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Abstract 
 
Víctor Manuel Hernández Bennetts (2015): Mobile Robots with In-Situ and 
Remote Sensors for Real World Gas Distribution Modelling. Örebro Studies 
in Technology  64. 
 
This thesis work addresses the task of gas distribution modelling using 
mobile robots equipped with gas sensors. Gas Distribution Modelling 
(GDM) is the artificial olfaction task of creating spatio temporal repre-
sentations of the observed gas distribution from a set of relevant varia-
bles such as gas concentration measurements. The use of mobile robots 
in gas sensing related tasks can bring several advantages over conven-
tional methods such as manual inspection routines or fixed sensing net-
works. For example, the collection of measurements at industrial facili-
ties can be automatized, hazardous areas can be inspected without ex-
posing human personnel and in emergency scenarios, mobile robots can 
be rapidly deployed to assist first responders. In these scenarios, GDM is 
highly relevant since the estimated models can be used to locate gas 
leaks, identify hazardous areas with high concentration levels and they 
can be used as inputs for models that predict long term emission patterns 
at a given facility. 

The contributions presented in this thesis are three-fold. First, a set of 
algorithms is proposed for GDM with in-situ sensors. These algorithms 
are designed for real world environments, where multiple chemical com-
pounds are commonly present. The limitations of the sensors are ad-
dressed by combining different sensing technologies such as metal oxide 
sensors and photo ionization detectors. In this way multiple distribution 
models, one for each identified compound, are generated. Second, the use 
of emergent gas sensing technologies is explored in the context of GDM. 
Robot assisted gas tomography, which combines tomographic reconstruc-
tion algorithms with a mobile robot equipped with remote sensors is first 
proposed in this thesis. Third, the feasibility of using mobile robots to 
monitor methane emissions from landfill sites is evaluated. A proof of 
concept platform that implements robot assisted gas tomography was 
developed to inspect large environments in order to estimate gas distribu-
tion models. The results of this evaluation show that the algorithms pre-
sented in this thesis work represent a major step towards a fully autono-
mous robot that can operate in complex, real world environments. 

Keywords: Mobile Robotics Olfaction, Gas Sensors, Gas Discrimination, 
Gas Distribution Mapping, Tomography of Gases, Service Robots, Envi-
ronmental Monitoring. 
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Chapter 1
Introduction

In recent years, the use of mobile robots in different fields of application has
grown considerably. Mobile robots equipped with perception modalities, such
as cameras, range sensors and global positioning systems have been successfully
brought to mining [1], construction [2] and logistics [3] among other applica-
tions. In these scenarios, the different perception modalities are used to con-
struct spatial representations of the scene, detect and identify specific objects
and to estimate the robot’s pose in the environment.

The use of gas sensing modalities in mobile robotics can be of high im-
portance in different industrial, safety and security applications. However, the
incorporation of gas sensors in robotic platforms has not been fully realised
due to the challenges associated with gas sensing in uncontrolled environments
and the comparatively slow development of chemical sensing technologies [4].

1.1 Mobile Robotics Olfaction

Mobile Robotics Olfaction (MRO) is the line of research that addresses the
task of integrating gas sensing modalities on mobile robotic platforms. MRO
requires the fusion of different disciplines such as signal processing, machine
perception, autonomous navigation and pattern recognition.

Robots with gas sensing capabilities can be brought to different application
areas. For example, gas sensitive robots can be used in industrial facilities (Fig-
ure 1.1(a)) to carry out routine inspection tours that aim to locate gas leaks and
to monitor emission levels [5]. In this application scenario, robots can relieve
plant personnel from repetitive inspection routines by automating the measure-
ment collection process.

For civil authorities, the detection of gas leaks is critical due to safety con-
cerns. MRO systems can be used to routinely inspect public areas and pipelines
and in case of a contingency, where e.g. a leak of a toxic chemical has occurred,
MRO systems can be used to minimize the exposure of crew personnel and first
aid responders. An example of an application scenario is the 2011 incident in

1



2 CHAPTER 1. INTRODUCTION

the Nynäsham refinery in Sweden (Figure 1.1(b)), where significant amounts
of hydrogen sulphide (H2S), which is a highly poisonous gas, were released. In
similar emergency scenarios, a MRO system can collect useful information that
allows the first response teams to assess the severity of the situation without
deploying crew personnel in hazardous locations.

(a) (b)

(c) (d)

Figure 1.1: Examples of application scenarios for MRO systems. (a) Inspection of indus-
trial facilities, such as the Darwing LNG plant in Austrialia1. (b) Emergency scenarios.
Such as the Nynäsham incident in Sweden, 20112. (c) and (d) Decommissioned and
active landfill sites located in the municipality of Örebro, Sweden, where CH4 fugitive
emissions are common.

Emission monitoring is another target application for MRO systems. A par-
ticular example is Natural Gas (NG) and Bio-Gas (BG) emission monitoring
in production facilities (Figures 1.1(c) and 1.1(d)). NG and BG are composed
mostly of methane (CH4) and thus, strict monitoring approaches are required
due to the global warming potential of CH4 [6, 7]. By regulation, BG producers
are required to issue monthly emission reports but in practice, measurements
are sparsely collected, only at a few predefined locations. These inadequate
monitoring practices can lead to unnoticed leaks that can release significant

1http://www.hydrocarbons-technology.com/projects/darwin/.
2http://www.aftonbladet.se/nyheter/article13825662.ab.
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amounts of CH4. Civil authorities, such as the the U.S. Department of Energy
(DoE), have allocated resources to improve sensing technologies and deliver an
order-of-magnitude reduction on the cost of CH4 sensing [8]. In this context,
MRO systems can be used to detect leaks, automatise monitoring processes and
to collect dense datasets for the characterization of CH4 emission patterns.

1.2 Towards Real World Applications with MRO
Systems

The origins of MRO can be traced back to the early 1990s, where the pre-
dominant approach was to construct gas sensitive robots equipped only with
a single chemical sensor. During this early development stage, the goal was
to design biologically inspired algorithms that mimicked the exceptional gas
sensing capabilities of insects and other animals. These bio-inspired algorithms
implemented reactive behaviours that allowed robotic prototypes to track gas
plumes towards the location of an emitting source. These algorithms did not
consider aspects such as the limitations of the gas sensors (described below)
and they often assumed laminar wind flow conditions. In addition, validation
was almost exclusively carried out with toy-like robots in simplified scenarios
of a few square meters and under tightly controlled environmental conditions.
Due to the above mentioned limitations, these early MRO prototypes were not
suitable to address practical, real world applications, such as the examples pre-
sented in Figures 1.1(a) to 1.1(d).

The development of MRO systems aimed for practical applications should
consider the challenges of gas sensing in unstructured natural environments.
In natural environments, gas dispersion is determined by changing wind flow
patterns, heat distribution, pressure, humidity and the topology of the envi-
ronment. These environmental conditions produce complex gas structures of
fluctuating concentration levels. Under these conditions, MRO systems need to
be able to extract meaningful information from the acquired gas concentration
measurements.

In addition to the environmental conditions, further challenges arise due to
the fact that most of the currently available sensors were designed for labora-
tory applications, where concentration levels and ambient conditions are con-
trolled. Furthermore, the specific shortcomings of the used sensing technologies
have to be addressed. For example, metal oxide sensors, which are widely used
in MRO research, suffer from ambient drift and have to be recalibrated on a
regular basis [9]. Moreover, these sensors are partially selective, which means
that they react to different gas interferents, in addition to the target compound
specified by the manufacturer. While more robust sensors have been developed
for field inspection, these devices are considerably more expensive than other
available sensors and, in some cases, their operational principle prevents them
from being used on mobile platforms.
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1.2.1 An Example Scenario

By considering the above mentioned challenges, we can illustrate in Figures
1.2(a) and 1.2(b) how MRO systems can address gas sensing in an example
scenario. In this scenario, a wheeled robot equipped with a set of commercial
gas sensors and other perception modalities is commanded to inspect an out-
door location to measure methane (CH4) concentrations. In the target area, an
emitting gas source releases CH4 over a background concentration of carbon
dioxide (CO2), which is considered an interferent gas in this particular example.

The overall problem of gas sensing can be decomposed in a set of sub-tasks
as follows. The first task to address is gas detection. This means that given
a set of measurements acquired with the gas sensors, it should be determined
whether or not a gaseous compound is present in the exploration area. This task
is particularly challenging in unstructured environments where gas concentra-
tion measurements are given as time series composed mostly of intermittent
transient responses [10].

Once the presence of a gaseous compound has been determined, the robot’s
sensing modalities should allow to discriminate between the target compounds
and possible interferents (in the example, CH4 and CO2 respectively). Selectiv-
ity limitations can be addressed using gas discrimination algorithms. These al-
gorithms combine arrays of partially selective sensors with pattern recognition
algorithms to estimate a label (or a posterior probability) of the measurement’s
identity [11]. The subsequent task of gas quantification allows to express the
acquired measurements in terms of absolute gas concentrations, for example,
parts per million (ppm). When gas sensors cannot deliver calibrated concentra-
tion measurements, gas quantification algorithms are used. These algorithms
allow to estimate a calibrated concentration value from measurements acquired
with non calibrated gas sensor and other relevant modalities [12].

Additional tasks in MRO can include gas source localisation and sensor
planning. Gas source localisation is the process of estimating the position of an
emitting source based on gas concentration measurements and other relevant
environmental information (e.g. wind data) [13]. Sensor planning algorithms
suggest measurement locations based on the current knowledge about the envi-
ronment [14], with the aim of producing efficient exploration trajectories that
provide full coverage of the inspection area and the most informative locations
for gas sensing.

From the acquired information (e.g. calibrated concentration readings, gas
identity), it is then possible to create spatio-temporal representations of the gas
distribution for each of the detected gas compounds. The task of deriving these
representations is commonly referred to as gas distribution modelling [15]. It
is of high importance not only to present the acquired information to human
operators in an intuitive form. The computed models can also be used in related
tasks such as gas source localisation [16] or in sensor planning algorithms [14].
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Gas distribution modelling can be performed using model-based or model-
free algorithms [17]. The first set of algorithms assume an underlying functional
form to explain the spatial distribution of the gas concentrations. However a
key limitation of this approach is that inaccurate gas distribution maps are
generated when an overly simplistic model is assumed or when boundary con-
ditions for sophisticated models are not known. On the other hand, model-free
algorithms, do not make strong assumptions regarding the functional form of
the gas distribution, but rather treat the acquired sensor measurements as ran-
dom variables and derive statistical representations of the observed gas disper-
sion.

(a) (b)

Figure 1.2: An example scenario of a MRO system performing gas sensing. The esti-
mated gas distribution model of CH4 is depicted by shades of blue while the CO2 model
is represented by shades of red. The dashed white lines denote the exploration trajectory
and the yellow triangles represent the robot’s pose. (a) 3D view. (b) Top-down view.

1.3 Scope of this Thesis

This thesis work presents a set of contributions towards the development of
MRO systems for real world applications. More specifically, the task of Gas
Distribution Modelling (GDM) is addressed using model-free algorithms in real
world applications. This means that sensor shortcomings, such as partial se-
lectivity are considered while many simplifying assumptions, such as uniform
wind flow patterns and a predefined gas dispersion model are avoided.

GDM is thus performed using two different approaches. First, we combine
non selective and partially selective sensors to generate gas distribution maps
under the presence of multiple chemical compounds. The presence of a single
chemical has been largely assumed by state of the art GDM algorithms before
this thesis.

Multi-compound GDM implies that the task of gas discrimination has to
be addressed. In this context, we propose a novel algorithm that uses arrays
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of partially selective sensors to estimate the identity of the gas measurements.
Once the identity of the measurements has been estimated, it is then possible
to construct calibrated gas distribution maps, one for each of the identified
compounds. The sensors used in this approach are in-situ, which means that
measurements are reported as point concentrations and they cover only a few
centimetres around the sensor.

In addition, we explore the use of emerging gas sensing technologies that
can provide high selectivity and calibrated concentration readings. More specif-
ically, we evaluate the use of absorption spectroscopy based sensors for the task
of GDM. The distinctive characteristic of this sensing technology is that the
reported measurements are spatially unresolved (i.e. integral concentrations in
ppm ·m), with no information regarding the length of the optical beam emitted
by the sensors or the spatial distribution of the concentrations along the optical
path. In the context of GDM, the use of integral concentration measurements,
instead of point concentrations, requires algorithms that are radically different
to the ones proposed in current state of the art. In literature, the task of creating
gas distribution models from integral measurements is commonly referred to as
Computed Tomography of Gases (CTG) [18].

1.3.1 Outline

The remaining chapters of this thesis are structure as follows:

Chapter II presents an overview of the different task that are addressed in
MRO as well as the most commonly used gas sensing technologies in
this area of research. In addition, the particular challenges of MRO are
identified through a set of experiments in prototypical scenarios, using
different robotic platforms and gas sensing technologies.

Chapter III is focused on the task of gas discrimination with mobile robots.
The first part of this chapter presents the state of the art in this particular
area. The second part presents an algorithm for gas discrimination in
uncontrolled environments.

Chapter IV is focused on gas distribution modelling with in-situ sensing tech-
nologies. First, a review on related work is presented. The key contri-
bution presented in this chapter is a statistical approach to compute gas
distribution maps of multiple heterogeneous substances. The presence of
a single chemical has been largely assumed by state of the art approaches.

Chapter V evaluates the use of remote sensing technologies for gas distribution
modelling using mobile robots. More specifically, we propose the use of
robotic platforms to perform tomography of gases. The concept of Robot
Assisted Tomography of Gases is then validated with the design and test-
ing of a proof of concept mobile robotic system intended for emission
monitoring at landfill sites.
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Chapter VI concludes this thesis with final remarks and suggests directions for
future research work.

1.3.2 Contributions

The contributions presented in this thesis work can be summarized as follows:

• Introduction of the concept of Robot Assisted Gas Tomography (RAGT),
a technique that uses spatially unresolved measurements acquired with
mobile platforms to generate gas distribution maps.

• Design, development and validation of a proof of concept mobile robotic
platform for the task of emission monitoring on landfill sites.

• Design of a statistical gas distribution mapping algorithm that considers
the presence of multiple chemical compounds.

• Implementation of an algorithm for online parameter selection for gas
distribution modelling. This algorithm considers the particular character-
istics of gas sensing in open environments in order to decrease the com-
putation time by avoiding the training and testing of multiple models.

• Design of a gas discrimination algorithm tailored to address the chal-
lenges of gas sensing in unstructured environments.

• Collection of large datasets in different prototypical environments, where
MRO robots are expected to operate. These datasets were collected with
different robotic platforms (e.g. ground and aerial robots) as well as with
different gas sensing technologies such as metal oxide sensors, photo ion-
ization detectors and spectroscopy based remote sensors.

1.3.3 Publications

The contributions of this thesis work have been presented in different peer
reviewed journal articles or conference papers. The articles are either published
or under review at the time of writing. The major results from this dissertation
were were published in the following articles:

• V. Hernandez, A. Lilienthal, P. Neumann and M. Trincavelli. Mobile robots
for localizing gas emission sources on landfill sites: is bio-inspiration the
way to go?. Front. Neuroeng. 4:20.
Part of Chapter 2

• V. Hernandez, E. Schaffernicht, V. Pomareda, A. Lilienthal and M. Trin-
cavelli. A Novel Approach for Gas Discrimination in Natural Environ-
ments with Open Sampling Systems. Sensors, 2014 IEEE. (to appear).
Part of Chapter 3
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• V. Hernandez, V. Pomareda, A. Lilienthal, E. Schaffernicht and M. Trin-
cavelli. Combining Non Selective Gas Sensors on a Mobile Robot for
Identification and Mapping of Multiple Chemical Compounds. Sensors
2014, 14, 17331-17352.
Part of Chapter 3 and Chapter 4

• V. Hernandez, A. Lilienthal and M. Trincavelli. Creating true gas concen-
tration maps in presence of multiple heterogeneous gas sources. Sensors,
2012 IEEE , vol., no., pp.1,4, 28-31 Oct. 2012.
Part of Chapter 4

• V. Hernandez, M. Trincavelli, A. Lilienthal and E. Schaffernicht. Online
Parameter Selection for Gas Distribution Mapping. Sensor Lett., no. 12,
pp. 1147-1151 (2014).
Part of Chapter 4

• M. Trincavelli, V. Hernandez and A. Lilienthal. A least squares approach
for learning gas distribution maps from a set of integral gas concentration
measurements obtained with a TDLAS sensor. Sensors, 2012 IEEE , vol.,
no., pp.1-4, 28-31 Oct. 2012. Contributed mostly in the experimental
validation.
Part of Chapter 5

• V. Hernandez, A. Lilienthal, A. Khaliq, V. Pomareda and M. Trincavelli.
Towards real-world gas distribution mapping and leak localization using
a mobile robot with 3d and remote gas sensing capabilities. Robotics and
Automation (ICRA), 2013 IEEE International Conference on , vol., no.,
pp. 2335-2340, 6-10 May 2013.
Part of Chapter 5

• V. Hernandez, E. Schaffernicht, T. Stoyanov, A. Lilienthal and M. Trin-
cavelli. Robot Assisted Gas Tomography - Localizing Methane Leaks in
Outdoor Environments. Robotics and Automation (ICRA), Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pp. 6362-
6367, 31 May-7 June 2014.
Part of Chapter 5

The following publications are not in the core contributions of this disser-
tation. However, they correspond to work performed during this thesis, mostly
in the form of data collection and co-authoring of the articles:

• P. Neumann, V. Hernandez, A. Lilienthal, M. Bartholmai and J. Schiller.
Gas source localization with a micro-drone using bio-inspired and parti-
cle filter-based algorithms. Advanced Robotics, 27:9, 2013, pp. 725-738.
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• P. Neumann, M. Schnürmacher, V. Hernandez, A. Lilienthal, M. Barthol-
mai and J. Schiller. A Probabilistic Gas Patch Path Prediction Approach
for Airborne Gas Source Localization in Non-Uniform Wind Fields. 5th
International Symposium on Olfaction and Electronic Nose (ISOEN),
2013.

• V. Pomareda, V. Hernandez, A. Khaliq, M. Trincavelli, A. Lilienthal, and
S. Marco. Chemical source localization in real environments integrating
chemical concentrations in a probabilistic plume mapping approach. 5th
International Symposium on Olfaction and Electronic Nose (ISOEN), 2-5
July 2013.

• P. Neumann, S. Asadi, V. Hernandez, A. Lilienthal and M. Bartholmai.
Monitoring of CCS Areas using Micro Unmanned Aerial Vehicles (MUAVs).
Energy Procedia, 37, 2013, pp. 4182-4190.





Chapter 2
Mobile Robotics Olfaction

As introduced in Chapter 1, Mobile Robotics Olfaction (MRO) is the line of
research that addresses the task of integrating gas sensing modalities with mo-
bile platforms. Performing gas sensing on-board robotic platforms requires the
fusion of different disciplines, such as as signal processing, artificial olfaction,
machine perception, autonomous navigation and pattern recognition.

In early MRO research, the focus was on the development of algorithms
that implemented reactive behaviours to track odour cues, in an attempt to
mimic the biological sense of smell. These early algorithms were designed under
unrealistic assumptions that for example, considered laminar wind flow and an
underlying model for the gas dispersion phenomenon (e.g. Gaussian-like plume
structures [19]). In addition, experimental validation was successfully carried
out only in small, tightly controlled scenarios that did not properly capture the
complex conditions of real world scenarios [4, 13].

MRO systems intended for practical applications should consider the chal-
lenges of gas dispersion in realistic environments. Gas dispersion is caused by
diffusion and turbulence. Diffusion is the process where the random movement
of gaseous particles lead to concentration equalization in a given scenario [20].
Turbulence on the other hand, causes the formation of eddies and vortices
of different size and concentration that create patchy and intermittent plume
structures. Additionally, intermittent wind flow patterns can meander, dilute
and spread gas concentration patches.

Gas dispersion is quantified by the Reynolds number [21], which is a di-
mensionless value that characterizes the flow pattern at a given location. At low
Reynolds numbers, diffusion produces smooth, Gaussian concentration profiles
where the highest concentration level is measured at the location of the emitting
source. At medium to high Reynolds number, dispersion is dominated by tur-
bulence and thus, irregular concentration patterns are generated (Figures 2.1(a)
and 2.1(b)).

Designing algorithms able to operate in turbulent environments (i.e. envi-
ronments with high Reynolds numbers) is a complex task. Due to the dynamics

11
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of turbulent environments, the sensors readings are noisy, intermittent time se-
ries. In addition, it is hard to collect representative datasets due to the large
amount of variables that influence the gas dispersion phenomenon. Thus, it is
not feasible to design experiments under exhaustive environmental and topo-
graphic conditions. Repeatability becomes an issue, since even slight variations
in the environmental conditions can considerably affect the outcome of a given
validation trial.

(a) (b)

Figure 2.1: (a) State diagram that illustrates the effects of turbulence dominated and
diffusion dominated gas dispersion. The top state is a gas circular patch with homoge-
neously distributed concentration. The left state represents a diffusion dominated dis-
persion pattern where only random molecular motions occur. The right state represents
a turbulent dominated dispersion pattern[21]. (b) Turbulent dispersion with irregular
concentration patterns at the end of the gas plumes1.

However, considerable success has been achieved when simplifying assump-
tions are removed and when an engineering, statistically driven perspective is
adopted. This perspective, along with more reliable gas sensing mechanisms,
has allowed to develop proof of concept prototypes that have successfully car-
ried out tasks such as as environmental monitoring [22], inspection of industrial
facilities [5] and detection of hazardous and warfare agents2 in more realistic
experimental scenarios.

In the remaining of this chapter, we present an overview of the research
area of MRO. First, in Chapter 2.1, gas sensing technologies that are relevant
for MRO are introduced. In Chapter 2.2, we identify the different tasks that
have to be addressed when designing MRO systems. For its relevance in this
dissertation, the task of gas source localisation is thoroughly described in Sec-
tion 2.3. In Section 2.4, we present a set of example scenarios, where the task
of finding an emitting gas source with a mobile robot is performed. Through
the characterization of the different experimental configurations, we identify

1http://gizmodo.com/5661918/shooting-challenge-smoke-gallery-1
2http://www.foi.se/en/Customer--Partners/Projects/LOTUS/LOTUS/
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some of the challenges to address and we propose a solution to locate the gas
source. Section 2.5 closes this chapter with final remarks and conclusions.

2.1 Gas Sensing Technologies

Gas sensors are transducers that respond to stimuli produced by chemicals in
gaseous phase [23]. These sensors are intended for the identification and quan-
tification of target compounds and they are a critical component of safety and
security systems. Key requirements for gas sensors in MRO applications are
high sensitivity and selectivity to target compounds, low sensitivity to environ-
mental conditions and interferents, rapid response/recovery times, low power
consumption and compact sizes [24].

Gas sensors can be classified according to different taxonomies that are
mostly based on the physical principles of the transduction mechanisms [25].
For the scope of this thesis we identify two major branches namely in-situ gas
sensors and remote gas sensors. In the following sections we describe these two
different sensor families and while an exhaustive review is out of the scope of
this thesis, we introduce a set of sensors that are relevant to MRO related tasks.

2.1.1 In-situ Gas Sensors

In-situ sensors require a direct interaction between the sensitive layer of the
sensor and the target gas compound. This means that each reported measure-
ment corresponds to the concentration level of an area of few square centime-
tres around the sensor itself. Gas measurements can be reported in the form of
voltage, current, conductance, frequency and thermal changes.

Conductometric Sensors

Conductometric devices report the presence of gaseous compounds in the form
of conductance changes due to chemosorption and redox reactions in the sen-
sitive layer of the device [26]. There are different technologies based on con-
ductometric principles, among others chemical field effect transistors, electro-
chemical cells, and Metal Oxide (MOX) sensors [23].

MOX sensors (Figure 2.2(a)) are perhaps the most popular conductometric
sensor in MRO due to their widely commercial availability, low cost, relatively
fast response times and high sensitivity. For a MOX sensor, the logarithm of the
change in resistance over a certain range is approximately linearly proportional
to the logarithm of the concentration of the gas [26]. MOX sensors can be
broadly divided into two categories, namely n-type and p-type sensors. n-type
sensors can be fabricated with SnO2 and ZnO sensitive layers and they respond
to reducing gases such as H2, CH4, CO, C2H5, C2H5OH, (CH3)2CHOH. On
the other hand, p-type sensors can be fabricated with NiO and CoO substrates
and respond to oxidizing gases such as O2, NO2, and Cl2 [27].
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However, MOX sensors have several drawbacks that have to be considered
when designing MRO systems. First, the sensing surface has to be heated to
temperatures up to 500◦C in order to operate. This translates into a relatively
high power consumption. Second, they show poor selectivity. MOX sensors
react to different interferent gases and not only to the target compound spec-
ified by the manufacturer. Third, the slow response and recovery times of a
MOX sensor are a factor to consider. When exposed to a target compound,
MOX sensors will show a transient response of a few seconds, before reaching
a steady response level. When the sensor is no longer exposed to the target com-
pound, the sensor response will gradually recover the baseline level only after
a few minutes. The baseline level represents the sensor output in the absence of
chemical compounds [26].

(a) (b)

Figure 2.2: (a) A set of Taguchi-type MOX sensors. (b) A ppbRAE 3000 PID3.

Photo Ionization Detectors

In Figure 2.2(b), a Photo Ionization Detector (PID) shown. PIDs are sensors
that use high energy photons, typically in the ultraviolet range (UV), to break
gas molecules into positively charged ions. As a compound enters the PID it is
ionized when it absorbs high-energy UV light. In commercial PID detectors the
UV light is normally provided with a 10.6 eV UV lamp. The UV light excites
the molecules, which temporarily lose an electron and thus become positively
charged ions. The ions produce an electric current, which is the signal output
from the detector. The output signal of a PID is linearly proportional to the
concentration of the chemical compound being analysed.

As a standalone detector PIDs are broad band detectors and are not selec-
tive, as the UV light ionizes all molecules that have an ionization energy less

3http://www.raesystems.com/products/ppbrae-3000
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than or equal to the lamp output. Unlike MOX gas sensors, if the chemical
compound is known, PIDs can provide true concentration measurements, by
multiplying the sensor’s reading by a correction factor, which is provided by
the manufacturer. Moreover, the response dynamics of a PID is much quicker
compared to the one of MOX sensors. However, PIDs are relatively expensive
devices and their weight and size can limit their use in applications with robots
of limited payload. In addition, PID’s cannot detect methane, which is of high
economical and environmental interest [28].

Chromatography Based Sensors

While sensors based on analytical chemistry, such as chromatography, are often
bulky and suitable for laboratory applications only, recent developments have
allowed to bring these devices to field inspection in the form of portable mea-
surement systems. A chromatography sensor is a device that separates complex
gas mixtures into individual components [29]. The gas sample is injected into
a column, where a carrier gas transports it towards the location of a set of de-
tectors down the column. The sample is dissolved due to the different speeds
of its various constituents due to which they reach the end of the column and
the detectors at different times. The detectors measure the concentrations of the
individual components of the mixture, eluted from the column.

Gas chromatography is a well established technology and there are several
hand-held devices that are commercially available. An example of such devices
is the Frog-4000 (Figure 2.3(a)) from Defiant Technologies. These devices can
perform chromatography analysis on-site and their use is not restricted to lab-
oratory environments. The Frog-4000 can discriminate chemicals such as Ben-
zene and Toluene and compared to laboratory chromatographs, it does not
require a carrier gas to process the samples. However, the Frog-4000 does not
return calibrated concentration readings. While portability is not an issue for
these devices, the main constraint that prevents them to be used on-board mo-
bile robots is their cycle times. It takes up to 5 minutes to process a single gas
sample.

Spectroscopy Sensors

Ion Mobility Spectroscopy (IMS) sensors are based on the measurement of the
The Time of Flight (ToF) of ionized gas samples. When a sample enters the IMS
device, it is then ionized by e.g. a radioactive source. The resulting positive and
negative charged species will be accelerated over short distances and their ToF
is measured. Then, the measured ToF is compared against the mobility profiles
of known compounds in order to find a match. IMS devices can operate in
atmospheric conditions and thus they do not require vacuum pumps.

There exist a wide variety of sensors and devices based on IMS. An example
of an IMS based device is the Multi-Mode Threat Detector (MMTD) from
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Smiths Detection. The MMTD (Figure 2.3(b)) is a hand held device that has
a wide spectrum of narcotics, explosives and chemical warfare agents mobility
profiles and thus can be used for military and security applications. The MMTD
can process a single gas sample under 10 s.

Optical spectroscopy can also be used as a sensing mechanism. An example
of an optical spectroscopy sensor is the Picarro’s G2301 (Figure 2.3(c)). The
G2301 is based on Cavity Ring-Down Spectroscopy (CRDS), which is an opti-
cal spectroscopy technique that quantifies the spectral features of gas molecules
by measuring the absorption and scattering of a laser beam, modulated at a
specific wavelength. This sensor is aimed for environmental monitoring and is
capable of measuring green house gases such as carbon dioxide, methane and
water at the parts-per-billion range with a response time under 5 s.

(a) (b) (c)

Figure 2.3: (a) The Frog-4000 chromatograph4. (b)The MMTD IMS sensor, manufac-
tured by Smith Detection5. (c) The G2301, manufactured by Picarro6.

2.1.2 Remote gas sensors

As implied by its name, remote sensing can be defined as the distant measure-
ment of a phenomenon of interest through propagated signals such as optics,
acoustics or microwaves [30]. Regarding gas sensing, concentration readings
are acquired by measuring the interaction between gaseous particles and elec-
tromagnetic energy emitted from an artificial or natural source. Broadly speak-
ing, remote gas sensing can be classified into active and passive principles [31].
Active sensors generate electromagnetic radiation under controlled conditions
(e.g. xenon lamps, infra-red diodes) over long distances in open air settings,
while passive sensors do not require an artificial emitting source and measure-
ments are carried out by using a natural source such as sunlight.

The operating principle behind most active sensors is absorption spectroscopy.
Gas molecules absorb energy in narrow bands surrounding specific wavelengths

4http://www.defiant-tech.com.
5http://www.smithsdetection.com.
6http://www.picarro.com/products_solutions/gas_analyzers/co_co2_ch4_h2o.
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in the electromagnetic spectrum. Outside this narrow bands, there is practically
no absorption. When the emitting source is modulated in the particular absorp-
tion band of a target gas molecule, the beam is attenuated along the optical
path when it enters in contact with patches of the target gas. In this way, a high
degree of selectivity can be achieved and concentration measurements can be
estimated by using the Beer-Lambert law [32, 33].

The target gaseous compound and the maximum sensor range are largely
determined by the nature of the sensor’s emitted beams. Differential Optical
Absorption Spectroscopy (DOAS) for example, quantifies gas concentrations by
measuring the absorption of UV light by chemical compounds such as Nitrogen
and Oxygen. DOAS sensors are ideal for compounds that do not have narrow
absorption bands and they can measure concentration levels in the range of
parts per trillion (ppt). In addition, DOAS sensors can acquire measurements
with remarkably long optical paths, in some cases up to 10 km [34]. However,
due to their wide absorption bands, DOAS cannot accurately quantify different
molecular species.

The main application for Differential LiDAR (DIAL) sensors is the mea-
surement of aerosols, dust and gases in the lower few Kilometres of the atmo-
sphere. DIAL devices acquire concentration measurements from the reflected
or backscattered light from two sources of different wavelength, one located
at the absorption band of the target compound ("on" beam) and the second
one is located just outside the absorption band ("off" beam). When emitted,
both lasers are scattered by molecules and particles located in the optical paths.
During their trajectories, the "on" beam is absorbed by the target gaseous com-
pounds, which can be used to determine the identity and the concentration of
the compound. The "off" beam is scattered by atmospheric particles and, by
measuring the intensity of the backscattered rays and their time delay, it is pos-
sible to determine the spatial location of the measured gas [35].

In Figure 2.4, a schematic diagram of a Tunable Diode Laser Spectroscopy
(TDLAS) sensor is shown. In the figure, a diode emits a beam that traverses a
given gas cloud. The emitted beam is backscattered when it hits a given surface
and the reflected rays are measured by the device. The emitting diode is cho-
sen to optimize the sensitivity to the target gaseous compound and the diode’s
wavelength is thus set to the corresponding absorption band. The diode is then
driven on and off of the absorption band. During this process, the power of
the beam is measured continuously and, by comparing the measurements when
the beam is on the target wavelength against the measurements when the beam
is off, it is possible to determine, with high degree of selectivity, whether the
emitted beam has traversed a target gas patch or not [33]. In Figure 2.5, an ab-
sorption profile for different chemical compounds is shown. It can be noticed
from the example that a modulation frequency (i.e. wavelength) can be chosen
to optimize the methane (CH4) selectivity of the device over different interferent
chemical compounds.
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Figure 2.4: (a) Block Diagram of a TDLAS remote sensor.

TDLAS sensors are available for a large variety of target compounds, among
others, ammonia, carbon monoxide, methane, oxygen, water and hydrogen sul-
phide. TDLAS sensors are compact, light devices that can be carried by human
operators performing manual scans. These devices can achieve a high degree of
selectivity, require low maintenance and they are relatively inexpensive, com-
pared to other remote gas sensing technologies. On other hand, the selectivity
of the device is limited to only one compound per diode and beams blocked by
e.g. dust, result in faulty readings [31].

While most of the techniques described above are able to detect and quan-
tify a single compound, Fourier Transform Infra-Red (FTIR) spectroscopy de-
vices can detect multiple compounds by using principles of interferometry and
spectral analysis. An FTIR consist of a emitter and a transceiver. The emit-
ter generates an interference pattern using artificial or background infra-red
sources, which are then transmitted to a receptor that is place up to 500 m

away [34]. The Fourier transform is then applied to the received beam in or-
der to acquire its frequency pattern. The receiver then correlates this pattern to
stored frequency fingerprints of different known compounds. In this way, mul-
tiple gases can be detected with a single FTIR device. Perhaps one of the biggest
drawbacks of FTIR devices is their high sensitivity to carbon monoxide, which
turns into interferences that disrupt the sensor’s accuracy. In addition, FTIR
devices might not be sensitive enough to comply with ambient data quality
standards.

Image Multi-Spectral Sensing (IMSS) cameras capture spectral signatures
and chemical compositions within the sensor’s line of sight. In other words, the
electromagnetic spectrum is divided into a number of bands and data is col-
lected within each of these bands. IMSS sensors can use as well interferometry
principles, similar to FTIR devices [36, 37], capturing interferographic infor-
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mation in each pixel of the acquired image. The ability to capture images is one
of the main advantages of IMSS systems. This means that multiple gas identifi-
cation is not only possible but also, their spatial distribution can be captured.
IMSS systems have on the other hand, a low accuracy and they are heavily
influenced by weather conditions.

Thermal Infra-Red (IR) cameras use IR radiation to form images in an anal-
ogous way as photographic cameras use visible light. IR cameras are mostly
used to detect leaks that are not visible to the human eye for example. IR cam-
eras can highlight the source and the trail of a gas leak in a wide variety of ap-
plications, for example inspection of tank vents [38]. While IR cameras haver
remarkable advantages such as portability and a wide field of view, one of the
major limitation of this technology is its inability to quantify the detected gas
plumes.

Figure 2.5: Absorption profiles for different gases.

2.2 Mobile Robotics Olfaction Tasks

Figure 2.6 presents a general overview of the different tasks related to MRO.
The arrows denote how the outputs generated by one task (or a block thereof)
can be used as inputs for subsequent tasks. MRO can thus be seen as the in-
tersection between three broad disciplines namely chemical sensing, artificial
olfaction and mobile robotics. At the lower level in the diagram, gas sensing is
located. This means that the outputs from this tasks (i.e. the sensor readings) are
used as inputs in subsequent tasks. Artificial olfaction comprises several tasks
that aim to provide intelligent systems with capabilities to e.g. detect, identify
and localize chemical compounds. When robotic platforms are equipped with
gas sensors, information such as the estimated robot’s pose [39] and represen-
tations of the explored environment [40] are needed in order to associate the
acquired measurements with a position in a global reference frame. In addition,
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the outputs generated by the artificial olfaction tasks can be used e.g. as inputs
to sensor and path planning algorithms that suggest exploration trajectories
and identify informative measurement positions [41, 14].

Figure 2.6: Block diagram of Mobile Robotics Olfaction and its related tasks. The blocks
coloured in darker tones of blue indicate the tasks that are addressed in this dissertation.

2.2.1 Gas Detection

The detection of changes in the emission profile of a gas source is a desirable
feature for a robot operating in turbulent environments. For example, the de-
tection of events such as the presence/absence of a gaseous component, sudden
changes in the concentration and the chemical composition of a gas plume can
be used in subsequent in MRO related tasks (Figure 2.6). Simplistic methods to
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detect these changes can include the use of concentration thresholds to declare
the presence of a given analyte. However, gas sensing in turbulent environments
require more sophisticated approaches to detect these emission profile changes.

In addition to the environmental conditions, the limitations of the sensors
are a factor to consider. For example, sensors such as Metal Oxide (MOX) gas
sensors, are sensitive to environmental conditions (e.g. temperature, humidity),
they are cross sensitive to gas interferents and they have slow response and
recovery times. In real world applications, the gas sensors are often directly
exposed to the environmental conditions (e.g. humidity, ambient temperature,
wind flow patterns) in a configuration that is referred to as an Open Sampling
System (OSS).

Figure 2.7 depicts the response time series of a Metal Oxide (MOX) when
exposed to a gaseous analyte. The shaded area denotes the time interval when
the sensor interacted with a gas patch. As previously mentioned in Section 2.1,
a low-pass filter effect is introduced by the long response and recovery times
of MOX sensors. Therefore, the use of response thresholds to determine the
presence/absence of gas (e.g. � 90% for detection, � 10% for absence) would
lead to a delay in the detection event and a considerably larger delay to declare
the absence of gas. A hardware solution to address this problem was proposed
in [42], where a multi chamber sensor array was proposed. The key idea behind
this sensing configuration is that, when the sensors are in the recovery phase,
the system switches to a sensor (or an array thereof) that has not yet been
exposed to the gas concentration. In this way, the delay effect of the sensors
can be mitigated.

Figure 2.7: Low-pass filter effect observed when a MOX sensor is exposed to a sample
of acetone. The shaded area denotes the time interval when the sensor interacts with a
gas source [42].

Figure 2.8 shows another example where the limitations of the sensing tech-
nologies prevent the detection of changes in the composition of a given gas
source. The plot was generated with an odour blender [43] emitting intermit-
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tent concentration patterns and switching between two different chemicals. A
MOX sensor was placed 0.5 m away from the blender’s outlet. It can be no-
ticed in the figure that it is hard to detect the transitions between compounds
and the absence/presence of gas by simply looking at the sensor response time
series.

The work of Pashami and co-authors addresses the problem of change point
detection for gas sensing applications [10, 44]. More specifically, the authors
proposed a set of algorithms to detect changes in the emission profiles (e.g.
sudden exposure, changes in concentration and/or composition) using MOX
sensors. By taking into account the low-pass filter effect of a MOX sensor and
the asymmetry between the response and recovery times, the authors formu-
lated a non-linear trend filtering approach as a convex optimization problem
to detect changes in the sensor response. The sensor response is thus mod-
elled as a piecewise exponential signal where the junctions between consecutive
exponentials are considered as change points. Among other advantages, the al-
gorithm proposed by the authors is less computationally expensive than other
related approaches and it allows for the automatic learning of parameters.

Figure 2.8: Response profile of a MOX sensor exposed to a gas source that changes its
emission profile [44].

2.2.2 Gas Quantification

For applications such as environmental monitoring or safety related applica-
tions, it is required to express the acquired measurements in terms of absolute
concentration values. While some gas sensing technologies can measure cali-
brated concentration values in e.g. parts per million (ppm), technologies based
on conductometric principles, such as MOX sensors, report concentration in
terms of conductance changes and require a calibration process to associate
conductance values to their corresponding concentration levels.
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Typically, a calibration procedure is carried out by placing the sensors in-
side a chamber where the concentration level is kept constant for a period of
time and then is gradually increased. The response of the sensor is then mea-
sured and the parameters of an exponential model that maps the concentration
values against the changes in conductance are estimated [26]. Alternatively,
regression techniques such as partial least squares [45, 46], artificial neural
networks [47] or support vector regression [48] can be used. The drawback
of these approaches is that, when measurements are acquired in open, uncon-
trolled environments, the sensors are exposed to fluctuating concentration val-
ues and environmental conditions, such as temperature and humidity, can affect
the sensor response [26].

The work in [49], addresses the problem of gas quantification with a sys-
tem intended for urban pollution. The calibration of the sensors was performed
with data collected outdoors over long periods of time. However, the authors
discarded dynamic information by averaging out the acquired measurements.
Gonzalez and co-authors presented in [50] a probabilistic approach for gas
quantification in open environments. The authors used an array of MOX sen-
sors and an algorithm based on Gaussian processes to estimate, for each ac-
quired measurement a posterior distribution of the concentration from which
confidence intervals can be obtained. Having an estimate on the uncertainty of
the predictions is of high relevance for MRO, since there are many sources of
uncertainty when performing gas sensing in turbulent environments.

2.2.3 Gas Discrimination

A drawback of many gas sensing technologies, such as metal oxide sensors,
conducting polymers or piezo-electric quartz sensors, is their partial selectiv-
ity [51]. An approach to determine the identity of a measurement with partially
selective sensors is to construct sensor arrays and use pattern recognition tech-
niques such as support vector machines, artificial neural networks or nearest
neighbours classifiers [52] to predict a posterior probability of the measure-
ment identity, given the acquired sensor response profile or odour print.

Devices that combine arrays of sensors and pattern recognition algorithms
are commonly referred to as electronic noses (e-noses). Gas discrimination can
be carried out in tightly controlled scenarios (e.g. inside chambers), where the
e-nose is exposed to constant concentration levels for a period of time that
allows the sensors in the array to reach a semi-steady response profile [53].

However, when performing gas discrimination with OSS, the sensors in the
array are directly exposed to the environment and thus, constant concentration
values are not expected. Instead, the gas dispersion patterns in turbulent envi-
ronments create highly fluctuating and diluted concentration levels. The sensor
response is then dominated by noisy transient patterns (see Figure 2.8). An
overview of the current state of the art in gas discrimination is given in Chap-
ter 3. In addition, we present in Section 3.3, a gas discrimination algorithm
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tailored for uncontrolled environments, which is one of the main contributions
of this dissertation.

2.2.4 Gas Distribution Modelling

Gas Distribution Modelling (GDM) is the MRO task that creates truthful rep-
resentations of the observed gas distribution from a set of spatially and tempo-
rally distributed measurements of relevant variables such as gas concentration,
wind information and temperature [17]. GDM can be performed using model-
based algorithms, that assume an a priori form for the spatial distribution of the
gas concentrations or by using model-free approaches, that do not assume un-
derlying models and instead generate statistical representations of the observed
gas dispersion.

A key limitation of the model-based approaches is that simplifying assump-
tions have to be made, for example, laminar wind flow patterns [19]. How-
ever, when MRO systems operate under turbulent conditions, this assumptions
rarely hold. While more sophisticated models can be assumed [54], a key lim-
itation is that, when the boundary conditions are not known, inaccurate gas
distribution maps are predicted.

Model-free approaches that predict the mean concentration distribution and
estimate the gas fluctuations in the form of a variance map [17, 55] have been
extensively used in robotics related applications. A variance map is of high
importance for related tasks such as gas source localisation [56] or sensor plan-
ning [14]. Additionally, algorithms have been developed to integrate wind in-
formation [57], robot localisation uncertainty [58], information about physical
obstacles [59] and time dependency [60] to the computation of the gas distri-
bution models.

However, an aspect that has been largely overlooked is the presence of mul-
tiple heterogeneous chemical compounds in the environment. Multi compound
GDM can be challenging since it requires to integrate the task of gas discrimi-
nation in the computation of distribution models. In Chapter 4, we present an
algorithm for GDM of multiple chemical compounds as well as a comprehen-
sive review of current state of the art in GDM.

2.3 Gas Source Localisation

According to Kowadlo and co-authors, gas source localisation (odour localisa-
tion), is the task of finding the location of a volatile chemical source in the en-
vironment [13]. Due to their exceptional chemical sensing capabilities, insects
and other lower order animals have been an important source of inspiration
for Gas Source localisation (GSL) algorithms. More specifically, scientists have
been trying to emulate odour tracking behaviours, in which a given organism
follows a set of chemical cues towards the emitting source [61, 62, 63]. In or-
der to present a general overview of the developments in GSL, we refer to the
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taxonomy implemented by Kowadlo and co-authors in [13], where three main
development stages are identified according to the complexity of the target en-
vironments, as described in the following sections.

2.3.1 Early Works and Diffusion Dominated Approaches

These works date back to the early 1990s, and their main characteristic is that
no consideration is given to the mechanics of gas dispersion. It is then assumed
that gas dispersion is given by smooth gas patches where the concentration
decreases following e.g. a Gaussian distribution from the emitting source on-
wards. In order to localize the source, the movements of the robot were de-
termined only by concentration gradients. This mechanism is referred to as
chemotaxis. The first pure chemotactic robotic platform was implemented by
Rozas and co-authors in [64].

While pure chemotactic algorithms are not suitable for applications were
turbulence and intermittent wind flow patterns are expected, Gaussian-like gra-
dient patterns can be expected at very small scales and in underground envi-
ronments. Russell and co-authors investigated odour localisation with a buried
probe controlled by a robotic manipulator (Figure 2.9(a)). The authors devel-
oped a set of algorithms for underground GSL where the movements of the ma-
nipulator were determined by the increase of gas concentration levels [65]. The
authors successfully tested their algorithms in a small 0.20 m×0.60 m×0.10 m

sandbox where an emitting gas source was placed at a depth of 0.04 m.

2.3.2 Turbulence Dominated Algorithms

As previously stated, at high Reynolds numbers turbulence dominates gas dis-
persion and thus smooth gas structures are hardly present. In such scenarios,
the success rate of pure chemotactic algorithms for GSL is rather low. In the
taxonomy proposed by Kowadlo, the family of algorithms that address the
problem of GSL under turbulent environments environments are divided in
three non exclusive groups namely reactive plume tracking algorithms, long
range algorithms and plume modelling algorithms.

Reactive Plume Tracking Algorithms

These set of algorithms rely on the assumption that a strong, constant back-
ground fluid flow (e.g. water or air) is present in the environment, producing a
gas plume that can be traced towards the location of the emitting source.

Plume tracking algorithms commonly operate in three different stages, namely,
plume acquisition (finding the plume), plume tracking (moving the robot guided
by the gas plume) and gas source declaration (predicting that the source has
been found and it is located at a nearby position) [66].
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In plume acquisition, the mobile robot acquires odour cues that allows it to
enter in contact with the plume. For example, a random walk movement can
be performed to detect the presence of the gaseous compound or the robot can
stop at a given position and collect measurements until a gas detection event
occurs.

Plume tracking algorithms can use different sensing modalities besides chem-
ical sensors. For anemotactic approaches, for example, the movement of the
robot is determined by the perceived wind flow. Plume tracking algorithms in
mobile robotics have been largely inspired by biological behaviours. Among
others, the animals that have inspired most of the robotics research in GSL are:

• Moths, which use odour localisation to find mates [67, 68, 69].

• Lobsters, which use odour localisation to locate food [70].

• Escherichia Coli, which use odour localisation to locate nutrients [71].

• Dung Beetles, which use odour localisation to find hatching niches, habi-
tation, and food [71].

Gas source declaration is the process of determining the certainty that a
source is in the immediate vicinity [72]. Commonly, when plume tracking algo-
rithms are validated, gas source declaration is carried out by a human observer.
For example, when the robot is located within a short distance from the gas
source, it is determined that the robot has successfully localized the source.

Automatic gas source declaration algorithms have been proposed in differ-
ent works. Hayes et al. proposed in [73] an algorithm that declares a gas source
by searching transitions between high and low concentration levels in upwind
directions. Lilienthal et al. [72] proposed a machine learning centred approach.
The authors equipped a mobile robot with a set of metal oxide sensors (Fig-
ure 2.9(b)) and measurements were acquired by moving the robot in rotating
manoeuvres. A classifier was trained using features extracted from the sensor
response in negative and positive examples. In this way, the authors successfully
determined the presence of a gas source with a maximum success rate of 87%.

Neumann and co-authors [74] developed a probabilist approach, based on
a particle filter to declare the location of a gas source. The approach integrates
gas and wind measurements, collected with a micro Unmanned Aerial Vehi-
cle (UAV) (Figure 2.9(c)), to reconstruct plausible trajectories followed by gas
patches, from the emitting source to the micro UAV’s sensors. The algorithm
considers the turbulent nature of the environment by modelling the uncertainty
in the wind direction and the uncertainty in the measurements is determined by
a measurement model.

Long Range Algorithms

Long range algorithms can combine the use of gas sensors with e.g. cam-
eras to detect gas sources (Figure 2.9(d)), under the assumption that emit-
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ting gas sources can be distinguished by their visual appearance. The work
in [75, 76, 77] are examples of this family of algorithms were in-situ gas sensors
are used along with visual information to detect gas sources. This category of
algorithms can be expanded by considering the use of remote gas sensing capa-
bilities. Remote gas sensors can measure concentration levels distantly without
entering in contact with a gases patch.

The use of remote gas sensors for GSL is one of the aspects investigated
in the RobogasInspector project7. The general goal of this project is to auto-
mate routine inspections in large industrial environments. The robotic platform
(Figure 2.9(e)) is equipped with a pan-tilt unit and a sensor-head composed
of different remote sensors among others, a Tunable Diode Laser Absorption
Spectroscopy (TDLAS) sensor and an Infra Red (IR) camera.

In [78], the RoboGasInspector platform is used to detect leaks in two in-
dustrial plants and at a landfill site. The authors implemented an ad-hoc trian-
gulation algorithm to steer the robot towards the suspected location of a gas
leak. While the robot was able to successfully locate the gas source in the ex-
perimental scenarios, it was observed that the performance of the algorithm
depends on the strong assumption that the detected concentration is located at
the end of the beam.

The use of IR imaging for GSL was explored in [79]. It has been well docu-
mented that when gas escapes from pressurized equipment (e.g. transport pipes,
storage tanks) to the environment, it cools down. The authors of [79] assume
that the temperature profile of a leak can be described by a two dimensional
Gaussian distribution. Thus, informative features for classification were ex-
tracted by cross correlating the acquired IR images with typical temperature
profiles of potential leaks. The authors achieved a high success rate when the
algorithm was validated in a mock-up scenario, where a leak was simulated
using pressurized air escaping from a 1⁄2 inch iron pipe painted in black to min-
imize reflections.

Plume Modelling Algorithms

This family of algorithms diverge from the pure reactive, trail following schemes
and instead, they can utilize measurements acquired in an exploration trajec-
tory to estimate the gas dispersion pattern using analytical or stochastic meth-
ods. For example, in [80, 19], wind and gas concentration measurements are
used to fit a Gaussian plume model to locate an emitting gas source while
in [81, 82], Bayesian inference methods are used, along with a Gaussian “ran-
dom walk” dispersion model, to compute a likelihood lattice in which the loca-
tion of a gas source is determined by the posterior probabilities, computed for
each cell in the grid.

7http://www.robogasinspector.de/
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While assuming a priori models for the gas plume is a successful strategy
under constant, strong fluid flows, these conditions are rarely found in realistic
scenarios. In these scenarios, turbulence and the changing direction of the fluid
flows can cause irregular gas patches instead of a well defined trail. Thus, a
predefined plume shape (e.g. Gaussian-like) cannot generally be assumed.

Lilienthal and co-authors proposed to use the implicit information con-
tained in gas distribution maps as a mean to perform GSL. In [56], the authors
propose to use the Concentration Maximum Estimate (CME) as an indicator
to localize emitting gas sources. The CME corresponds to the location of the
maximum mean concentration value predicted by the gas distribution map. In
a later work, the authors compared two different indicators for GSL namely,
the CME and the Best Fit Estimate (BFE). The BFE is computed by fitting the
functional parameters of a pre-defined plume model, using the predictions of
the gas distribution map as inputs. The authors concluded that the CME out-
performs the BFE in scenarios where the best fit is not a good approximation
of the gas distribution or where only a weak wind flow is present.

In [16], different indicators for GSL were evaluated. It was observed that
the fluctuations on the gas concentration are often a more reliable predictor
for GSL than mean concentration maps. Gas distribution models that generate
maps of the gas fluctuations for example, in the form of a predictive variance
map [17] can be used in the task of GSL. In [83] the variance maps are used
to estimate the location of an emitting gas source. The Variance Maximum
Estimate, which is the location of the maximum variance value predicted by
the model, is used as an indicator of the location of the gas source and it was
observed that the VME often outperforms the CME.

In a similar way, gas distribution maps generated with remote gas sensors
can be used as inputs for GSL. In [84], we presented the Gasbot prototype (Fig-
ure 2.9(f)). The robot is equipped with different sensing modalities for percep-
tion and environmental monitoring (e.g. a thermal camera and an anemome-
ter). Gas sensing is carried out with a TDLAS remote gas sensor. Using the gas
tomography algorithm originally proposed in [85], the prototype was used to
create gas distribution models of an underground corridor and a decommis-
sioned landfill where a methane source was placed. Using the location of the
Concentration Maximum Estimate (CME) as an indicator, the prototype suc-
cessfully predicted the location of the methane source with an average error of
0.60 m± 0.36 m.

Similar to the case of gas distribution maps created with in-situ sensors,
the Variance Maximum Estimate (VME) was observed to be more accurate
than the CME as an estimator for GSL. In [86], the maps created with the gas
tomography algorithm are evaluated with respect to their capability to predict
the location of a gas source in a large outdoor scenario. It was observed that the
VME can predict the location of a gas source with a higher degree of accuracy.
This is described in more detail in Chapter 5.



2.3. GAS SOURCE LOCALISATION 29

(a) (b)

(c) (d)

(e) (f)

Figure 2.9: Examples of robotic platforms for GSL. (a) Underground GSL robotic plat-
form [65]; (b) Wheeled gas sensitive robot [72]; (c) Micro UAV equipped with gas sens-
ing capabilities [74]. (d) Vision-aided gas sensitive robot [76]; (e) The RoboGasInspector
platform [87]; (f) Gasbot, a proof of concept platform for CH4 monitoring.
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2.4 Are Bio-inspired MRO Algorithms Suitable for
Realistic Applications?

In this section, we present a set of experiments conducted with wheeled and fly-
ing platforms in different environments, ranging from an unventilated, closed
room (i.e. a robot arena) to an outdoor open field. The purpose of these experi-
ments is two-fold. First, we present sensor and environmental characterizations
in order to illustrate the challenges posed by the limitations of current technolo-
gies when performing gas sensing in turbulent environments. Second, using gas
source localisation as an example task, we argue that bio-inspired algorithms
and/or simplification assumptions (e.g. laminar wind flows) are not the most
reliable alternative for MRO systems that operate in realistic environments.
Instead, we propose to follow an engineering approach to address GSL. The
experiments and the results presented in this section correspond to the contri-
butions originally published in [83] by the author of this thesis.

2.4.1 Robotic Platforms

The experiments were performed with two different wheeled robots and one
micro UAV (Figures 2.10(a) to 2.10(c)). Compared to flying platforms, wheeled
robots have a higher payload, a longer battery life and they can carry more
computational resources on-board. In the specific task of gas sensing, a key
drawback of using UAVs is that their rotors can influence significantly the air
flow, modifying the original gas distribution. On the other hand, flying plat-
forms have less restrictions regarding mobility, compared to wheeled robots.
Flying robots for example, are not limited by rough terrain conditions and they
can acquire measurements at locations that are not accessible to ground robots
(e.g. rooftops, chimneys).

Wheeled Robots

Two different ground platforms were used in the data collection process, namely
an all terrain robot and a compact, two wheeled platform (Figures 2.10(a)
and 2.10(b)). The platforms were originally presented in [88] and in [89] re-
spectively.

The all-terrain platform is an ATRV-JR robot intended for outdoor loca-
tions and rough terrains. The two wheeled platform is a Pioneer P3-DX plat-
form from MobileRobotics and, compared to the ATRV-JR, is ideal for experi-
ments indoors in locations with space restrictions. Both platforms are equipped
with a laser range scanner (SICK LMS-200) that is used for navigation and lo-
calisation purposes. The range measurements from the LMS-200, along with
encoder readings from the platform’s wheels, are inputs to the AMCL ROS
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node8 module. The AMCL node is an implementation of the adaptive Monte-
carlo localisation [39].

In both robotic platforms, gas sensing was performed by using a ppbRAE-
3000 PID sensor and an array of MOX sensors in an open sampling configu-
ration. For these experiments, we consider only the TGS2620 from the avail-
able sensors in the array. Wind measurements were performed with ultrasonic
anemometers. The placement of the anemometer had to be a compromise be-
tween the desire to measure the air flow as close to the gas sensors and as
undisturbed as possible. It was finally placed above the top of the robot in or-
der to minimize the influence of the fan of the electronic nose and the body
of the robot itself. Appendix A provides a comprehensive list of the sensing
payload on both platforms.

(a) (b) (c)

Figure 2.10: Robotic platforms. (a) ATRV-JR. (b) P3-DX. (c) AR-100B.

Flying Platform

The third platform used is shown in Figure 2.10(c). It is an AR100-B micro UAV
developed by AirRobot GmbH & Co. The UAV was modified by the Federal
Institute for Materials Research and Testing (BAM, Germany) to incorporate
gas-sensitive devices as a payload [66]. The AR100-B is a highly manoeuvrable
and compact platform. With a diameter of 1 m and a weight of approx. 1 kg, it
supports up to 200 g of payload and its LiPo battery can provide a maximum
flight time of about 20 − 30 min. The flight control relies on an on-board
Inertial Measurement Unit (IMU) that comprises a three axis accelerometer
and a three axis rotation rate sensor. The IMU is also used along with a GPS
unit and a compass for localisation purposes. Communication with the ground
station is established through a 2.4 GHz RF link in which the data packets
sent can include steering instructions or data coming from the payload and the
micro UAV’s sensors.

8http://wiki.ros.org/amcl
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Due to payload restrictions, the micro UAV neither carries an anemometer
nor a PID. Instead, wind measurements were acquired with the wind triangle
approach, as presented in [90] and gas measurements were acquired with a
calibrated MOX sensor, specifically, a Taguchi-type TGS26119. A calibration
curve was obtained by exposing the sensor to know concentrations of the target
compound inside a sealed chamber.

2.4.2 Experimental Scenarios

In order to have a wide variety of testing environments, experiments were con-
ducted inside a closed room (i.e. a robot arena), an indoor corridor and two
different outdoor courtyards. In addition to the description provided in the fol-
lowing paragraphs, a more detailed summary of the experiment conditions can
be found in Appendix A.

The robot arena is a 5 m × 5 m × 2 m closed room as shown in Fig-
ure 2.11(a). Although no artificial air flow was induced, a weak circulating air
flow field (0.01 − 0.03 m/s) was formed in the room by natural convection.
Ethanol and propanol were released in six separate trials at a constant rate of
0.2 l/min from a tube placed on the floor. The robot was programmed to move
along a predefined spiral path that covered the whole experimental area, stop-
ping at regular intervals to collect measurements. At each measurement point,
the sensor data were recorded for 30 seconds and the sensors were sampled at
4 Hz. The collected datasets were originally presented in [89].

(a) (b)

Figure 2.11: Indoor experimental scenarios. (a) Robot arena. (b) Indoor corridor.

9http://www.figarosensor.com/gaslist.html
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A second set of experiments were conducted in an indoor corridor (Fig-
ure 2.11(b)). Compared to the robot arena, the experiments conducted in this
scenario where significantly less controlled, since the corridor was not closed
during the experimental trials and people were allowed to transit and to open
and close nearby doors. The size of the experimental location was 14 m×2.0 m

and a cup filled with ethanol was used as a gas source. The ATRV-JR was
commanded to follow a pre-defined exploration path and measurements were
recorded at stop points for 30 s, with a sampling frequency of 1 Hz. A total of
five experiments were carried out in this scenario as reported in [88].

In order to collect data under under conditions of strong wind, experiments
were also conducted in two different outdoor scenarios. First, data was col-
lected with the ATRV-JR in an 8 m× 8 m open area with no buildings nearby
(Figure 2.12). Ethanol was used as a gas source and the ATRV-JR was com-
manded to collect measurements at a sampling frequency of 1 Hz, stopping
10 s at pre-defined way-points. Four experimental trials were performed in this
scenario, as reported in [88].

Figure 2.12: Outdoor experimental scenario. Data was collected with the ATRV-JR plat-
form.

A set of five additional trials were conducted in an open field, as shown in
Figure 2.13, using the gas sensitive micro UAV. These experiments were con-
ducted in cooperation with the Federal Institute for Materials, Research and
Testing in Berlin, Germany10. Methane (CH4) was released from a cylinder
placed in a 14 m × 14 m open area surrounded by nearby trees. In order to
spread the analyte away from the cylinder, a fan was placed near the odour out-
lets. The air current introduced by the fan also prevented the CH4 to immedi-
ately rise up to the atmosphere when released. The AR-100B was programmed
to explore the experimental area following a sweeping trajectory and stopping
at way-points for 20 s. Data samples were acquired at 8 Hz and transmitted
down to the ground stating using the micro UAV’s RF link.

10http://www.bam.de/en/index.htm
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Figure 2.13: Experiments in the open field with the gas sensitive micro UAV.

2.4.3 Environment and Sensor Characterization

As previously presented in Section 2.3, biology is an important source of in-
spiration in the development of MRO algorithms. More specifically, roboticists
have been interested in designing robotic platforms and algorithms that are ca-
pable of e.g. detecting and tracking odour cues towards the emitting source.
However, as we discussed in [83], the current limitations in the sensing and
actuating modalities and the challenges associated with gas dispersion in tur-
bulent environments, prevents the use of biologically inspired algorithms.

Regarding the actuation capabilities of robotic platforms typically used in
MRO, ground robots usually operate at linear speeds between 0.05 − 0.1 m/s

and can perform much less than one turn per second. The limitation in linear
speed is mostly chosen to avoid spatial averaging over large areas, which oc-
curs because the gas sensors act as a low-pass filter due to their slow response
and recovery time. In comparison, a moth can fly at a linear speed of roughly
0.5 m/s and with an average turning rate of roughly 3.5 turns/s [91]. Based
on these differences it seems possible that current ground robotic platforms
are just too slow to perform insect-like reactive steering strategies that allow
successful plume tracking in a highly dynamic environment with turbulent air
flow. While indeed, UAVs can reach linear and turning speeds comparable to
the manoeuvring capabilities of insects, the drawback is their limited payloads
that do no allow to equip sophisticated gas sensors on-board and the fact that
their rotors can disturb the gas dispersion patterns in the environment.

In order to stablish an analogy between the gas sensing capabilities of insects
and mobile robots, we can mention the work of Justus and co-authors [92],
where it is reported that the filtering applied by moth antennae is a linear,
noise-free representation of odourant concentrations in the range of 1−10 Hz,
while the gain is reduced for frequencies below 1 Hz. It is argued that the most
likely cause for this effect is the adaptation of the receptor cells, a common
feature of biological sensory receptors that is most often seen as a slowing or
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cessation of response to a constant stimulus. According to the data we collected
in the four different scenarios described in this chapter, the bandwidth of the
signal collected with MOX gas sensors contains frequencies in the range of
0− 0.04 Hz while the signal collected with a PID contains frequencies between
0−0.15 Hz. It is striking that currently available chemical sensors stop filtering
out the signal in the bandwidth that insects actually can perceive and use for
tracking an odour plume. On the other hand, chemical sensors capture the
signal in a bandwidth that insects filter out through the adaptation process.
Therefore, the perception of the chemical stimulus is considerably different for
insects, compared to perception with commonly used gas sensors in MRO.

In Figures 2.14 and 2.15 examples of the response profiles of the PID and a
MOX sensor are shown. The PID response is linear with respect to the chemical
compound concentration and the rise and decay time constants of this sensor
are symmetric and much smaller than of the MOX sensors. If located close to
a MOX sensor, the PID response can thus provide a good reference of the con-
centration the MOX gas sensor was exposed to. The plot in Figure 2.14 shows
the non-linearity in the response of the MOX gas sensor, and most importantly,
the slow dynamics of the MOX gas sensor. The asymmetric low pass filtering
performed by the MOX sensor is evident, especially during the long recovery
of the MOX sensors.

Figure 2.14: Time domain response patters of the gas sensors in the robot arena.

The spectra of the measurements collected with the MOX sensors and the
PID are plotted in Figure 2.15. Due to their slow response time, most of the
components of the MOX sensor response are located at low frequencies. For
the PID on the other hand, a wider spectrum can be noticed with components
located at higher frequencies than for the MOX sensor.

A common simplifying assumption made by different bio-inspired algo-
rithms is that a uniform wind field can be assumed in the exploration areas.
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In order to verify the validity of this assumption, we presented in [83] a char-
acterization of the wind flow in the different experimental scenarios. At each
experimental location, an air flow map was generated using the data collected
in one of the trials and at each way-point, where the robot stopped to collect
measurements, a mean wind vector was computed.

Figure 2.15: Time domain response patters of the gas sensors in the robot arena.

Figures 2.16(a) to 2.17(b) show the exploration trajectories and the com-
puted air flow maps. The arrow’s length represents the average wind speed and
the circular mean direction is represented by the arrow’s orientation. Although
the explored areas are not of considerable size and the measurement points are
spatially dense, regularity in the wind flow direction is hardly observed. This
clearly indicates that the assumption of a laminar air flow does not hold in any
of the four environments. A special case is the air flow map generated with data
collected with the micro UAV. Notice that the average air flow direction points
to a similar direction in most of the way-points. This is due to the fact that a
fan was placed in the experimental scenarios, in order to introduce an advective
air flow (See Figure 2.13).

Large directional fluctuations were also observed between measurements
taken at single way-points. The polar plots (i.e. wind roses) shown in Fig-
ures 2.16(a) to 2.17(b) were computed from a selected way-point (denoted
by black squares in the corresponding figures) on the robot’s trajectory. Each
arrow in the plot corresponds to an individual measurement. The length is
proportional to the wind speed and the arrow’s direction represents the wind
angle. Notice the irregular distribution of the measured wind directions in the
rose plots. Accordingly, the circular mean direction (denoted by a dashed grey
line) is not a good indicator of the wind conditions present at the way-point,
since it does not reflect the observed wind direction fluctuations. To further
characterize the observed variability in the wind flow, wind speed histograms
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were computed for the selected way-points. Notice that uneven speed distribu-
tions were observed, even in the indoor locations, where one might expect less
pronounced fluctuations.

(a) (b)

Figure 2.16: Air flow characterization in the indoor environments. (a) Robot arena. (b)
Indoor corridor.
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(a) (b)

Figure 2.17: Air flow characterization in the indoor environments. (a) Outdoor court-
yard. (b) Open field.
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2.4.4 A Statistical Approach to Detect Gas Leaks

Considering the data, laminar air flows cannot be assumed. This means that
gas source localisation algorithms that rely on laminar wind fields, for example
the biologically inspired algorithms presented in Section 2.3, are not suitable
for these scenarios. In addition, a predefined functional form, such as a Gaus-
sian plume cannot be assumed for the experiments conducted indoors. Refer
to the indoor wind speed histograms and the wind roses of Figures 2.16(a)
and 2.16(b) where low wind speeds and high directional fluctuations are ob-
served at each measurement point. It can be then assumed that gas dispersion
in these environments are dominated by turbulence, which prevents a Gaussian
shaped plume to be formed.

As previously stated in Section 2.2, models of the spatial distribution of the
gas concentrations can be used to detect emitting sources under turbulent en-
vironments with low advective air flows. In order to generate a model of the
gas distribution, we use the Kernel DM+V algorithm, proposed by Lilienthal
and co-authors in [17]. Kernel DM+V is a non parametric algorithm that does
not make strong assumptions about the particular form of the gas dispersion
pattern but instead derives a statistical representation of the observed gas dis-
persion. In addition to a mean concentration map, Kernel DM+V computes a
predictive variance map, which allows to predict the gas fluctuations at a given
query location. Chapter 5 details on how gas distribution models are generated
with Kernel DM+V and provides a review of related state of the art.

According to [56], the Concentration Maximum Estimate (CME) (i.e. the
area with the highest concentration value) is a feature that can be used to locate
the gas source. Additionally, the Variance Maximum Estimate (VME) (i.e. the
area with the highest concentration fluctuation) is another feature correlated
with the gas source position [16]. Figures 2.18(a) to 2.19(b) show the mean and
variance maps computed using Kernel DM+V, with the acquired concentration
measurement at the evaluated experimental scenarios. Notice that in the indoor
experiments, where low advective air flows were present, the CME may not be
a good estimator of the gas source location since high concentration levels can
occur away from the actual gas source (Figures 2.18(a) and 2.18(c)). However,
the VME provides a highly reliable estimator for all the experimental scenarios,
since areas of high variance are correlated with the actual location of the gas
source as previously reported in [16].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.18: Mean and variance maps generated for the evaluated experimental loca-
tions. The red marker denotes the actual gas source location while the white dashed
lines denote the exploration path followed by the robot. (a), (b) robot arena. (c), (d)
indoor corridor. (e), (f) outdoor courtyard.
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(a) (b)

Figure 2.19: Mean and variance maps generated for the evaluated experimental loca-
tions. The red marker denotes the actual gas source location while the white dashed
lines denote the exploration path followed by the robot. (a), (b) Open field.

2.5 Conclusions

This chapter presented a brief overview on the research area of MRO, from
its initial developments in the early 1990s, where toy-like gas sensitive robots
performed reactive plume tracking in tightly controlled scenarios, to current
state-of-the-art, in which the first proof of concept prototypes have successfully
carried out gas sensing in realistic experimental conditions.

The main contribution of this chapter was originally presented in [83],
where the challenges in MRO are identified. The aspects discussed in this chap-
ter are thus the simplifying assumptions made in MRO as well as the current
limitations of state of the art gas sensors and actuation mechanisms. In order
to characterize the gas sensing mechanism and in order to identify the chal-
lenges of gas sensing with MRO, data was collected in a set of prototypical
environments, in which different robot platforms collected gas measurements
under a variety of experimental conditions. It was shown that, in all of the en-
vironments, a constant laminar air flow cannot be assumed. Furthermore, the
gas sensing and actuation capabilities of typical MRO systems are not compa-
rable to their biological counterparts and thus, engineering and in particular
statistical approaches are preferable to biologically inspired algorithms when
performing gas sensing in turbulent environments.

Indeed, the current developments in MRO are promising. However, in order
to build MRO systems able to solve practical problems, a number of simplifying
assumptions need to be removed. Real world scenarios are dominated by turbu-
lence and thus, unidirectional air flow patterns and an a priori functional form
for gas dispersion cannot be assumed. Robust algorithms for gas sensing with
mobile robots should consider the limitations of the robotic platforms as well
as the challenges implied by gas sensing in turbulent environments. MRO sys-
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tem should also address several tasks beyond plume tracking, for example, gas
detection, gas quantification, gas discrimination (Chapter 3), gas distribution
mapping (Chapters 4 and 5) and gas source localisation. In addition, research
in MRO should consider emerging gas sensing technologies, such as remote gas
sensors (Chapter 5) or IR cameras that can provide valuable inputs for loca-
tions that are meters away from the actual position of the robot.



Chapter 3
Gas Discrimination with Mobile
Robots

The capability of predicting the identity of acquired gas measurements is of
high importance when designing Mobile Robotics Olfaction (MRO) systems.
The presence of multiple chemical compounds is expected in most target appli-
cation scenarios and therefore, MRO systems should be able to discriminate,
for example, target compounds from interferent substances. As presented in
Chapter 2, gas discrimination can be carried out with laboratory or hand-held
equipment based on spectroscopy, optics and analytical chemistry. However,
these devices are expensive and often, their bulky size prevents them to be used
on-board mobile robots in field inspection routines. An alternative method to
carry out gas discrimination is to use arrays of low-cost, partially selective sen-
sors coupled with pattern recognition algorithms. These devices are commonly
referred to as electronic noses (e-noses).

Early developments in e-nose technology can be traced back to 1920 when
Zwaardemaker and Hogewind performed experiments with fine sprayed wa-
ter to detect the presence of aromatic compounds [93]. The idea that a sensor
could be used to discriminate among different gaseous substances was first pro-
posed in [94], where the authors developed a simple device that consisted of a
platinum wire and a micro-voltmeter that registered the voltage changes that
occurred when the wire was exposed to different compounds. In later research,
Moncrieff proposed that an array of six sensors constructed with six differ-
ent coating materials could be used to discriminate between a large amount
of gaseous compounds [95]. It was not until 1982 when independent experi-
ments from Persaud and Dodd [96] and Ikegami and Kaneyasu [97] showed
the feasibility of using intelligent sensor arrays for gas discrimination. The term
electronic nose was coined in 1988 by Gardner an Bartlett who defined an e-
nose as “an instrument which comprises an array of electronic chemical sensors
with partial specificity and appropriate pattern recognition system capable of
recognizing simple or complex odours” [53].

43
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While in its early years e-nose research was heavily inspired by biological
principles, this does not necessarily imply that the aim of current e-nose re-
search is to create devices that mimic the capabilities of e.g. the human sense
of smell [98]. Instead, e-nose technologies can be considered as complementary
devices for the human nose. For example, e-nose systems can be used to iden-
tify chemicals that cannot be detected by the human nose (e.g. carbon dioxide)
or they can be used to monitor the presence of dangerous substances without
risking human lives in the process.

A significant amount of research effort in the e-nose field has been focused
on the discrimination of gaseous compounds in laboratory conditions. Under
laboratory conditions, humidity and temperature are tightly controlled and gas
samples interact with a sensor array in pre-defined exposure cycles. Advances
in gas sensing technologies, along with more robust pattern recognition algo-
rithms have allowed to bring e-nose systems outside laboratory conditions to
uncontrolled environments. In such scenarios, e-noses can be used as stationary
sensing devices or mounted on mobile platforms in an open sampling configura-
tion to address practical tasks related to environmental monitoring [99]. How-
ever, gas discrimination becomes significantly more challenging in the absence
of laboratory conditions. This is due to the fact that in uncontrolled environ-
ments the sensors are under the direct influence of the environment’s dynamics
and thus, the acquired measurements reflect the unpredictable nature of the
turbulence phenomenon.

In the remaining of this chapter we explore the task of gas discrimination
using e-nose systems, with the focus on applications of Open Sampling Systems
(OSS) in uncontrolled environments. In Section 3.1, the architecture of an e-
nose system is presented. In addition, we discuss the differences between gas
discrimination under laboratory conditions and gas discrimination with OSS,
were the sensors directly interact with the environment without a controlled
exposure mechanism. Section 3.2 presents related work in gas discrimination
and different application for e-nose technologies. Section 3.3 presents a novel
algorithm specifically designed for gas discrimination in uncontrolled environ-
ments. This algorithm was originally introduced in [100] and is one of the main
contributions of this dissertation. Section 3.4 ends this chapter with conclusions
and final remarks.

3.1 E-Nose Architecture

Figure 3.1 shows a block diagram of a typical e-nose system. It consists of a
sampling and delivery system, an array of non selective sensors and a pattern
recognition block. When a gas sample is delivered to the sensor array, a re-
sponse pattern or a odour finger print is generated and in subsequent stages, it
is processed in the pattern recognition block. The output of the e-nose system
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is then a class estimate or a posterior probability of the sample identity, given
the acquired response pattern. The different components of an e-nose system
are described below.

Figure 3.1: Block diagram of an e-nose system.

3.1.1 Sampling and Delivery System

In laboratory applications, the sampling process is typically carried out at con-
trolled humidity and temperature levels and gas samples of constant concen-
tration are acquired using for example, vacuum pumps, sampling flow systems
or pre-concentrators [101]. The sensors are then exposed to the samples using
a controlled exposure cycle commonly referred to as a three phase sampling
process (Figure 3.2(a)). In a three phase sampling process, the sensors are first
exposed to a reference gas (e.g. clean air) in order drive the sensors to a known
state or a baseline response level. Then, a gas sample of constant concentration
is transported towards the sensor array. When the sensors start interacting with
the gas sample a transient response pattern is produced. After a few seconds to
a few minutes, the sensors reach a steady response where typically data analysis
is carried out. The sampling process concludes when the gas sample is flushed
away and the sensors are allowed to recover their baseline level before injecting
a new sample.

However, the three phase sampling process is hardly feasible in MRO ap-
plications due to payload restrictions. For example, UAVs or small ground ve-
hicles, cannot carry heavy sensor chambers and they cannot operate vacuum
pumps or sampling systems for long periods of time due to energy consumption
restrictions. Therefore, the sensors have to be directly exposed to the dynamics
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of the environment in a configuration commonly referred to as an Open Sam-
pling System (OSS). Moreover, when performing gas sensing in uncontrolled
environments, it is hard to keep constant exposure profiles due to the fluctuat-
ing concentration levels produced by the environmental conditions.

Figure 3.2(b) shows the response of a set of MOX sensors mounted on a
mobile robot that was commanded to explore an indoor location where a gas
source was present. Notice that, compared to Figure 3.2(a), the sensor response
does not show a clear three phase profile and that a steady response is never
reached. This is due to the lack of a controlled exposure process and due to the
chaotic nature of the environment where the gas concentrations fluctuate faster
than sensors time constant [98].

(a) (b)

Figure 3.2: Response patterns acquired with arrays of MOX sensors using different sam-
pling processes. (a) Three phase sampling process. The numbers on the figure indicate
the different stages of the sensor response: 0 - Baseline response, 1 - transient response
(rising edge), 2 - steady state, 3 - transient response (recovery edge). The shaded area
denotes the time interval during which the sensors were exposed to the gas sample. (b)
Response pattern acquired with an OSS mounted on a mobile robot. Both images are
adapted from [98].

3.1.2 Sensor Array

The sensor array (Figures 3.3(a) and 3.3(b)) is composed of a set of non specific
gas sensors. This means that two or more sensors in the array can show sen-
sitivity to the same chemical compound. The different response rates of each
sensor in the array produce a characteristic response pattern or a “finger print”
when they are exposed to volatiles with a similar chemical composition. Sen-
sor arrays can be constructed using different sensing technologies, for example
electrochemical, potentiometric, amperometric, conductometric or optical sen-
sors [27].
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Figure 3.3(b) shows a basic measurement circuit for a single MOX sensor
(which belongs to the conductometric sensing family). A voltage divider config-
uration with a load resistor Rl and an input voltage Vs are used to measure the
sensor’s resistance change. The response of a MOX sensor depends on its sur-
face temperature [26] and therefore a heating element (Rh), driven by a voltage
Vh, is embedded in the sensor’s package. The response pattern is measured at
the load resistor Rl.

(a) (b)

Figure 3.3: (a) A sensor array composed by different MOX sensors. (b) Measurement
circuit for a MOX gas sensor.

3.1.3 Pattern Recognition Block

As previously shown in Figure 3.1, the estimation of the gas identity from the
acquired response pattern is carried out in different intermediate computation
stages namely signal pre-processing, feature extraction, feature selection and
classification as explained below.

Signal pre-processing

In this stage, the raw response patterns acquired with the sensor array are
conditioned for the further processing carried out in later stages. For exam-
ple, filters can be applied to suppress unwanted frequency components that are
present in the response patterns [101].

As mentioned in the previous chapters, one of the drawbacks of some sens-
ing technologies (such as MOX) is their response drift caused by environmen-
tal conditions (e.g. temperature, humidity). Baseline manipulation can be per-
formed in order to limit the effect of the ambient drift and to enhance the
contrast of the response patterns. According to [9], baseline manipulation can
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be carried out by first recording the baseline response of the array when the sen-
sors are exposed to a reference gas (i.e. clean air). Then, the corrected response
is computed by the subtracting the baseline response from the raw response
(differential correction), the ratio between the raw response and the baseline
response (relative correction) or by a subtracting first and then dividing the
raw response by the baseline response (fractional).

Feature Extraction

The goal of the feature extraction stage is to obtain a set of descriptors from the
response patterns that are particularly informative for the classification process.
Feature extraction can be seen as a first stage of dimensionality reduction since
the aim is to extract a set D descriptors from a time series of N samples, where
N � D.

Simple feature extraction methods can include for example, the sub sam-
pling of the response pattern at pre-defined intervals or using the average of the
sensor response in steady state [98].

In the case of OSS, the lack of a controlled exposure prevents the sensors to
reach a steady state response profile. Thus, different authors have proposed to
perform feature extraction in the transient (i.e. rise and/or decay) edges of the
sensor response.

Feature extraction in the transient edges can be performed by fitting the pa-
rameters of an exponential curve [102] or by extracting ad-hoc parameters such
as the derivatives of the sensor response or the maximum response value [103].
In addition, feature extraction can be performed by transforming the response
transients into a different domain using e.g. the Fourier Transform [104], multi
resolution analysis (i.e. wavelet transform) [105] or computing a set of phase
space descriptors [106].

3.1.4 Feature Selection

In further stages of the gas discrimination process, it is preferable to work with
only a subset of features and to remove features that are highly correlated or
redundant. In high dimensional spaces, it is difficult to collect enough samples
to compute a valid estimate of the discriminant function [107].

Feature selection methods can be grouped in two different categories named
filter based methods and wrapper methods [108]. Filter based methods compute
a ranking of the features based on an optimality criterion (e.g. linear correla-
tion, information theory ranking) and then, the first d features in the ranking
are selected. Wrapper methods use the success rate of a given classifier to indi-
vidually evaluate feature subsets. When the search space for the optimal feature
subset becomes intractable, search heuristics can be used to ease the computa-
tion load. Trincavelli and co-authors proposed in [109] two feature selection
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methods (one filter based and one wrapper based) to perform feature selec-
tion for the specific task of gas discrimination with mobile robots. The authors
evaluated their proposed algorithms with large datasets collected in indoor and
outdoor locations with an OSS-equipped mobile robots that followed different
exploration trajectories. The results showed that the accuracy in the classifica-
tion can be improved when applying the proposed feature selection algorithms
and that the selection of the optimal feature subset is not intrinsically coupled
with the motion of the robot or the particular characteristics of the explored
area.

3.1.5 Classification

The last stage in gas discrimination is to create a decision rule that partitions the
feature space into regions that represent the different classes or gas identities.
Instead of computing discrete labels, some applications may require a confi-
dence value as an output from the gas discrimination process. This means that
a posterior probability p(l|ri) of a sample i belonging to class l is computed
given a response pattern ri. There are several classifiers that have been exten-
sively used in e-nose applications, among others, multi-layer perceptrons [110],
K-nearest neighbours [111], Support Vector Machines [112], and Relevance
Vector Machines [11]. The interested reader can consult [113] for a thorough
review on classification methods commonly used in gas discrimination algo-
rithms.

3.2 Applications of E-Nose Technologies

3.2.1 Gas Discrimination Under Laboratory Conditions

Under laboratory conditions (e.g. using a three phase sampling process), e-nose
systems have been successfully applied to solve practical problems in a variety
of application areas. The following examples illustrate how e-nose systems can
be a viable solution for different practical problems.

E-nose systems have been applied in the coffee production industry. Among
others, tasks such as identification of coffee beans [115] and roasting level [116]
have been carried out with high performance levels. E-nose systems have also
been brought to the milk and dairy industry. Pais and co-authors [117] used
an e-nose system to determine the maturity rates of different cheese brands
and Ampuero and co-authors [118] successfully determined the presence of
Trimethylamine in milk samples. E-nose systems can be used to determine the
ripeness of different fruits and vegetables. For example in [114], a success rate
of 100% was achieved when determining the ripeness state of tomatoes using
an array of 10 MOX sensors.

In agricultural applications e-nose systems have been successfully applied
to determine the presence of different pesticide and bacteria contamination,
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as reported in [119]. Campagnoli and co-authors successfully detected animal
proteins in livestock food using an array of 10 MOX sensors [120]. Regarding
medical applications, e-nose systems have been successfully applied to detect
lung cancer from breath samples [121, 122]. Trincavelli and co-authors used an
e-nose system to successfully identify 10 different bacteria types from human
blood culture samples [123]. Gendron and co-authors reported the use of e-
nose systems for the detection of tumour cells in [124]. The authors exposed
an e-nose systems to skin and tissue samples and they successfully determined
the presence of e.g. melanomas.

3.2.2 Gas Discrimination in uncontrolled environments

There are several examples of applications in uncontrolled environments for
e-nose systems such as the detection of air pollutants [125] or the identification
of explosives [126]. However, a recurring shortcoming when designing e-nose
systems intended for uncontrolled environments is that the experimental val-
idation process is carried out using the three phase sampling system, with no
interaction with the environment. Such experimental processes do not reflect
the actual conditions that can be expected in the target applications. As shown
in Figure 3.2(b), when performing experiments in uncontrolled environments
with OSS, the response patterns are considerably different compared to the
response profiles generated when performing experiments under controlled ex-
posure (e.g. the three phase sampling process).

An early example of an e-nose system for applications outside laboratory
conditions was presented by Nicolas and co-authors in [127]. The authors ad-
dressed the problem of odour monitoring using an OSS where an array of MOX
sensors was directly exposed to the environment. The authors recorded mea-
surements at different locations such as printing houses, paint shops, sewage
water treatment plants and sugar cane mills. Data analysis was performed
over the recorded data in order to evaluate the feasibility of gas discrimina-
tion. While a classification algorithm was not implemented, the authors con-
cluded that, besides the expected variability of the environmental conditions,
promising results were observed when applying techniques such as Principal
Component Analysis (PCA) [107].

The same authors presented a follow up work in [128], where a network of
five OSS nodes was constructed in order to assess the odour annoyance near a
compost facility. The e-nose nodes comprised six commercially available MOX
sensors. Gas discrimination was framed as a five class problem, in which each
class corresponded to a different annoyance source (e.g. exhaust fumes, green
composts). This work concluded that an e-nose system can be sufficiently effi-
cient in predicting possible annoyances in the surrounding area, near a compost
facility.

A thorough investigation on the challenge of gas discrimination with OSS
was presented by Vergara et al. in [129, 130]. The authors constructed a test-
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bed that consists of a 2.5 m × 1.2 m × 0.4 m wind tunnel and a set of 9
OSS nodes placed at different distances (Figure 3.4(a)) from an emitting gas
source. Ten different chemical compounds were used as target analytes under a
variety of wind flow regimes and concentrations. The authors concluded that
the performance of the system is heavily influenced by parameters such as wind
flow and the distance to the gas source. In order to have a robust classification
performance, the classifiers would have to be trained using data collected under
all possible combinations of environmental conditions. For practical reasons,
however, it is not feasible to acquire exhaustive datasets. Thus, classifiers have
to be trained using datasets that represent only a small subset of all the possible
environmental conditions.

(a) (b)

Figure 3.4: (a) The wind tunnel and sensor nodes constructed by Vergara et. al. for
outdoor gas discrimination [130]. (b) The EOS-507 e-nose developed by Capelli and
Dentoni [131, 99].

Capelli and Dentoni presented the development of an e-nose system for
odour monitoring in outdoor locations [131, 99]. The authors constructed a
sophisticated system (Figure 3.4(b)) composed of an array of MOX sensors
enclosed in a chamber where ambient humidity and temperature were kept
constant during data collection. Two inlets were connected to the sensor cham-
ber, one for the reference analyte (i.e. neutral air) and a second inlet as an
input for the samples. In addition, an anemometers was added to collect wind
measurements. The goal of the developed monitoring system was to identify
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odour nuisances coming from two water treatment plants and an oil mill. The
authors deployed a set of five sensing stations at different locations and data
was collected during a period of 10 days. Besides a high classification success
rate, the results achieved by the authors are very important in the context of
this thesis. First, the authors observed that concentration levels showed strong
fluctuations, even when the sensors were placed inside a chamber and sam-
pling systems were used to implement a controlled exposure strategy. Second,
the authors concluded that gas discrimination cannot be performed with highly
diluted samples (i.e. with low concentration measurements). Therefore, a rejec-
tion threshold, analogous to the detection limit of e.g. the human nose, should
be set in order to achieve robust classification performances.

3.2.3 Gas Discrimination with Mobile Robots

Mobile robots can be equipped with OSS to carry out gas discrimination. Per-
haps the earliest prototype of an OSS aimed for robotic applications was pre-
sented in [105]. The aim of the proposed system was to construct a module
able to provide gas discrimination capabilities for plume tracking robots. The
authors in [105] designed an OSS composed of 4 commercial MOX sensors
and features were extracted from the rising edges of the sensors response. The
authors performed gas discrimination for up to 6 different gas mixtures and
found that only 4 seconds of exposure to the gas samples are required to suc-
cessfully perform gas discrimination. While the authors report a high success
rate for some of the target mixtures, the experimental setup is not described
in detail and no experiments were carried out with the system mounted on a
robotic platform.

Plume tracking and gas discrimination with mobile robots was explored
in [132]. The authors developed a mobile platform equipped with an OSS of
10 commercial MOX sensors with the goal of tracking a specific gas plume of
either ethanol or butanol (Figure 3.5(a)). Plume tracking was carried out by
following concentration gradients measured with two spatially separated OSS
placed at either side of the robot and the gas discrimination algorithm uses
a spiking neural network [133] as a classification method. The experimental
validation carried out by the authors had several limitations that are worth
mentioning. First, the exploration area was rather small compared to the size
of the robotic platform and more important, gas discrimination and plume
tracking were never carried out simultaneously in the same experiment and
therefore, the claim of a platform able to track a specific gas plumes was never
demonstrated.

A thorough research on mobile robots for gas discrimination was presented
by Trincavelli and co-authors in different publications [134, 11, 135, 89]. Among
several contributions, Trincavelli evaluated the possibility of performing gas
discrimination using different feature extraction techniques such as ad-hoc meth-
ods, fast Fourier and wavelet transforms, applied over the transient (rise/decay)
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edges of the sensor responses. In addition, different classification algorithms
were evaluated. In Trincavelli’s work, different arrays of MOX sensors were
mounted on ground robotic platforms and the corresponding evaluation ex-
periments were performed in a wide range of experimental scenarios such as a
robot arena, different indoor locations (Figure 3.5(b)) and an outdoor court-
yard (Figure 3.5(c)), with the goal of discriminating two different gaseous com-
pounds. The authors observed that, when using the rising edges to perform gas
discrimination, the robot’s movement and the experimental location are factors
that influence the performance of the gas discrimination algorithms.

In a subsequent work, Trincavelli and co-authors proposed the use of en-
semble classification methods [107] to address the dependency of the discrim-
ination performance on the experimental location [136]. The proposed algo-
rithm followed a two-step process where the experimental location is identified
first and in a second stage, gas discrimination is performed. This is, as con-
cluded by the authors, a sub-optimal solution since it imposes the assumption
that the robot will be deployed in an already known environment. As an alter-
native solution, the authors proposed to use only the limited set of features that
were found useful for classification across different environments [109].

(a) (b) (c)

Figure 3.5: (a) A toy-like mobile robot aimed at the identification and tracking of specific
gas plumes [132]. (b), (c) Examples of experimental scenarios used by Trincavelli and
co-authors to validate their gas discrimination algorithms [98].

3.3 A Gas Discrimination Algorithm for
Uncontrolled Environments

After presenting the different components of an e-nose and reviewing related
work, in this section we present a gas discrimination algorithm specifically tai-
lored for OSS. We originally introduced the algorithm in [100]. Compared to
the gas discrimination approaches discussed in the previous section, we do not
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use a conventional classification algorithm to compute the class posteriors. In-
stead, the classification process is modelled according to the the particular char-
acteristics of datasets collected with OSS.

To illustrate the basic principles of the proposed algorithm, refer to fig-
ures 3.6(a) and 3.6(b) were two typical OSS datasets are depicted. Both fig-
ures represent the feature space plot of a set of measurements collected with a
mobile robot equipped with a 3-sensor MOX array. Contrary to the work of
Trincavelli and co-authors [109], we do not extract features only at the rising
edges of the sensor responses. Instead, the features in the dataset correspond to
the recorded instantaneous response of the sensor array. Data collection was
performed indoors (Figure 3.6(a)) and outdoors (Figure 3.6(b)), where two
sources, namely ethanol and propanol in Figure 3.6(a) and ethanol and ace-
tone in 3.6(b), were placed in separate experiments, one gas source at a time.
Brighter color shades are assigned to higher concentration measurements, while
low concentrations are plotted in gray tones.

Two key aspects can be noticed in the figures. First, there is a clear cor-
relation between class separability and gas concentration. It can be seen that
discrimination at high concentration regions is relatively trivial due to the high
separability among the two classes. On the other hand, at lower concentrations,
the discrimination problem becomes hard due to the overlapping between the
classes.

Second, the datasets are unbalanced with respect to the gas concentration.
It can be noticed that high concentration measurement are sparse while most
of the data lies in the low to mid concentration regions (see the histogram plots
at the top right corners on the figures). A density based classification algo-
rithm would tend to assign higher class posterior probabilities to measurement
points that lie on densely populated regions, and low posterior probabilities for
sparsely represented concentrations. Thus, in order to consider the particular
characteristics of the datasets, it is required to incorporate gas concentration
information into the algorithm.

From the above observations, we propose a gas discrimination approach for
OSS that does not consider the data density to assign class posteriors. Instead, it
makes predictions with higher confidence in regions of larger class separability
(e.g. at areas of higher concentration), while for areas where the classes overlap,
it makes predictions with lower confidence (e.g. areas of low concentration). In
addition, by considering class overlap, the posterior of a third implicit class,
which denotes the absence of gaseous compounds (i.e. clean air), is learned.

The presented approach assumes that gas sensing is performed only with
an array of non calibrated MOX sensors with partially overlapping selectivity
and no dedicated sensors for gas quantification (e.g. a PID) are used. While
the algorithm is framed as a two class discrimination problem, it can be ex-
tended to multi compound applications. The stages of the proposed algorithm
are described in the following subsections.



3.3. A GAS DISCRIMINATION ALGORITHM FOR UNCONTROLLED
ENVIRONMENTS 55

(a)

(b)

Figure 3.6: Feature space plots for a two class gas discrimination problem. Each data
point is an instantaneous measurement acquired with a 3 sensor array. The color shades
denote the normalized response level. (a) Robot arena. Green: ethanol. Red: propanol.
(b) Outdoor courtyard. Green: ethanol. Red: Acetone.



56 CHAPTER 3. GAS DISCRIMINATION WITH MOBILE ROBOTS

3.3.1 Signal pre-processing

In the pre-processing stage, differential baseline manipulation is carried out
over the raw ADC signals acquired at the load resistor in the measurement cir-
cuit (see Figure 3.3(b)). Differential baseline manipulation aims to minimize the
effects of temperature, humidity and short term sensor drift [9] by subtracting
the baseline response δ0 from the raw readings vraw as follows:

r = vraw − δ0, (3.1)

In the previous equation, r is an n × D response matrix in which D is the
number of sensors in the array and n is the number of instantaneous sensor
measurements. The baseline response δ0 is a 1×D vector that can be obtained
by averaging the individual sensor responses, measured as the voltage drop in
the load resistor, when the array is exposed to clean air for a given period of
time.

3.3.2 Feature Extraction

As shown in Figure 3.2(b), the response pattern in an OSS is given by a set
of intermittent transients with no steady state profiles. As proposed by Trin-
cavelli [134], an alternative for the feature extraction process is to segment the
sensor responses and extract features only at the rising/decaying edges. Then,
a classifier is trained to discriminate between the target compounds. Having in
mind that one of the goals of the proposed approach is to learn a class posterior
that denotes the absence of gas (i.e. clean air), gas discrimination should not be
carried out only at the transient edges but instead, gas discrimination should
be performed for each of the n measurements in the response pattern time se-
ries. Therefore, we consider that each measurement in the response pattern is
described by a set of D features given by the instantaneous response of of the
D sensors in the array.

3.3.3 Feature Selection

As a feature selection stage, we extract a subset of d̂ sensors from the array
that improves the gas discrimination success rate. However, feature selection is
computationally expensive since, in order to find d̂ by e.g. K-fold cross valida-
tion, its required to train and test

∑D
d′=1 K× (

D
d′
)

classifiers with d ′ subsets of
sensors.

By using a class separability metric, it is possible to avoid training and
testing multiple models in the sensor selection process. Muezzinoglu and co-
authors proposed to use the Mahalabonis distance (MD) as a metric to quan-
tify the separability among classes in gas discrimination problems [137]. The
MD is proportional to the distance between-class centres and inversely propor-
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tional to the individual covariances. For normally distributed data, MD is the
best possible quantification of the class overlap.

In order to use the MD as a separability index, it is required that the distri-
butions under comparison have the same dimensionality, which for the specific
case of feature selection, is not always the case since the subsets d ′ may have
different number of elements. A solution to have a uniform dimensionality over
all possible d ′ is to compute the MD over the first principal components of the
PCA projection of d ′. The number of principal components can be selected
according to the percent variance captured by the PCA projection of d ′. Thus,
the MD is computed over the first three principal components, which capture at
least 90% of the percent variance, and the optimal d̂ is determined as follows:

d̂ = argmax
d′ ⊂ D

√
(μ

(d′)
1 − μ

(d′)
2 )T S

(d′)
12 (μ

(d′)
1 − μ

(d′)
2 ), (3.2)

where μ(d′)
1 and μ

(d′)
2 are the class centres and S

(d′)
12 is the pooled covariance

matrix.

3.3.4 Classification Algorithm

As previously explained, concentration information is correlated with class sep-
arability in gas discrimination problems with OSS. In order to incorporate con-
centration information in the gas discrimination process, we compute a rough,
non calibrated indicator Ic of the concentration level using the instantaneous
measurements acquired with the sensor array. The instantaneous sensor re-
sponses can be used as concentration indicators, since over a certain concentra-
tion range the logarithm of the change in resistance of a MOX sensor is linearly
proportional to the logarithm of the gas concentration [26].

For a given array of D MOX sensors, the non calibrated concentration
indicator Ic can be computed from the response matrix ri as follows:

Ic(ri) = max
r
(j)
i ∈ ri

(
r
(1)
i , r(2)

i , ..., r(D)
i

)
(3.3)

The above equation considers that the response matrix ri is composed of
the conductance readings of the sensor array. The conductance values in ri
increases according to the concentration level.

The estimation of the class posterior p(l|r) is performed by coupling the
pairwise probabilities between the target chemical compounds (Pl1∨l2 and Pl2∨l1 )
and the pairwise probabilities between each of the compounds and the rejection
class la (Pl1∨la and Pl2∨la ). The probabilities Pl1∨l2 and Pl2∨l1 are computed
with a binary classifier that discriminates only between the compounds l1 and
l2 and hence, Pl1∨l2 = 1 − Pl2∨l1 . The proposed algorithm does not impose a
specific requirement on the classification method to compute Pl1∨l2 and Pl2∨l1

and thus, the choosing of the algorithm is implementation free.
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The vector of concentration estimations Ic is integrated in the classification
process in the computation of the pairwise posteriors Pl1∨la and Pl2∨la . To
illustrate the process for determining Plk∨la (where k is the gas identity), a plot
of Ic versus Pl2∨l1 is shown in Figure 3.7. It can be noticed that at low concen-
trations the value of Pl2∨l1 (computed by the binary classifier and denoted by
the blue markers) strongly fluctuates. This in an indication of the high uncer-
tainty at low concentration regions in the feature space (e.g. Figures 3.6(a) and
3.6(b)) where class overlapping occurs. It is then desirable to model Plk∨la in
such a way that the confidence in the predictions gradually increases as a func-
tion of the concentration estimator Ic. Notice in Figure 3.7 that Pl2∨la (red
line), which discriminates between the substance 2 and air gradually increases
as the certainty in Pl2∨l1 stabilizes. The pairwise class probabilities Plk∨la can
be then modelled as an exponential function with Ic as the input variable as
follows:

Plk∨la(Ic) = 1 − e−βkIc

∣∣∣
k=1,2

, (3.4)

where the functional parameters βk, determine the rate of change in the
class probability predictions. The functional parameters βk can be individually
learned from the data by dividing the training dataset according to their labels
lk and using the pairwise probabilities between the compounds (e.g. Pl2∨l1 ) as
target variables.

Figure 3.7: Pairwise probability plots. The blue markers denote Pl2∨l1 and the red and
green lines are the pairwise probabilities Pl2∨la and 1 − Pl2∨la respectively.



3.3. A GAS DISCRIMINATION ALGORITHM FOR UNCONTROLLED
ENVIRONMENTS 59

The final computation of the class posteriors p(l|r) is obtained by coupling
the binary class probabilities. In the implementation presented in this work, we
used the algorithm proposed by Hastie and Wu in [138, 139], which frames
the estimation of the posterior probability as the minimization of the Kullback-
Leibler (KL) distance between the pairwise estimates and the true distributions.
For a two class discrimination problem, p(l|r) is computed as follows:

p(l1|r) = 1 −
2 · Pl1∨la · Pl1∨l2 − 2 · Pl1∨la + 2

Pl1∨la · Pl1∨l2 − Pl2∨la · (Pl1∨la + Pl1∨l2 − 1) + 2
(3.5a)

p(l2|r) =
2 · Pl2∨la · Pl1∨l2 − 2

Pl2∨la − Pl1∨la · (Pl2∨la − Pl1∨l2) − Pl2∨la · Pl1∨l2 + 2
+ 1 (3.5b)

p(la|r) = 1 −
2 · Pl1∨la + 2 · Pl2∨la − 2 · Pl1∨la · Pl2∨la

Pl2∨la + Pl1∨l2 · (Pl1∨la − Pl2∨la) − Pl1∨la · Pl2∨la + 2
(3.5c)

3.3.5 Experimental validation

In order to validate the proposed algorithm, we acquired data in two different
scenarios namely, the robot arena previously introduced in Section 2.4 and an
outdoor courtyard. The experimental conditions allow to evaluate the proposed
algorithm under different environmental and wind flow regimes. The robotic
platforms and the sensing payloads used in these experiments were introduced
in Section 2.4.

In the robot arena, ethanol and propanol were used as target compounds,
data collection was performed with the P3-DX mobile robot equipped with an
array of six commercial MOX sensors in an open sampling configuration. A
total of six single-source experimental trials were conducted in this scenario,
with 3 repetitions for each gaseous compound. As described in Section 2.4, the
compounds were released using plastic tubes placed on the ground.

A second set of experiments were carried out outdoors in a 9 m × 7 m

outdoor courtyard surrounded by nearby buildings as shown in Figure 3.8. In
this scenario, acetone and propanol were released from plastic containers using
a bubbler that facilitates evaporation and a set of fans were used to spread the
gas patches away.

A total of two experiments, one for each compound were carried out in
this scenario. At each trial, the ATRV-JR robot (introduced in Section 2.4) was
remotely controlled to follow a random exploration trajectory where the robot
stopped at way-points for 30 s. Data was recorded during the whole experi-
ment with a 4 Hz sampling rate using an array of 4 commercial MOX sen-
sors in an open sampling configuration. Each experimental trial had a duration
of approximately 2400 s. The experimental configurations are detailed in Ap-
pendix A.1.1 and A.1.5.
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Figure 3.8: The outdoor experimental scenario used for validation.

Parameter Selection

As previously presented, the proposed approach computes the class posteriors
by coupling the pairwise probabilities between the target compounds Pl1∨l2

with the pairwise probabilities between the compounds and air Plk∨la (where
k = 1, 2). As presented in the previous section, the pairwise probabilities Plk∨la

can be learned from the data. However, the computation of Pl1∨l2 requires to
train a classifier which depends on meta-parameters. Therefore, the overall per-
formance of the gas discrimination algorithm depends solely on the parameter
selection of the classifier used to compute Pl1∨l2 .

To evaluate the sensitivity of the proposed approach to the selection of pa-
rameters, we used two different classifiers to compute Pl1∨l2 namely, a Mixture
of Gaussians Classifier (MoGC) and K-Nearest Neighbours classifier (K-NNC).
A MoGC is a mixture model [107] that computes the data densities p(x|γ) by
a linear combination of γ Gaussian functions weighted by mixing coefficients.
The data densities are used to compute the pairwise probability Pl1∨l2 using
Bayes theorem. In a MoGC, the only parameter to optimize is the number of
Gaussians γ.

A K-NNC is a non parametric approach that, in order to estimate a predic-
tion on the class label, counts how many members of each class are the set of
the k nearest neighbours [140]. Pairwise probabilities can be given according
to the fraction of neighbouring points that belong to each class. In a K-NNC,
the number of neighbours k is the parameter to optimize.

To evaluate the performance of the gas discrimination algorithm with re-
spect to the selection of the classifier’s parameters, we considered two metrics
namely the classification success rate and the log-likelihood of the predictions.
In addition, we compute the percentage of the measurements that are labelled
as air (i.e. the measurements that fall in the low concentration rejection class).
The success rate and the prediction likelihood are computed using only the data
points that do not fall in the rejection class. Notice that ground truth with re-
spect to the target analyte is available since the experiments were carried out
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with a single chemical compound placed in the validation scenario. The log-
likelihood loss function is then given as follows:

L(ρ|r) =
n∑

i=1

[
l1 log

(
p(l1|ρ, r)

)
+ l2 log

(
p(l2|ρ, r)

)]
(3.6)

where l1 and l2 are the ground truth labels, ρ is the parameter to optimize
(γ, for the MoGC and k for the K-NNC) and p(l1|ρ, r) and p(l2|ρ, r) are the
estimated class posteriors.

Results

Figures 3.9(a) to 3.10(d) show the obtained errorbars for the different perfor-
mance metrics. In both experimental scenarios, the plots were obtained using a
search space γ = [2, 3, .., 12] for the MoGC and k = [5, 10, ..., 60] and 5 fold
cross validation.

Regarding the log-likelihood L (Figures 3.9(a) and 3.9(b)), it can be seen
that the performance of the algorithm improves with larger numbers of neigh-
bours (for K-NNC) or larger numbers of Gaussians (for MoGC). In the case of
the MoGC, a larger number of Gaussians implies a more complex model and
thus, the risk of overfitting the model increases. In the experiments conducted
in the robot arena (Figure, 3.9(b)), it can be noticed that the general tendency
is that the selection of the classifier’s parameters do not change the classifier’s
performance drastically.

With respect to the success rate, a similar behaviour can be observed (Fig-
ures 3.10(a) and 3.10(b)). While higher success rates can be achieved when
increasing the number of Gaussians, the difference between the best and the
worst performance of the trained classifiers is not substantially different (2%
outdoors and around 1% in the robot arena). As previously mentioned, a com-
plex model implies a higher risk of overfitting. This result is also observed for
the K-NNC classifier, in which the success rate of those models trained with a
lower number of neighbours (e.g. models with a higher complexity) does not
deviate substantially from the models trained with a larger number of neigh-
bours (e.g. models with a lower complexity).

With respect to the samples that cannot be classified due to their low con-
centrations (i.e. the rejection class), it can be observed in Figures 3.10(c) and
3.10(d) that, for the experiments performed in the robot arena, most of the data
was rejected (i.e. labelled as air), while in the case of the experiments performed
outdoors, only 10% of the data was labelled as air. This can be explained by
the fact that the used MOX sensors show a high sensitivity to acetone, which
was one of the compounds used in the outdoor experiments. This allowed to
perform classification at lower concentration levels. From Figures 3.10(c) and
3.10(d) it can also be observed that the percentage of the rejected measurements



62 CHAPTER 3. GAS DISCRIMINATION WITH MOBILE ROBOTS

does not vary substantially with respect to the selection of the parameters with
either MoGC or K-NNC.

Figures 3.11(a) and 3.11(d) show segments of the Ic coloured according to
their predicted posteriors. Figures 3.11(a) and 3.11(c) are coloured according
to the class posteriors computed with a standard classifier (i.e. MoGC) without
incorporating concentration information. Figures 3.11(b) and 3.11(d) are com-
puted using the proposed approach. In all figures, the misclassified points are
highlighted with a squared marker.

It can be noticed in the figures that with the proposed approach, predictions
are made with higher confidence for measurements were the concentration esti-
mator Ic is higher while at lower values of Ic, predictions are made with lower
confidence. Notice that with the proposed approach classification errors occur
close to the baseline response level while with a standard classifier, classifica-
tion errors can occur at high concentrations and highly confident predictions
are made at low concentrations, close to the sensors baseline response. In addi-
tion, the proposed approach does not assign high confidences to the erroneous
predictions. Misclassified predictions were made with an average confidence of
49% in the robot arena and 59% in the outdoor courtyard. In comparison, er-
roneous predictions were made with an average confidence of 78% in the robot
arena and 88% in the outdoor courtyard using a standard classifier.

It is also interesting to observe the location of the rejected samples (i.e. clean
air) with respect to Ic. It can be seen in Figures 3.11(b) and 3.11(d) that the
samples labelled as air are located at low concentration regions at the baseline
level. Notice how the confidence for the measurements labelled as air decreases
as the estimated concentration Ic increases.

(a) (b)

Figure 3.9: Likelihood errorbar plots: (a) Robot arena. (b) Outdoor courtyard.
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(a) (b)

(c) (d)

Figure 3.10: Classification performance: (a) Robot arena. (b) Outdoor courtyard. Data
rejection percentage: (c) Robot arena. (d) Outdoor courtyard.
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(a) (b)

(c) (d)

Figure 3.11: Classification results for a set of testing points using a standard classifier
and the proposed approach. The rejected measurements are coloured in shades of blue.
Misclassified measurements are highlighted with magenta square markers. (a) Results
in the robot arena using a standard MoGC. (b) Results using the proposed approach.
For both figures, red shades correspond to propanol and green shades to ethanol. (c)
Results in the outdoor courtyard using a standard MoGC. (d) Results using the proposed
approach. In both figures, green shades are used for ethanol and red shades are used for
acetone.
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3.4 Conclusions

In this chapter, the task of gas discrimination for mobile robotics applications
was explored. Gas discrimination in outdoor environments is not trivial due to
environmental factors that influence the phenomenon of gas dispersion. While
there are several sensing technologies that can be used to identify chemical
compounds on-board mobile robots, we consider e-nose systems due to their
low cost, compact size and their relative fast response times compared, for
example, with portable analytical chemistry devices such as chromatography
devices and ion mobility spectroscopes.

The key contribution of this chapter is a novel gas discrimination algorithm
that considers the particular characteristics of the datasets collected with e-nose
systems in uncontrolled environments using open sampling configurations. As
shown in this chapter, the different concentration levels in these datasets are
not equally represented, this means that most of the collected data have low
concentration values and measurements of high concentration are rather sparse.

In addition, it was observed that class separability increases at higher con-
centrations while at lower levels, class overlapping occurs. Thus, the proposed
algorithm computes the likelihood of the class labels based on the estimation of
the concentration level rather than using a data density approach. In this way,
concentration information is incorporated in the gas discrimination process
so that predictions are made with higher confidence at higher concentrations,
while for lower concentration levels, predictions are made with low confidence.

Another key contribution was the introduction of a method to learn a re-
jection class which is assigned to those samples where discrimination is not
feasible due to a low concentration level. Intuitively, the rejection class corre-
sponds to samples of clean air. While in previous works, a rejection class was
presented in the form of a threshold [99], in the proposed algorithm a pos-
terior probability is associated to the rejected measurements, which is of high
importance for subsequent tasks such as gas distribution mapping, as presented
in [100] and discussed in the next chapter.

The presented algorithm was evaluated with data collected with a mobile
robot in two different scenarios, namely a robot arena and an outdoor court-
yard. High classification success rates were obtained in the validation proce-
dure (in both cases, the success rate was over 97%), and the performance of
the algorithm was found not to depend sensitively on the selection of its meta-
parameters. Higher success rates can be achieved when more complex models
are trained. However, the improvement on the performance is not significant,
compared with simpler classification models.





Chapter 4
Gas Distribution Modelling
With In-Situ Gas Sensors

Gas Distribution Modelling (GDM) is the task of creating truthful represen-
tations of the observed gas distribution from a set of spatially and temporally
distributed measurements of relevant variables, foremost gas concentration but
also wind, pressure and temperature [17].

Maps that show the spatial distribution of gas concentrations are of high in-
terest in different application scenarios. For example, gas distribution maps can
be used to identify areas where high concentrations are present (i.e. hot spots).
The implicit information conveyed by the gas distribution maps can be used
to predict the location of gas leaks. Furthermore, gas distribution maps can be
used as inputs to create long term emission models of a given facility [141].

The existing GDM algorithms can be broadly divided in model based and
model free approaches. Model based algorithms assume that the spatial distri-
bution of gas concentrations can be explained by an underlying mathematical
model regulated by a set of functional parameters. This family of algorithms are
also often used to simulate gas dispersion in large scale areas, up to hundreds
of Kilometres [54].

On the other hand, model free algorithms, do not make strong assumptions
regarding the underlying functional model that determines the distribution of
gases, but rather treat sensor measurements as random variables and derive sta-
tistical representations of the observed gas dispersion. A key advantage of these
algorithms is that their functional parameters can be learned from the acquired
measurements using e.g. cross validation techniques. Due to the computation
demands of cross validation, the process of parameter selection is commonly
carried out offline. A common assumption made by model free algorithms was
that only one chemical compound is present in the environment and thus the
presence of multiple chemical compounds was not modelled in the computed
gas distribution maps. While not being restricted by the size of the target area,
model free algorithms have been mostly used in small scale applications, for
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example to generate distribution maps in indoor and outdoor locations of a
few square metres.

GDM can be addressed by using either point measurements, acquired with
in-situ sensors, or integral concentration measurements, acquired with remote
sensors. As explained in Chapter 2, point measurements report the concentra-
tion level within a small area around the sensor’s surface, typically of a few
square millimetres. Integral measurements, on the other hand, report spatially
unresolved concentration measurements along an optical beam that can reach
up to hundreds of metres [31]. Due to the drastically different nature of remote
and in-situ sensing, the approaches developed to address GDM with either sens-
ing mechanisms differ substantially.

In this chapter, we focus on the task of creating gas distribution maps with
MRO systems equipped with in-situ sensors. We present in Section 4.1 and 4.2,
the state of the art and related work. For its relevance to this dissertation, we
present in Section 4.3 the Kernel DM+V algorithm [17], a model free approach
for GDM. Then, we present two contributions of this dissertation related to
GDM. First, in Section 4.4, we present an algorithm, alternative to cross vali-
dation, that can be used to perform parameter selection for GDM in an online
fashion, as measurements are being acquired. This algorithm was originally in-
troduced in [142]. Then, in Section 4.5, the Multi Compound (MC) Kernel
DM+V algorithm is presented. MC Kernel DM+V removes the assumption of
a single chemical compound and thus, individual distribution maps, one for
each identified compound, can be produced. MC Kernel DM+V is the main
contribution of [143] and [144]. Section 4.6 concludes this chapter with a final
discussion and directions for future work in the context of GDM.

4.1 Model Based GDM Approaches

Gas distribution models can be created by assuming simple underlying forms
for the gas dispersion phenomenon. The use of Gaussian plume models is per-
haps the oldest model based approach for GDM. This family of algorithms
assumes that gas dispersion can be explained by Gaussian shaped plume pat-
terns. Gaussian models have been largely used to solve practical applications
such as gas source localization in small scales [80] and large scale release rate
prediction of airborne chemicals [19]. However, one of the key disadvantages
of this model is that it tends to over simplify the gas dispersion phenomenon,
since it does not consider conditions such as terrain distribution and the non
uniform wind flow regimes that affect the shape of the gas plume.

More complex approaches can incorporate different meteorological and
terrain conditions in their computations. For example, gas dispersion can be
modelled as a large number of puffs released in a rapid succession [145] or as
point-like particles that represent traces of a given gaseous compound on their
path through the atmosphere [146]. While these algorithms can model sophisti-
cated plume shapes, they rely on a large number of parameters such as diffusion
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coefficients, that have to be approximated according to the environmental con-
ditions [147].

Computational Fluid Dynamics (CFD) principles can be incorporated in
the computation of gas distribution maps. The fundamental basis of CFD mod-
els are the Navier-Stokes equations, which describe the motion of fluids. CFD
models allow to perform a full three-dimensional analysis where it is possible
to infer the wind velocity, ambient temperature distribution and concentration
fields [148]. However, tractability becomes an issue since precise knowledge
about the boundary conditions is required, which are commonly not known.
Simplifications are possible (e.g. unidirectional wind fields) but again lead to
unrealistic models and thus, inaccurate predictions.

4.2 Model Free GDM Approaches

The earliest example of model free GDM is the work developed by Ishida et
al. [149]. The authors generated a discrete representation of the gas distribu-
tion where the concentration at each measurement point was modelled by the
average of the sensor’s response measured during five minutes. Hayes and co-
workers [73] proposed an algorithm in which two dimensional histograms were
used to represent the spatial distribution of water vapour. The bins in the his-
tograms count the number of odour hits registered at a given location in the
exploration path. An odour hit is counted if the sensor response exceeded a
threshold value.

Lilienthal and Duckett [150] introduced the Kernel DM gas distribution
modelling algorithm, which performs spatial integration of the sensor mea-
surements with a radially symmetric 2-D Gaussian function. The gas distribu-
tion model generated by this algorithm is represented in the form of a grid
map, in which a mean concentration value is estimated for each cell. More re-
cently, Lilienthal and co-authors presented in [151] a novel GDM algorithm.
Rather than modelling the spatial distribution of average gas concentrations,
it models the spatial distribution of detection events of a given target chemi-
cal compound. The algorithm is based on the Bayesian Inference framework
and models the likelihood of detection events at a given query location. The
advantage of this method is that readings from sensors with different sensing
principles can be integrated in the computation of the distribution maps.

A shortcoming of the methods discussed above is that no estimation is given
about the fluctuations of the gas concentration. As previously presented in
Chapter 2, the estimation of the gas fluctuations, presented in the form of a
variance map, can convey useful information. It has been widely demonstrated
that areas of high fluctuations are good indicators that can be used for local-
izing emitting gas sources in environments dominated by turbulence under a
weak advective wind flow [16]. The spatial correlation between the gas source
and areas of high concentration variability has been pointed out in different
works. For example in [152] measurements on turbulent underwater plumes
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showed that the magnitude of the concentration fluctuations exhibit a steeper
gradient along the downstream direction than the average concentration.

The estimation of the predictive variance provides several advantages for
gas distribution modelling, for example, it allows to evaluate the model quality
in terms of the data likelihood [153] . In addition, the predictive variance can be
used in sensor planning algorithms to suggest new measurement locations [14].

There are several examples of algorithms that provide an estimation of
gas fluctuations. Arguably, one of the most commonly used model free algo-
rithms in MRO is the Kernel DM+V algorithm, introduced by Lilienthal and
co-authors [17]. Kernel DM+V generates mean and variance maps by spatially
extrapolating a set of localized concentration measurements using a Gaussian
kernel. Due to its relevance in this dissertation, Kernel DM+V is described in
detail later in Section 4.3. Stachniss and co-authors [55] presented an approach
based on Gaussian Process Mixture (GPM) models. The proposed method al-
lows to represent the rather smooth “background signal” and the areas of high
concentration by using different components of the GPM. The components of
the mixture model and a gating function, that decides to which component a
data point belongs, are learned using Expectation Maximization (EM). Blanco
and co-authors presented in [59] a Bayesian approach to generate mean and
variance gas distribution models in 2D environments. The authors used a sparse
implementation of a Kalman filter that allowed to update the models and make
predictions on-line. This algorithm was validated with a dataset collected with
a gas sensitive mobile robot inside a sealed room.

The algorithms discussed above implicitly assume that the gas structures are
time invariant and therefore, the mean and variance maps are structures that
remain constant over time. Recently proposed solutions [60, 59] also consider
the time stamps of the acquired concentration measurement in such a way that
recent measurements are more significant when computing the gas distribution
models.

Another simplifying assumption made by state of the art GDM algorithms
is that only one gas compound is present in the environment. In realistic sce-
narios, where MRO systems are expected to operate, this assumption rarely
holds and therefore, the presence of multiple chemicals has to be modelled in
the gas distribution maps. To the author’s best knowledge, the work presented
in [154] is, besides the contributions we presented in [143, 144], the only model
free algorithm for multi compound GDM. In [154], the authors used a mobile
robot equipped with an e-nose to collect data indoors and outdoors where two
different chemical substances where placed, either separated by a physical bar-
rier or separately in independent experimental trials. The authors successfully
generated non calibrated mean distribution maps for each of the substances
using the algorithm from [150] and a classifier to decide to which map the
measurement exclusively contributes. However, gas fluctuations were not mod-
elled. Moreover, in [154], a significant amount of measurements, and thus in-
formation, was discarded using a threshold, which rejected low concentration
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measurements. However, low concentration measurements can convey useful
information for GDM since they can be used to model the absence of gas in the
environment.

4.3 The Kernel DM+V Algorithm

Kernel DM+V is based on the Nadaraya-Watson estimator [155], which is used
to compute, in a sequential way, an average gas concentration map (μ) and a
predictive variance map (ν). Kernel DM+V discretizes the exploration area in a
grid of cells and concentration measurements are spatially extrapolated using a
Radial Basis Function (RBF) Kernel N. In the example shown in Figure 4.1(a),
the squared marker denotes the location of a single measurement cx while the
crosses represent the cell centres in the map. At the location of the measure-
ment cx, an RBF kernel N is placed. The kernel determines the influence of the
measurement in the computations of the predictions at neighbouring cells. For
illustration purposes, N is normalized between 0 and 1. It can be noticed in the
example that, due to its proximity to cell k1, cx has a higher contribution in the
computations for for cell k1 than e.g. for cell k2.

(a) (b)

Figure 4.1: (a) Spatial extrapolation of measurements using an RBF kernel. (b) Wind in-
formation integrated in the spatial extrapolation process with the use of a bi-variate RBF
kernel [88]. In both Figures, the squared markers denotes the location of an acquired
measurement while the crosses represent the cell centres.
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Considering a set of n localized concentration measurements, the computa-
tion of the average concentrations for each cell k in the mean distribution map
μ are given as follows:

Ω(k) =

n∑
i=1

N(|xi − x(k)|,σ) (4.1a)

C(k) =

n∑
i=1

N(|xi − x(k)|,σ) · ci (4.1b)

α(k) = 1 − e
−(Ω(k))2

(σ·√2π)−2 (4.1c)

μ(k) = α(k) · C
(k)

Ω(k)
+ {1 − α(k)} · c0 (4.1d)

Equations 4.1a and 4.1b are intermediate computations and correspond
to the weight map and the weighted concentration map. N is the RBF kernel
that models the importance of the measurements acquired at xi to the cell cen-
tre k, as previously shown in Figure 4.1(a). The parameter σ (i.e. the Kernel
Bandwidth) controls the smoothing level of N and thus a proper selection of σ
determines the predictive capabilities of the model.

In order to assign a measurement of confidence in the predictions, Kernel
DM+V introduces the concept of a confidence map, computed using Equa-
tion 4.1c. The confidence map α(k) provides an estimate of the confidence in
the predictions at a given cell k. When α(k) is close to 1, the estimations were
computed using a large number of measurements recorded close to the center of
cell k, while a value close to 0 means that only a very few or no measurements
were available to compute the posterior estimation at cell k.

According to Equation 4.1d, the predicted mean concentrations at each cell
in the map (μ(k)) are computed by weighting between the extrapolated mea-
surements and a prior assumption using the value of the confidence map at the
corresponding cell. This means that, when α � 0, the output of the model will
be close to the prior assumption.

The equations for the computation of the variance maps ν are given below:

V(k) =

n∑
i=1

N(|xi − x(k)|),σ) · (ci − μ(k)(xi))
2 (4.2a)

ν(k) = α(k) · V
(k)

Ω(k)
+ {1 − α(k)} · v0 (4.2b)
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Similar to the computation of the mean map μ, an intermediate computa-
tion is performed to extrapolate the squared prediction errors between each of
the measurements (acquired at locations xi,...,n) and the predictions made by
the mean map μ(xi,...,n) as shown in Equation 4.2a. The confidence map α is
then used to weight between the extrapolated errors and a prior assumption on
the variance distribution.

The intuitive implementation of Kernel DM+V allows to extend the original
algorithm to different scenarios. For example, by using a multi variate kernel
function N, three dimensional gas distribution maps can be generated [57]. In
addition, wind information can be integrated in the computation of the distri-
bution models by using a bi-variate kernel [88], which can be reshaped accord-
ing to the wind vector as shown in Figure 4.1(b).

While the computation of the mean map μ can be framed as an iterative
process, the variance map ν cannot be updated iteratively, since it requires the
latest update of the mean map μ in order to compute the square prediction er-
rors for each acquired measurement measurement and hence, the computation
of ν has to be carried out from scratch each time a new measurement arrives.

4.4 Towards Online Parameter Selection for Gas
Distribution Mapping

The performance of a given model free GDM algorithm is determined by a
proper selection of its meta parameters. Parameter selection is commonly car-
ried out by minimizing a loss function using, for example K-fold Cross Valida-
tion (CV). The computational cost of CV is high due to the need for evaluating
several gas distribution models, trained with different data folds. Therefore,
parameter selection has to be carried out offline.

For critical applications, where parameter selection cannot be performed
offline, it is desirable to have a learning algorithm that allows to select opti-
mal parameters online when data is being collected. In [142] we presented an
alternative method to perform parameter selection for GDM.

The key idea behind the proposed algorithm is the use of Virtual Leave
One Out Cross Validation (VLOOCV), instead of the more traditional CV. In
VLOOCV, it is not required to divide the dataset into multiple training/testing
folds. Instead, a single model is trained and evaluated using the full dataset
and the loss score is adjusted using a set of leverage factors. This opens the
possibility of performing bandwidth selection, while measurements are being
collected.

4.4.1 Parameter Selection for Kernel DM+V

A common method to select an optimal value for σ in GDM with Kernel DM+V
is to perform CV over a search space σ = [σ1, ..,σm], with m being the number
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of bandwidths to evaluate. In CV, the training set is randomly partitioned into
K folds, where K − 1 partitions are used to train a model and the remaining
fold is used for validation purposes. This process requires to train and test
models. The optimal kernel bandwidth can be found in the search space by
minimizing a loss function E that measures the predictive capabilities of the
model. While several methods have been proposed in the past to avoid CV by
introducing penalizations for complex models (i.e. Akaike, BIC) [156], these
methods are not suitable for Kernel DM+V, since they base the selection only
on the mean of the estimation, not considering the variance (i.e. the uncertainty
in the prediction).

In the specific case of probabilistic predictive models, such as Kernel DM+V,
the loss function E should evaluate not only with respect to its mean concen-
tration predictive capabilities but also, the produced variance model has to be
evaluated. The Negative Log Predictive Density (NLPD) is a loss function that
considers the likelihood of unseen measurements drawn by the trained model
and penalizes overconfident predictions. In this way, the NLPD favours models
that tend to be under confident rather than over confident [157]. Under the
assumption of a Gaussian posterior p(ci|xi), where ci is the gas concentration
measurement at location xi, the NLPD of a set of D unseen measurements {c, x}
is given by:

E =
1

2D

D∑
i=1

(
log

(
ν(xi)

)
+

(
ci − μ(xi)

)2

ν(xi)

)
+

1
2

log(2π) (4.3)

The computation of a gas distribution model using Kernel DM+V is dom-
inated by the computation of ν(x) since it has to be computed from scratch
when a new measurement arrives. An update of the maps together with selec-
tion of an optimal kernel bandwidth thus requires performing K×m×N×Ng

operations, with N being the number of measurements and Ng being the num-
ber of cells in the map.

4.4.2 Virtual Leave One Out CV for Bandwidth Selection

Monari and co-authors proposed in [158] the Virtual Leave One Out Cross
Validation (VLOOCV) method. VLOOCV relies on the assumption that the
withdrawal of a single example from the training set will yield a model that
is not substantially different from the model that is obtained by training on
the full dataset. The process to justify this assumption is explained in [159].
VLOOCV computes a leverage factor hj for each of the training data points,
which measures the influence of the training example j in the computation of
the model. If a given data point has a large influence on the model computation,
hj will be close to 1. On the other hand, when hj is close to 0, the data point
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has little effect on the model regardless of its presence or absence in the training
set. VLOOCV approximates the loss function as follows:

E
(−j)
j � Ej

1 − hj

, (4.4)

where E
(−j)
j is the loss when data sample j is left out of the training set and Ej

is the loss when data sample j is included in the computation of the training
error. In the specific case of an uncertain regression model, Ej can be given by
the NLPD computed for the data sample j.

VLOOCV can be used to reduce the computations to select an optimal ker-
nel bandwidth σo. Instead of generating K models, a single model is trained
using the whole dataset for each possible σ in the search space σ, and the lever-
age factors are computed from:

Hσi
= Zσi

(
ZT

σiZσi

)−1
Zσi

∣∣∣∣∣
σi∈σ

(4.5)

where Z is an n×m matrix composed by the numerical gradients of the NLDP
values w.r.t. the m elements in the search space σ. Thus, the leverage factor
h
j
σi for a training point j in the model computed using σi is the jth element in

the diagonal of matrix Hσi. In this way, the NLPD computation for each data
sample is given as follows:

E
j
σi =

1

2(1 − h
j
σi)

(
log

(
ν(xj)

)
+

cj − μ(xj)

ν(xj)

)
+

1
2

log(2π) (4.6)

In this way, the number of operations required to update the distribution
maps, and select an optimal kernel bandwidth using VLOOCV is m×N×Ng.
Thus, the computational complexity of VLOOCV is still linear in the number
of measurements, as in the case of CV, but at a much smaller factor.

4.4.3 Evaluation

The proposed approach was evaluated with data collected in two different sce-
narios, namely the robot arena, described in Appendix A.1.1 and the outdoor
courtyard, presented in Appendix A.1.5. In both scenarios, ethanol sources
were used as target analytes and gas concentrations were measured using a
PID (MiniRAE Lite) mounted on the robot. Inside the experimental areas, the
robotic platforms followed exploration trajectories and data was recorded at
4 Hz during the whole experiment.

Figures 4.2(a) and 4.2(b) show the computed NLPD score vs different ker-
nel sizes for the data collected in the robot arena and the outdoor courtyard.
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The red curve in both figures was generated using 5 fold CV in the compu-
tations of the NLPD. In order to evaluate the effect of the leverage factors,
bandwidth selection was performed by using the full dataset to train the model
and to compute the NLPD score. This is shown in the figures as the blue curve.
The green curve in the figures correspond to the NLPD scores using VLOOCV,
including the leverage factors in the computations. Notice that the green curve
is hardly visible in the figures since it is almost exactly under the blue curve.
This is due to the fact that NLPD scores computed with VLOOCV only and
the NLPD scores that include the correction factors are not substantially differ-
ent. In addition, it can be noticed that there exists a good agreement between
the minima obtained with CV, VLOOCV, and VLOOCV without leverage cor-
rections (0.13 m, 0.12 m and 0.12 m respectively for the indoor experiments
and 0.13 m, 0.10 m and 0.10 m for the outdoor experiments).

(a) (b)

Figure 4.2: NLPD score computed vs kernel sizes. The NLPD was computed using dif-
ferent bandwidth selection methods. (a) Robot Arena. (b) Outdoor Courtyard

In Figure 4.3(a) a plot of the computation time with respect to the number
of measurements is shown. The computation times were calculated for CV (red
curve), VLOOCV (green curve) and VLOOCV with no leverage scores (blue
curve). In the tree cases, the computational complexity is dominated by the
update of the variance map and, to a lesser degree, by the computation of the
NLPD scores. The generation of different models increases the execution time
for CV while, for VLOOCV, the computation of the leverage score increases
the computation time linearly, with respect to the number of measurements.

The VLOOCV algorithm is computationally less expensive, while preserv-
ing the approximate shape of the objective function. It is worth noting that
correcting the negative likelihood with leverage factors does hardly change the
VLOOCV result (the green and blue curves in Figure 4.2(a) and 4.2(b) are al-
most coincident).
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The above results suggest that the computation of the leverage factors is
not needed for gas distribution mapping data obtained with mobile robots. An
explanation is that the models trained with the full dataset and with a fraction
of it, as in CV, are very similar and therefore, the leverage scores are close to
zero. This can be attributed to the particular structure of the gas sensing data
which is highly redundant due to the relatively slow process of gas dispersion,
high sampling frequency (4 Hz) and the slow movement of the robot.

VLOOCV relies on the assumption that the withdrawal of a single training
data point does not significantly alter the computation of the model. In order
to verify this assumption we present in Figure 4.3(b) a comparison between the
model computed with the full dataset and a model computed with a fraction
of it (i.e K-1 folds). The metric used to compare the models is the overlapping
coefficient ζ. The overlapping coefficient is a normalized value that measures
the overlap between two normal distributions [160]. When ζ � 1 both distri-
butions are identical, while a value of ζ � 0 means that the distributions do
not overlap.

(a) (b)

Figure 4.3: (a) Computation time vs number of measurements for different bandwidth
selection approaches. (d) Overlapping coefficient of the model calculated on the full
dataset and the models calculated on fractions (folds) of the dataset. When the number
of folds increases (towards leave one out CV), the similarity between the model obtained
with the full dataset and with a fraction of the dataset (computed on K-1 folds)increases
as well.

In Figure 4.3(b), the solid line represents the median of the overlapping co-
efficients while the dashed line represents the first quartile of the data. This
means that at least 75% of the data lies above the dashed line. It can be ob-
served that, when the number of folds increases (towards leave one out CV), the
similarity between the model obtained with the full dataset and with a fraction
of the dataset (computed on K-1 folds) increases as well. This confirms the core



78
CHAPTER 4. GAS DISTRIBUTION MODELLING WITH IN-SITU GAS

SENSORS

assumption of VLOOCV and demonstrates the high redundancy of the dataset
structure.

4.5 Gas Distribution Mapping of Multiple
Heterogeneous Chemical Compounds

A key desirable feature for a GDM algorithm is the possibility of mapping
multiple chemical compounds present at a given area of interest. In order to
generate multi compound gas distribution maps, it is necessary to integrate
the information regarding the identity of the measured concentration in the
computation of the distribution map. In [143, 144], we presented the Multi
Compound (MC) Kernel DM+V algorithm. MC Kernel DM+V It is built upon
the algorithm developed by Lilienthal et al. in [17] and allows for distribution
mapping of multiple chemical compounds by integrating the uncertainty on the
gas identification process of each localized concentration measurement.

A block diagram of the MC Kernel DM+V is shown in Figure 4.4. MC
Kernel DM+V is a model free GDM algorithm that generates a statistical rep-
resentation of the spatial distribution of multiple chemical compounds. The
only assumptions made are that localized gas concentration measurements are
acquired with a non selective sensor and that the identity of the measurements
is given as a set of posterior probabilities, computed by an external gas discrim-
ination module.

Figure 4.4: Block diagram of the Multi Compound (MC) Kernel DM+V.
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As can be seen in Figure 4.4, gas concentration measurements c are acquired
with a PID, and the gas identity of the measurements is provided as posterior
probabilities p(l|r), computed using the response pattern r acquired with an
array of partially selective sensors. Both c and p(l|r) are associated to a mea-
surement location x. The uncertainty in the computation of the measurement
locations x is not considered in the proposed implementation.

For each identified compound l (l ∈ L), MC Kernel DM+V computes three
maps of the spatial distribution and concentration fluctuation of gas patches
at a given exploration area. The mean and variance maps (μl(x) and νl(x)
respectively) can be seen as a snapshot of the gas distribution in which at each
query location x, predictions of the concentration level and its fluctuations can
be drawn. The classification maps (λl(x)) model the likelihood of detecting
compound l at a location x.

The computation of the maps is carried out in a sequential way from a set of
n measurements. The exploration area is discretised into a grid of cells and the
classification maps λl(x) are computed first, followed by the predictive mean
maps μl(x) and predictive variance maps νl(x). The classification maps λl(x)
are computed by spatially extrapolating the localized posteriors p(l|ri) using
the following equations:

P
(k)
l =

n∑
i=1

N(|xi − x(k)|,σ) · p(l|ri) (4.7a)

λ
(k)
l = α(k) · P

(k)
l

Ω(k)
+ {1 − α(k)} · pl,0 (4.7b)

where N in Equation 4.7a is an RBF Kernel that measures the importance of
the measurements, according to their distance to the cell centres k, as explained
in Section 4.3 and the confidence map α(k) and the weight map Ω(k) are com-
puted according to Equations 4.1a and 4.1b respectively. The final computation
of λ(k)l is given by Equation 4.7b, in which pl,0 is a prior assumption on the
gas identity. When no other information is available, pl,0 can be set to 1

L
.

The predictions of the classification maps μ(k) at each cell can be consid-
ered as true posterior probabilities since, for a set of L chemical compounds,∑L

l=1 λl = 1. This can be demonstrated by combining equations 4.7a and 4.7b
as follows:

L∑
l=1

λ
(k)
1 = α(k) ·

∑n
i=1 N(|xi − x(k)|,σ) · p(l|ri)

Ω(k)
+ {1 − α(k)} · p1,0

+ ... + α(k) ·
∑n

i=1 N(|xi − x(k)|,σ) · p(L|ri)

Ω(k)
+ {1 − α(k)} · pL,0 (4.8)
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Notice that the confidence map α does not depend on the identity of the
compound. Neither does the importance of the measurement computed with
the RBF Kernel N. Thus, Equation 4.8 can be reorganized as follows:

L∑
l=1

λ
(k)
1 =

α(k)

Ω(k)
·
[

n∑
i=1

N(|xi − x(k)|,σ) · (p(1|ri) + ... + p(L|ri
)]

+ (1 − α(k)) · [p1,0 + ... + pL,0
]

(4.9)

Considering that
∑L

l=1 p(l|ri) = 1 and that
∑L

l=1 pl,0 = 1, Equation 4.9
can be then simplified as follows:

L∑
l=1

λ
(k)
1 =

α(k)

Ω(k)
·

n∑
i=1

N(|xi − x(k)|,σ) + 1 − α(k) (4.10a)

L∑
l=1

λ
(k)
1 =

α(k)

Ω(k)
·Ω(k) + 1 − α(k) = 1 (4.10b)

The predictions of the classification maps are subsequently integrated in the
computation of the mean and variance maps by using the following maximum
a posteriori function:

ψ(xi) =

{
1 λ

(k)
l (xi) > λ

(k)
j (xi)

∣∣∣
l,j∈L

0 otherwise
(4.11)

ψ(xi) evaluates the predictions made by the classification maps λl (and not
by the gas discrimination algorithm) at each location xi. This implies that,
instead of considering individual instantaneous compound posteriors, the iden-
tity of neighbouring measurements are as well considered in λl. In this way,
erroneous predictions in the gas identification are filtered out and they do not
contribute to the computation of μl and νl. Equation 4.11 implicitly assumes
that λl is sufficiently stable over time. The function ψli returns an L× 1 vector
in which 1 is assigned to the compound predicted with the highest prior and
zero is assigned otherwise. A mean concentration map μl is then computed for
each of the L target compounds as follows:

C
(k)
l =

n∑
i=1

N(|xi − x(k)|),σ) · ci · ξl ·ψl(xi) (4.12a)

μ
(k)
l = α(k) · C

(k)
l

Ω(k)
+ {1 − α(k)} · cl,0 (4.12b)
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The parameter ξl in Equation 4.12a corresponds to the correction factor
for compound l. This parameter is related to one of the assumptions made by
the algorithm, which is that the concentration measurements are given by a non
specific gas sensor. In the case of a PID, the device is calibrated with a reference
gas (e.g. isobutylene) and the manufacturer provides a table with correction fac-
tors for different compounds. Thus, once the chemical has been identified, the
measurement reported by the device has to be multiplied by the corresponding
correction factor to obtain calibrated concentration measurements. Similarly to
the classification maps, α(k) in Equation 4.12b balances between the weighted
concentration values in Equation 4.12a and a prior assumption on the gas con-
centration cl,0 for each compound l. Using a prior assumption on the variance
vl,0 for each compound, the variance maps can be computed as follows:

V
(k)
l =

n∑
i=1

N(|xi − x(k)|),σ) · (ci · ξl − μ
(k)
l (xi))

2 ·ψl(xi) (4.13a)

ν
(k)
l = α(k) · V

(k)
l

Ω(k)
+ {1 − α(k)} · vl,0 (4.13b)

where Equation 4.13a, computes the weighted square error between the
corrected concentration measurements and the predictions made by the mean
concentration maps.

In Equations 4.12a and 4.13a, the binary output from ψ(xi) is used to com-
pute C

(k)
l and V

(k)
l instead of directly using the predictions of the classification

maps λl(xi). The rationality behind this decision is that the predictions made
by the external classifier, and thus the predictions from λl(xi), do not consider
mixtures between target compounds. This means that the predicted class poste-
riors cannot be considered as mixture percentages. The use of ψ(xi) reflects the
assumption of binary gas patches made by the external classifier. A suggested
extension is to train a regression function to predict the mixture percentages
between the target compounds. Then, the predicted mixture percentage can be
directly used in equations Equations 4.12a and 4.13a.

4.5.1 Parameter Selection for Multi Compound Gas
Distribution Maps

The kernel bandwidth σ is the only functional parameter that determines the
predictive capabilities of MC Kernel DM+V. Compared to algorithms that as-
sume a single chemical compound, the process of learning σ becomes more
challenging due to the lack of ground truth to evaluate the gas distribution
models for each compound. In order to have ground truth data to evaluate the
predicted models, it would be required to acquire measurements with highly
selective sensors to measure the concentration levels for each target compound.
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In the original Kernel DM+V algorithm, σ is learned by dividing the dataset
into training and testing folds and the predictive capabilities of the mean and
variance maps are evaluated using the Negative Log Predictive Density (NLPD)
loss function. However, this approach is not feasible in the multi compound
scenario, since it would require ground truth concentration measurements for
each of the identified compounds. This is certainly not feasible to acquire using
non specific gas sensors. Therefore, alternative methods have to be developed
to learn σ.

In [144], an alternative method was proposed which learns the mapping
parameter σ by evaluating the capability of the classification maps λl to pre-
dict the posterior probabilities p(l|ri) of unseen measurements using the Total
Variation Distance (TVD) [161] as a metric. The TVD quantifies the distance
between two probability distributions, namely the class posteriors drawn by
the classifier and the class predictions made by the classification maps λ. The
selection of TVD as a metric instead of e.g. the more commonly used Kullback-
Leibler (KL) divergence [107] is due to the fact that when the posteriors p(l|r)
are close or equal to zero, the KL divergence is undetermined and thus assumed
to be equal to 0. This means that a considerable amount of measurement points
would have to be ignored.

The proposed algorithm divides the dataset in training and testing folds and,
for each element in the search space σ = [σ1,σ2, ..,σj], the classification maps
λσj,l are computed. Thus, by using the n testing data points, the optimal σ̂ can
be determined as follows:

TVD(σj) =

L∑
l=1

n∑
i=1

|λσj,l(xi) − p(l|ri)| (4.14a)

σ̂ = argmin
σj∈σ

TVD(σj) (4.14b)

4.5.2 Evaluation

The MC Kernel DM+V algorithm was evaluated with data collected in the
robot arena and the outdoor courtyard, both introduced in Section 2.4. The
robots were equipped with different MOX sensor array configurations for gas
discrimination and in both scenarios, true concentration measurements were
acquired with a PID. In order to validate the capabilities of the MC Kernel
DMV algorithm to map multiple chemical compounds, experiments were car-
ried out with two simultaneously emitting sources of different, in addition to
the experiments conducted with single compounds. In the robot arena, ethanol
and propanol were used as target compounds and the emitting sources were
placed at different distances from each other. A total of 3 experiments were
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carried out with the sources separated by 1.5 m, and 3 additional experiments
were conducted with the sources separated by 0.5 m. In the outdoor courtyard,
ethanol and acetone were used as target compounds. A total of three experi-
ments were carried in which 2 trials were performed with a single gas source
(one for each substance), and a third experiment was conducted with the two
gas sources present at the same time, separated by 2.0 m.

In both scenarios, the gas discrimination algorithm proposed in Section 3.3
was used to computed the class posteriors. The key advantage of this algorithm
is that it provides a class posterior for a class rejection that denotes the absence
of chemical compounds. In other words, when used with MC Kernel DM+V it
allows to model the presence of clean air inside the exploration area. The exper-
iment trials in the robot arena and in the outdoor courtyard were carried out
with different sensor sets and with different combinations of target substances.
Therefore, the optimization process for the classifier was run separately for
each scenario.

A Mixture of Gaussians (MoG) classifier was used to compute the pair-
wise probabilities between the target compounds and 5-fold CV was used to
select the number of Gaussians γ̂ from a search space γ = [2, 3, ..., 12]. Sen-
sor selection was performed using the Mahalanobis Distance (MD) approach
explained in Section 3.3. The data collected in the single source experiments
were used to optimize the parameters since for each experiment, the identity
of the gas is known and therefore, ground truth is available to compute the
classifier’s performance. For the robot arena, the classification success rate was
0.98 ± 0.07%, with 3 sensors selected (E2V-5135, E2V-2710 and E2V-5521)
and γ̂ = 5. In the outdoor courtyard, the success rate was 0.96 ± 0.01%, with
a subset of 3 sensors (TGS-2620, TGS-2602 and TGS-2600) and γ̂ = 12.

The obtained gas distribution models can be seen in Figures 4.5(a) to 4.5(c).
Only two trials with different spacing between sources for the robot arena
are shown. The bandwidth σ for each experiment was learned using the pro-
posed TVD approach. For all experiments, the bandwidth search space was
σ = [0.05, 0.1, 0.15, ..., 2.00] and for the experiments presented in Figures
4.5(a) to 4.5(c), the optimal bandwidths σ̂ were 0.15,0.15 and 0.20 respectively.
The classification map is presented in the form of a maximum a posteriori plot.
The maps show higher probabilities of detecting the analytes at locations where
neighbouring data samples were consistently classified with high confidence. In
the case of Figure 4.5(b), it can be noticed in the classification map that the
Propanol likelihood drops close to 50% in the neighbouring locations around
the gas source, while for locations away from it, the likelihood drastically rises
up to 100%. Intuitively, high posteriors would be expected close to the actual
gas source. However, due to the low concentration levels recorded by the robot
nearby the source, the confidence in the predictions dropped.
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(a)

(b)

(c)

Figure 4.5: Generated gas distribution models in two experiments in the robot arena
with ethanol (green) and propanol (Red) gas sources separated by (a) 0.5 m and (b)
1.5 m. (c) Generated models in the outdoor experiment. In all the maps, green shades
correspond to ethanol and red shades correspond to acetone. For both experiments, the
blue shades in the classification maps denote the likelihood of finding clean air at a given
position in the explored area. The dashed lines denote the robot’s path and the actual
source locations are indicated by squared markers.
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The predictive mean concentration maps were generated by combining the
individual mean concentration maps for each substance masked with the clas-
sification maps. While we do not have ground truth to evaluate the accuracy
of the distribution maps, it can be noticed that the computed distribution maps
predict well defined plumes at the neighbouring locations of the actual source
locations.

In a similar way as with the mean distribution maps, combined variance
maps were generated as shown in Figures 4.5(a) to 4.5(c). We can qualitatively
evaluate the produced models by considering the implicit information they con-
tain. It can be noticed that, areas with high variance are located in the vicinity
of the actual gas source locations, which is an expected result since concen-
tration fluctuations are often found to peak significantly near an emitting gas
source [16].

Figure 4.6 shows an additional trial inside the robot arena. Notice that
in the classification map, the probability of detecting propanol (red shades) is
low (less than 50%) at locations near the emitting source. In a similar way,
the mean map predicts concentration values close to 0 ppm near the propanol
source, and also the case of the variance maps, do not predict no noticeable gas
fluctuations.

The resulting maps computed in this trial can be explained by the concen-
trations measured during the experiment. In Figure 4.7, the acquired concen-
tration measurements are shown. The measurements are coloured according to
their computed class posterior (see the color code at the left). Please notice that
low concentrations were measured close to the location of the propanol source
and therefore, the gas discrimination algorithm assigned low posteriors due to
the uncertainty in the classification process.

Figure 4.6: An additional experiment conducted in the robot arena with ethanol (green)
and propanol (Red) gas sources separated by 1.5 m. Notice that the maps do not predict
the presence of propanol near the source.
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Figure 4.7: Acquired concentration measurements during in experimental trial shown in
Figure 4.6. The measurements are coloured according to the computed class posteriors
(green - ethanol, red - propanol, blue - air).

4.6 Conclusions

Gas Distribution Mapping (GDM) aims to generate truthful representations of
the spatial distribution of gas concentrations in a given area of interest. Gas
distribution maps are of high importance in different gas monitoring related
applications, for example for leak localization, detection of hot spots and pre-
diction of release rates.

While a brief review on different GDM approaches is presented in this chap-
ter, the main focus is on an specific subset of algorithms, commonly referred to
as model free GDM algorithms. Model free algorithms do not make strong as-
sumptions regarding the underlying equations that govern the gas dispersion
phenomena, but rather derive statistical representations of the acquired sen-
sor measurements. In this context, two related contributions were presented,
namely an approach to reduce the computation time for parameter selection
and an algorithm to learn gas distribution maps of multiple chemical com-
pounds. While the presented contributions were evaluated with datasets col-
lected with mobile platforms, they are not, in any means limited to mobile
robotics and could therefore be applied to applications were data was collected
with localized sensing nodes.

The predictive capabilities of model free algorithms depends on a set of
meta parameters that are commonly selected using computational expensive
algorithms such as Cross Validation (CV), which needs to train and evaluate
multiple models. In this respect, a parameter selection algorithm that uses Vir-
tual Leave One Out (VLOOCV) was proposed. The advantage of VLOOCV is
that it only requires to train and evaluate a single model and to compute a set of
leverage factors needed. The evaluation performed with datasets acquired in a
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robot arena and in an outdoors courtyard showed that similar parameter selec-
tion can be achieved when compared with CV, but at a reduced computational
time.

For the specific case of gas sensing, it was demonstrated that the compu-
tation of the leverage factors can be obviated due to the particular structure
of the gas sensing data, which is highly redundant due to the relatively slow
process of gas dispersion and high sampling frequency. Thus, the possibility
of performing parameter selection using VLOOCV can be further explored in
related applications such as gas discrimination and gas quantification.

One of the assumptions made by state of the art algorithms is that only
one chemical species is present at a given time. This assumption rarely holds in
realistic scenarios. In addition, it is often required to estimate the distribution
of more than one chemical species at a given location in tasks such as emission
characterization in industrial facilities [162].

The Multi Compound (MC) Kernel DM+V, presented in this chapter, repre-
sents an important step in GDM of multiple chemical compounds. MC Kernel
DM+V generates L gas distribution maps, one for each of the L identified com-
pounds by integrating the posterior probabilities in the estimation of the gas
distribution maps. The assumption made by MC Kernel DM+V is that concen-
tration measurements are acquired with a non selective sensor (such as a PID),
and the compound posteriors are estimated by, e.g. an e-nose. A key feature
introduced by the algorithm is the computation of classification maps. A clas-
sification map is computed by spatially extrapolating the compound posteriors
in order to estimate the likelihood of detecting a given compound at a query
location. In this way, the posteriors of neighbouring locations are considered
when drawing an estimation of the identity of a given measurement.

The gas distribution maps derived with MC Kernel DM+V can be consid-
ered as true concentration estimations since the algorithm allows the introduc-
tion of correction factors that are given by the sensor manufacturer. Consider-
ing the assumption that concentration measurements are acquired with a non
specific sensor, the correction factors are needed in order to adjust the acquired
readings according to its corresponding gas identity.

A key issue, not only in the case of multi compound GDM, but in gas sens-
ing in uncontrolled environments is the lack of ground truth. Therefore, the
evaluation of the multi compound models computed using MC Kernel DM+V
with respect to their predictive capabilities was not possible. However, the ob-
tained results show consistent distribution maps where plume shaped structures
predict high concentration areas around near the measurement points where a
high average concentration was sensed. In addition, it was observed that the
multi compound variance maps provide useful useful information by highlight-
ing areas near the locations of the chemical sources.

The presented implementation of MC Kernel DM+V allows for several ex-
pansions as future work. First, the algorithm can be extended to allow for
multiple kernel bandwidths, one for each identified compound. This however,
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would increase the computational complexity of the parameter selection pro-
cess.

Second, gas mixtures can be introduced in the computation of the distribu-
tion maps. For the specific case of a set-up where concentration measurements
are acquired with a PID, the introduction of gas mixtures would not not require
further changes in the algorithm. This is due to the fact that that the correction
factors for gas mixtures can be computed as a linear combination of the in-
dividual correction factors for each identified compound. In this context, the
key challenge would be to train a regression algorithm that computes the gas
mixture percentages with the corresponding uncertainty estimation.



Chapter 5
Gas Distribution Modelling
With Remote Gas Sensors

One of the main drawbacks of in-situ gas sensing technologies is their lim-
ited spatial coverage. Each reported measurement is a point concentration that
covers only a few square centimetres around the sensor and for some sensing
technologies, such as metal oxide sensors, a direct interaction between the sen-
sor surface and the target compound is required. Thus, gas sensitive robots
equipped with in-situ technologies require to navigate to the target measure-
ment locations in order to acquire measurements. This poses a serious chal-
lenge in areas where mobility is restricted or where navigation is not possible at
all. In addition, battery life becomes a factor to consider for such systems since
the need for physically travelling to each measurement location translates into
a higher energy consumption.

An alternative is to equip Mobile Robotics Olfaction (MRO) systems with
remote sensors that, as explained in Chapter 2, allow to acquire gas concen-
tration measurements without e.g. chemically interacting with the target com-
pounds. Robots equipped with remote sensors bring clear advantages over
in-situ equipped MRO systems. For example, larger areas can be covered in
shorter periods of time and locations that are not physically accessible (e.g.
chimneys, roofs) can be remotely scanned.

However, one of the drawbacks of some remote sensing technologies such
as spectroscopy based devices is that they report spatially unresolved integral
concentration measurements. This means that the sensor itself does not provide
any information regarding the path followed by the emitted beam or the gas
distribution along the optical path. While alternative physical principles allow
to acquire spatially resolved gas measurements, devices built on such principles
are expensive and some of them require extremely bulky arrangements that are
mounted only on-board large vehicles such as buses or trucks [31] and thus
their use is limited to outdoor field inspection.
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In this chapter, we address the task of Gas Distribution Mapping (GDM)
using integral concentration measurements. In literature this task is commonly
referred to as Computed Tomography of Gases (CTG). CTG is inspired by
Computer Assisted Tomography (CAT) where the image of a static object is re-
constructed from a set of attenuation measurements. In CTG however, the phe-
nomenon of interest (i.e. gas dispersion) is highly dynamic. CTG is commonly
carried out using fixed measurement geometries, where emitters, receivers and
reflectors are placed at known positions and they are never changed during the
operation of the measurement setup. The tomographic reconstruction of the
concentration field is then carried out using the acquired concentration mea-
surements and the optical paths as inputs.

We evaluate in this chapter the incorporation of remote sensors in MRO
systems to perform GDM. Thus we introduce the concept of Robot Assisted
Gas Tomography (RAGT) and we evaluate its use with respect to the practical
application of landfill monitoring. Compared to static CTG configurations, in
RAGT the estimation of the sensor optical path plays a critical role and is
heavily determined by the accuracy of the robot’s pose estimation algorithms.

This chapter is structured as follows: In Section 5.1 we introduce basic con-
cepts and related work to gas tomography. Section 5.2, presents the concept of
RAGT and in Section 5.3, RAGT is evaluated in a landfill monitoring related
application. Conclusions and final remarks are then presented in Section 5.4.

5.1 Computed Tomography of Gases

The earliest work related to Computed Tomography of Gases (CTG) can be
traced back to 1978, when Byer and Shepp [18] proposed a theoretical system
to perform tomographic reconstruction of gas patches that could be present
at a given area of interest. The authors proposed to build a fan-beam mea-
surement system that consisted of an actuated tunable laser source placed at
the center of an exploration area and a set of detectors placed at the borders.
When the emitter is directed towards one of the detectors, the incident ray is
reflected, creating a fan beam of angle γ that hits two different detectors placed
at different points in the circumference of the measurement array. When the
laser source is rotated and aimed towards the different detectors in the array,
the whole area surrounded by the detectors can be inspected. The authors pro-
posed a set of equations to compute the number of detectors and the required
transmitted power to cover areas of different sizes but the proposed system
was not physically implemented. However, the main contribution of this pio-
neering article was the concept of a measurement system, analogous to CAT,
that could be used to estimate the distribution of gas concentrations inside an
area of interest.

A practical realisation of a CTG system can be seen in Figure 5.1(a). In
the measurement geometry shown in the figure, a set of sensors are placed at
known positions and are aimed towards the inspection area. The optical paths
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are shown in different shades of grey and along them, integral concentration
measurements can be acquired. Depending on the technology, the sensors can
either emit a single beam, such as in the case of Tunable Diode Laser Absorption
Spectroscopy (TDLAS) sensors, or multiple beams such as Differential Optical
Absorption Spectroscopy (DOAS) sensors. In the case of single beam sensors,
actuators can be used to increase the number of optical paths and to improve
the coverage of the measurement geometry. For technologies such as DOAS or
FTIR, artificial reflectors have to be introduced in the setup. TDLAS sensors on
the other hand, can be pointed e.g. towards the ground or walls to reflect the
emitted rays.

Different approaches have been proposed to perform tomographic recon-
struction. Similarly to GDM with in-situ sensors, CTG can be carried out by
assuming a priori functional forms for the gas distribution pattern. Perhaps the
most widely used model based CTG approach is the Smooth Basis Function
Minimization (SBFM) algorithm proposed by Drescher et al. in [163]. The au-
thors parametrized the concentration field as a summation of a set of Gaussian
functions. The parameters of the Gaussians are then fitted to the acquired in-
tegral concentration measurements using e.g. an optimization based approach.
While the authors successfully obtained tomographic reconstructions inside in-
door locations, one of the main drawbacks of this approach is that a priori
assumptions on the gas distribution model rarely hold in turbulent scenarios.

Alternatively, CTG can be carried out using model free approaches. This
means that no a priori assumption is made regarding the functional form of
the gas distribution pattern. CTG is then the task of estimating the concentra-
tion field given a set of acquired integral concentrations Y. Assuming that the
concentration field is known, each acquired integral concentration value yi is
given by:

yi =

∫
Li

μ(Li)dLi (5.1)

where Li corresponds to the optical path of measurement i. The measure-
ment units of yi are then given in ppm ·m and they correspond to the integral
concentration over the optical path Li.

A common approach to model the concentration field is to discretise the
exploration area into a finite grid of M cells. It can then be assumed that at
each cell k there is an uniform concentration xk (where k = 1...M). Each in-
tegral concentration measurement yi is then given as the summation of the M

concentrations xk multiplied by a basis function ak, that models the segment
of the optical path travelled inside cell k [164]. In this way, a set of N acquired
integral concentration measurements can be then described by the following
linear system of equations:

Y = Ax, (5.2)
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where Y is a vector that contains the N integral measurements, x is an M

column vector that contains the concentration values at each cell in the grid.
The elements in the N×M matrix A are computed by a basis function. For ex-
ample, using a box model basis function [164], each element in A corresponds
to the intersection between the optical paths Li and the cells k. Thus, each
integral measurement yi is modelled as follows:

a(Li, k) =

{
Li ∩ k Li ∈ k

0 otherwise
(5.3a)

yi =

M∑
k=1

xk · a(Li, k) (5.3b)

Figure 5.1(b) illustrates how integral concentration measurements are mod-
elled the using box basis function (Equation 5.3b), where yi is the summation
of the intersections between the optical path Li and the traversed cells k, mul-
tiplied by the concentration xk.

(a) (b)

Figure 5.1: (a) A typical CTG setup were four sensors are placed at the corners of an area
of interests. (b) Decomposition of a given integral concentration measurement using a
set of box basis functions. The measurement in the figure can be thus expressed as
y = l2 · x2 + l7 · x7 + l8 · x8 + l13 · x13 + l14 · x14 + l19 · x19 + l20 · x20 + l25 · x25.

The goal of model free CTG algorithms is then to solve the system of equa-
tions in 5.2 by finding a vector of concentrations x that explains the acquired
integral concentration measurements y best. The use of conventional Computer
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Assisted Tomography (CAT) algorithms has been proposed as a mean to esti-
mate the concentration vector x [165]. However, gas tomography poses a dif-
ferent set of challenges than image reconstruction and thus conventional CAT
algorithms may not suitable for CTG. Compared to CAT, where the object un-
der study is a rigid body, the reconstruction process in CTG is focused on a very
dynamic process caused by gas dispersion, where concentration levels are not
static and they show strong fluctuations. Proposed model free CTG approaches
can include, for example, the use of least squares to compute the concentration
vector x, the inclusion of a priori information such as constraints on the con-
centration values and the use regularization terms that imply the assumption of
a smooth concentration field [166, 85].

In common CTG setups, the number of optical paths is scarce. This means
that the coverage of the measurement geometry is limited and thus, a number
of cells can go unobserved. According to [167], a CAT setup for medical appli-
cations can have up to 10,000 paths while in the case of CTG, the number of
optical paths rarely exceeds 100. A small amount of optical paths causes sev-
eral problems in the tomographic reconstruction. For example, high resolution
maps (i.e. models with a high number of cells) cannot be estimated using few
optical paths since a significant amount of cells would not be traversed. With
a limited number of traversed cells, the solution of the system of equations
in 5.2 becomes under determined. This means that the problem of estimating
the vector of concentrations x can have an infinite number of solutions.

In addition, the measurement geometry plays a crucial role in the tomogra-
phy reconstruction process. According to Hart and co-authors [168], the posi-
tion and the number of emitters (grey square markers in Figure 5.1(a)) affect
the quality of the tomographic reconstruction. In [168] the authors evaluated
different measurement geometries that consisted of two, three and four emit-
ters placed in different positions. The authors kept the number of integral mea-
surements and optical paths constant over all the evaluated geometries. Differ-
ent gas distribution patterns were simulated using Gaussian plumes and tomo-
graphic reconstruction was carried out using different algorithms. In order to
quantify the quality of the reconstruction, the authors compared the produced
models with the simulated gas distribution using e.g. the Nearness index as a
metric [165]. The authors concluded that the position and number of emitters
affect the quality of the tomographic reconstruction even when the number of
optical paths were kept constant for all the evaluated geometries.

Besides the challenges stated above, a key research problem that has yet to
be fully addressed is the parameter selection of the tomographic reconstruction
algorithm. For model free algorithms based on grid maps, the selection of the
cell size is crucial [166]. As presented in [166], coarse tomographic reconstruc-
tions (i.e. maps with large cells) can lead to substantial errors in the prediction
of unseen measurements while tomographic reconstruction with a high granu-
larity (i.e. smaller cell sizes) can become under determined with measurement
geometries that provide a scarce coverage.
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Several solutions have been proposed to diminish the importance of the cell
size selection. In [169], Verkruysse et al. proposed the grid translation method.
The authors argued that the location of the cell edges adversely impact the
predictions of the produced tomographic reconstruction. The key idea behind
the proposed algorithm was to horizontally and vertically shift the centres of
the cells in order to produce additional low resolution tomographic reconstruc-
tions instead of a single model. These interim models are then combined into
a higher resolution grid. In a follow up paper [167], the authors proposed to
learn the cell size in an iterative way, starting with a model with 2 × 2 cells.
The number of cells is then iteratively increased using the original grid transla-
tion method presented in [169] and the process is stopped when the projection
distance, which is a metric to measure the accuracy of the predictions made
with the model, does not significantly decrease or when it increases due to the
sparsity of the optical paths.

5.2 Towards Robot Assisted Gas Tomography

As discussed in the previous section, the measurement geometry has a high in-
fluence on the quality of the tomographic reconstruction process. A straightfor-
ward solution to improve the measurement geometry would be to place more
sensors at different locations in the area of interest and to increase the number
of optical paths by either using sensors that emit more than one beam, or to
actuate single beam sensors and point the sensors towards different directions.
However, there are different aspects that make this solution impractical. First,
remote sensors are expensive and therefore, increasing the number of emitters
is not a cost effective solution. Second, there is a correlation between the qual-
ity of the reconstruction and the position of the emitters as reported in [168].
Therefore, the position of the emitters has to be carefully determined when con-
structing the measurement geometry. Third, CTG geometries are static which
means that once the measurement system has been installed in an area of inter-
est, the spatial configuration of the emitters, reflectors (if needed) and optical
paths remains constant during operation time. It would be, however, interest-
ing to adapt the measurement geometry to the particular characteristics of the
observed gas distribution. For example, the density of optical paths and the po-
sition of the emitters could be modified to favour areas of high concentration
levels while areas where there is no gas present can be coarsely scanned.

We propose a robotic solution to perform CTG. Robot Assisted Gas Tomog-
raphy (RAGT) combines remote gas sensing capabilities with mobile robotics
to produce tomographic reconstructions from a set of spatially unresolved con-
centration measurements. The concept of a RAGT system can be seen in Fig-
ures 5.2(a) and 5.2(b). In a RAGT system, a mobile robot is equipped with a
sensing unit that allows to collect integral measurements from multiple optical
paths. This means that either a sensor that projects multiple beams (e.g. DOAS)
or an actuated bean path sensor (e.g. TDLAS) can be used. As shown in Fig-
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ure 5.2(a), the mobile robot is placed at location R1 inside the exploration area.
If the robot is equipped with a single beam sensor, a pan-tilt unit can be used to
aim the sensor to the ground in different directions to collect a set of integral
measurement (y1, ...y9) across a set of optical paths (L1, ...L9). If the number of
optical paths is sufficiently dense, a semi-conic area S1 can be covered during
the scanning process. The robot can then be moved to different locations (R1

to R3 in Figure 5.2(b)) and repeat the scanning process.

(a) (b)

Figure 5.2: The concept of a Robot Assisted Tomography of Gases (RATG) system. (a)
A single scanning process to cover the semi-conic area S1 at location R1 is performed by
collecting y1, ...y9 integral measurements over the optical paths L1, ...L9. (b) Multiple
scanning processes, where the robot moves to different locations (R1 to R3) to cover a
given area of interest.

RAGT offers a flexible measurement system, compared with the more tradi-
tional CTG. This can bring several advantages to the tomographic reconstruc-
tion process. For example, large areas can be covered using a single sensor by
moving the robot to different measurement positions and adaptive measure-
ment geometries can be realised according to the conditions sensed in the area
of interest. While in principle the tomographic reconstruction process is similar
to CTG, the implementation of RAGT systems presents additional challenges
that have to be addressed. Of particular importance is the estimation of the
optical paths. In fixed CTG geometries, this is a trivial problem since the emit-
ters and the reflectors are placed at known locations that do not change during
operation. In the case of RAGT, the path travelled by the beams has to be esti-
mated in a process which is commonly referred to as ray tracing. Thus, RAGT
is a process in which robot localization and 3D perception play a key role. This
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is due to the fact that ray tracing has to be performed from the estimated robot
pose and the estimated scene model.

In the next section we evaluate the concept of RAGT in the context of Gas-
bot, which is a collaborative project that aimed to develop a MRO system for
landfill monitoring. The Gasbot robotic prototype is a mobile robot equipped
with an actuated TDLAS sensor. Experiments were carried out in realistic sce-
narios, where the results suggest the feasibility of RAGT and its applicability
to solve practical problems related to gas sensing.

5.3 Gasbot: Robot Assisted Gas Tomography for
Landfill Monitoring

Gasbot was a collaborative project carried out at Örebro University during
2011-2013 in cooperation with Atleverket1, which is the waste management
agency in the municipality of Örebro, Sweden. The development of the Gasbot
system is documented in the the publications [85], [84] and [86]. The goal of
the project was to develop a proof of concept of a robotic platform able to
detect leaks and create maps of the emissions from operational and decommis-
sioned landfills. A landfill monitoring robot should be able to perform two ma-
jor tasks. (1) Serve as an autonomous and flexible system that can explore large
areas in order to measure biogas concentrations for example, carbon dioxide
and methane (CH4). (2) From the acquired measurements, it should be able to
provide the landfill operators with useful information such as gas distribution
maps and locations of possible gas leaks.

5.3.1 Landfill Site Monitoring

Landfill sites are an important source of Green House Gases (GHG), which
are produced by decomposition of organic waste. GHG are mostly composed
by CH4 and CO2 and, to minor extent, mixtures of of O2, N2 and H2 can be
found. The monitoring of gas emissions from landfill sites [6] is gaining interest
among the European Union authorities, since they account for roughly 2% of
the total Green House Gases (GHG) released by human activity [170].

Landfill leaks are a safety concern for local authorities. Homes built near
old, improperly constructed landfills can be at a risk of explosions caused by
fugitive CH4 emissions. From an economical perspective, emission monitoring
is crucial to prevent the waste of valuable resources. Landfill produced CH4

is an alternative energy source [6]. According to Atleverket, only in the mu-
nicipality of Örebro 18000 MWh are produced yearly from two sites, namely
an operational landfill (Figure 5.3(a)) and a decommissioned landfill (Figure
5.3(b)), both of them located at the outskirts of the city of Örebro.

1http://www.orebro.se/3611.html
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In modern landfills, solid waste is encapsulated by several soil and insulating
layers. A network of pipes and collection wells are installed in order to capture
the by-product gases and to prevent them to escape to the atmosphere [171].
However, leaks are a common problem, even at landfill sites that have been
closed for years. Gaseous substances can escape through minor fissures of the
insulation layers, leaking collection wells, poorly sealed chambers and faulty
pipes [172].

(a) (b)

Figure 5.3: CH4 producing sites in the municipality of Örebro. (a) Operational landfill.
(b) Decommissioned landfill.

A landfill operator is required by European regulations to monitor CH4

emissions at least once per month [6]. CH4 monitoring is commonly performed
at very specific locations at the landfill, for example collection wells or at the
facility’s borders and fences. More thorough monitoring methods include flux
box methods [172]. A flux box (Figure 5.4) is a small tent or a box placed on a
given location of the landfill, with a sensor placed inside to record the emissions
that comes from the enclosed area. Data is collected over a given period of time
and several locations can be measured during a single day. The data collected
in this way allows to estimate the emissions coming from the landfill as well as
the locations of possible leaks.

Once a leak or a hot-spot has been detected, the corrective actions that
the operator has to enforce range from relatively simple valve and pipe adjust-
ments, patching of insulating layers and wells [171], to more complex correc-
tive actions that would require for example, a major engineering redesign of
the gas extraction network [172].

Mobile robotics can make a significant contribution in this area by pro-
viding versatile systems for autonomous monitoring of diverse environments.
Robotic solutions can adaptively collect sensor measurements, cooperate with
other systems, and provide useful indications to landfill operators.
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Compared to human operators, mobile robots have the advantage to carry
out the required repetitive measurement procedure without suffering from fa-
tigue and therefore, they can perform measurements with a much denser spatio-
temporal granularity. Moreover, the use of an automated monitoring platform
can minimize the exposure of human operators to hazardous compounds like,
for example, H2S. In addition, the mobile robots that carry the sensors offer
the required accurate localization and computational resources to compute for
example, on-line gas distribution models.

Figure 5.4: A fluxbox, used to characterize emissions from landfill sites2.

5.3.2 The Robotic Prototype Gasbot

The particular characteristics of the intended application scenarios (e.g. landfill
sites) pose a considerable challenge to address from the mobile robotics per-
spective. First, robot localization has to be performed in large open spaces,
where the lack of natural landmarks and uneven terrains, requires the use ro-
bust robot localization techniques.

Second, the limited on-board battery life has to be considered in order to
maximize the autonomy of the platform. While gas sensing could be performed
with in-situ sensors, this would require the robot to travel to a considerable
amount of sensing positions in order to sufficiently cover the target area. The
use of remote gas sensing is an attractive alternative since large areas can be
inspected from a single measurement position and therefore, the exploration
time and thus the battery consumption can be reduced.

In Figures 5.5(a) and 5.5(b), the two prototypes developed during the project’s
life cycle are shown. The prototypes were presented in [84] and in [86] respec-
tively. The early prototype, or Gasbot 1 (Figure 5.5(a)) is an ATRV-JR robotic
platform equipped with a remote gas sensing unit, a frontal LiDAR (LMS-200)
and a GPS/IMU unit (MTiG).

2http://www.golder.com.au/
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The final prototype, or Gasbot 2 (Figure 5.5(b)), is an all-terrain Husky
A-2003 robot which is also equipped with extra sensing modalities for envi-
ronmental and gas monitoring, such as an anemometer (Windsonic), a thermal
camera (A-645) and a LiDAR (HDL-32E) for 3D perception.

(a) (b)

Figure 5.5: Gasbot prototypes. (a) The early prototype (Gasbot 1). 1-ATRV-JR platform,
2-MTiG IMU/GPS box, 3,5-LMS200 2D LiDAR, 4-PW-70 pan-tilt unit, 6-RMLD re-
mote CH4 sensor. (b) Final prototype (Gasbot 2). 1-Husky A-200 platform, 2-MTiG
IMU/GPS, 3-LMS151 2D LiDAR, 4-A645 Thermal camera, 5-PW-70 pan-tilt unit, 6-
LMS200 2D LiDAR, 7-RMLD remote CH4 sensor, 8-Windsonic anemometer, 9-HDL-
32E 3D LiDAR.

The gas sensing unit on both prototypes, comprises an RMLD single beam
remote gas sensor, an LMS-200 LiDAR and a PW-70 pan-tilt unit. The RMLD
is a battery powered, hand-held remote methane sensor based on TDLAS mea-
suring principles4. Since the RMLD is an open loop device, no artificial reflec-
tors are needed for its operation. Instead, the device can be pointed towards a

3The Husky A-200 platform was provided by Clearpath Robotics as an award for the environ-
mental contributions of the project. See www.clearpath.com for details.

4http://www.sewerin.com/cms/en/products/gas/gas-leak-detection-outdoors/

sewerin-rmld.html
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reflective surface (e.g. walls, floor) to get an integral gas concentration reading.
According to the manufacturer, the RMLD can measure CH4 integral concen-
trations as low as 10 ppm·m at distances up to 30 m. The pan-tilt unit (PW-70)
allows to point the RMLD’s beam at different orientations, between ±120◦ in
the tilting axis and 360◦ in the panning axis.

Robot Localization

While off the shelf IMU units (as in the case of the MTi-G mounted on Gasbot
1 and Gasbot 2) offer built in probabilistic filters that allow to estimate the pose
of a moving platform, this feature is oriented towards automotive applications
where the velocity has to be above a given threshold that is not comparable to
the robot’s velocity, in the particular application of landfill monitoring.

Therefore, as a first attempt towards robot localization in large outdoor en-
vironments, we presented in [84] an ad-hoc filter to estimate the robot’s pose by
fusing GPS readings, from the MTi-G module, and odometry, from the robot’s
wheel encoders. The robot’s current location is given by the weighted sum of
the position change, reported by the GPS and the position change reported by
odometry. The interested reader can consult [84] for implementation details.

Figure 5.6 illustrates the output of the proposed solution. The grey marks
represent the raw readings reported by the GPS box, the black marks are the
output from the localization filter and the arrows represent the estimated robot
orientation. Labels A to D denote the position where the robot stopped.

Figure 5.6: Robot localization results obtained with the ad-hoc GPS/IMU approach.

As can be seen in Figure 5.6, the raw GPS readings fluctuate heavily at
locations where the robot is stopped. Therefore, the filter output should be
predominantly odometry when the robot is moving at a low speed or when it
is stopped. When the robot is moving at higher velocities, the filter’s output is



5.3. GASBOT: ROBOT ASSISTED GAS TOMOGRAPHY FOR LANDFILL
MONITORING 101

predominantly GPS. While this algorithm can be used in open environments,
where the GPS signal is stable and when the robot follows a trajectory where
abrupt turns are not made, the approach has several limitations. For example,
the filter requires the robot to move continuously through a given distance in
order to converge to a stable position estimation, as can be seen in Figure 5.6.
In addition, the heading estimation computed with odometry information only,
is not accurate when the robot performs turns on the spot.

To improve the robot’s localization, a 3D Lidar (HDL-32E) was mounted
on Gasbot 2 [86] and robot localization was performed using the NDT fusion
algorithm [173] (Figures 5.7(a) and 5.7(b)). The NDT fusion algorithm is based
on the Normal Distribution Transforms (NDT) framework and its Occupancy
Map extension (NDT-OM [174]). In the NDT framework, the exploration area
is discretised and individual Gaussian probability density functions (pdf) are
fitted using the measurement points that lie within the voxels in the lattice.
Among different localization algorithms, NDT based approaches offer smooth
likelihood models, that allow for very accurate localization [175, 176].

(a) (b)

Figure 5.7: (a) Gasbot 2 at an experimental location. (b) Sample NDT fusion model.
The ellipsoids represents 0.5 standard deviation of each cell’s pdf.

The NDT-OM extension improves the original NDT framework by track-
ing the probability of occupancy of each cell, and offering efficient incremental
update procedures, maintaining numerical stability over an unbounded number
of update range points. The NDT-OM approach assumes point clouds collected
by a mobile range sensor and provides incremental, viewpoint- and dynamics-
aware model updates. The NDT fusion algorithm iterates between two steps.
The track step of the algorithm performs an NDT-D2D registration [177] be-
tween the acquired range scan and the map. Once the tracking step has con-
verged to a candidate pose, the new point cloud is inserted into the map using
an efficient batch-update ray tracing procedure.
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The NDT fusion framework is applied directly to obtain consistent vehicle
pose estimates and an incrementally constructed environmental map. In Figure
5.7(b), a sample NDT fusion man is shown. The map was generated in an ex-
perimental area located at the outskirts of the Örebro University main campus
(Figure 5.7(a)).

Ray tracing

In order to estimate the path travelled by the beam, it is required to have a 3D
model of the environment. NDT-OM delivers an environment representation
along with the estimated robot’s pose, while in alternative localization algo-
rithms, such as the ad-hoc GPS/IMU approach, 3D scene modelling has to be
performed independently.

In [84], we addressed 3D modelling using the robot’s pose, estimated by
the localization algorithm, and the readings of the LMS-200 on the gas sensing
unit (Figures 5.5(a) and 5.5(b)) as inputs. A localized point cloud was acquired
by performing a vertical sweep of the 2D laser scanner with the pan-tilt unit.
The point cloud is used in order to create an OctoMap representation of the
environment [40]. OctoMap generates volumetric 3D models in which occu-
pied, free and unknown areas are represented. At the core of octoMap, data is
represented using tree like structures where each node represents the space con-
tained in a cubic volume. Ray tracing with OctoMap can be thus performed by
defining a starting point and a direction vector (e.g. the RMLD’s sensor pose)
and then, a ray is projected into the model until an occupied voxel is hit.

(a) (b)

Figure 5.8: Proposed ray tracing approaches. (a) OctoMap + GPS/odometry. (b) NDT-
OM.

On-board Gasbot 2, we perform ray tracing using the NDT-OM approach
(Figure 5.8(b)). The beam’s starting point is estimated using the position and



5.3. GASBOT: ROBOT ASSISTED GAS TOMOGRAPHY FOR LANDFILL
MONITORING 103

orientation of the RMLD sensor relative to the robot’s pose in the map. Then, a
ray is traced from the start point through the map and the point of intersection
is then obtained as the maximum likelihood point xML along the ray, given the
Gaussian pdf in each traversed cell. If the likelihood is high enough, then the ray
is likely to hit the distribution and xML is considered as the beam’s endpoint.

Tomography Algorithm

Gas dispersion is a highly dynamic phenomenon where the gas concentrations
do not remain static over time. Gas disperses in the environment due to airflow
advection and turbulence producing highly dynamic gas distribution patterns.
As explained in Section 5.1, previously proposed CTG approaches do not cap-
ture the variability of gas concentrations. In comparison, algorithms for gas
distribution modelling with in-situ sensors can provide models in which the av-
erage concentrations and gas fluctuations are given in the form of mean and
variance maps respectively [17, 55, 59].

In [86], we presented a CTG algorithm that computes mean and variance
maps from integral measurements. The mean and variance maps are discrete
representations of the environment in which the exploration area is divided in
a uniform grid of cubic cells. The only assumption made by the algorithm is
that the mean and variance estimations at each cell remain constant over time.
No assumption is made about the functional form of the spatial gas distribution
or the number of gas sources present in the environment.

Using the box basis function introduced in Section 5.1, the integral mea-
surements y are modelled as follows:

y =

M∑
i=1

lixi + ε = lTx+ ε (5.4)

where M is the number of cells, xi is the gas concentration in cell i, and
ε is the measurement noise term. If the beam of the sensor is modelled as a
line integral of the gas concentration, li represents the distance travelled by
the beam in cell i. A more realistic approach is to represent the laser beam
as a cone and thus, an area integral of gas concentration ai, that comes from
the intersection of the cone with the grid cell i, is considered. In this way, li
is substituted by ai in all the equations. Figure 5.9 shows the measurement
models.

The computation of the mean distribution map can be formulated as the
estimation of the vector of concentrations x that maximizes the likelihood of
the acquired integral measurements. Given a set of N measurements, the vec-
tor y[N × 1] that contains all the integral concentrations in the dataset can be
defined as follows:

y = Lx+ ε1 (5.5)
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where matrix L[N×M] contains the line or area integral that each measure-
ment ray tracing produced and x[M×1] is the mean concentration vector to be
estimated.

Assuming Gaussian noise ε with zero mean and standard deviation σ, the
likelihood of the measurements is given as follows:

p(y|x,L,β) =
N∏

n=1

N(yn|Lx,σ) (5.6)

Maximizing the logarithm of the likelihood (equivalent to maximizing the
likelihood itself) boils down to the following non negative least squares prob-
lem with the constraint x � 0:

minimize
x

‖Lx− y‖2
2 (5.7)

subject to x � 0

If some cells are never observed or many measurements are highly corre-
lated the problem may become under determined and therefore it is useful to
introduce a regularization term, modifying the problem in the following way:

minimize
x

‖Lx− y‖2
2 + λ‖x‖2

2 (5.8)

subject to x � 0

which is analogous to choosing a Gaussian prior with zero mean on the
average concentration of the cells. The strength of the prior is governed by the
hyper-parameter λ. As we presented in [100], we observe in our numerical re-
sults that the constraint x � 0 of Equation 5.9 is never active. This implies that
the obtained solution is the ordinary least squares solution (x̂ = (LTL)−1LTy).
The estimator x̂ is unbiased, which means that E[x̂] = x∗, where x∗ is the true
value of the mean concentration in the cells. The covariance matrix of the esti-
mator is thus:

cov(x̂) = E[(x̂− x∗)(x̂− x∗)T ] = (5.9)

= (LTL)−1LTE[εεT ]L(LTL)−1 = (5.10)

= (LTL)−1LT (σ2I)L(LTL)−1 = σ2(LTL)−1 (5.11)

The diagonal elements of the covariance matrix are the variance of the esti-
mators of the individual parameters, i.e. the variance of the gas concentration
in each cell. The process noise σ2 can be computed by using the following un-
biased estimator:

s2 =
rTr

N−M
(5.12)
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where N corresponds to the number of measurements, M is the number of
cells in the lattice and r is the the vector of residuals r = y− Lx̂.

Figure 5.9: Example scenario in which a measurement has been taken in an area de-
scribed by a 5 × 5 lattice, with the sensor being placed in cell 25 and the laser being
reflected on the ground in cell 7. The two different measurement models are shown in
the figure. The dashed line represents the idealized beam model while the grey coloured
area represents the cone model. l13 is the line intersection between the optical path and
cell 13 (line model). a7 is the area intersection between the optical path and cell 7 (cone
model).

5.3.3 Evaluation

The applicability of RAGT was evaluated in three different scenarios, namely
one indoor location and two large outdoor areas. These scenarios were selected
due to their resemblance to actual locations where gas inspection platforms
could be deployed. An underground corridor (Figure 5.10) located in Örebro
University main campus was used as the indoor testing scenario. Due to safety
regulations, gas leaks were simulated by placing transparent flasks filled with
natural gas (90% CH4) at two different locations.

In the above mentioned scenario, Gasbot 1 was commanded to monitor an
area of 20 m2 by following a pre-defined path in which measurements were
collected at three different way-points. At each way-point, the robot performed
a scan as explained in Section 5.2. Each scan consisted of 144 optical paths,
were the pan-tilt unit stopped for 0.5 s to collect integral concentration mea-
surements. In this scenario, a total of 432 optical paths were generated were
approx. 2000 integral measurements were collected. The measurement geom-
etry of this experiment can be seen in Figure 5.14(a) and a summary of the
experimental configuration can be consulted in Appendix A.2.1. Tomographic
reconstruction was carried out using the collected integral measurements and
the algorithm’s parameters (cell size and λ in Equation 5.9) were set to 1 m and
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10−5 respectively. Line integrals were used as a beam model and an example of
a produced tomographic reconstruction is shown in Figure 5.11.

Figure 5.10: Indoor evaluation scenario for Gasbot 1.

This experimental configuration does not capture the complexities of gas
dispersion since the leaks are simulated with static CH4 concentrations that are
kept isolated from the environment. However, this set-up is ideal for evaluat-
ing the leak localization capabilities in terms of the correlation between the
actual flask location and the mean concentration maxima predicted by the gas
distribution model.

Figure 5.11: An example of a gas distribution maps generated in the indoor scenario.

A total of 8 trials were performed with the CH4 flasks at positions A and
B as shown in Figure 5.11. The gas distribution maps successfully localized the
flask at position A in 7 out of 8 trials with a mean distance of 0.60 m±0.36 m

from the actual location. The second flask (B) was successfully localized in 6 out
of 8 trials where the predicted location always agreed with the actual position
of the flask.
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Additional experiments were carried out with Gasbot 1 at a decommis-
sioned landfill site as shown in Figure 5.12. The experimental location com-
prised an area of 140 m2 and, in order to simulate a leak, natural gas was
released from a cylinder connected to a plastic tube ring punctured in multiple
places. The robot was commanded to follow an exploration trajectory where
the robot stopped at three way-points to perform measurement sweeps. Ap-
proximately 3000 integral concentrations were collected, with the pan-tilt unit
stopping for 0.5 s at each of the 720 optical paths. The measurement geometry
for this experiment can be seen in Figure 5.14(b).

Figure 5.12: Experimental scenario at the decommissioned landfill.

In Figure 5.13, the resulting gas distribution map is shown. The interac-
tion between the released gas and the environment creates complex structures
where turbulent airflow moves the gas patches away from the source. This is
reflected in the generated gas distribution map, where it can be noticed that
high concentration cubes are spread in locations nearby the actual gas source.

Figure 5.13: Generated gas distribution maps at the decommissioned landfill.
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(a) (b)

Figure 5.14: Measurement geometries generated using Gasbot 1. (a) Indoor scenario. (b)
Decomissioned landfill. In both images, the dashed line denote the exploration path, the
circular markers denote the robot’s position, the solid lines represent the optical paths
and the actual position of the gas sources are shown as square markers.

In [86], we presented a numerical evaluation of the gas source localization
capabilities using Gasbot 2. Two experiments were conducted in a large out-
door location near Örebro University’s main campus (Figure 5.15). In the first
Gasbot 2 was commanded to follow an exploration trajectory of 6 way-points
inside an area of 154 m2 . At each way-point, the robot performed a continuous
measurement sweep and a total of 5066 integral measurements were collected
over a set of 2450 optical paths.

Figure 5.15: Large outdoor experimental scenario near the Örebro University main cam-
pus. The experiments were conducted using Gasbot 2.

In the second experiment, Gasbot 2 followed a 12 way-point trajectory
inside a 432 m2 area. At each way-point, the robot performed a continuous
measurement sweep and a total of 9300 integral measurements were collected
along 4513 optical paths. A summary of the experiments conducted in this
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scenario can be found in Appendix A.2.3. The measurement geometries for this
set of experiments can be seen in Figures 5.16(a) and 5.16(b) respectively.

(a) (b)

Figure 5.16: Measurement geometries generated using Gasbot 2 in two different ex-
periments conducted at Örebro University. In (a), the robot moved inside a 154 m2

exploration area while in (b), the robot’s path was inside a 432 m2 area. In both images,
green dashed line denote the exploration path, the circular markers denote the robot’s
position, the solid lines represent the optical paths and the actual position of the gas
sources are shown as square markers.

In Figures 5.17(a) to 5.17(d), maps generated with cell sizes c = 1 m to c =
4 m and with a cone measurement model are shown. An area of 432 m2 was
explored with Gasbot 2. To evaluate the produced maps, we use their accuracy
on the prediction of the gas source location as a metric. Similarly to the case of
gas distribution maps produced with in-situ sensors, we use the Concentration
Maximum Estimate (CME) and the Variance Maximum Estimate (VME) as
indicators of the gas source proximity. As explained in Chapter 2, the CME
denotes the location where the highest average concentration is predicted while
the VME is the location with the highest predicted variance.

Notice that the CME is not a good indicator of the gas source location,
since isolated high concentration cells are predicted at distant locations from
the gas source for all the tested cell sizes. In the models with small cell sizes,
the gas distribution is given as a set of high concentrations spread all over
the exploration area. As the model becomes coarse, high concentrations tend
to cluster around the actual gas source location. It can be argued from the
produced maps that the selection of the cell size is critical for RAGT systems.
This is a similar conclusion observed with static CTG configurations, where the
cell size selection has been reported as a factor that determines the quality of
the reconstruction process [166].
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(a)

(b)

(c)

(d)

Figure 5.17: Gas distribution maps generated with different cell sizes (c) in the 432 m2

exploration area. The blue and green markers denote the predicted and the actual source
location respectively. (a) c=1 m. (b) c=2 m. (c) c=3 m. (d) c=4 m.
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Regarding the variance maps in Figures 5.17(a) to 5.17(d), notice that high
fluctuations are predicted in close proximity to the actual gas source for all
the tested cell sizes. With the VME as an indicator for gas source location, the
predictions are less sensitive to the cell size compared with the CME. For all
the produced maps, the predicted gas source location is one cell away from the
actual gas source position.

Figures 5.18 and 5.19 condense the results of both experiments conducted
with Gasbot 2 at the Örebro University campus. The data collected in each of
the two experiments was randomly divided in 5 folds each and errorbars were
calculated for the accuracy of the gas source position estimation (using both the
CME and the VME) with respect to the map’s cell size and the beam’s model.
The parameter λ in Equation 5.9 was set constant to 10−5. Considering the
difference between the predicted and actual gas source position, it is clear that
the VME (errors consistently below 10m) provide a better indicator of the gas
source position than the CME (errors between 25m and 35m).

Figure 5.18: Gas source localization accuracy evaluation using the data collected inside
the 154 m2 exploration area.

Focusing the attention on the predictions obtained by using the VME as
source indicator, it can be seen how in general the positioning and ray tracing
obtained with the NDT based localization and ray tracing (errors in the order
of 2m − 4m) outperform the positioning based on filtered GPS and odometry
(errors around 10m).

Regarding the comparison of the beam models, it can be noticed how the
models obtained with the conical beam model (errors between 1m and 4m)
clearly outperform the models based on the line beam model in the second
experimental run, while in the first experimental run, a clear difference is visible
only for cell sizes � 3m.
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Figure 5.19: Gas source localization accuracy evaluation using the data collected inside
the 432 m2 exploration area.

5.4 Conclusions

The use of remote gas sensors in MRO systems brings several advantages to-
wards fully autonomous platforms intended for real world applications. The
ability to sense target gases at a distance boosts the detection capabilities of
a robot, compared to a platform equipped with in-situ chemical sensors that
needs to enter in direct contact with the gaseous compounds. With the ad-
vantage of remote gas detection, mobile robots can explore larger areas and
locations of difficult access can be reached.

The concept of Robot Assisted Gas Tomography (RAGT) was first intro-
duced in the development of the project Gasbot. Contrary to fixed tomography
configurations where the sensor location and the optical paths remain constant
during data collection, RAGT is carried out with an inspecting mobile robot
equipped with remote sensing capabilities. The mobile robot can be thus moved
to different locations inside an area of interest. A mobile system brings several
advantages compared to a fixed RTG setup. First, the use of a mobile plat-
form allows to place the sensor at different locations. This translates into rich
measurement geometries, that allow to acquire integral concentration measure-
ments with a high number of optical paths. Second, as reported in [168], the
measurement geometry in a tomographic system is critical for the quality of the
reconstruction process. The use of a mobile platform allows to modify the mea-
surement geometry according to the particular characteristics of the intended
exploration area. However, an algorithm that selects measurement positions
which allow for a better reconstruction process has yet to be developed.

In RAGT robot localization and thus ray tracing are of high importance.
Inaccurate robot pose estimation can affect the gas source localization capabil-
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ities of the models. As we presented in [86], the use of state of the art robot
localization algorithms (such as NDT-OM), along with more accurate models
for the remote gas sensor, result in maps that allow to localize gas sources more
accurately when the variance maps are considered.

A highly relevant contribution made during Gasbot’s project life was the
development of a gas tomography algorithm that not only estimates the mean
concentrations, but also models the fluctuation of gases in the form of a vari-
ance map. This is a remarkable landmark in the context of gas tomography
since state of the art algorithms do not allow for the estimation of the gas fluc-
tuations in the explored areas. A variance map brings several advantages in the
context of leak localization since it has been shown by different authors and
with in-situ sensing modalities that areas of high gas fluctuation are correlated
with the location of a gas leak. This result is supported as well by plume char-
acterization works where measurements on turbulent underwater plumes show
that the magnitude of the concentration fluctuations exhibit a steeper gradi-
ent along the downstream direction, compared with the average concentration
level [152].

There are open issues that should be addressed towards fully fledged RAGT
systems. First, the predictive capabilities of the mean maps have to be improved
since isolated, high concentration cells are predicted away from the actual gas
source as shown in Figures 5.17(a) to 5.17(d). Second, a more consistent ap-
proach to evaluate the gas distribution models has to be implemented. This is
an issue that is not exclusive to remote gas sensing systems but also is an issue
when using in-situ measurement systems. In order to have a better evaluation
procedure for gas distribution maps generated with RAGT systems, the acquisi-
tion of ground truth information can be highly useful. For example, a network
of in-situ sensors could be placed in the experimental location and then, the
generated tomographic reconstructions can be used to make predictions at the
sensors locations. In this way performance indexes such as the NLPD, can be
used to evaluate the models.

Third, it is yet to be explored how aspects such as the choice of the mea-
surement locations and the uncertainty in the estimation of the robot’s pose
can be incorporated in the computation of the gas distribution models. An en-
vironment that combines gas dispersion and robot simulation can be developed
for the purpose of developing RATG algorithms. The simulation environment
would allow to select different parameters such as localization error, sensor
models, the position and pattern of gas gas plumes as well as measurement
positions.

Fourth, the fusion of different sensing capabilities, along with remote sens-
ing, have to be explored. It is still an open question how to efficiently use wind
information in gas distribution mapping and in the case of remote sensing sys-
tems, this aspect has not been explored at all. In addition, the fusion of remote
and in-situ gas measurement is an aspect that has yet to be explored. Thermal
imaging is perhaps a promising direction to explore in the context of gas leak
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localization. The correlation between soil temperature and gas leaks [178] can
be used for example, by planning algorithms that would prioritize the collec-
tion of measurements at areas where soil temperature is consistent with a leak
pattern.



Chapter 6
Conclusions

Mobile Robotics Olfaction (MRO) is the multidisciplinary line of research that
studies the problem of integrating gas sensing modalities on mobile robotics
platforms. Building MRO systems for real world applications requires to solve
a set of related tasks in order to address the challenges imposed by the gas
dispersion phenomenon. In this thesis work, we present a set of contributions
focused on the tasks of gas discrimination and gas distribution modelling which
are critical for MRO intended for practical applications. The approach assumed
in all the presented contributions is that, in order to build robust MRO systems,
simplifying assumptions have to be removed. The contributions presented in
this work were developed in the scope of the regional project Gasbot1, which
aimed to developed a robotic emission monitoring system for landfill sites.

6.1 Contributions

In this section, we highlight the most significant contributions presented in this
thesis. The complete list of contributions can be consulted in Section 1.3. First,
gas sensors cannot be considered as black boxes. This means that MRO al-
gorithms should consider the particular characteristics of a given sensing tech-
nology. This aspect is addressed in this dissertation with the design of the gas
discrimination algorithm presented in Section 3.3. Rather than using an out of
the box approach, the proposed algorithm tailors the discrimination process
to exploit the advantages and cope with the shortcomings of gas sensing using
Open Sampling Systems (OSS). The achieved results showed that, gas discrimi-
nation can be carried out with a high success rate in open environments, where
environmental aspects such as intermittent wind flow conditions disrupt the gas
sensing process.

In a similar way, we demonstrated that the particular characteristics of
datasets collected with gas sensors can be exploited when optimizing the meta
parameters of an MRO algorithm. More specifically, we showed that the high

1The project Gasbot was financed by Robotdalen (http://www.robotdalen.se/).
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redundancy of datasets collected with OSS, composed of metal oxide sensors,
can be used to reduce the computational demands when performing parameter
selection. We applied the proposed solution in the problem of bandwidth selec-
tion for the Kernel DM+V [17] algorithm, which is a widely used approach for
Gas Distribution Modelling (GDM). Parameter selection for GDM is a compu-
tationally demanding and thus typically carried out offline. With the proposed
solution we showed that parameter selection can be carried out at a fraction of
the computational cost without significantly deviating from the optimal solu-
tions computed with conventional K-fold validation processes.

Second, a GDM algorithm that considers the presence of multiple hetero-
geneous substances was proposed. A common assumption made by different
GDM algorithms is that a single chemical compound is present in an environ-
ment. The presence of multiple target compounds and interferent substances
is to be expected in realistic scenarios and thus, it has to be considered by
the GDM algorithm. As a contribution in this aspect, we proposed the Multi
Compound (MC) Kernel DM+V (presented in Section 4.5), which combines
concentration measurements, collected with a non selective gas sensor (such
as a PID) and the uncertainty in the predictions of a given classifier to create
gas distribution models for each of the target compounds. In this way, gas dis-
crimination and gas distribution modelling is fully integrated when deriving
compound-specific distribution models.

Third, we explored alternative gas sensing modalities for the task of MRO.
In this work, the concept of Robot Assisted Gas Tomography (RAGT) was
introduced. RAGT systems use remote sensors (e.g. spectroscopy based sen-
sors) mounted on mobile robots to produce gas distribution models (i.e. tomo-
graphic reconstructions). While the concept of gas tomography, which models
the spatial distribution of gases using remote sensors, dates back from the late
70’s [18], the key contributions are the use of robotic platforms in the gas to-
mography process bringing in this way, advantages such as mobility and adapt-
ability.

Fourth, we demonstrated that practical gas sensing applications can be ad-
dressed using MRO systems. More specifically, an important part of this disser-
tation work is dedicated to the design and construction of a proof of concept
mobile robotic platform for the task of methane emission monitoring and leak
detection at landfill sites. The prototype developed in the Gasbot project is an
RAGT system that generates maps of the distribution of gases in an area of
interest. Experiments conducted in large outdoor environment showed that by
using the gas distribution maps computed with the proposed RAGT system, the
actual location of gas leaks can be predicted with a high degree of accuracy.

It is worth mentioning that an indirect contribution of this thesis work was
the attention raised towards the area of MRO by the results achieved in the
Gasbot project. As a relatively young research field, MRO has received little
attention in public and scientific media. The results achieved in Gasbot gen-
erated considerable attention from national and international media. Gasbot
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was showcased in different international media outlets such as The Washing-
ton Post [179], IEEE Spectrum [8, 180] and Phys.org [181].

In addition, the project was the recipient of different awards. Gasbot’s re-
search team received the “Award of distinction for environmental contribu-
tions” from Clearpath Robotics2. Clearpath offers a state-of-the art robotic
platform to research teams from all over the world through its PartnerBot
Grant Program. More than 150 universities submitted proposals for the grant
and Gasbot was selected as one of the 10 recipients. The article “Towards Real-
World Gas Distribution Mapping and Leak Localization Using a Mobile Robot
with 3D and Remote Gas Sensing Capabilities”, presented in this thesis work
in Chapter 5, won the “Best Service Robotics Paper Award”3 at ICRA 2013,
the largest and arguably the most prestigious conference in robotics. The award
promotes cooperation between robotics science research and industry R&D ad-
vancement in the area of service robotics applications (both professional and
domestic).

6.2 Limitations

This thesis work presents a set of solutions for MRO tasks such as gas discrim-
ination and gas distribution mapping with in-situ sensors and remote sensors.
However, it is worth noticing that the presented algorithms have limitations
that have yet to be studied in order to be implemented as part of a more com-
plex fully autonomous MRO system.

The case of the evaluation of the MC Kernel DM+V algorithm, presented
in Section 4.5, did not consider the mixing between the target substances. A
more realistic approach would require to train regression functions to predict
the mixing percentage between the target compounds. However, the proposed
MC Kernel DM+V can be used to generate non binary models once a regression
function for the mixture percentage is trained.

Regarding the gas discrimination approach proposed in Section 3.3, the
only assumption made is that class overlapping only occurs at low concentra-
tions, while at higher concentration levels the problem of gas discrimination
is rather trivial. This assumption holds for the different experimental valida-
tion scenarios and the different chemical substances and sensor arrays used in
this thesis work. For a different gas discrimination problem, the applicability
of the proposed solution would have to be evaluated first. This means that the
interested reader that aims to implement the algorithm have to evaluate the col-
lected data, in order to determine whether or not the correlation between gas
concentration and class separability holds for the intended gas discrimination
problem.

2http://www.clearpathrobotics.com/
3http://www.icra2013.org/?page_id=153
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The computation of the mean distribution maps in the RAGT approach
presented in Section 5.3 have to be evaluated further. As discussed in the exper-
imental validation, the computed mean maps tend to predict isolated cells of
high concentrations away from the actual gas source. Rather than presenting
isolated point-like structures of high concentration, gas dispersion is given by
smooth transitions between areas of low and high concentration. In addition,
the proposed RAGT solution depends on one free parameter (e.g. cell size) that
determines the complexity of the predicted models. An algorithm for parameter
selection for RAGT algorithms is still an open problem that has to be investi-
gated.

6.3 Future Research Directions

In recent years, significant progress has been achieved in the MRO research
community. However, there are several research directions that can be ad-
dressed. For example, in the context of GDM with either in-situ or remote
sensors, the fusion of different sensing modalities has not yet been fully ex-
ploited. To the author’s best knowledge the fusion of e.g. remote gas sensors
and environmental sensors such as anemometers have not yet been explored.

Sensor planning for gas sensitive robots is an open research direction. For
example, algorithms that guarantee full coverage of a given exploration area
with e.g. remote sensors have not yet being developed. In addition, specific
algorithms that suggest measurement locations for the tasks of gas discrimina-
tion, gas distribution mapping and gas source localization can be another in-
teresting line of research. Among other advantages, sensor planning algorithms
will allow for more efficient exploration trajectories, which in turn translates
into lower energy consumption demands and improved robot autonomy.

Another key aspect to be addressed is the lack of ground truth. As in the
case of the GDM algorithms presented in this work, a common approach is to
evaluate the predicted gas distribution models with respect to their capability to
predict the location of a gas source. However, more consistent evaluation pro-
cedures must consider the model’s capability to predict the gas concentrations
at unseen locations. A suggested approach to address the problem of lack of
ground truth would be to collect data with calibrated low cost sensors placed
at different locations in the exploration area.

Additionally, larger datasets that reflect real world conditions have to be
collected in scenarios where MRO systems are expected to be deployed. For
example, experimental trials should be conducted in open spaces with uneven
terrain, urban locations where buildings and other obstacles disrupt the gas
plumes and closed locations that resemble underground tunnels or mines.

Non dedicated platforms can also be used for the task of gas sensing [182].
For example, robots that are not specifically built to collect gas measurements
can be equipped with gas sensors and collect measurements as they traverse a
given area or when they perform an unrelated task.



6.3. FUTURE RESEARCH DIRECTIONS 119

The fusion of heterogeneous sensing systems and MRO platforms is an-
other line of research that is worth addressing. One example is the use of low
cost sensor nodes along with MRO systems. Sensing nodes built with non cal-
ibrated/low cost sensors can be placed at different locations in a given area of
interest while robots can be equipped with expensive gas sensors that allows to
acquire calibrated measurements and to discriminate between different chem-
ical compounds. In this way, the sensor network can provide a high temporal
granularity of measurements, while the mobile robotic platforms can be used
to measure specific locations and thus, can provide high spatial granularity in a
given area of interest. An example of this line of research is the regional project
RAISE4, which aims to develop an heterogeneous sensing system to monitor
particles and gases that are the by-product of industrial iron casting.

To conclude, it is worth mentioning that a significant amount of the chal-
lenges faced in MRO are related to the limitations of current gas sensing tech-
nologies. In the author’s opinion, there is currently a too loose connection be-
tween the gas sensing and the robotics research communities. In order to de-
velop fully fledged MRO systems, a closer collaboration between the robotics
and the gas sensing communities has to be established. In this way, sensors that
are tailored to the particular demands of gas sensing with mobile platforms
(e.g. faster response/recovery times, robustness with respect to climate condi-
tions and portability) can be constructed.

4http://aass.oru.se/Research/Learning/raise/





Appendix A
Experimental Scenarios

A.1 Experiments with In-Situ Sensors

A.1.1 Robot Arena

Description
Small, unventiladed room. No artificial
advective windflow. Gas analytes released
from tubes placed on the floor.

Comments Dataset originally presented in [89].

Total
area

5 m× 5 m

Robotic
platform P3-DX

Robot speed 0.05 m/s
PID MiniRAE Lite

MOX sensor
array

(1) MICS 2610
(1) MICS 2710
(2) MICS 5521
(1) MICS 5121
(1) MICS 5135

Other Sensors Windsonic Anemometer

Sampling
frequency 4 Hz

Trials Trial
duration

Compounds
Separation
between
gas sources

3 1800 s Ethanol −−
3 1800 s Propanol −−

3 1800 s
Ethanol -
Propanol 1.5 m

3 1800 s
Ethanol -
Propanol 0.5 m
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A.1.2 Indoor Corridor

Description

Indoor location, ventilated corridor.
Disruptions caused by people, opening
and closing doors and windows. Open
plastic container filled with Ethanol
as a gas source.

Comments Dataset originally presented in [88]

Total area 14 m× 2 m

Robotic
platform ATRV-JR

Robot speed 0.05 m/s
PID MiniRAE Lite

MOX sensor
array

(2) TGS 2600
(1) TGS 2602
(2) TGS 2611
(2) TGS 2620

Other Sensors Young 81000 Anemometer

Sampling
frequency 4 Hz

Trials Trial
duration

Compounds
Separation
between
gas sources

5 1750 s Ethanol −−

A.1.3 Outdoor Courtyard I

Description
Outdoor location. No buildings nearby the
experimental area. Open plastic container
filled with Ethanol as a gas source.

Comments Dataset originally presented in [88]

Total area 8 m× 8 m

Robotic
platform ATRV-JR

Robot speed 0.05 m/s
PID MiniRAE Lite

MOX sensor
array

(2) TGS 2600
(1) TGS 2602
(2) TGS 2611
(2) TGS 2620

Other Sensors Young 81000 Anemometer

Sampling
frequency 4 Hz

Trials Trial
duration

Compounds
Separation
between
gas sources

5 1750 s Ethanol −−
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A.1.4 Open Field

Description
Open field with no buildings around the experimental
area. CH4 was released from a container. A fan was
used to spread the gas plumes away.

Comments Experiments in cooperation with the Federal
Institute for Materials Research and Testing (BAM).

Total
area

14 m× 14 m

Platform AR-100B
Robot speed 1 m/s

MOX sensor
array

(1) TGS 2600
(1) TGS 2602
(2) TGS 2611
(2) TGS 2620

Other Sensors Wind sensing fusing different modalities [90].

Samp. freq. 8 Hz

Trials Trial
duration

Compounds
Separation
between
gas sources

5 1033 s Methane −−

A.1.5 Outdoor Courtyard II

Description
Garden surrounded by nearby buildings.
A bubbler was used to evaporate
the analytes from open containers.

Comments Datasets acquired as part
of this dissertation.

Total area 9 m× 7 m

Platform ATRV-JR
Robot speed 0.12 m/s

PID MiniRAE Lite

MOX sensor
array

(1) TGS 2600
(1) TGS 2602
(2) TGS 2611
(2) TGS 2620

Other Sensors Windsonic anemometer

Samp. Freq. 4 Hz

Trials Trial
duration

Compounds
Separation
between
gas sources

1 3400 s Acetone −−
1 3400 s Ethanol −−

1 3400 s
Acetone -
Ethanol

1 m
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A.2 Experiments with Remote Sensors

A.2.1 Underground Corridor

Description
Underground corridor. Methane
concentrations kept inside transparent
flasks due safety reasons.

Comments Datasets acquired as part of this
dissertation.

Total area 20 m2

Platform Gasbot 1
Robot speed 0.12 m/s

Ray tracing
algorithm

Montecarlo localization [39]
and OctoMap 3D modelling [40]

Other Sensors SICK LMS-200 LiDAR and a PW-70
pan-tilt unit for 3D Scene modelling.

Samp. Freq. 10 Hz

Trials Trial
duration

Meas.
positions

Optical
paths

8 216 s 3 432

A.2.2 Decommissioned Landfill Site

Description

Open, flat outdoor area. No nearby
buildings. A methane leak was
produced using a punctured Tube ring
connected to a natural gas cylinder.

Comments Datasets acquired as part of
this dissertation.

Total area 140 m2

Platform Gasbot 1
Robot speed 0.12 m/s

Ray tracing
algorithm

Montecarlo localization [39]
and OctoMap 3D modelling [40]

Other Sensors SICK LMS-200 LiDAR and a PW-70
pan-tilt unit for 3D Scene modelling.

Samp. Freq. 10 Hz

Trials Trial
duration

Meas.
positions

Optical
paths

1 360 s 3 720



A.2. EXPERIMENTS WITH REMOTE SENSORS 125

A.2.3 Large Open Field

Description

Open, flat outdoor area. No nearby
buildings. A methane leak was
produced using a punctured Tube ring
connected to a natural gas cylinder.

Comments Datasets acquired as part of
this dissertation.

Platform Gasbot 2
Robot speed 0.12 m/s

Ray tracing
algorithm NDT-OM [173].

Other sensors
HDL-32E 3D LiDAR,
Windsonic anemometer,
A-645 Thermal camera.

Samp. Freq. 10 Hz

Trials Trial
duration Area

Meas.
positions

Optical
paths

1 1500 s 432 m2 12 4514
1 960 s 154 m2 6 2450
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