coefficient, u > 0

Friction cone discretization, 1 € Z

“ERweoc~
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Figure 5.2: EWS Approximation via Parallel Shifting - Computation Times: Boxplot
showing the computation times for approximating the EWS via Algorithm 5 for a fric-
tion coefficient 1 = 0.5 and varying friction cone discretizations L.

5.2 Numerical Evaluation

In this section we present the icrcpp library which is available under the GNU
General Public License at the url in [98]. Currently implemented are Algo-
rithms 1 and 2, for constructing ICR using either the convex combination-
based inclusion test in Algorithm 3 or the discrete primitive wrench inclusion
test according to Algorithm 4. Furthermore, the icrcpp library includes Algo-
rithm 5 for approximating the EWS via parallel shifting and Algorithm 6 for
an approximation which prioritizes single fingers as described in Section 4.6.2.
For evaluation purposes, random grasps were generated on the six object mod-
els from the KIT database [99] shown in Fig. 5.1. A standard PC equipped
with 6 GB memory and a 3.40 GHz Intel i7-2600 CPU was used to generate
the presented results. The Gurobi optimization kit [100], which is freely avail-
able for academic purposes, is used by the icrcpp library to solve optimization
problems.

For bench-marking, we created nine sets containing 1000 4-fingered proto-
type grasps each for varying friction coefficients 1 and friction cone discretiza-
tions L on all test objects. A first set of experiments is centered around ICR con-
struction based on an EWS approximated by parallel shifting the hyperplanes
of GWS;,;; via Algorithm 5. The considered TWS contained the zero-wrench
and the wrench generated by gravity acting in negative vertical direction at the
center of mass, the ratio of gravity and grasp force magnitude was chosen to be
m/g = 0.1. Figure 5.2 illustrates the resulted computation times for a constant
friction coefficient p = 0.5 and friction cone discretizations 1 = 7, 1 = 9 and
L = 11 respectively. In no case the required time exceeded 8 ms.

Subsequently, we used Algorithm 2 to construct ICR, respectively using Al-
gorithm 3 or Algorithm 4 to perform the contact inclusion test. The yielded
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Figure 5.3: ICR Evaluation - Computation Times: Boxplots showing the cumulative
computation times for Algorithm 2. (a) The convex combination-based inclusion test
according to Algorithm 3. (b) The primitive wrench-based inclusion test according to
Algorithm 4.

computation times are depicted in Fig. 5.3. It can be seen that the compu-
tational effort for solving the LP in the convex combination-based inclusion
test is two orders of magnitude larger than only checking discrete primitive
wrenches which is in the millisecond range.

As a second measure, we compared the overall number of ICR contacts
> Ril, i = 1,...,T for the two inclusion test variants while varying friction
cone discretization 1 and friction coefficient p respectively. The outcome is sum-
marized in Fig. 5.4. It is evident that the influence of the friction cone discretiza-
tion on the ICR size is minor compared to the impact of friction which is signif-
icant. For a friction cone discretization 1 = 9 for example, increasing i = 0.5
to u = 0.8 increases the number of elements in the regions R; by about 80%.
In general, the convex combination-based inclusion test yields roughly 15%
larger regions than its discrete counterpart. The complete numerical results are
collected in Table 5.1.

In a second set of experiments, we evaluated the ICR construction based
on an EWS approximated by prioritizing fingers as described in Section 4.6.2.
A number of 1000 3-fingered prototype grasps was randomly generated for all
six test objects depicted in Fig. 5.1 for a constant friction coefficient p = 0.5
and a friction cone discretization 1 = 9. For each of these grasps, regions R;
were computed based on an EWS approximation by prioritizing each of the
four fingers, one at a time, according to Algorithm 6. The same TWS as in
the previous experiments was employed. Figure 5.5 shows the results. Approx-
imating the EWS via tilting the hyperplanes of GWS;,;; requires the solution
of a series of QP’s according to Algorithm 6. The resulting computation times
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Figure 5.4: ICR Evaluation - Region Size: Boxplots comparing the cumulative number
of ICR members }_ R, i =1,...,f for the convex combination-based inclusion test ac-
cording to Algorithm 3 and the primitive wrench-based inclusion test according to Algo-
rithm 4. (a) Constant friction coefficient p = 0.5 and varying friction cone discretization
L. (b) Constant friction cone discretization 1 = 9 and varying friction coefficient .

03 400
. PW
0.28 asolL1cC
92 300
024
250 H
022 =
= £ 200
* 02 . [N
150
0.18 I
i 100
[ ]
[ 1 :
0.14 50 :
[¢}
I E— : |
012 0
9 9
l l
(a) (b)

Figure 5.5: ICR Evaluation - Prioritizing Fingers: Boxplots showing the evaluation re-
sults for regions based on an EWS approximation according to Algorithm 6. (a) Run
times for Algorithm 6 for l = 9 and u = 0.5. (b) Comparison of the cumulative number
of ICR members }_ Ri, i=1,...,fforl=9and pn=0.5.

are well below 1s, but they are two orders of magnitude higher then in the
previously investigated approximation according to Algorithm 5. Here, the in-
fluence of the chosen inclusion test variant is of higher importance. On average,
regions computed with the convex combination-based inclusion test according
to Algorithm 3 contain more than twice the number of elements than regions
constructed with the primitive wrench-based test in Algorithm 4. All results are
summarized in Table 5.2.
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Figure 5.6: ICR Applications - Grasp Scoring Measure: Shown is a 2-fingered grasp on
the model of the Coke bottle in Fig. 5.1, utilizing frictional soft finger contacts (see
Section 4.3). Red lines indicate predefined virtual contacts/contact normals. Prototype
grasp Gipnj; contains the projections of the average virtual contact location for each finger
onto the object. ICR are computed via Algorithms 2, 3 and 5. Regions R; are indicated
by the magenta and blue dots respectively. The TWS if formed by the zero-wrench.
Utilized parameters: p=1,p=1,1=10, g = 1.

Currently, the EWS approximation via prioritizing contacts according to Al-
gorithm 7 in Section 4.6.2 is only available as a proof-of-concept Matlab imple-
mentation. For a preliminary bench-mark we used the model of a parallelepiped
in Fig 4.11, which is sampled with a number of o = 1714 contact points and
meshed by 3424 triangles. For evaluation purposes, 100 7-fingered prototype
form-closure grasps were randomly created for the test object. A TWS repre-
sented by an origin-centered sphere with half the radius of the largest insphere
of the according GWS;,;; was associated to each of these grasps. ICR were
generated based on the EWS approximation according to Algorithm 7, by se-
quentially adding points to regions R; as presented in Section 4.6.2. The flexible
orientation of hyperplanes which approximate the EWS allows for a more than
three times larger average number of contact points in regions R; = 186 + 83,
compared to regions R; = 60 + 39 computed on the basis of a parallel shifting
approximation according to Algorithm 5.

5.3 Applications

The implementations of the following practical application examples of the
ICR paradigm are built upon the previously discussed icrcpp library.
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5.3.1 Grasp Quality and Scoring Metric

Employing ICR to quantify the quality of a prototype grasp Giy;; is straightfor-
ward: by construction, as argued in the previous chapter, every grasp resulting
from each finger contacting the object anywhere within its respective region
is guaranteed to withstand expected disturbances. Therefore, the number and
distribution of contacts in the regions R; allows to classify grasps according to
the requirements of the considered task. Increasing the number of contacts in
regions R; can significantly increase the flexibility of Gi,;; [39]. In this work,
we utilize ICR as a support tool in the grasping pipeline which will be detailed
in Section 6.2.2. Here, the overall number of ICR elements }_ R, i =1,...,f
serves as an argument to the scoring function in (6.2) which ranks the synthe-
sized grasps. An example of ICR computed for the Velvet Gripper is shown in
Fig. 5.6. Here, a joint configuration and palm pose according to (2.5) is gener-
ated by the grasp synthesis scheme presented in Section 6.2. Subsequently, one
predefined contact location for each fingertip is projected onto the surface of
the target object (according to the minimal euclidean distance). These projected
points then form the contacts of the prototype contact-level grasp G;p;; in (2.6)
for the ICR computation.

5.3.2 Visual Guidance for Teleoperation

Empirical data is acquired in a TbD setting via human demonstrations in the
scope of this thesis. In this context, one arising question is how to solve the
correspondence problem (i. e., the physical differences between the demonstra-
tors hand and the targeted robotic platform). As a solution, Babi¢, Hale and
Oztop [101] use teleoperation to make the human part of the control loop and
utilize her sensorimotor learning ability where the brain acts as an adaptive
controller. The underlying concept is to consider the target robot platform as a
tool, and to provide the demonstrator with an intuitive interface to control this
tool.

In this section, we show how to incorporate ICR in such an interface in
order to visually guide the operator during the demonstration process. Follow-
ing the idea in [92], we teleoperate the Shadow Robot platform by means of a
sensorized glove and a 6D pose tracker (see Section 2.4) in a virtual environ-
ment. During demonstration, regions R; are computed repeatedly by forming
prototype grasps via projecting desired contacts on the fingertips onto the tar-
get object as in the previous section. Subsequently, ICR are computed from
an EWS approximation based on parallel shifting according to Algorithm 5,
utilizing the primitive wrench-based inclusion test in Algorithm 4. In this con-
figuration, as shown in Section 5.2, the overall computation times are in the
millisecond range on a standard PC and therefore short enough for real-time
applications. Intuitively, grasps comprising large contact regions are advanta-
geous for the robot since they indicate robustness to positioning errors. Thus,
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(b)

Figure 5.7: ICR Applications - Visual Guidance: (a) Sequence showing the visual feed-
back in form of regions R;, which guides the operator during the demonstration pro-
cedure. The prototype grasp contact points p,,. are signified by large dots, the TWS
consists of the zero-wrench. Utilized Parameters: 1 = 0.8,1 =9, g = 1. (b) Grasping a
ladle via teleoperating the actual Shadow Robot platform.

while demonstrating, the operator can adjust the grasp configuration based on
the visual feedback in order to achieve a suitable final grasp pose as shown in
Fig. 5.7(a).

It is difficult to replicate the dynamic properties of a robot precisely in a
virtual environment. Therefore, we also tested the proposed interface by tele-
operating the actual Shadow Robot platform as shown in Fig. 5.7(b). Here, the
visual feedback is presented to the operator on an adjacent computer screen in
form of regions on a corresponding model of the target object. In order to find
the corresponding reference transform, the pose of the physical object was esti-
mated via the feature matching procedure in [102]. The employed method uses
RGB images acquired by the Kinect sensor mounted on the robot’s shoulder.
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(c)

Figure 5.8: ICR Applications - Interactive Grasp Transfer: Shown is a sequential illustra-
tion of the grasp transfer procedure. (a) The cyan shaded regions indicate search zones
8y constructed from GWS;;;, which corresponds to a prototype grasp performed on
object 1. The dashed ellipse represents OWS,. Some of its wrenches fulfill the inclusion
condition which results in non-empty regions R;. (b) Once the operator brings the palm
in an appropriate pose, OWS, contributes primitive wrenches (or convex combinations
thereof) to all search zones and the transfer is complete. (c) The demonstrator only needs
to command the palm pose. During the process, non-empty regions R; serve as a visual
feedback. Utilized Parameters: p=0.8,1=9, g = 1.

5.3.3 Interactive Grasp Transfer

Teleoperating a system with many DoF is a strenuous task which requires high
concentration. Therefore, we propose an interactive method which eases the
burden on the demonstrator by allowing to transfer grasps of high quality from
the demonstration object to similar novel objects. The idea is to use an available
grasp G, on object 1 to construct search zones 8; j according to (4.11) from an
EWS approximation based on GWS;,;; € OWS;. Here, OWS; denotes the ob-
ject wrench space in (4.5) corresponding to object 1, 1. e., the set of all wrenches
that can be generated by grasp forces acting anywhere on the object’s surface.
During the transfer step, a family of equivalent grasps is synthesized on object
2 by “filling” the previously computed search zones with primitive wrenches
(or convex combinations thereof) from OWS; using Algorithm 2 and any of
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the two inclusion tests according to Algorithms 3 or 4. The key point here is
the choice of reference frame in which the objects are represented, since this
determines the geometry of the associated object wrench spaces. Therefore, we
suggest to represent objects (and thus their corresponding OWS) in the hand
palm frame. In the transfer stage, the operator only needs to teleoperate the
palm. At each time step during this process, an affine transformation of OWS,
into the hand palm frame is performed, i. e., the forces and torques forming the
elements of OWS, are expressed in the palm frame. Since the two considered
objects are geometrically similar, OWS, resembles OWS; if the two palm poses
are comparable and the search zones 8; j are non-empty. Figures 5.8(a) and (b)
illustrate the concept. Figure 5.8(c) exemplary shows the interactive transfer of
the demonstrated grasp in Fig 5.7(a) to a novel object.

5.3.4 Finger Gait Planning

Finger gaiting constitutes an interesting aspect of dexterous manipulation. It is
defined as relocating the contacts of a given grasp on the target object’s surface,
such that grasp stability is preserved during the process. In this section, we
suggest to use ICR computed while prioritizing single fingers as discussed in
Section 4.6.2 as a support tool for finger gait planning. The core idea is to place
a redundant finger within a region R; associated with another finger, which
allows that finger to break contact and be relocated. During this operation,
stability is ensured by definition of the ICR paradigm. Here, we assume that a
suitable relocation strategy is available which, e. g., can be derived by observing
a human demonstrator. An illustrating example is provided in Fig. 5.9 which
shows how fingers can be sequentially replaced to be relocated on the object’s
surface in a clockwise fashion.

5.4 Discussion

In this chapter, we presented and evaluated the icrcpp C++ library for EWS
approximation and ICR computation. Furthermore, we discussed applications
of the ICR paradigm related to grasp ranking, teleoperation, grasp transfer and
finger gait planning. For evaluation purposes, we used object models acquired
with a high-accuracy laser scanner [99] and CAD models. Computing ICR is
sensitive to noise in the contact normals which can pose problems when only
low-quality object models reconstructed from range data are available. This
issue can be addressed by a conservative choice of friction coefficient [103]
or by appropriate mesh smoothing techniques [14]. Furthermore, the utilized
point contact models often poorly reflect the interaction between finger and
object and it has been shown in [15] how to incorporate a more realistic patch
contact model in the ICR computation.

Apart from allowing to transfer a contact-level grasp with a human in the
loop, the method introduced in Section 5.3.3 also constitutes a solution to the
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(c) (d)

Figure 5.9: ICR Applications - Finger Gait Planning: ICR are computed based on the
EWS approximation with prioritized fingers according to Algorithm 6, utilizing fric-
tional hard-finger contacts. Algorithm 3 is used for the inclusion test, the TWS consists
of the zero-wrench. Utilized parameters: o = 0.5,1 = 9, g = 1. (a) Initial four-fingered
grasp configuration. The predefined goal is to relocate the green and the blue contact.
(b) Shown are the ICR resulting from removing the green contact and prioritizing the
blue contact. (¢) After placing the green contact at the indicated location, the blue con-
tact can be replaced. (d) Final grasp configuration after the gaiting procedure.

palm pose synthesis problem. It would be interesting to investigate ways to
automatize the solution, e. g., by treating ICR as features and employing point
cloud registration techniques to fit them to a novel object.



Chapter 6
Grasp Synthesis via
Constrained Optimization

Palm pose synthesis
Hand joint configuration synthesis

In this chapter, we incorporate the problem of synthesizing appropriate hand
joint configurations in the grasp synthesis process. We contribute an optimiza-
tion-based grasp synthesis framework which is tailored to underactuated grip-
ping devices operating in cluttered scenes, in order to reflect the requirements
of the RobLog project. The presented method incorporates grasp strategies ob-
served in humans by imposing corresponding constraints on the underlying
optimization problem. Test runs to evaluate the approach have been conducted
with the Velvet Gripper fitted on the two platforms in Fig. 2.2(c) and Fig. 2.2(d)
respectively.

6.1 Introduction

Research in the field of robotic grasping has produced a multitude of different
gripper designs in an attempt to achieve reliable grasps of various target ob-
jects. An overview of existing concepts is provided by Bicchi [104]. One line
of research has focused on creating devices mimicking the mechanical structure
of the human hand in order to allow grasping/manipulation of objects with a
wide range of shapes and sizes [6]. This, however, results in complex designs
and control schemes. In the scope of the RobLog project an alternative ap-
proach was pursued. Here, the goal is to simplify the design and control by

59
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Figure 6.1: Gripper and Test Objects: Shown is the Velvet Fingers gripper mounted on
a 7-DoF KUKA lightweight arm. Perception is done with an ASUS Xtion structured
light camera mounted on the gripper. Also shown are the five test objects used in the
evaluation in Section 6.3 — two different boxes, a beer barrel, a ball and a drum.

employing an underactuated grasping device which preserves desired grasping
and manipulation features.

A recently investigated way to achieve more dexterous grippers is the ad-
dition of active surfaces to otherwise simple mechanical structures. Active sur-
faces have been used to regulate the adhesion between fingers and target ob-
ject [105], or to augment the mechanical structure with conveyor belts to con-
trol the tangential push exerted on the target object. In the scope of RobLog,
we utilize an implementation of such a device in form of the Velvet Fingers grip-
per [26, 27] which is depicted in Fig. 6.1. This gripper combines underactuation
and active surfaces in the form of conveyor belts on the finger phalanges. The
mechanical design (discussed in more detail in Section 6.3.1) features one actu-
ated degree of freedom for opening and closing and two for the belt movements.
If, during grasping, the proximal phalanges are blocked by the object, the grip-
per’s distal phalanges continue to “wrap around” the object and envelope it in
a firm grasp.

Of particular interest in this context are two questions which arise when
using such a device in a grasping scenario where a cluttered scene containing
multiple objects is to be cleared by a robot:

* How to account for an underactuated gripper structure during grasp syn-
thesis?

* How can active surfaces contribute to the grasp execution process?

In this chapter, we investigate a data-driven approach to grasp synthesis, where
a knowledge base is populated offline with target object models which are asso-
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ciated to pre-planned grasps. During execution, the database is used to retrieve
grasps and rank them according to the expected quality in the current scene.

The contributions in this chapter are two-fold: first, we address the grasp
synthesis problem by adapting the well known optimization-based scheme in-
troduced by Ciocarlie and Allen [54] to the specifics of underactuated gripper
designs. Second, we investigate a method to improve the success of the grasp
execution process by using the gripper’s active surfaces. We employ a simple
“pull-in” strategy where the target object is simultaneously manipulated and
grasped by using the belts to pull the object towards the palm of the gripper
while closing the fingers. The use of active surfaces regulating adhesion for grip-
ping devices has so far been only explored on the micro/nano scale [105]. Some
designs of grippers utilizing belts have been employed in industrial settings but,
to the best of our knowledge, no attempt has been made so far to develop a
programmatic strategy of utilizing active surfaces during grasp execution.

This chapter is organized as follows: below, we introduce our grasp synthe-
sis and execution scheme before describing the experimental setup, the target
scenarios and the obtained results in Section 6.3. The final conclusions are dis-
cussed in Section 6.4.

Nomenclature

Index used for virtual contacts, j = 1,...,v

Surface normal at the gripper’s j-th virtual contact
Gripper opening angle q € R

Palm roll angle, ¢ € R

Palm pitch angle, b € R

Approach distance, d € R

Gripper palm pose, P = P(d, ¢, ) € R®

Contact point on a discrete object’s surface, p. € R?
Contact normal at p, n € R?

Grasp, G= (Pa q)

Grasp energy function, E: R® x R — R

Scaling factor, s € R

Desired number of synthesized grasps, t € Z
Number of grasp synthesis attempts per approach di-
rection, h € Z

Number of fingers of the grasping device, f € Z .
Grasp scoring function, S : R* — R

SE Grasp energy score, sg € R: 0 <sg <1

S Grasp ICR score, s e R: 0 <sp < 1

so | Gripper-rel. orientation score, sop € R: 0 <sp < 1

=

[g]

[g]

St mMO3Tv veeen 3

w —h
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Figure 6.2: Predefined Virtual Contact Locations: Shown are the preset virtual contact
locations and corresponding surface normals n; on the Velvet Fingers gripper. Contacts
depicted in blue result in enveloping grasps, for the synthesis of fingertip grasps the set
of contacts shown in red were used.

6.2 Grasp Synthesis and Execution

Underactuated grippers can only control their active joints and rely on physi-
cal interaction with the environment for reconfiguring the passive ones. Thus,
accurately accounting for the interaction between such a gripper and a target
object in the grasp synthesis process would require a detailed dynamic simula-
tion of the grasp procedure. Even then, grasps pre-planned in this fashion might
fail when applied in cluttered environments, since a physical simulation of the
current scene would be necessary to guarantee successful target object retrieval.

Here, we chose a different strategy aimed at exploiting the underactuated
structure and the active surfaces of the Velvet Fingers gripper to simplify grasp
synthesis. Therefore, for synthesis purposes, we assume extended distal links
and a fully actuated mechanical structure comprising only one proximal joint
connecting the fingers to the palm (see Section 6.3.1 for an overview of the
actual kinematic structure). These assumptions conform to the natural configu-
rations of the gripper during approach (see Fig. 6.1 for an exemplary approach
configuration) when no mechanical interaction with the environment occurs.
During grasp execution, we then rely on the specific underactuated kinematic
and transmission design to envelope the object in a stable grasp or use the
belts to pull the object into such an enveloping grasp as described in Sec-
tion 6.3.3. The goal of the presented grasp synthesis methodology is to find
grasps G = (P, q), which are defined as pairs of a palm pose P € R® and a
joint configuration as discussed in Section 2.2. Compared to the general grasp
definition in (2.5), a joint configuration of the Velvet Gripper is described by a
single angle q € R only.
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Our grasp synthesis methodology is built upon the work by Ciocarlie and
Allen [54], who generate pre-grasps in low-dimensional hand joint subspaces
by minimizing an energy function based on distance/alignment between pre-
defined virtual contact locations on the hand and the target object. The cor-
responding non-convex optimization problem is solved via the derivative-free
simulated annealing algorithm, which has been shown to work well for synthe-
sizing enveloping grasps for multi-fingered hands [53, 45]. The Velvet Gripper’s
relatively large size, and the fact that target objects can only be approached with
extended distal links, makes many grasps with inappropriate palm poses infea-
sible since they would result in collisions with the environment. Consequently,
we additionally incorporate the following two heuristics which correspond to
observations of human grasp strategies:

i) It has been shown, that most successful grasps usually approach along a
surface normal of the object [56, 106].

ii) In many successful grasps, the grasping device’s lateral axis (the x-axis in
Fig. 6.2) is normal to one of the principal component directions of the
object.

In accordance with the first observation, the approach direction (the y-axis
in Fig. 6.2) is constrained to be in an environment around a surface normal
n. € R? of the object. We plan palm poses P = P(d, ¢, ) over the approach
distance d € Ry and palm roll and pitch angles ¢ € R and ¥ € R. To this
end, we minimize the following energy function E : R® x R — R which was
introduced in [54]

v T )
E(P, q) — Z (1 _ Ty 05 + |OJ|2> ; (6.1)

2\ ol s

where v € Z, indicates the number of preset virtual target contact locations
on the phalanges of the gripping device (see Fig. 6.2), n; € R* denotes the
outward-pointing surface unit normal at the j-th virtual contact, 0; € R3 is
the vector from virtual contact j on the hand to the closest point p. € R? on
the object and s € Ry is a scaling parameter (for clarity, the implicit depen-
dence of oj and n; on P and q is omitted in the notation). The first term in
Equation (6.1) captures the alignments between the object and target contact
locations on the hand, the second term indicates the distances of the target con-
tacts to the object. As in [54], the grasp energy in (6.1) is minimized using the
simulated annealing algorithm which is able to escape local minima through
possible “uphill moves” during optimization via generating random neighbors.

Given a vertex p. with associated vertex normal n. on the target object’s
discretized surface, we account for the second of the aforementioned observa-
tions by providing the solver with appropriate initial conditions. To this end,
the gripper is positioned at a fixed offset distance from p. along the vertex
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Algorithm 8: Grasp Synthesis

Input: Target object {p., N}, synthesis attempts per approach direction h, desired
number of grasps t, grasp energy threshold Emax
Output: Set of synthesized grasps { G}

g+ 0
while g < t do

/* Sample a vertex and associated vertex normal without replacement */
(Pe> Me)  randomSample({pe, nc})

for q < 1to h do /* Initialize the solver from h initial states */
$o+ (gq—1)2t/h /* Compute the initial roll angle ¢y */
initializeGripperPose(p ., e, do)

minimize E(P,q) in (6.1)
P.q

subject to box constraints on all variables

/* Add the solution to the output set if it satisfies the energy threshold */
if E < Eqnax then
L add (P*, q*) to {G}
g<+—g-+1

return {G}

normal n. in negative direction. The initial palm rotation is determined such
that the lateral axis of the gripper is normal to the object’s principal component
direction with the largest eigenvalue which is not parallel to n.. This rotation is
then offset by an initial roll angle ¢o. During optimization, box constraints are
enforced to ensure that the variables do not diverge too far from the initial con-
dition. The proposed method allows to put bounds on the resulting grasp poses
while, opposed to approaches solely relying on heuristic sampling [56, 52], still
retains the flexibility to adjust them to the specific object geometry.

Our grasp synthesis methodology is summarized in Algorithm 8 and was
integrated in the Grasplt! [53] simulator, using Grasplt!’s simulated annealing
solver. We iteratively sample vertex/vertex normal pairs from a discretized tar-
get object representation. Subsequently, each time a new grasp is found, the
solver is restarted with initial states as described above. In Algorithm 8, h syn-
thesis attempts are made for each approach direction. To obtain grasps con-
forming to other principal directions and to obtain symmetrical grasp hypothe-
ses, h = 4 is typically chosen since this advances the initial roll angle ¢¢ in steps
of size 7t/2. Our optimization scheme only operates on four decision variables
which results in fast synthesis times. Grasps comprising energies in (6.1) above
a given threshold Epax are discarded.

In Section 6.3 we evaluate our synthesis scheme with two different sets of
contact references as illustrated in Fig. 6.2. The choice of reference locations
on the gripper provides an easy way to control the resulting grasp configura-
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Figure 6.3: Grasp Synthesis - Example: Shown is a set of fingertip grasps as computed
by the planner. Palm poses are indicated by the approach direction (y-axis) in red and
the x-axis in blue. As intended, the resulting palm orientations are roughly normal to
principal component directions of the target object.

Figure 6.4: Pull-in Grasping Strategy: Depicted is a sequence of intermediate grasp states
where the belts of the gripper are used to pull the object towards the palm which results
in a transition from a fingertip to an enveloping grasp.

tions. Locations on the proximal phalanges result in enveloping grasps, which
are potentially robust. However, in cluttered scenes many enveloping grasps
are not achievable without collisions and fingertip grasps are preferable, espe-
cially when active surfaces are available to aid the grasp execution process as
discussed below. An example for the obtained output is depicted in Fig. 6.3.
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6.2.1 Simultaneous Manipulation and Grasping

An interesting possibility offered by the active surfaces of the considered grip-
per is to manipulate the object while grasping. One idea to improve the grasp
execution success in the presence of object pose and gripper positioning un-
certainties is to employ a “pull-in” strategy. Here, the belts move the object
towards the gripper’s palm while the phalanges squeeze the object as illustrated
in Fig. 6.4. In section 6.3.3, we provide a verification of this strategy in com-
bination with fingertip grasps in cluttered scenes. Here, enveloping grasps are
often infeasible and the pull-in strategy aids in obtaining firm grasps which
would not be achievable without the active surfaces.

6.2.2 Grasping Pipeline

To carry out the experiments in Section 6.3 we employ the grasping pipeline
illustrated in Fig. 6.5. Our approach employs an offline and an online stage.
In the offline stage, we acquire 3D models of the target objects, train a per-
ception module and compute grasps. The first step in the offline stage is to
acquire accurate models of the objects of interest. The model acquisition ap-
proach follows the work of Mihalyi et al. [107]. First, a number of augmented
reality markers are placed in the scene and a set of training RGB-D images is
collected. The training set is used to estimate a graph of marker positions and
orientations. Next, we successively place each target object in the scene and ac-
quire a set of RGB-D images, which are subsequently registered in a common
reference frame using the marker graph. We use the registered depth images
to reconstruct a Truncated Signed Distance Field (TSDF) representation of the
object from which triangular meshes are extracted using the marching tetrahe-
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Figure 6.6: Grasp Synthesis - Retrieval: Shown is a scene as observed by the robot with
two detected objects (ball and box). Also depicted are the feasible grasps G for the ball
which are indicated by their approach vectors in green, the purple vector signifies the
grasp chosen by the grasp selection module.

drons algorithm. The TSDF tracker algorithm in [108] is employed to correct
for local inaccuracies in the RGB-D data registration. By fusing consecutive
views of the object in the TSDF representation we effectively eliminate a large
portion of the sensor noise, leveraging on the changing sensor viewpoints. The
smoothed triangle meshes are then stored in the database and used by the pre-
viously described grasp synthesis scheme to generate grasps. Thus, contrary to
prior approaches that use ground truth geometric models, we train grasps on
models reconstructed from noisy sensor observations. The final component of
the offline stage uses the RGB-D images of each object to train the recogni-
tion modules of the perception system. The Perception module in the pipeline
is based on previous work by Vaskevicius et al. [109]. During the offline stage,
this system extracts local visual features from the RGB data component, ref-
erences them based on the depth component and stores the resulting feature
graph in the database.

The online stage of the proposed pipeline starts with the acquisition of an
RGB-D image of the target scene. Following the work in [109], the image is
then over-segmented in patches. Local visual features from each patch are then
extracted and compared against the feature graphs stored in the database. If a
candidate match to an object is detected, additional checks for consistency are
performed by back-projecting the database object to the scene. Once the per-
ception system obtains a list of detected objects, the grasp selection module is
used to associate a set of grasps to each of the pose-transformed object candi-
dates. For evaluation purposes, as described in Section 6.3.2, this module tests
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all grasps from the database for feasibility, using a fast RRT planner. An exam-
ple is shown in Fig. 6.6. Given a high number of objects and possible grasps,
this strategy may not be feasible for online operation. To this end, we employ
a grasp ranking procedure and a first-feasible execution strategy. We follow
an approach similar to the one outlined by Berenson et al. [56] and evaluate,
for the given environment, a grasp scoring function S : R®> — R which is the
weighted sum of three sub-scores

S(sg, 1,805 @) = aisg + azsy + asso, (6.2)

where the vector a € R3, a > 0 contains positive weights. In this work, we
use uniform weights a = 1. The grasp energy score sg € R, 0 < sg < 1 is
the value of the energy function in (6.1) divided by the maximum energy of all
grasps for an object. To capture the robustness of a grasp to modeling and po-
sitioning uncertainties, we employ ICR computed from an EWS approximation
based on parallel shifting according to Algorithms 2, 3 and 5 as explained in
Section 5.3.1. The corresponding ICR score s; € R, 0 < sg < 1in (6.2) is com-
posed of one minus the normalized sum of ICR contacts }_ Ri,i = 1,...,f.
For the considered Velvet Fingers gripper, the number of fingers f = 2. The
gripper-relative orientation score sop € R, 0 < sg < 1 in (6.2) captures the
similarity of the grasp pose to the current gripper pose and is expressed as one
minus the cosine of half the angle between the current and target palm ori-
entation. All grasps are ranked by increasing scores in (6.2) and successively
tested for feasibility as described above. Once a valid candidate is found, joint
motion trajectories are generated and passed on to the controller to execute
the movement. In all experiments, inverse kinematics, collision checking and
motion planning were carried out with the Movelt! framework [110].

6.3 Evaluation and Results

In this section, we outline the hardware setup and target scenarios, before pro-
ceeding with a discussion of the obtained results.

6.3.1 System Configuration and Target Scenarios

For the experimental evaluation we used the Velvet Fingers Gripper whose kine-
matics and control scheme is depicted in Fig. 6.7. All actuators are controlled
with simple PID control loops which are closed on the angle rotation of the mo-
tor shafts through magnetic encoders. Current sensors on the electronic boards
allow to set thresholds on the current absorptions. This ensures a robust grasp-
ing behavior and, at the same time, enables safeguarding the entirety of the
gripper (see [27] for more details). For all object recognition and collision de-
tection tasks an ASUS Xtion structured light camera, which is mounted on the
gripper, was used.
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Figure 6.7: Velvet Fingers Gripper Architecture: One electronic board controls the motor
M for the opening and closing and reads the angular position of the joints q2 and
g4. The second board controls the motors M, and M, driving the belts. The current
assumption of both boards is monitored by corresponding on-board sensors.

In the experiments, we used a database containing the five target objects
shown in Fig. 6.1. We opted for a two-staged evaluation. In the first set of ex-
periments we investigate the quality of the proposed grasp synthesis approach
under different environment configurations. We then proceed to analyze the
performance of the pipeline, including a preliminary performance analysis of
the proposed pull-in strategy, in a tabletop grasping scenario utilizing the plat-
forms in Fig. 6.1 and Fig. 2.2(d).

6.3.2 Grasp Synthesis Evaluation

To evaluate the synthesis, we computed three sets of 400 grasps for each ob-
ject, containing pinch grasps Gp, enveloping grasps Gg and an equal mixture
of both Gy respectively. Next, the platform in Fig. 6.1 was used to collect
two data sets of depth and color images. The first scene data set 8 contains
three observations of each target object in isolation (i.e., only one object in
the scene). The second data set 8 contains observations of scenes with various
amount of clutter (i.e., multiple objects in the scene). Here, a total of fifteen
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Figure 6.8: Grasp Synthesis - Results Isolated Objects: Boxplot showing the number of
feasible grasps |G| per object (out of a total number of 400 pre-planned grasps) as a
function of the chosen synthesis flavor (pinch, envelope or mixed grasps). The grasps
were extracted from data set 8§ which contains observations of isolated target objects
only.

Table 6.1: Grasp Synthesis - Parameters: Predefined parameters for Algorithm 8
A¢ [rad] | AP [rad] | Ad[m] | h | Emax
+ m/10 + /10 +0.4 4 20

different scenes with all five objects, which are incrementally cleared by a hu-
man removing one object at a time, were recorded resulting in a total of sixty
observed scenes which contained at least two objects each. For each observed
scene we executed our grasping pipeline using the differently synthesized grasp
sets. In these sets of experiments we evaluate all grasps up to the motion plan-
ning module, but do not select or execute a grasp since we aim to evaluate how
many of the synthesized grasps are feasible (i. e., reachable by a collision-free
path) under different conditions. The predefined parameters for the box con-
straints, palm rotation discretization and energy threshold used in Algorithm 8
are summarized in Table 6.1.

The outcome of the first experiment is visualized in Fig. 6.8. It is clear that
pinch grasps are much more likely to be feasible, even if only a single target
object is in the robot’s workspace. Many enveloping grasps are rejected because
they necessitate large opening angles resulting in bulky gripper silhouettes for
which no collision free approach trajectories can be found.
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Table 6.2: Grasp Synthesis - Results Cluttered Scenes: Quantities are represented as
mean and 1-STD values

|Gpl/obj GEl/obj | [Gwml/obj
Sobj | 7.5+12.3 | 1.3+£3.4 | 3.3+8.0
4obj | 47+62 | 1.4+£32 | 21+3.5
3obj | 5.1+£89 | 1.5+£25 | 21442
20bj | 84493 | 40£5.7 | 46+8.0

Table 6.2 shows the feasible grasps per object depending on the number of
objects in the cluttered scene and the chosen synthesis flavor (pinch, envelope or
mixed grasps). We note that two out of the 15 scenes containing all five objects
yielded an exceptionally high number of feasible pinch grasps, which biased
the according entry in Table 6.2. This is due to the fact, that the number of
feasible grasps found also significantly depends on the location of the objects in
the robot’s workspace which favored pinch grasps in these cases. Nevertheless,
it is evident that the difficulty of finding feasible enveloping grasps increases
with the amount of clutter, whereas it still possible to obtain pinch grasps with
multiple objects in the scene. Also, the set of mixed grasps does not perform
significantly better than enveloping grasps. These results provide a strong moti-
vation to exclusively use dexterous initial pinch grasps, coupled with a strategy
for subsequent improvement of robustness such as using active surfaces to pull
the object into a firm enveloping grasp.

6.3.3 Grasp Execution using Active Surfaces

For a proof of concept evaluation of the suggested methods, we used the plat-
form in Fig. 6.1 to incrementally clear one of the cluttered scenes using the
described grasping pipeline and utilizing the set of synthesized pinch grasps
Gp. Initial grasps were performed by thresholding the current absorption of
the gripper’s closing actuator. No current feedback was available for the belts
on the fingers on this platform. Therefore, after an initial pinch grasp was ac-
quired, the belt movements responsible for pulling the object into an envelop-
ing grasp were triggered by an operator. In this fashion, the robot was able to
retrieve all five objects needing six attempts, one object was dropped during
the lift phase. An example of the robot using the pull-in strategy in a tabletop
scenario is depicted in Fig. 6.9(a).

Additionally, we conducted a preliminary evaluation on the Parcelrobot
platform which is described in Section 2.4. Here, we used a simple interac-
tion control routine which was triggered after the platform reached the pre-
planned grasp configuration. At the time of conducting these experiments, it
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Figure 6.9: Grasp Execution - Test Runs: (a) Shown is an example of the gripper using
the active surfaces in a tabletop scenario to retrieve an object via pulling it towards its
palm. (b) The gripper on the Parcelrobot platform retrieves a box autonomously.

was only possible to threshold the gripper actuators current consumptions and
no direct current control was available. Therefore, we experimentally verified
appropriate thresholds and used position control with predefined setpoints in
the aforementioned grasp routine. An example of the Parcelrobot platform re-
trieving an object is illustrated in Fig. 6.9(b).

6.4 Discussion

In this chapter, we contribute a data-driven solution to the problem of finding
palm poses and joint configurations which are appropriate to grasp objects
with an underactuated gripper. The main concept is to simplify grasp synthe-
sis and to entrust the specific kinematic/transmission structure of such an un-
deractuated device with robust grasp execution. To this end, we adapt a well-
established optimization based synthesis scheme [53, 54] to the specifics of such
grasping devices. Heuristics describing grasp strategies observed in humans are
incorporated via constraints which are imposed to the underlying optimization
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problem. Furthermore, we investigate how active surfaces in form of belts on
the fingers can aid in the grasp execution process, by manipulating an object in
order to pull it into a robust enveloping grasp starting from an initial dexterous
pinch grasp. We provide a numerical evaluation of the proposed grasp synthe-
sis scheme in a real-world scenario and conduct proof-of-concept test runs on
robot platforms featuring an underactuated gripper.

Depending on the number and configuration of objects in an observed scene,
generating motion plans for many pre-planned grasps in the employed feasible-
first manner can result in significant time delays. It would be interesting to
cast the problem of finding a motion plan for the full arm-gripper chain as
an optimization problem to be solved online. To that end, one could employ
trajectory optimization techniques [111, 112] and describe simple target object
geometries via constraints in order to solve the grasp synthesis and motion
planning problems simultaneously.






Chapter 7
Reactive Hand Motion
Planning and Control

Hand motion planning and control

So far, we addressed the question of where to move a grasping device to allow
for a successful grasp. For complex articulated hands, such as the anthropo-
morphic Shadow Robot platform utilized in the Handle project, also the issue
of how to move the grasping device poses a challenge, since it necessitates to
coordinate the motion of many DoFE. To this end, we propose a reactive real-
time motion generation framework which is based on DS whose parameters are
learned from human demonstrations. In an extension, we augment the concept
with a MPC scheme which generates locally optimal motions and allows to
incorporate auxiliary tasks such as obstacle avoidance.

7.1 Introduction

On the frontier between motion planning and control DS have emerged as a
popular way to encode desired movement behaviors in form of state transition
policies [75, 113]. Here, opposed to strictly following pre-planned paths or
using spline-based methods [114, 115], motions are generated reactively which
provides robustness to perturbations occurring during execution.

In order to generate appropriate motion patterns for a targeted robotic sys-
tem, the underlying DS parameter estimation problem! is commonly solved by

1 Also referred to as parameter identification, nonlinear regression or data fitting [116].

75
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providing data examples specifying desired transitions from given initial to fi-
nal states. One way to provide experimental data is to record movements of
a human expert in a TbD setting [117]. Another possibility is to create data
artificially, e. g., in form of smooth minimum-jerk trajectories [118] or as the
pre-computed solutions of optimal control problems [119].

The choice of an appropriate DS for motion generation is typically guided
by the ability of the underlying model to generalize over the provided examples
while guaranteeing certain structural properties, and their potential to express
coupling between the dynamics of different subsystems. Also, in order to fa-
cilitate the parameter estimation problem, simple models are often preferred.
Especially in an imitation learning setting where the provided demonstrations
are usually relatively sparse, it might happen that the behavior of the DS in
unexplored parts of the state space is unexpected/undesirable. A classical ap-
proach for dealing with this problem is to enforce certain structural properties
of the DS such as Global Asymptotic Stability (GAS), ensuring that the state
is guaranteed to (at least) converge to the global equilibrium point. One short-
coming of such an approach is that it does not state any preference about the
behavior of the system in relation to the demonstrations.

Since the considered DS constitute policies over the state space whose state
evolution is guaranteed to converge, they can be seen as global planners which
always reach their goal in the absence of obstacles [78]. In the context of re-
active planning schemes, obstacles are typically dealt with locally — often by
modeling them with repelling potential fields as suggested by Khatib [75].

This work originates from efforts related to modeling and generation of
grasping movements, based on demonstrations of taxonomic grasps [120], for
the anthropomorphic Shadow Hand platform which is shown in Fig. 2.2(b). In-
cluding the two wrist joints, the hand comprises 20 controlled DoF. Even under
consideration of possible dimensionality reduction techniques [54, 121], this re-
quires a model capable of dealing with a substantial number of DoF. Another
desideratum is the ability to incorporate multiple demonstrations since, even
for the same grasp type, grasping motions can exhibit fundamentally different
dynamics (e. g., when starting the movement from an open and closed hand
configuration). In this work we suggest an approach using a dynamical system
described by Ordinary Differential Equations (ODE) to encode demonstrations
provided by a user. The method incorporates the DMP concept proposed by
Ijspeert et al. [24, 122]. The contributions in this chapter are the following;:

(i) We extend the DMP concept to learning of separate DS corresponding
to multiple demonstrations which allows to better capture a motion’s actual
underlying dynamics. The corresponding parameter estimation is carried out
using nonlinear optimization (instead of the usually used linear approximation)
which reduces the number of parameters necessary to achieve a good fit to the
provided demonstrations.

(ii) For real-time motion generation and control, we employ online opti-
mization and introduce a linear receding horizon MPC scheme, which is based
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on a convex combination of the learned DS ensuring predictable behavior over
the state space. Opposed to the usage of explicit DS as in related works [122,
70, 74, 71], our formulation is able to account for spatial and temporal con-
straints to incorporate additional considerations such as obstacle avoidance.
This chapter is structured as follows: below, we formalize the tackled prob-
lem before we introduce our DMP formulation in Section 7.3. In Section 7.4
we suggest a method to combine multiple DS online in order to generalize over
multiple demonstrations and introduce our MPC scheme for obstacle avoid-
ance. Next, we use simulations and test runs with a robotic hand to evaluate the
proposed approach in Section 7.5 before we discuss the results in Section 7.6.

7.2 Problem Description and Assumptions

Nomenclature

Indices

Trajectory point index, 1 € {1,..., m}
Demonstration index, j € {1,...,d}
Gaussian basis function index, b € {1,...,n}
DoF index, a €{1,...,f}

Preview window index, r € {1,...,p}
Discrete time index, k € Z,
Hyperplane index, h € Z

General

Joint configuration, q = [q1,...,qf
State vector, x = [q, q]"
Discretized demonstration, d = [q1, ..., Gm] "
Dilated time, t € [0, 1]

Dynamical Movement Primitive, @ : R* x R — R?
Phase variable, s € R

Forcing function, u: R — R

b-th GBE, ¥}, : R — R

GBF weights, w = [wq,...,wn]T

GBF centers and widths, p = [c1, 01,...,Cn, 0n]"
Basis function limitats =1, e € R,

Motion duration, T € R,

Continuous system matrix, A € R?*?

Continuous input matrix, B € R?

Discrete state transition matrix, A € R2*2

Discrete control matrix, B € R2

Penalty coefficients, k e R,, v € R,

Selection matrix, C € R?

State constraints, H € R¢*f, e ¢ R®

Number of hyperplanes defining an obstacle, 0 € Z
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Our goal is to develop a reactive motion generation system whose output tra-
jectories resemble given demonstrations and which allows to incorporate state
constraints for auxiliary targets such as obstacle avoidance. To this end, we
learn movement primitives by fitting the parameters of dynamical systems, de-
scribed as a set of ODE with a single global attractor point, to experimental
data provided in form of multiple point-to-point trajectories in either joint or
task-space. The state evolution of these dynamical systems, obtained by inte-
grating from a given initial state, describes motion profiles which then can be
converted to motor commands for the targeted platform by a low-level track-
ing controller. Important requirements are the ability to account for inherently
different dynamics in the demonstrations and ensuring predictable behavior in
regions of the state space which were not covered by the demonstrations. Also,
a model structure not suffering from the curse of dimensionality is necessary,
since we aim at platforms with a substantial number of DoF.

For convenience, and without loss of generality, all definitions regarding dy-
namical systems and their respective states are stated under the assumption of
an implicit change of variable, such that the equilibrium point of the considered
system is at the origin [123]. A demonstrated point-to-point trajectory is given
as position, velocity and acceleration vectors @, g, q € R™ sampled at m dis-
crete points in time. The trajectory is rescaled on a time interval between zero
and one, i.e., t; € [0,1], i = 1,...,m, in order to make different trajectories
comparable. In accordance with the above assumption regarding the change
of variable, the trajectory is shifted to converge at the origin, i.e., g, = O.
For simplicity of notation we assume that each trajectory is sampled with the
same number m of points and that the same number d of demonstrations is
provided for each DoF, although these are not explicit requirements of the pro-
posed methods. Although we present our approach for motion generation in
configuration space, it is equally applicable in operational space.

7.3 Learning Dynamical Movement Primitives

In this Section we first show, for one DoF, how to learn a motion primitive
from a single demonstration by solving a NLP. Subsequently, we extend the
formulation to account for multiple demonstrations which allows to encode
fundamentally different dynamics for the same DoF.

7.3.1 Encoding a Single Demonstration

The motion of one DoF, corresponding to a given demonstration, is encoded in
aDS @ : R? x R — R? formulated as the ODE

x(t) = @ (x(t),s(t);w,p),

depending on parameters w and p, the state x(t) € R?, and a phase variable
s(t) € R. The phase variable provides a convenient way to scale time in order
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to modify the duration of the resulting motion. Its evolution is governed by the
following simple dynamics

ds |

L =8=1/, (7.1)
where the scalar constant T determines the movement’s duration. The DS, to-
gether with the phase variable driving it constitutes a DMP. Synchronized mo-
tions across multiple DoF, each of which is associated with a separate DS, are
achieved by using a common phase variable s(t). A DS consists of a linear
mass-spring-damper excited by a nonlinear input u(s) : R — R, which is often
referred to as a forcing function. As in [24], we choose to represent the forcing
function as a weighted sum of n Gaussian Basis Functions (GBF) with weights
W = [wy,...,wn]T, respective centers ¢, € [0, 1] and widths o}, > 0 which are
collected in the vector p = [c1, 01, ...,Cn, 0nl". The system @ (x(t), s(t);w, p)
is given by

q| _ 0 1 q 0
M a LX/TZ B/T} {q] + [1/4 u(s) (7.2)
~~ Ny
X A X B
u(s) = Z‘ijb(s; Cb, Op )Wy, (7.3)
b=1

where « € R, and f € R, are predefined such that critical damping is enforced
and ¥y, = exp (—0.5(3 — cb)z/(r%)). In the original DMP framework [24], the
phase variable s is governed by converging dynamics and used to scale the
inputs u in order to guarantee GAS. In our formulation this is not required
since we compute the parameters of the DS by solving an optimization prob-
lem in which we enforce appropriate constraints to ensure GAS as shown in
Section 7.3.2.

To generate a motion, s is reset to zero and the DS in (7.2) is integrated
from a given initial state. When s reaches one, the forcing terms u(s) become
negligible. The time evolution of the phase variable, and thus the movement
duration, is governed by t. Our choice of the system in (7.1) governing the
evolution of the phase variable was made for simplicity. The use of alternative
canonical systems is possible but would not qualitatively change the results.

7.3.2 Parameter Estimation via Nonlinear Programming

Learning a DMP amounts to estimating the GBF parameters w and p of the
forcing function u(s) in (7.3). This is a nonlinear problem which is usually
tackled by fixing the nonlinear parameters in p according to some heuristics
(e. g., uniform Gaussian widths oy, and equidistantly spaced centers cy,). Here,
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Figure 7.1: DMP - Gaussian Basis Functions: Shown are n = 5 GBF ¥, obtained via
solving (7.4) for the demonstration in Fig. 7.2. The widths decrease with increasing s
according to the constraint 0, < 6(1 —c¢yp) in (7.5), ensuring negligible magnitudes of
u(s) for s > 1.

in a first step, we formulate a NLP in order to fit the parameters for a single
system @ (x, s; W, p) to a provided demonstration. The goal is to learn forcing
terms u such that the system resembles the dynamics of the demonstration. This
is achieved by minimizing the squared L, norm of the acceleration residual
between the demonstrated data and the output generated by the model. The
corresponding constrained nonlinear least squares problem is given below?

T _ = \2
mlm’mlze 5;((:@ (xi,si;w,p)—qi) (7.4)
subject to (7.5)

op < 6(1—cyp), b=1,...,n

0<cp, <1, b=1,...,n

Ac < Ccp —Cp_1, b=2,...,n,

where X; = [§i, GiJ7 and §; = t; due to the time scaling of the demonstra-
tions as stated in Section 7.2. C = [0, 1] is a selection matrix and Ac € R,
0 < Ac < 1/nis a constant limiting the minimum distance between the centers
of basis functions in order to prevent overlapping. The scalare e R, 0 < e < 1
can be used to arbitrary limit the value of the basis functions at the end of
the interval s € [0,1], 1. e., ¥u (1) < €, Vb, which ensures GAS. To this end,

2This problem is not convex and thus, in general, only a local minimizer will be found.
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Figure 7.2: DMP - Comparison: Shown is the reproduction ability of the DS in (7.2)
whose parameters are fitted by solving (7.4), compared to a DS using equidistantly
spaced GBF and uniform basis function widths. The result was generated by integrating
the respective systems from the initial state X(0) of the demonstration. The demonstra-
tion q(t) is denoted in pink, the dashed black line represents the position curve q(t)
yielded by our DS, the dashed magenta line shows the result obtained from the DS with

predefined nonlinear parameters p (g(t) was generated with the code accompanying
[122]). In both cases, n = 5 basis functions were used.

N

6 = /—0.5/log(e) corresponds to the width of a basis function centered at
zero. To provide the solver with a feasible initial guess, the problem above is
solved with fixed basis functions centers and widths which reduces (7.4) to
a Quadratic Programming (QP) problem. Here, the n initial centers ¢y, are
equidistantly spaced on the interval s € [0, 1] and the associated widths are
located on the corresponding constraint in (7.5) such that &, = 6(1 — ¢p), Vb.

An example of the parameters p obtained by solving (7.4) is shown in
Fig. 7.1. The corresponding demonstration, along with a comparison to a so-
lution generated with heuristically fixed nonlinear parameters is depicted in
Fig. 7.2. Evidently, by including the nonlinear parameters p in the decision
variables, a better fit can be obtained as shown in Section 7.5.1.

7.3.3 Encoding Multiple Demonstrations

In the next step, the goal is to fit (for one DoF) the forcing terms of d dynam-
ical systems to d provided demonstrations such that the j-th DS encodes the
dynamics in the vicinity of the j-th demonstration. One could simply use the
NLP in (7.4) to identify w € R™ and p € R*" separately for each DS which
would amount to estimate 3dn parameters. Instead, we reformulate (7.4) such
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that the nonlinear basis function parameters p are shared among the d dy-
namical systems while the j-th DS has associated linear parameters wj. The
objective function becomes

d m
vrvninimize %Z {Z (C(D] (ij,i,gi;Wj,p) — aj,i)z} (76)

,,,,, Wy,
! «P j=1 li=1

and the problem is subjected to the constraints in (7.5). The above formulation
allows a fit with n(d + 2) parameters and was used for the evaluation in Sec-
tion 7.5. The concept of sharing basis functions between motion generators is
similar as the one used by Riickert and d’Avella in [124], where it is put in the
context of muscular synergies.

7.4 Real-time Control with Movement Primitives

In this section we first discuss how to form a new implicit DS based on a locally
optimal combination of the previously learned systems (each of which corre-
sponds to a demonstration). Then, we proceed to derive our MPC scheme with
state constraints.

7.4.1 Generating Locally Optimal Motions

Let x;[k] denote the state at time ty obtained by integrating @;(x;,s) from
t =ty tot = ty starting from %;(0) (i.e., from the initial state of the j-th
demonstration). Our approach makes dual use of the dynamical systems. First,
the set of reference states collected in the columns of the matrix

R[K] =[x [k, ..., xalk]] € R**¢ (7.7)

provides, at each time ty, a representation of the corresponding demonstration
encoded in @j(x;, s). Second, we formulate a movement primitive comprising a
new DS where the forcing term is formed as a convex combination of individual
inputs u;[k] associated with the systems ®j(x;, s)

x[k] = Ax[k] + Bulk] "A[K], (7.8)

where uk] = [u[k],...,uq[kll" and Alk] = A;[K],...,Aalk]]". Here, A and B
are the same as in (7.2). Equation (7.8) describes an implicit DS, where by im-
plicit we imply that the system is not given in closed form. Rather, its definition
relies on an online solution of an optimization problem. Here, the coefficients
A;[k] are recomputed at every time step ti by minimizing the residual

Ax[k] = x[k] — R[k]A[K] (7.9)
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Figure 7.3: DMP - Convex Combination: The shaded area represents the convex hull
over the reference states in R[kl], the projection R[kJA[k] of the current state x[k] onto
this convex hull is indicated by the cross, Ax signifies the projection residual.

of the projection of the current state x[k] onto the convex hull over the cur-
rent reference states in the columns of R[k] in (7.7) as shown in Fig. 7.3. The
associated minimization problem is formalized as the QP below

mir}l\imize | AXIK] ||, + kK] TALK] (7.10)
[k]
subject to 1TAK] =1,

Alk] = 0,

where the elements 15[k] = ||x[k] —x;[k]||> of the vector U[k] = [1;[K],..., lalkI™
describe the euclidean distances of the reference states to the current states,
kK > 0 is a (small) scalar and 1 is an appropriately dimensioned column vector
of ones. The second term in the objective function in (7.10) is added in order
to resolve the redundancy between multiple equivalent solutions for A[k] which
can occur if the residual Ax is zero. We define ||z|?, = z"Hz for some z € R*
and a positive semi-definite and symmetric matrix H € R**=, Let the vector
A" =[A1,...,A4]T denote a solution of (7.10), i.e., A[k] = A*. The coefficients
A; are recomputed only at discrete steps k according to (7.10) and are assumed
to be constant within the time window [ty, tx.1]. In order to characterize the
behavior of the newly formed DS in (7.8) we formulate the following proposi-
tion.

Proposition 7.1 (System behavior).
The projection residual Ax|k] converges onto the convex hull over the reference
states in R[k] with dynamics governed by the matrix A

Ax[k] - AAX[k], te [tky tk+1]-
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If the convex hull over the states in R[K| contains the current state x|k, the
projection residual Ax[K] is zero and the next state x[k + 1] will be a convex
combination of the reference states in Rk + 1], i.e.,

x[k + 1] = R[k + 1]A™.

A proof of the above proposition is given in Appendix B. Proposition 7.1
summarizes a key concept in this work. The DS in (7.8) accounts for different
dynamics encoded from multiple demonstrations while exhibiting a predictable
behavior over the whole state space. This is achieved by encoding a represen-
tation of the underlying demonstrations by means of the DS itself. States inside
the convex hull of the reference states evolve according to a convex combina-
tion of the references. The matrix A in (7.8) governs the evolution for states
outside the convex hull over the references and can be tuned according to the
application. As in the original DMP framework [122], arbitrary many DoF can
be synchronized via a common phase variable s.

7.4.2 DMP-based Model Predictive Control

A remaining question is how appropriate the trajectories generated by the pol-
icy in (7.8) are in the presence of obstacles which are not known a priori.
One could imagine an example were the combination of the reference dy-
namics leads to collisions with unforeseen obstacles. Opposed to existing ap-
proaches [68, 70, 71, 72] which use statistical learning techniques to com-
bine pre-learned DMP in order to generalize to novel situations, the suggested
method provides a straightforward way to incorporate state constraints. Since
the approach allows to modify the motion generating system in (7.8) at each
time step, we suggest an alternative way of handling obstacles using model pre-
dictive control under a set of spatial and temporal polyhedral constraints which
are designed to lead the system around a given (potentially moving) obstacle.

To start, let us note that the matrix formed by the product Bu[k]T € R?*¢
in (7.8) can loose rank (e. g., towards the end of a motion when the elements
of ul[k] vanish) and that the vector Alk] is bound by the convex constraints
in (7.10). Therefore, to ensure the ability to satisfy additional state constraints,
we augment the system in (7.8) with an auxiliary control input A and discretize
to obtain

x[k + 1] = Ax[k] + Bulk] "y[K], (7.11)

where A and B are state transition matrix and control matrix of the discrete
system, ulk] = [u[k], 11" € RA*! and vkl = [A[k], i[k]]T € R+ denotes
the augmented control vector. Next, we want to predict the residual of the
projection of the current state on the reference states p step forwards in time.
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Inserting the augmented system in (7.11) in the residual formulation in (7.9)
and performing recursion yields

Ax[K] A’ vk
Ax[k 4+ 1] Al vk + 1]
. = ] x[kl +Z . s (7.12)
AxIk +p] AP yik+p]
AX e R2(p+1) I e R(d+1) (p+1)

where the matrix Z € R2(P+1)x(d+1D{p+1) jg given as

—R[K] 0 0

Bul[k] —R[k+1] 0 0

z— | ABul Bk + 1] Rlk + 2] 0 0
A" 'Bulkl A" ’Bulk+1 ...  Buk+p—1 —Rlk+p]

Without consideration of additional state constraints, we can now formulate
a receding horizon MPC scheme as the following optimization problem which
needs to be solved at every time step ty

P
minirgnize |AXIK[I}, + kLK) Z [k + p)? (7.13)

subject to 1TA[k+1] =1, r:O,...,p,
Alk+711>0, r=0,...,p.

Here, compared to the previous formulation in (7.10) where only the current
projection residual at time ty is optimized, the minimization is carried out over
a temporal preview window of p steps according to (7.12). The penalty factor
v in (7.13) is chosen to be large in order to suppress the auxiliary control inputs
Alk + 1] since their role is to deviate the system only if additional constraints
need to be obeyed as discussed below.

7.4.3 State Constraints for Obstacle Avoidance

Here, the goal is to avoid obstacles in state space. For simplicity, we only con-
sider constraints on the positions q = [q1,...,qs]" of the f state vectors x,
according to (7.13), although velocity constraints on q = [d1,..., ]’ can be
handled in the same fashion. To ensure convexity, we only consider linear state
constraints of the form th 4 e < 0 which facilitates the solution of the un-
derlying optimization problem. Here, h € R is a unit normal vector and e is a
scalar offset.
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In our framework, one DS in (7.11) is learned to guide each DoF. At this
point, the state evolutions of these DS are independent, there is only a potential
temporal coupling via shared phase variables s driving the inputs u[k] in (7.11).
Here, we couple f systems in (7.11) via the state constraints which requires
extending the MPC scheme in (7.13) as shown below

f p
mrinimize > <|AXa[k}||%{+Kla[k]T)\a[k]+vZ7\a[k+r}2> (7.14)

----- f a=1

subject to
1Ak +71=1, v=0,...,p, a=1,...,f
Aalk+11>20, r=0,....,p, a=1,...,f
Hik+7lglk+rl+ek+11 <0, r=1,...,p. (7.15)

Here, ¢ constraints are considered at a given time step in the preview window.
The matrix Hk+1] = [hy[k+7],..., he[k+7]]T € R*F collects the constraint
normals, vector e[k + 1] = [e1[k], ..., e.[k]]T holds the corresponding offsets.
To account for the coupling introduced by the predicted configurations q[k+ 1]
in (7.15), we have to consider the evolutions of each of the f states x4[k + 1]

=1

Xalk + 1] A
Xqlk + 2] A

. = . X[k] + Yras
Xa[k er} ;‘.p

where the matrix ¥ € R2P*(d+D(p+1) i5 oiven as

BulK 0 0

v ABulk] Bulk + 1] 0 :
: : : 0 :

A" 'Buld AP Bulk+1 ... Buk+p—1] 0

Note that the state coupling is only introduced in the constraints of (7.14), not
the objective function which is simply a sum over the objectives in (7.13). Thus,
if no constraint in (7.15) is active at a given time step, the resulting behavior is
identical to the one produced by the uncoupled scheme in (7.13) and resembles
the learned trajectories. Only if constraints in (7.15) are active, the auxiliary
controls Ay [k + 7] cause deviations in order to satisfy these constraints. Consid-
ering the choice of objective function in (7.14) and assuming a long enough pre-
view horizon, the stability of the proposed controller can be guaranteed [125].
In the tests reported in Section 7.5.3, we experimented with horizon lengths of
p =5 and p = 10 time steps which led to stable behavior.
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Figure 7.4: Obstacle Avoidance - Constraints: Shown is an example in a 2-dimensional
configuration space, (i.e., f = 2) with a preview window size of p = 2. The velocity
ray at q[k + 2] intersects hyperplane (ha, e4) at the point qlk + 2] + £q[k + 2], which is
indicated with a cross. Thus, (hy4, e4) is added to the constraints in (7.15).

A remaining issue is how to extract appropriate spatio-temporal constraints
for obstacle and self-collision avoidance from the robot’s environment. This is
an open research question and is out of the scope of this work. Previous works
suggest heuristics based on simplified pre-planned paths [82, 83]. Here, we only
consider a point-robot model and introduce a simple heuristics in order to be
able to verify our MPC scheme in Section 7.5.3. We assume that an obstacle is
represented as a convex polytope in H-representation (see Section 2.1), given as
a set of bounding hyperplanes {(hy, en)}, h =1,...,0. At each time step tx we
want to determine whether to augment (H[k + pl, e[k + p]) in the optimization
problem in (7.14) with a new constraint at the end of the preview horizon, i. e.,
at time typ. To this end, we formulate the following LP

minimize & (7.16)
EER

subject to

h (qk+pl+&qk+pl)+en>0, h=1,...,0
£>0,

which projects the state q[k + p] along the ray corresponding to the velocity
{x+p onto the obstacle as illustrated in Fig. 7.4. If the above LP is feasible, i. e.,
the state evolution “heads towards” the obstacle, the hyperplane containing the
projection forms a new constraint in (7.15).

The computational load of the presented MPC scheme at each time step
k consists of integrating the canonical system in (7.1) and the fd dynamical
systems in (7.3), where f is the number of DoF and d denotes the number of DS
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Figure 7.5: Motion Generation - Data Acquisition: An Immersion Cyberglove-18 was
used to record joint angles during grasp motions at a sample rate of 30 Hz. Starting from
open and closed initial hand configurations, grasps according to the taxonomy in [120]
were performed on cylindrical objects.

(each corresponding to a demonstration) per DoF. Furthermore, the solution of
f QP’s according to (7.14) and an LP according to (7.16) is required.

7.5 Evaluation

In this section we evaluate, by means of simulations and test runs on the
Shadow Robot platform, the application of the suggested methods to offline
learning of motion primitives from experimental data and the usage of these
primitives for real-time motion control. To this end we used a sensorized glove
to record taxonomic grasps on two cylindrical objects with different diameters
as illustrated in Fig. 7.5. We chose to evaluate the approach on the following
nine grasp types according to [120]: Tripod, Parallel Extension, Palmar Pinch,
Large Diameter, Small Diameter, Lateral, Precision Sphere, Power Sphere and
Inferior Pincer. The recordings were made while starting from open and closed
initial hand configurations respectively. The Shadow hand’s joint angles were
obtained via a linear regression mapping from the glove’s sensor space to the
robot’s joint angle space. As the goal is to model grasp joint motions using DMP
driven by a common phase variable s, the corresponding demonstrations have
to live on a common time interval. Thus, all trajectories were segmented from
the time a non-zero velocity was detected at a joint, until all joints stopped mov-
ing. Furthermore, the demonstrated trajectories were smoothed by means of a
linear least squares regression and numerically differentiated to obtain veloci-
ties and accelerations. After rescaling and shifting, as described in Section 7.2,
the trajectories were re-sampled with a number of m = 100 points each. A stan-
dard PC equipped with 6 GB memory and a 3.40 GHz Intel i7-2600 CPU was
used to generate the presented results.
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Figure 7.6: Motion Generation - Reproduction Quality: Illustrated are the MSE which
describe the deviation from the trajectories produced by the systems in (7.8) from the
learning data. Shown are the MSE for position (left) and velocity (right) for different
numbers n of basis functions and for the GBF parameters p in (7.4) fixed/optimized.

7.5.1 Reproduction and Generalization Capabilities

Here, the aim is to assess the introduced offline DMP learning scheme in (7.6).
For the f = 20 DoF of the Shadow hand we used, for each of the aforemen-
tioned nine grasp types, demonstrated trajectories to estimate the free param-
eters of 20 motion primitives in (7.8) as described in Section 7.3.3. Thus, a
total of 180 trajectories were used for the evaluation, the utilized fixed pa-
rameters are summarized in Table 7.1. The constrained nonlinear least squares
problems in (7.6) were solved with a Sequential Quadratic Programming (SQP)
algorithm, utilizing the ACADO Toolkit [126].

In order to quantify the reproduction capabilities of the learned DMP, we
reproduced the demonstrated trajectories by integrating (7.8) starting from the
same initial values as the corresponding demonstrations. We experimented with
different numbers n of basis functions in (7.3) and compared to results gener-
ated with DMP learned with fixed basis function parameters as in [122]. The re-
sulting position and velocity Mean Square Errors (MSE), as well as the compu-
tation times for solving (7.6) for different numbers n of basis functions are sum-
marized in Table 7.2. Additionally, the position/velocity MSE are also depicted
in Fig. 7.6. It is evident that, for small numbers of employed basis functions, the
nonlinear learning scheme vastly outperforms linear learning with fixed basis
function parameters. Also, the mean computation times for solving (7.6) while
including the basis function parameters in the decision variables are within rea-

sonable bounds (e. g. for n = 7 basis functions, the mean computation time is
6.25).
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Figure 7.7: Motion Generation - Generalization: Dashed lines represent the trajectories
obtained by simulating the dynamical system in (7.8), describing the tripod grasp motion
primitive for the MCP joint, starting from different initial conditions. The system was
parametrized via the demonstrated trajectories denoted in pink. Demonstrations j = 1
and j = 3 are associated with grasps made on a cylindrical object with diameter 65 mm
starting from closed and open initial hand configurations respectively, j = 2 and j = 4
correspond to grasps on an object with diameter 33 mm. (a) and (b) depict the curves for
position and velocity, the corresponding phase diagram is shown in (c). The behavior of
the system in the presence of disturbances is depicted in (d). After evolving unperturbed
initially, the system was subjected to disturbances in position, velocity and a combined

disturbance respectively.

To gauge the generalization capabilities of the learned models for the con-
sidered point-to-point movements, we performed simulations by initializing our
combined motion primitive formulation in (7.8) from different initial states. Ex-
emplary, the results for the dynamical system describing the flexion/extension
motions of the middle fingers Metacarpophalangeal (MCP) joint (the MCP
joints connect the proximal phalanges of the fingers to the palm) during a tri-
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Figure 7.8: Motion Generation - Test Runs: Shown is the Shadow Robot hand/arm plat-
form executing tripod grasp primitives triggered from different initial configurations.
Synchronized finger joint movements are generated by means of integrating motion
primitives corresponding to (7.8) which are driven by a common phase variable. Top
row: Starting from an open hand configuration; bottom row: starting from a closed
hand configuration.

pod grasp are shown in Fig. 7.7. Depicted are the obtained position, velocity
and phase plane curves. As argued in Section 7.4, for states evolving inside the
convex hull over the reference states the distance ratio to the references is gov-
erned by the convex combination coefficients computed as a solution of (7.10).
States outside the convex hull over the references are attracted towards this
convex hull according to dynamics governed by the matrix A in (7.8). It can
be seen that the model can reproduce the demonstrated trajectories with high
fidelity while exhibiting a deterministic behavior in regions of the state space
not covered by the demonstrations.

Furthermore, we analyzed the behavior of the model in the presence of state
disturbances. We investigated separate position and velocity disturbances as
well as a combined disturbance. When, at time ty, the system is perturbed in-
side the convex hull of the reference states, the update of the convex combina-
tion coefficients according to (7.10) at time ty 1 adjusts the future evolution of
the system according to the reference states at time ty 1. An example is shown
in Fig. 7.7(d), where a trajectory was started at the initial state X, (0) correspon-
ding to the second demonstration and is pushed onto the reference trajectory
associated with the first demonstration. After adjusting the combination co-
efficients in the next time step, the system continues to evolve according to
x1. Disturbances with states resulting outside the convex hull of the references
again cause the system to converge towards the projection onto this convex hull
with dynamics as specified in (7.8).
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Figure 7.9: Motion Generation - Tracking Control: Tracking controller set-points §(t)
and position curves q(t) for the MCP joint starting from open (experiment E!), pronated
(E?) and closed (E?) initial hand configuration. Motion duration T = 10s.

7.5.2 \Verification on the Shadow Robot Platform

Here, the goal is to demonstrate the feasibility of the developed motion primi-
tives for real-time motion generation and control. A standard laptop was used
to control the Shadow Robot platform via the Robot Operating System (ROS)
framework at 100 Hz. We use the aforementioned nine grasp types which were
considered feasible for the specific mechanical structure of the Shadow hand.
The learned motion primitives were used to generate motion profiles for the 20
DoF of the Shadow hand. Appropriate motion profiles for the 4 DoF of the arm
were generated with the ROS joint spline trajectory controllers, such that hand
and arm motion comprised the same duration. Desired final hand/arm config-
urations were obtained via kinesthetic teaching and subsequently adding an
empiric small increment to the joint values in order to ensure sufficient squeez-
ing of the object. Then, the motion primitives for the hand joints were trig-
gered from initial conditions corresponding to open, pronated and closed hand
configurations respectively which allowed to successfully execute synchronized
grasp and subsequent lifting motions as shown in Fig. 7.8. Here, the arm joints
were moved between predefined start and final positions. One encountered
problem was that the ROS messaging system introduced unacceptable feedback
delays and that the available low-level position PID tracking control was of lim-
ited quality. Thus, the test runs were carried out in an open-loop fashion, 1. e.,
the primitives were only used for instantaneous planning of reference profiles
between the given start and end positions without considering state feedback.
Figure 7.9 shows, again exemplary for the MCP joint, the controller set points
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Figure 7.10: Obstacle Avoidance - Constraint Satisfaction: Shown is the evolution of a
2-dimensional system driven by two primitives in (7.11) controlled by the MPC scheme
in (7.14) with a preview window size of p = 10. The positions q computed by the con-
troller are depicted with dashed black lines, the pink lines indicate the evolution of the
encoded demonstrated position curves ;. The constraint vanishes after t = 0.7s which
allows the system to converge to its equilibrium. (a) shows the behavior in configuration

space, (b) depicts the according position curves.
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Figure 7.11: Obstacle Avoidance - Behavior: Shown is the obstacle avoidance behavior
of the system controlled by (7.14) with a preview window size of p = 5, while using the
heuristic according to (7.16) in order to extract constraints. The system was initialized
with different start states, positions q computed by the controller are depicted with
dashed black lines, the pink lines indicate the evolution of the encoded demonstrated
position curves (;.

obtained from integrating the DS and the resulting position curves generated by
the tracking controller. Despite the obvious limitations in the low-level control,
the grasping tasks were conducted successfully.

7.5.3 Obstacle Avoidance

Here, we want to discuss the behavior of the MPC scheme formalized in (7.14)
under the influence of state constraints. To this, end we give two illustrating
examples in a 2-dimensional (i.e., f = 2) configuration space. The fixed pa-
rameters which were used in (7.14) are summarized in Table 7.3. We use two
primitives in (7.11), each of which was learned from the same d = 6 synthet-
ically generated examples of minimum-jerk trajectories. Figure 7.10 shows the
evolution of the system at different points in time under influence of a sin-
gle spatial constraint which is active during part of the motion. The controller
in (7.14) computes auxiliary control inputs Alk + 1] such as to obey the con-
straint.
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A second example is depicted in Figure 7.11. Here, we employ the heuristic
for the automatic extraction of appropriate constraint hyperplanes, as it was
presented in Section 7.4.3, to avoid a convex obstacle. Shown are the trajecto-
ries generated when starting from different points in the obstacle space.

7.6 Discussion

In this chapter, we presented a solution to the hand motion control problem for
articulated hands. Our approach uses empirical data in form of demonstrated
motions in order to parametrize dynamical systems for movement generation
via nonlinear optimization. For real-time control, we introduce a MPC scheme
based on a locally optimal combination of the previously learned DS. This re-
sults in a deterministic behavior in state regions which were not explored during
the demonstrations. Furthermore, the demonstrations can be reproduced with
high fidelity while relying on a comparatively small number of parameters. We
assessed the introduced method by means of parametrizing the proposed model
from demonstrations of grasp movements and subsequent simulations and test
runs with the Shadow Robot platform. Our approach affords the flexibility to
modify the control inputs of the implicit system used for motion generation
at each time step, which allows to incorporate state constraints to account for
auxiliary tasks such as obstacle avoidance. The use of embedded optimization
for addressing the online obstacle avoidance problem is a promising approach
already heavily utilized in other scientific fields. This work is a first step towards
a reactive online planning/control scheme.



Chapter 8
Conclusion

This dissertation discussed some of the challenges which are encountered when
developing systems for autonomous robot grasp synthesis and execution. Start-
ing from contact-level grasp synthesis and reaching reactive hand motion plan-
ning and control, this thesis has attempted to investigate the main ingredients
which are necessary to enable a robotic platform to robustly grasp specified
target objects in a consistent manner. The work was carried out in the scope
of two EU-FP7 projects whose settings were fundamentally different: one em-
ployed an underactuated gripper in a logistics scenario, the other aimed at en-
dowing a fully anthropomorphic platform with skills resembling those exhib-
ited by humans. Nevertheless, it showed that the overarching idea of this thesis
— combining empirical with analytical approaches based on optimality criteria
— is applicable to common sub-problems arising in both of these projects. In
this concluding chapter, we will summarize the most important high-level con-
tributions, discuss the limitations of the proposed methods and chart possible
improvements and future work.

8.1 Contributions

A full list of contributions made in this thesis is presented in Section 1.3. Here,
the focus is on highlighting the three most important achievements of this work.

The first notable contribution in this dissertation is the extension of the
grasp wrench space, a fundamental concept in contact-level grasp analysis, to
the exertable wrench space which characterizes how well a family of grasps can
resist disturbances. We utilize this concept for the computation of Independent
Contact Regions (ICR), which represent a grasp family, and propose construc-
tion algorithms which are largely based on the solution of convex optimization
problems and can be efficiently parallelized as argued in Chapter 4. Empiri-
cal user-input can be incorporated in form of demonstrated prototype grasps
and the synthesis process considers tasks with a clear physical meaning. Also
provided is an open-source C++ implementation of the introduced algorithms

97
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which is evaluated numerically, as well as in several application examples rang-
ing from grasp ranking over visually guided teleoperation and interactive grasp
transfer to a support role in finger gait planning (see Chapter 35).

A second major contribution is the data-driven solution to the grasp syn-
thesis problem on a palm pose and hand joint configuration level, which is de-
scribed in Chapter 6. Here, we adapt a leading optimization-based scheme and
incorporate heuristics describing grasp strategies observed in humans. This is
achieved by imposing appropriate constraints on the underlying optimization
problem. We provide a numerical evaluation of the proposed grasp synthesis
approach in a real-world scenario and conduct proof-of-concept test runs on
robotic platforms featuring an underactuated grasping device with active sur-
faces.

Last but not least, a solution to the grasp motion control problem for artic-
ulated hands is given in Chapter 7. Our approach uses empirical data in form
of demonstrated motions in order to parametrize dynamical systems for move-
ment generation via nonlinear optimization. For real-time control, we form lo-
cally optimal combinations of the previously learned dynamical systems, which
results in a deterministic behavior in state regions which were not explored dur-
ing the demonstrations. The method is evaluated in test runs on an anthropo-
morphic hand/arm platform. Furthermore, we suggest an extension to a Model
Predictive Control (MPC) scheme which relies on embedded optimization to
achieve auxiliary tasks such as obstacle avoidance.

8.2 Limitations

It needs to be noted that some of the developed methods have limitations which
need to be considered when integrating them in applied systems.

Computing ICR as discussed in Chapters 4 and 5 is sensitive to noise in
the contact normals which can pose problems if only imperfect object mod-
els reconstructed from range data are available. Possible remedies are a con-
servative choice of friction coefficient [103], or appropriate mesh smoothing
techniques [14]. However, both of these methods might yield to overly restric-
tive results.

The grasping pipeline detailed in Section 6.2.2 suffers from the inherent
problems of approaches which separate offline grasp synthesis from online
motion planning: checking many pre-computed grasps for feasibility can in-
cur significant time delays during execution and, because only a finite number
of grasps can be pre-planned and stored for an object, no solutions might be
found for solvable cases. Increasing the number of synthesized grasps increases
the success probability but, in turn, increases the computational load during
the online stage.

The primitive-based joint-level motion controllers presented in Chapter 7
do not explicitly account for potential self-collisions during movement. Applied
to grasp motion control of anthropomorphic robot hands, the underlying as-
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sumption is that the generated motions resemble demonstrated movements and
therefore this does not pose a problem. Also, the dynamical movement primi-
tive learning scheme in Section 7.3 has several free parameters which need to
be tuned carefully to obtain good performance. A simple way to address this
issue could be to employ a greedy parameter selection algorithm which stops
when the fitting error is low enough. Also, there is room for improvement in
the obstacle avoidance scheme in Section 7.5.3 which currently only works for
dimensionless point-robots in simulation.

8.3 Future Research Directions

To keep the problems tractable, this thesis follows the common practice of
seeing grasp synthesis and hand/manipulator motion planning as independent
sub-problems. Considering the increasing level of computational power avail-
able on embedded systems and the significant improvement of numerical op-
timization techniques in recent years, it would be interesting to cast the prob-
lem of finding a motion plan for the full arm-gripper chain as an optimization
problem to be solved online. To that end, one could employ contact-invariant
trajectory optimization techniques [111, 112] and describe simple target ob-
ject geometries via constraints in order to solve the grasp synthesis and motion
planning problems simultaneously. Here, the idea would be to encode a high-
level grasping/manipulation task as a cost function and utilize an optimization
algorithm which uses models of the environment and the robot to plan a behav-
ior. Solving the underlying optimization problem is computationally expensive
and currently not in the realm of real-time. Building on the idea in Chapter 7, a
possibility could be to optimize over a limited time preview window only via a
MPC scheme [127] which sidesteps the curse of dimensionality since a policy is
only generated at the last moment for states that are actually visited. Addition-
ally, reoptimizing at each time step allows to incorporate state feedback which
enables reactive behavior.

In the literature, the MPC-based trajectory optimization paradigm has only
been employed in simulation so far. Application in a real-world grasping scen-
ario with imperfect knowledge about the scene will incur additional challenges,
since the precise target object pose and geometry is unknown in such a setting.
We envision to augment the underlying optimization with local knowledge of
the object geometry, which is acquired by tactile sensors after grasp contact
is made to in order to adjust the initial grasp [128]. An early version of this
concept was developed in Section 6.3.3, where active surfaces on the fingers of
the gripper are used to improve the robustness of an acquired grasp by in-hand
manipulation.
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EWS Approximation via
Prioritizing Contacts
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Figure A.1: Predefined ICR: Uniform regions R; for a five-fingered grasp with friction-
less contact constraints. Big dots characterize the prototype grasp’s contact points py. .

The depicted regions are used as an input for the EWS approximation example illus-
trated in Fig. A.2.
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Figure A.2: Sequential EWS Approximation: Exemplary computations of hyperplanes
according to Algorithm 7 for the ellipse shown in Fig. A.1, the considered TWS is rep-
resented by the zero-wrench. (a) Shown is the prototype grasp’s wrench space GWS; ;¢
and the wrench sets Wy, corresponding to the predefined regions R;. (b) A viable grasp
whose corresponding GWS comprises a different face lattice than GWS; .., i.e., the
polytope in (a) comprises a facet spanned by one wrench each from the sets Wx,, W,
and Wy, whereas the GWS in (b) does not. Thus, the grasps corresponding to the GWS
in (a) and (b) are not similar according to Definition 4.6.1. (c)—(h) The EWS is approxi-
mated by gradually limiting GWS; ., the wrenches supporting (en, si) are depicted in
bold frames. Hyperplane (e, s;) in (c) does not fulfill Proposition 4.3, thus it is unnec-
essarily constrictive. The gray shaded polytope in (h) represents the final approximation
of the EWS. (i) The actual EWS, yielded by a brute force computation according to (4.8).



Appendix B
Proof of Proposition 7.1

To prove Proposition 7.1 in Section 7.4.1 we consider for simplicity zero-order
hold discretized systems, although the proof can be trivially extended to handle
the continuous time case. The respective discretizations of the systems in (7.2)
and (7.8) are

xjlk+1] = Ax;[kl +Buj[k (B.1)
xk+1] = Ax[k]+ Bul[k]TA%, (B.2)

where A and B are the respective state transition matrix and control matrix of
the discrete system. Substituting (B.1) and (B.2) in (7.9) for time ty 1 results in

Ax[k 4+ 1] = A (x[k] — R[KIA®), (B.3)
~———
AX[K]

which confirms the first part of Proposition 7.1.

Furthermore, we note that if the projection residual Ax[k] in (B.3) is zero,
the state x[k] can be expressed as a convex combination of the reference states
in the columns of R[k]. Thus, for Ax[k] = 0, we can rewrite (B.2) as

x[k + 1] = AR[KJA* +Bu[k]"A*
[k]
X

= Rk + 1]A*

which concludes the proof.
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