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Abstract: Autonomous navigation in real-world industrial environments is a challenging
task in many respects. One of the key open challenges is fast planning and execution
of trajectories to reach arbitrary target positions and orientations with high accuracy and
precision, while taking into account non-holonomic vehicle constraints. In recent years,
lattice-based motion planners have been successfully used to generate kinematically and
kinodynamically feasible motions for non-holonomic vehicles. However, the discretized
nature of these algorithms induces discontinuities in both state and control space of the
obtained trajectories, resulting in a mismatch between the achieved and the target end pose of
the vehicle. As endpose accuracy is critical for the successful loading and unloading of cargo
in typical industrial applications, automatically planned paths have not been widely adopted
in commercial AGV systems. The main contribution of this paper is a path smoothing
approach, which builds on the output of a lattice-based motion planner to generate smooth
drivable trajectories for non-holonomic industrial vehicles. The proposed approach is
evaluated in several industrially relevant scenarios and found to be both fast (less than 2 s
per vehicle trajectory) and accurate (end-point pose errors below 0.01 m in translation and
0.005 radians in orientation).
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1. Introduction

Automatically Guided Vehicles (AGVs) have been deployed in large numbers for industrial
intra-logistic tasks. They typically transport payload from a loading to a drop-off location and it is crucial
that they drive accurately to given poses. Being able to arrive at a defined pose with high accuracy and
precision is a fundamental requirement for AGV systems. It is especially important since most AGV
platforms, e.g., forklift trucks [1] or waist-actuated wheel loaders [2], are non-holonomic. Thus, even in
cases when an error in the final pose can be reliably detected, it is not possible for the vehicle controller
to correct it over a short distance. According to the AGV system provider Kollmorgen [3], the required
end pose accuracy for picking up pallets is 0.03 m in position and 1 degree (0.017 radians) in orientation,
for example.

In current commercial AGV solutions, all paths need to be defined manually before operation. This
is a time-consuming, inflexible and costly procedure, which must be repeated for every new deployment
or whenever the area of operation changes. An even more important disadvantage is that paths cannot
be changed during operation to respond to obstacles. In order to enable new applications, it is key to
replace this inflexible off-line process with on-line motion planning. State-of-the-art motion planners
(based either on Rapidly Exploring Random Trees (RRT), Probabilistic Roadmaps (PRM) or state space
lattice search) have so far not been demonstrated to generate trajectories that enable AGVs to achieve the
required goal pose accuracy for industrial applications. In addition, the trajectories obtained by current
planners are not guaranteed to be directly drivable—discontinuities in vehicle controls and within the
trajectories are often left untreated and have to be handled by the controller. This is a well known
problem which has recently received attention [4,5], but, to-date, no solution has been proposed, which
can both guarantee the required accuracy and be used on-line.

The focus of this paper is on on-line motion planning for car-like vehicles given arbitrary end poses.
We propose and evaluate a path smoothing approach to improve end pose accuracy obtained with paths
generated by a lattice-based motion planner. Of course, the achieved end pose accuracy depends on all
navigation subsystems, including motion planning, localization and motion execution. Therefore, we
developed a complete navigation system, composed of a lattice-based motion planner, the continuous
space path smoother proposed in this paper, a trajectory generator and a model predictive controller. We
compare our system against a state-of-the-art commercial AGV solution. For the comparisons in this
paper, we rely on a commercial reflector-based localization module.

The contribution of this paper is two-fold. First, we propose a new path smoothing approach that
can be used in a complete, on-line navigation system to produce highly accurate motions for car-like
vehicles. Our approach does not require a transformation of the input path to a new representation,
which is smooth by definition (e.g., splines). Thus, it can directly incorporate state-space constraints in
the smoothing process, avoiding the need to verify the path again after smoothing. In our experiments,
we show that our approach generates smooth drivable trajectories for arbitrary goal poses in under 2 s
(using a single threaded implementation with an i7-2860QM CPU at 2.50 GHz), a fraction of the runtime
reported by previous approaches [4]. Second, we describe our complete navigation system and present an
extensive experimental evaluation where a non-holonomic vehicle has to sequentially drive to a number
of given goal poses (drawn as black arrows in the example depicted in Figure 1). We show the importance
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of the path smoother and demonstrate that our system can generate and execute smooth paths (see the
example in Figure 1 containing paths obtained from a lattice-based motion planner, the corresponding
smoothed paths and the actual trajectories driven by the vehicle) with end pose errors comparable to a
commercial AGV system based on manually defined paths.

Figure 1. Example of the problem addressed in this paper.
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In Section 2 we present related work on motion planning. We detail our system in Section 3 and
present the experimental evaluation in Section 4. Finally, Section 5 concludes with a discussion and
presents directions for future research.

2. Related Work

The industry standard for autonomous navigation is to use predefined trajectories that
the AGVs follow strictly. The trajectories are either manually defined or learned through
teaching-by-demonstration from a human operator [6,7]. Although conceptually simple, this approach
has drawbacks such as high deployment costs and lack of flexibility. A change in the configuration
of a warehouse or an additional loading point, for instance, require the manual definition of a new
set of trajectories. In addition, if an AGV encounters an unforeseen obstacle during operation, it can
only employ very simple strategies (typically stopping until the obstacle moves or is removed). To
overcome these drawbacks, many different techniques for automatic path and trajectory generation have
been proposed in the past decades.

Combinatorial methods are not very well suited in the presence of differential constraints (e.g.,
kinematic constraints for non-holonomic vehicles) and analytical solutions cannot effectively cope with
obstacles [8]. To overcome these problems, sampling-based approaches have been introduced and
studied in recent years. In particular, three families of methods are currently widely used: Probabilistic
Roadmaps (PRMs) [9], Rapidly-exploring Random Trees (RRTs) [10–12] and lattice-based motion
planners [13,14]. All sampling-based approaches have been shown to be effective in high-dimensional
configuration spaces. Lattice-based motion planners, in particular, combine the strengths of the
approaches discussed above with well studied classical AI graph exploration algorithms, such as A∗,
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ARA∗ and D∗Lite [15]. Differential constraints are incorporated in the search space by means of
pre-computed motion primitives, which sample the state space on a regular lattice. The search space
is then explored using efficient graph search techniques. However, all sampling-based approaches to
non-holonomic motion planning generate paths and trajectories that typically present discontinuities,
within the trajectory itself or between the terminal and goal state. This is a known problem and
prevents current solutions to achieve the end pose accuracy required by industrial applications. In recent
years, several solutions have been suggested for smoothing the trajectories from sampling-based motion
planners [4,5]. So far, the methods suggested are computationally too expensive to be used on-line, as
smoothing requires time in the order of hundreds or even thousands of seconds [4]. By contrast, our
approach is designed to be used on-line and, in the experimental evaluation, we show that the smoothing
step usually takes less than two seconds (see Table 1).

A different approach to obtain smooth paths is to start with a set of waypoints, and then to
switch to a representation that inherently guarantees continuous curvatures. Popular algorithms take
as input a set of waypoints, obtained either automatically [16,17] or by manually driving the vehicle
on the desired path [6,7]. Then an optimization procedure is employed, which operates directly on
the parameters of the new representation rather than on the waypoints. Common representations
are Quintic splines [18], B-splines [17] or clothoids [19,20]. Fitting the new representation to the
waypoints in general entails a change of the original path and therefore does not guarantee collision-free
paths. Thus, a post-processing step is necessary to check whether the path in the new representation
is still collision-free [16,21]. Non-holonomic vehicles have additional constraints on the curvature
of the motion, i.e., the maximum steering angle of the vehicle. To guarantee drivable paths, also
these constraints require a time-consuming verification after path smoothing by transformation into a
different representation.

3. Generating Smooth Trajectories On-Line

We developed our approach to path smoothing and to autonomous navigation to fulfill the
stringent requirements for autonomous vehicles in industrial environments. For the definition of these
requirements, we relied on the long experience of our industrial partner Kollmorgen, a world leader in
providing AGV solutions. Kollmorgen has deployed approximate 15,000 AGVs since 1991 in different
industrial settings. According to Kollmorgen, high end pose accuracy is of paramount importance. For
safe loading and unloading of pallets, for example, the required end pose accuracy is 0.03 m in position
and 1 degree (0.017 radians) in orientation.

In this work, we consider trajectories for AGVs which operate as a fleet for warehouse automation.
At the core of the system is a central vehicle coordinator [22], which can directly control the speed
of each autonomous vehicle. Thus, the paths and speed profiles of the controlled vehicles have to be
computed separately, in order to allow the coordinator to prevent deadlocks. This is a desirable separation
whenever multiple AGVs need to be coordinated. For our system, we adopt the three-step approach
shown in Figure 2. First, we calculate kinematically drivable paths with a lattice-based motion planner
for each vehicle. Then, the path is processed by the path smoother proposed in this paper, resulting
in a continuous drivable path. Finally, a trajectory generator associates speed profiles consistent with
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dynamic and coordination constraints to the smoothed paths and generates the final trajectories that the
vehicle controller executes [23].

Figure 2. Overview of the processing steps detailed in Sections 3.2–3.4 and
their connections.
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3.1. Problem Formulation

In this paper we consider car-like vehicles (standard trucks, forklifts, etc.) that are commonly found
in indoor production sites. The control space u = (v, ω) of such vehicles is composed of forward speed v
and steering velocity ω. The state space s = (x, y, θ, φ) consists of all vehicle configurations composed
of 2D position (x, y), heading θ and steering angle φ. Let ζ and η be sets of N points in state space and
control space respectively, defined as:

ζ = {si} ={(xi, yi, θi, φi)}
η = {ui} = {(vi, ωi)} (1)

We assume a fixed time step ∆T = T
N

(= 60 ms), where T is the time for reaching the goal. The state
transition of car-like vehicles ṡ = f(s, u, t) is computed as follows:

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = vi
tanφi
L

φ̇i = ωi (2)

where L is the distance between front and back axles.
Given an initial state s̄0 = (x0, y0, θ0, φ0) and a goal state s̄N = (xN , yN , θN , φN) for a vehicle, we

want to calculate a set of N control points η and the corresponding state points ζ , which can take the
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vehicle from s̄0 to s̄N . A solution to the problem is valid if also additional vehicle-dependent constraints
are respected, such as the maximum allowed steering angle φmax, the maximum steering velocity ωmax,
the maximum forward and reverse velocity vmax and the maximum acceleration |v̇i| ≤ amax. In our
experiments, the x0, y0 and θ0 components of the start state s0 are obtained directly from an off-the-shelf
localization system, while the steering angle φ0 is taken from absolute encoder readings. The goal state is
always assumed to have a steering angle component φN = 0. See also the overview depicted in Figure 2.

3.2. Lattice-Based Motion Planner

The first step of our approach is a lattice-based motion planner [24], which quickly computes
kinematically feasible paths, optimized with respect to a cost function that considers distance traveled
and penalizes backwards and turning motions. Given a model of vehicle maneuverability, the intuition
behind lattice-based motion planning is to sample the state space in a regular fashion and to constrain
the motions of the vehicle to a lattice graph, that is, a graph embedded in a Euclidean space Rn which
forms a regular tiling [25]. Each vertex of the graph represents a valid configuration of the vehicle,
while each edge encodes a motion which respects the non-holonomic constraints of the vehicle. A valid
configuration for a vehicle is a four-dimensional vector c = 〈x, y, θ, φ〉, where (x, y) lies on a grid of
resolution r, θ ∈ Θ and φ ∈ Φ. In the experiments presented in this paper, r is equal to 0.2 m, |Θ| = 16

and |Φ| = 1. In particular, Θ is the set of all the angles in [0, 2π) which are multiples of π
8

and Φ = {0},
which means that we only consider configurations where the steering angle is equal to 0 with respect to
the vehicle itself. This is because reducing the cardinality of Φ reduces the search space and solutions
can be calculated quickly. The fact that at this stage the steering angle of the vehicle is assumed to be
equal to 0 at the beginning and at the end of every motion is then compensated by our smoother (for the
computation times of the planner in our experiments, see Table 1, "Motion planning").

Table 1. Computational time for motion planning and path smoothing (Section 4.3).

Mean (s) Std (s) Max (s)

Motion planning 0.105 0.085 0.680
Path smoothing 1.095 0.222 1.868

The planner uses a set of pre-computed, kinematically feasible motion primitives, which are
repeatedly applied to obtain a directed graph which covers the configuration space. Information about
the static obstacles in the environment is provided to the planner by an occupancy map and is used to
prune the search graph to obtain collision-free paths. The motion primitives are automatically generated
to fully capture the mobility of the vehicle and then reduced for efficiency purposes, as described in [26],
without compromising the reachability of the configuration space of the vehicle. The graph is then
explored using A∗, or ARA∗ [27], one of its most efficient anytime versions, which can provide provable
bounds on sub-optimality. Effective heuristic functions [28] and pre-computed vehicle footprints of each
motion primitive for fast collision detection are employed to speed up the exploration of the lattice.

Given a start and a goal state (s0, sN ), the motion planner generates an obstacle free, kinematically
drivable path ζ̂ , which means that the steering angle constraint −φmax ≤ φ ≤ φmax (Equation (6)) is
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respected. Note that the planner at this stage does not generate the controls for the vehicle. The path ζ̂ ,
however, brings the vehicle from a discretized start state ŝ0 to a discretized goal state ŝN , where ŝ0 and
ŝN represent the closest states on the lattice to s0 and sN , respectively. This introduces an error on the
order of the lattice discretization. Moreover, ζ̂ is by construction guaranteed to be drivable by the vehicle
at a nominal speed and it is C1-continuous, but not necessarily C2-continuous.

3.3. Continuous Space Path Smoother

The path ζ̂ obtained by the motion planner in the previous section has three distinct problems, which
prevent us from directly feeding it to the vehicle controller. First, the start and goal states used by the
planner are discretized and do not necessarily correspond to the given initial and end state (see Figure 1).
Second, the planner assumes that the steering angle at the start state is always equal to zero, which may
not correspond to the actual state of the vehicle. Third, ζ̂ is not necessarily C2-continuous, which means
that the rate of change of the steering angle of the vehicle can be discontinuous (see Figure 3). While
some of these issues can be handled and corrected by the controller, the accuracy of the final vehicle pose
with respect to the target pose would be at best on the order of the grid discretization of the planner (as
demonstrated in the experiments in Section 4). In order to solve these problems and improve navigation,
our approach makes small local modifications to ζ̂ .

Figure 3. Comparison between the original path from the lattice-based motion planner
and the smoothed path after applying our continuous space path smoother. (a) paths;
(b) steering angles.
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We begin by formulating the above problems as constraints on the states of ζ̂ so as to obtain a set
of states and the corresponding control inputs {si, ui}i=0...N that satisfy them. First, the start and end
states of the modified path need to correspond precisely to the current vehicle state s̄0 and the actual goal
state s̄N :

s̄0 − s0 = 0 (3)

s̄N − sN = 0 (4)
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These constraints address inaccuracies due to discretization and the assumption of a zero initial
steering angle. The additional constraints in Equations (5)–(9) make sure that the path is conform with
the kinematic constraints of the vehicle and the constraints on vehicle controls:

si+1 = f(si, ui), i = 1, . . . , N − 1 (5)

φmin ≤ φ ≤ φmax (6)

−vmax ≤ v ≤ vmax (7)

−ωmax ≤ ω ≤ ωmax (8)

−amax ≤ a ≤ amax (9)

The constraints in Equations (3)–(9) define the set of all possible executable trajectories to bring the
vehicle from a given start to a goal state without considering obstacles. An uninformed search through
this set of feasible trajectories is a very inefficient way of solving the continuous space motion planning
problem in the presence of obstacles. The key to the efficiency that we obtain with the proposed approach
is that an uninformed search is not necessary. From the lattice-based motion planner we already have a
cost-optimal, obstacle-free path ζ̂ . Although this path generally lies outside the feasible set defined by
Equations (3)–(9) we can use it to define a boundary value optimization problem in which we initialize
the variables {si}i=0...N with the path ζ̂ . We then perform a search for the closest trajectory in the feasible
set using a direct multiple shooting method implementation from the ACADO Toolkit [29].

The multiple shooting method [30] assumes that the controls ui are discretized piecewise over time
and kept constant during each step ∆T . It utilizes the ordinary differential equations (ODEs) defined
above (Equation (2)) to integrate the control value ui over the time ∆T from an initial state value s′i to a
final state value s′i+1. In order to obtain a smoothed path, and not only a feasible one, it is important to
initialize the control values to a constant value (in the test runs performed for this paper, we initialized the
controls as {ui}i=0...N = (0, 0)). If the initial controls were instead computed based on the initial given
path, the obtained path would be feasible but not smoothed, as the turns would be preserved through the
process. A multiple shooting method is divided into the following steps: First, a Non-Linear Program is
defined so as to include the constraints listed in Equations (5) and (6). The Non-Linear Program is then
solved using a Sequential Quadratic Program (SQP). In each SQP iteration the ODEs are recomputed,
including their derivatives, which are subsequently used to form a Quadratic Program (QP). The QP
is then solved, so as to incrementally update the control values {ui}i=0...N . This incremental approach
limits the amount of control applied, as it can be seen by the reduced changes observable in steering in
our experimental evaluation (see Figure 3b). The required number of SQP iterations was typically 3.

One key point of this work is that we formulate the problem as a standard optimization problem. This
choice allows us to directly benefit from using the vast amount of freely available optimization tools. We
also tried to solve the problem using the single shooting method implementation in ACADO Toolkit [29],
and this yielded similar results. Our approach is largely agnostic to a change of the optimization tool
since we do not minimize any specific objective function. All the tests presented in this paper, however,
were performed using the multiple shooting method.

The output of this optimization phase is a trajectory (ζ, η), including a set of vehicle controls. Since
there is no objective which optimizes the speed of the vehicle, the returned control values are only
guaranteed to fulfill the kinematic constraints of the vehicle. To obtain the fastest possible trajectory
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would require to solve a more complex problem, i.e., an Optimal Control Problem, which would be
too time consuming. The decoupling of the generation of the control set from the path is further
motivated by the fact that the fastest trajectory profile may not necessarily be the optimal one in a
multi-robot navigation scenario, as it is common in intra-logistics applications. Our full navigation
system employs a centralized coordination scheme [23], whose description is outside the scope of this
paper. For the purpose of experimentally evaluating our path smoothing approach, here we rely on
a subsequent trajectory generation step (Section 3.4). Because of this decoupling, we can simplify the
boundary value optimization problem by delegating the constraints regarding velocities and accelerations
(Equations (7)–(9)) to the trajectory generator. In addition, we subsample the number of states and
control points N to further reduce the computational time (in our experiments N was 100).

It is important to note that the path smoother changes the path from the motion planner and therefore
we cannot guarantee that it is still collision-free. However, the deviation from the input path is very small
(see Figure 3). This is because the smoother searches for the closest trajectory in the feasible set starting
from the original path. In our current approach we compensate for this limited deviation by assuming
an enlarged vehicle footprint during motion planning (width and length were both expanded by 10%).
A rigorous way to solve this problem would be to specify boundary conditions on every state during the
smoothing step. These constraints would guarantee that the new path is obstacle free. This aspect is left
for future work.

3.4. Trajectory Generator

The trajectory generator takes as input the states computed by the path smoother and it works in
a similar way as described in [16,31]. More specifically, it assigns the largest possible velocity to each
state in the path within the given constraints. The constraints are the boundary conditions with initial and
final velocities and limitations on steering velocity, speed and acceleration. The output of this module
is a trajectory with a fixed ∆T of 60 ms, used by the controller. In the current implementation we use
linear interpolation, which is effective since the distance between interpolation states is small.

In the experimental evaluation the parameters for the maximum velocity, acceleration and steering
angle velocity were set to vmax = 0.5 m/s, amax = 0.2 m/s2 and ωmax = 1 rad/s, respectively.

3.5. Model Predictive Controller

In our vehicle navigation system, we use a Model Predictive Controller (MPC) [23]. The core idea
of this type of controllers is to model how the states of the vehicle evolve over a time preview window,
given a set of control inputs. The controller then optimizes the control output using an objective function
based on the trajectory to follow. In our implementation we use a preview window of 25 control steps
and each control step has a duration of 60 ms. The controller gains were set to equally weight heading
and distance. This is reflected in the results presented in Figure 4: the heading and distance errors are
quantitatively very similar. As the controller is not the main focus of this paper, we use it with default
parameters as a “black box” in the experimental evaluation.
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Figure 4. Navigation pose accuracy. (a) side distance errors; (b) heading angle errors. The
goal IDs refer to Figure 5b. Note that the paths generated by the planner and not processed
by the smoother present errors one order of magnitude larger than the ones in the figure and
therefore are omitted.
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4. Experimental Evaluation

We evaluated our navigation system using an industrially-relevant vehicle configuration. We deployed
an AGV operator training platform from Kollmorgen (Figure 5a) in a small-scale test environment at
Örebro University. The vehicle kinematics are the same as those of standard fork lift trucks, with a
combined steer and drive wheel. A commercial reflector-based localization solution using 22 reflective
beacons was deployed in the test environment. This solution guarantees localization accuracy within
less than 1 cm in translation and 0.001 radians in orientation. Using the on-board control system, we
can access encoder and localization data and we can set steer and drive commands. All of the remaining
components of our system run on a standard laptop with an i7-2860QM CPU at 2.50 GHz.

Figure 5. (a) AGV test platform used in the experiments; (b) Test layout for the comparison
of the systems: the blue dots indicate goal poses identified by an ID. The turquoise line in
the dots shows the goal headings.

(a) (b)

The overall goal of our experimental evaluation is to demonstrate the accuracy achieved while
following the on-line generated trajectories and the reliability of our results. We structure our evaluation
in several consecutive parts. First, we compare the controller of our system with the one of the
commercial solution over identical, manually crafted trajectories. This set of tests is necessary to
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guarantee that the results obtained are comparable when using different approaches to path generation
and are not biased by different performances at the controller level. The following evaluation step is the
most crucial: once established that the two controllers have comparable capabilities, we extract the goal
poses from the pre-defined paths and use them as input to our system. This means that we compare our
approach, where the paths are automatically generated, with the performance of the commercial system
which needs hand coded paths. These experimental runs allow us to demonstrate that our approach can
entirely substitute the commercial system without loss of accuracy, thus rendering the time consuming
procedure of manual path drawing obsolete. Finally, we test the robustness of our system over randomly
generated goal poses and we evaluate the system over longer distances and analyze how the different
numbers of control points N used in the path smoother affects the positioning accuracy.

4.1. Controller Comparison

We first created a set of B-spline parametrized trajectories Teval (Figure 5b) with an AGV layout
drawing tool provided by Kollmorgen. Special care was taken to make these trajectories as smooth
as possible. We then used both controllers to follow the trajectories. Each trajectory was executed
10 times. The AGV controller can follow the given trajectories directly, whereas our controller extracts
the paths Peval from the layout trajectories Teval and attaches speed profiles to them, as provided by our
trajectory generator (Section 3.4). The tracking performance is shown in the first two lines of Table 2.
In particular, we show the performance with respect to the final forward error, side error and heading
error, as represented in Figure 6. We separated the errors because, for the controller of a non-holonomic
vehicle, it is most difficult to control the heading and the position perpendicular to the direction of
motion. For each type of error, we show the results in terms of mean, standard deviation and maximum
value obtained in the test runs.

Table 2. Forward and side translation errors and orientation errors

Method
Forward

Std (m) Max (m)
Side

Std (m) Max (m)
Heading

Std (rad) Max (rad)
Error (m) Error (m) Error (rad)

predef. path, AGV controller 0.0168 0.0027 0.0224 0.0047 0.0028 0.0098 0.0060 0.0044 0.0138
predef. path, MPC controller 0.0025 0.0018 0.0080 0.0054 0.0044 0.0150 0.0013 0.0010 0.0041
planned path with smoothing 0.0018 0.0016 0.0080 0.0063 0.0042 0.0172 0.0025 0.0016 0.0062

planned path without smoothing 0.0273 0.0299 0.0886 0.0521 0.0211 0.1116 0.0621 0.0602 0.1783
60 random goals 0.0036 0.0036 0.0259 0.0084 0.0048 0.0231 0.0014 0.0013 0.0069

Figure 6. The error metrics used in the evaluations.
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The commercial AGV controller has a higher forward error (statistically significant using unpaired
t-test; p < 0.0001) which is partly due to an application-specific configuration compared to the MPC
used in our system. The heading error is also higher (statistically significant; p < 0.0001) but on the
other hand the side error is similar (difference not statistically significant; p = 0.2317). Both controllers
are, however, fully capable of tracking the given trajectories.

4.2. Path Smoothing of Automatically Generated Paths

After we have established comparable performances of the two controllers, we now compare our
complete navigation approach, where paths are automatically generated, with the commercial system,
which needs hand coded paths.

We extracted the goal poses from the same paths Peval employed in Section 4.1 and used them as
targets for our lattice-based motion planner. The output of the planner is passed to the path smoother
and then executed by the MPC controller. Table 2 (third and fourth rows) shows results obtained when
the motion planner is used with or without path smoothing. Ideally, the automatically generated paths
should allow for a comparable pose accuracy as the manually defined paths Peval. This is indeed the
case in our tests. Please note that in row 4, where the paths are not post-processed by the smoother, the
required goal state is set as the last point in the trajectory, thus allowing the controller to correct the state
error within the preview window. It can be seen that, in this case, the controller can compensate more
effectively for errors in the direction of motion.

These results confirm that our system can produce smooth trajectories which allow very high end
pose accuracy, both the heading and the forward error is improved (statistically significant using unpaired
t-test; p < 0.0001), whereas the side error is slightly higher (t-test; p = 0.0052). Our approach can entirely
substitute the commercial system without loss of accuracy, which makes the time-consuming procedure
of manual path definition obsolete. Our results further show the necessity of path smoothing to obtain
the required final pose accuracy, which is not possible with state-of-the-art motion planners that need to
sample the continuous state space.

A key evaluation metric for AGV systems is their ability to repeatedly reach the same goal pose
given a specific path. In an industrial scenario with manually predefined paths, precision is often more
important than accuracy since a bias in the end pose can be compensated by adding the corresponding
offset to the goal pose. For on-line motion planning, however, the key evaluation metric is end pose
accuracy. In either case we are interested in a small variance over the final pose reached. The standard
deviation is shown for different goals in Figure 4 and all end poses reached are shown for selected goals
in Figure 7a,b. With path smoothing, the end pose variance is small and similar to the one obtained with
the commercial system.
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Figure 7. End pose accuracy on two different goal poses. (a) goal 10; (b) goal 13.

13.6

13.62

13.64

6.08 6.1 6.12 6.14

y
(m

)

x (m)

Navigation Accuracy

goal
predef. path, AGV controller
predef. path, MPC controller

planned paths with smoothing

(a)

12.22

12.24

12.26

12.28

6.32 6.34 6.36

y
(m
)

x (m)

Navigation Accuracy

goal
predef. path, AGV controller
predef. path, MPC controller
planned paths with smoothing

(b)

4.3. Evaluation over Randomly Chosen Goals

We further tested the robustness of our system with arbitrary goal poses and over longer distances,
by generating a random set of 30 goal poses in two regions of the test environment, marked with dashed
lines in Figure 8a. The vehicle traversed back and forth between poses, from one region to the other, for
a total of 60 stops. Kernel density estimates of the position and heading errors are plotted in Figure 8b.
Side, forward and heading errors are shown in the bottom row of Table 2, while computation times are
presented in Table 1 (mean, max and standard deviation).

Figure 8. (a) Path driven while navigating to 60 random goals; (b) Kernel density estimate
of corresponding end pose accuracy.
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4.4. Evaluation of Discretization Effect on Longer Paths

In order to obtain a path quickly, the number of discretization steps needs to be kept low. However, if
the step size is too big, the path smoother will not find paths of the same quality. To evaluate the impact
of different numbers of discretization steps, we used again the goal poses shown in Figure 5b, but we
interleaved these with an additional goal pose placed further away (see Figure 9a). We compared two
different sets of test runs, where the number of discretization steps was set to either 100 or 400. The
corresponding end pose accuracy and computation times are shown in Table 3.

Figure 9. (a) Paths and goal poses used in Section 4.4; (b) End pose accuracy of the bottom
right goal state.
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Table 3. End pose accuracy and computation time, different discretizations N .

Dist (m) Std (m) Computation Time (s) Std (s)

N = 100 0.0103 0.0091 1.5286 0.1668
N = 400 0.0079 0.0034 8.2057 1.0059

The results shows a minor improvement, but not-statistically significant (performing an unpaired
t-test; p = 0.4961), in accuracy (as reported in Figure 9b) at the expense of increased computational costs.

5. Conclusions and Future Work

We have presented a complete navigation system for autonomous, non-holonomic vehicles in
industrial settings and we have introduced a novel, fast path smoothing approach, which is applied to
the output of a lattice-based motion planner. Lattice-based motion planners, as it is the case with all
sampling-based approaches to motion planning, produce motions that present discontinuities which lead
to insufficient accuracy and precision in industrial applications. This problem is overcome by our novel
approach to path smoothing. Our approach has two major advantages: it can work on-line and uses the
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same state representation as the motion planner. It could thus directly incorporate state-space constraints
in the smoothing process and therefore avoid the need to verify the path again after smoothing. This
enables direct initialization of the path smoother with the automatically generated obstacle-free paths.
Curvature checks on the final path are not necessary and we can directly include additional constraints
in the optimization process. This opens up new possibilities to constrain the vehicle when it approaches
the goal state. Constraining steering more in the last segments of the path could, for instance, improve
pose accuracy even further. This, however, is left for future work. Another interesting avenue for further
investigation will be to apply our approach to other planners, RRT- and PRM-based, to ascertain the
generalizability of our methodology.

We have also presented an extensive experimental evaluation of our complete system and of all its
major components. In the evaluation, we have compared our system with a state-of-the-art commercial
solution, obtaining comparable results with respect to accuracy and precision. However, our system
has the advantage that it can automatically plan trajectories on-line, instead of relying on expensive
manual drawing.
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