oS

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at 24th International Joint Conference on Artificial
Intelligence (IICAI), Buenos Aires, Argentina, 25-31 July, 2015.

Citation for the original published paper:

Mansouri, M., Andreasson, H., Pecora, F. (2015)
Towards Hybrid Reasoning for Automated Industrial Fleet Management.
In: 24th International Joint Conference on Artificial Intelligence, Workshop on Hybrid Reasoning

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-47936

Towards Hybrid Reasoning for Automated Industrial Fleet Management

Masoumeh Mansouri, Henrik Andreasson, Federico Pecora
Center for Applied Autonomous Sensor Systems,
Orebro University, SE-70182 Sweden.

<name.surname>@oru.se

Abstract

More and more industrial applications require fleets
of autonomous ground vehicles. Today’s solutions
to the management of these fleets still largely rely
on fixed set-ups of the system, manually speci-
fied ad-hoc rules. Our aim is to replace current
practice with autonomous fleets and fleet manage-
ment systems that are easily adaptable to new set-
ups and environments, can accommodate human-
intelligible rules, and guarantee feasible and mean-
ingful behavior of the fleet. We propose to cast
the problem of autonomous fleet management to
a meta-CSP that integrates task allocation, coor-
dination and motion planning. We discuss design
choices of the approach, and how it caters to the
need for hybrid reasoning in terms of symbolic,
metric, temporal and spatial constraints. We also
comment on a preliminary realization of the sys-
tem.

1 Introduction

More and more industrial applications require fleets of au-
tonomous ground vehicles. These include intralogistics, con-
struction sites, and mining. In all of these industries, it is
required to develop fleets and fleet management systems that
can respond to changes rapidly. In intralogistics, for exam-
ple, fleets of autonomous forklifts have to adapt to changing
warehouse layout, the addition/removal of forklifts, dynamic
priorities, and new storage and shelving areas. Fleet behav-
ior must meet certain operational requirements. Ideally, we
would like to specify these requirements at a high-level of
abstraction and have the robots autonomously adapt and act
appropriately.

However, today’s fleet management solutions for au-
tonomous vehicles still largely rely on fixed set-ups of
the system (e.g., pre-defined trajectories for robots naviga-
tion [Marshall et al., 2008]) and manually specified ad-hoc
rules and functions (i.e., specifying ad-hoc traffic rules for au-
tonomous safe navigation). Current approaches present two
major drawbacks: first, even small modifications to the envi-
ronment require to re-think the overall process (e.g., defining
new trajectories and manually updating traffic rules, both of
which are expensive and lengthy procedures); second, it is

difficult to guarantee desired formal properties (e.g., ad-hoc
traffic rules are not sufficient to guarantee deadlock-free co-
ordination). The first drawback motivates us to design an au-
tonomous system that is easily adaptable to new set-ups, envi-
ronments and human-intelligible rules. The second drawback
suggests an automated solution to fleet management whose
formal properties can be proven, thus guaranteeing feasible
and meaningful behavior of the system.

The knowledge representation and reasoning (KR&R) un-
derlying an automated fleet management system should be
hybrid. The representation should be symbolic, as this facili-
tates the job of modeling system behaviors. It should also ac-
commodate metric models since various reasoning processes
are done at the metric level (e.g., motion planning). In addi-
tion to accommodating qualitative and metric knowledge, the
representation should encompass various semantics that al-
lows for different types of reasoning (e.g., temporal and spa-
tial reasoning). For example, consider a scenario where vehi-
cles have to accomplish tasks that require moving from their
current positions to goal positions in such a way that their
maneuvers are collision free. In this system, three different
sub-problems have to be solved: task allocation, motion plan-
ning and coordination. Solutions to each sub-problem depend
on the solutions to other sub-problems. In other words, it is
necessary to subject the possible choices made to solve one
problem to the choices made in resolving the other problems.
For example, a particular decision about an allocation of a
robot to a task may result in a motion that is in conflict with
that of another vehicle. In this case, coordination may decide
to delay the other vehicle to avoid the conflict, which may
lead to the violation of a deadline constraint on a delivery of
a particular task, that in turn will affect the task allocation
decision. In general, to solve an overall hybrid problem, we
need to interleave individual reasoners (e.g., motion planning
and coordination) to account for inter-dependencies among
their decisions. This can be feasible through a hybrid repre-
sentation that is shared among reasoners for posting the con-
sequence of theirs decisions.

To address the issues above, we work toward building a
system for autonomous fleet management that facilitates hy-
brid reasoning by casting the high-level requirement of a sys-
tem to a meta-CSP. More specifically, we propose a solu-
tion to the management of fleets of autonomous vehicles that
(1) incorporates task allocation (2) accounts for individual

feasible motions of each vehicle with respect to the vehicle’s
kinematic model; (3) avoids deadlocks and collisions; (4) is
able to accommodate externally imposed temporal and spatial
constraints that are either metric or qualitative.

In this paper, the terms robot and vehicle are used inter-
changeably, and an autonomous vehicle will be referred to as
a vehicle for brevity.

2 Representation

Our system is grounded upon the notion of task. A task rep-
resents what operations a vehicle must carry out, as well as
where and when these are to occur. The spatial and tem-
poral dimensions of a task are represented as trajectory en-
velopes. These are collections of spatial and temporal con-
straints on vehicle trajectories and temporal constraints on
when the task is to be achieved. This representation builds
upon a purely spatio-temporal representation of trajectories
presented in Pecora et al. [2012]. Also, the construction of
trajectory envelopes is adapted to accommodate spatial con-
straints at different levels of granularity. The latter helps us
to increase scalability for employing less constraints in the
reasoning process where appropriate.

2.1 Trajectory Envelopes

A trajectory envelope is composed of a spatial envelope and a
temporal envelope. The former is a set S = {S1,...,S,} of
constraints on the position and orientation of a vehicle (i.e.,
a pose) within a given map M of the environment. Each S;
is convex polygon resulting from the convex hull of a set of
polyhedral constraints {c}, ..., }, where each cz is a set of
linear inequalities that bound the vehicle’s pose.

To each S; we associate a set of temporal constraints 7; of
the form

i <ei—s; <y (D

where s; (e;) denotes the time in which the vehicle’s pose
begins (ceases) to be within the polyhedral constraint S;.
l;,u; € R are fixed lower and upper bounds. (1) de-
fines bounds on when the reference point of the vehicle
is within the convex region specified by S;. The bounds
(Yi.i+1,uii+1 € R) on when the reference point is within
the spatial overlap between S; and S; 1 is defined as

liiv1 <€ — Siv1 < Uijiqt, ()

The temporal envelope of a vehicle is the collection of tem-
poral constraints 7 = {T4,...,T,}.

Definition 1. A trajectory envelope is a pair £ = (S, T),
where

o S = U, Si is the spatial envelope of the vehicle, and
e 7 =, T; is the temporal envelope of the vehicle.

A trajectory envelope is thus a set of spatial and tempo-
ral constraints on a vehicle’s trajectory — that is, each pair
(Si,T;) constitutes a polyhedral constraint (polyhedron for
short) that curtails the possible poses of the vehicle and when
the vehicle can assume those poses.

Let p : [0,1] — R? x S! denote a path for a vehicle,
in terms of positions and orientations of its reference point,

parametrized using its arc length 0. Given a time history
along the path ¢ = o(t), we refer to p(o) as a trajec-
tory. £ contains the trajectory p(o) if p(c(t)) € S; for all
t € T;. The number of \S; over a given trajectory p(o) is
determined by the number of changing points computed by
the Ramer-Douglas-Peucker (RDP) [Douglas and Peucker,
1973] algorithm given a parameter e. Higher values of € lead
to a lower number of polyhedra S; € S. Henceforth, we
use (-)U) to indicate that variable (-) is associated to the j-
th vehicle. Given NN vehicles, each with trajectory envelope

£, j € {1... N}, the problem of finding s\’ and e’ (for
all 4, 7) that satisfy temporal constraints {71, ... 7TV} is
Simple Temporal Problem (STP) [Dechter et al., 1991] with
variables t = Ui7j{52(]), ¢}, A STP admits many solu-
tions, each defining the amount of time eEJ) SZ(]) during
which vehicle j’s reference point should be within the poly-
hedral constraint Sl(j). A solution of this STP can be found in
O(|S|*) with the Floyd-Warshall all-pairs-shortest-paths al-
gorithm [Floyd, 1962], where S = Zjvzl }S () ‘

So far, we have explained the metric level spatial and tem-
poral constraints subject to which the vehicles are to navigate
the common Map M. Both types of constraints are given as
sets of inequalities. Temporal inequalities in 7 and spatial
inequalities in S form the basic constructs for metric tempo-
ral and spatial reasoning. However, in order for humans to
impose requirements on vehicle behavior, it is useful to be
able to specify qualitative spatial and temporal constraints:
for example, the occurrence of a certain polyhedron should
be before the occurrence of another one, or one polyhedron
should be ‘disconnected’ from another specific polyhedron.
In order to reason about such requirements, we provide a set
of qualitative constraints with semantics that can be reasoned
about at the metric level.

Temporal CSP. The elements 7; of a trajectory envelope
can be seen as variables in a qualitative temporal CSP. Their
domain is an interval [s;, e;] where s; represents the start time
and e; represent the end time of the interval. Constraints
are basic Allen relations or a convex disjunction of Allen re-
lations [Allen, 1984]. The former are the thirteen possible
temporal relations between intervals, namely “before” (b),
“meets” (m), “overlaps” (o), “during” (d), “starts” (s), “fin-
ishes” (f), their inverses (e.g., bfl), and “equals” (=). For
example, we can state that 7} is in relation “overlaps” with T}.
These qualitative relations have temporal semantics that can
be expressed as inequalities between start/end times. Hence,
reasoning about qualitative constraints can be performed in
the STP.

Spatial CSP. The elements S; of a trajectory envelope can
be seen as variables in a qualitative spatial CSP. Constraints
in this CSP include the constraint DC (disconnected).DC' is
a directed binary constraint between two polyhedra. Impos-
ing A DC B results in moving the polyhedron A such that
it is not no longer connected to polyhedron B and B DC A
results in moving B to enforce disconnection. At the metric

Q@ (cl
,((1) Q) (el

fc

A ()

(el

\.

e

()

Q®(ch)
Q(id) = 1

x

/

Q@) (id)

A Y
o

()

Q@ (em)

2

Qt'\)(,.;:«>

(©

(d)

Figure 1: An example of two tasks with their targets and trajectory envelopes.

level, DC translates a polyhedron (i.e., moves every point of
a polyhedron constant distance in a specified direction) by a
vector. The translation function given by vector v is T,. We
calculate the penetration vector (pv) through SAT (Separat-
ing Axis Theorem) [Boyd and Vandenberghe, 2004] and use
it as a translation vector to enforce the minimum displace-
ment required to disconnect the two polyhedra. There are
DC constraints between trajectory envelopes and all obsta-
cles. Therefore, enforcing a DC constraint may result in an
inconsistency in the spatial CSP if the displaced polyhedron
intersects an obstacle. In summary, we define a high-level
spatial CSP over the metric representation to provide a rep-
resentational framework which can be extendable to various
types of symbolic spatial constraints. Employing different
high-level constraints, such as cardinal constraints or con-
straints in Region Connection Calculus (RCC), is a topic for
future work. Performing high-level spatial reasoning (e.g.,
path-consistency over a network of RCC relations) avoids
unnecessary metric operation in case of inconsistency at the
higher level.

2.2 Vehicle Target

In addition to trajectory envelopes, other types of knowledge
that are used in the fleet management process must be repre-
sented.

Definition 2. A vehicle target is a tuple)
(ID,0P,,0P.,ct,cr,Cy,Cy,LOAD), where ID repre-
sents the ID of the robot set to perform OP; and OP. at
respectively starting pose ci and goal pose c* under a set of
user-defined temporal constraints Cy and spatial constraints
Cs.

A vehicle can perform various types of operations, namely,
loading, unloading, load detect (i.e., the cargo location should
be detected using perception) and can have different types of
loads. The types of load and operation are inputs to the sys-
tem. C} are Cy are metric or qualitative spatial and temporal
constraints. Henceforth, we denote with V' the set of all vehi-
cle IDs, and with (-) an element of the target tuple.

2.3 Task Network as Hybrid Representation

The core of our representation is a fask. A task serves as vari-
able whose values encompass all the requirements to which a
vehicle is subject to:

Definition 3. A Task is a pair K = (Q, &), where £ = (S, T)
is the trajectory envelope of the vehicle, and () is the target of

the vehicle.

Reasoning employs a common constraint network, called
task constraint network, which is used as a common search
space for solving the hybrid problem. Its variables are tasks
and its constraints are spatial and temporal constraints.

Tasks and constraints can be used to represent the require-
ments subject to which vehicles should operate. For instance,
Figure 1(d) the trajectory envelopes of two vehicles, as well
as the requirement that the two vehicles are either spatially
or temporally separated in the narrow passage. The latter re-
quirement is expressed as a disjunction of a spatial and a tem-
poral constraint. In the following section, we describe how
these requirements are obtained incrementally via reasoning
in the joint search space of different sub-problems.

3 Constraint Based Reasoning for Industrial
Vehicles

A task network constitutes a common representation for rea-
soning in several modules, namely, meta-CSP search, trajec-
tory extractor and vehicle executive.

Meta-CSP search decides allocations of vehicle IDs to
tasks (i.e., which vehicle performs a task), and generates
trajectory envelopes that are guaranteed to be collision-free,
deadlock-free, adherent to spatial and temporal constraints,
and traversable by the vehicles. The meta-CSP search does
so by exploring the joint search space posed by the task allo-
cation, motion planing and coordination problems.

A trajectory extractor extracts trajectories for a given task
K1) from its trajectory envelopes ().

A vehicle executive realizes the interface between vehicle
controllers and the trajectory envelope representation by up-
dating the trajectory envelopes with constraints representing
the current progress of each vehicle. This propagates any mis-
match between prescribed and executed trajectories on all ve-
hicles in the fleet. A controller on board each vehicle synthe-
sizes control actions according to a Model Predictive Control
(MPC) scheme [Qin and Badgwell, 2003].

3.1 Meta-CSP Search

The tasks and constraints in a task network describe the pos-
sible behaviors of vehicles. For the purposes of the industrial
settings that are the focus of our work, we require task net-
works to be feasible:

Definition 4. A task network is feasible iff

e all tasks are assigned to vehicles;

e all 4tasks include feasible motions, i.e., for each task
KY), there is a set of motions £9) leading vehicle j from
its current position to a goal position;

e all tasks are deadlock- and collisions-free;
e the temporal CSP and spatial CSP are consistent.

Obtaining a task network that is feasible is a problem at the
higher level of abstraction. The decisions leading to feasible
task networks consist of incrementally adding variables and
constraints to the task network. This combinatorial problem
is solved by a CSP-like search, in a meta-level CSP (hence-
forth called meta-CSP).

A meta-CSP is a CSP whose constraints, called meta-
constraints, are first three high-level requirements stated
above. In particular, meta-constraints in our application re-
strict decisions related to task allocation, motion planning,
and coordination. The latter, for instance, restricts trajectory
envelopes so that they are collision free. Meta-CSP search in-
terleaves reasoning about the three meta-constraints to guar-
antee that all requirements are upheld simultaneously. The
meta-CSP is defined at a higher level of abstraction of the
temporal and spatial CSPs, and it uses these CSPs to prop-
agate the high-level decisions made for satisfying the meta-
constraints. Note that spatial and temporal consistency is
decided without backtracking through temporal and spatial
propagation. Hence, the fourth requirement is not a meta-
constraint.

Similarly to a CSP, a meta-CSP is characterized by its con-
straints, variables and variable domains (values). A meta-
variable is a subset of the task network that constitutes a flaw
(or infeasibility) with respect to some high-level requirement
— e.g., a pair of polyhedra in two trajectory envelopes that
are temporally and spatially overlapped constitute a collision.
Meta-values are the different possibilities to resolve a flaw;
for example, to resolve a flaw in the task network pertaining
to the collision of two vehicles, temporal constraints can be
posted into the task constraint network forcing one of the ve-
hicles to slow down to prevent the collisions; alternatively, a
spatial constraint can be imposed to force one of the vehicles
to take a new path.

Search in meta-CSP consists in finding an assignment of
resolvers (meta-values) to flaws (meta-variables) given a set
of meta-constraints and the task network. When all flaws are
resolved, the task network represents a feasible set of tasks.
We use a CSP-style backtracking search to find meta-values
to be added to the task network. Meta-variables to branch
on are chosen based on variable ordering heuristics, and al-
ternative meta-values are chosen according to value-ordering
heuristics. Next, we explain each meta-constraint and its con-
tribution to solving the overall hybrid problem.

3.2 Task Allocation Meta-Constraint

The task allocation meta-constraint imposes complete assign-
ments of vehicles to tasks. An example is shown in Fig-
ure 1(b). Its meta-variables are tasks that do not have an as-
signed robot ID, i.e., {KU) | QW) (id) = }. Meta-values are
assignments of robot IDs to targets, i.e., QU)(id) € V.

In the present stage of development, we use a naive way of
allocating robots to tasks. In general, casting task allocation
as a meta-constraint has several advantages. We can use any
off-the-shelf task allocator to solve the problem and this can
be done without changing the representation. The task alloca-
tion meta-constraint is a part of meta-CSP search, not merely
a pre-processing step. Therefore, various alternatives can be
tried based on the choices made by other meta-constraints.
For instance, if a particular assignment to a task creates a
deadlock with respect to robot motions, another feasible as-
signment can be tried. More importantly, the shared represen-
tation can provide a good heuristic for task allocation, since
the task network includes spatial and temporal knowledge,
thus, an estimation of the completion time of previous tasks
and the current and future states of robots. All of the points
above become more important when re-allocation has to be
done efficiently on-line when contingencies occur. This is
even more so if the problem has to be solved for up to hun-
dreds of vehicles.

3.3 Motion Planning Meta-Constraint

The motion planning meta-constraint decides trajectory en-
velopes that adhere to given kinematic constraints (see, e.g.,
Figure 1(c)). Its meta-variables are tasks that have been as-
signed a vehicle ID but not a trajectory envelope, that is,
(KW | QW (id) # O A EU) = (). Meta-values are trajectory
envelopes £() = (SU), 7)),

The spatial envelope SU) of a meta-value contains one or
more kinematically feasible paths that lead the vehicle from
its current pose to the goal pose Q1) (c). SU) contains the
positions and orientations along a nominal path computed by
a motion planner, as well as adjacent positions and orien-
tations obtained by “sweeping” the footprint of the vehicle
within given displacement and turning parameters. In this
work, we used a lattice-based motion planner [Cirillo et al.,
2014b]. The resulting spatial envelope gives the vehicle con-
troller the freedom to spatially deviate from the reference tra-
jectory while remaining within the spatial constraints. The
temporal envelope 7) is calculated for each vehicle, and
contains the constraints (1) and (2). The motion planner pro-
vides the state information and boundary conditions on ini-
tial and final velocities, steering velocities, speed and accel-
eration. Based on the maximum allowed velocity and dis-
tance between two states, a minimum transition time At,,;,,
is computed. This is used to compute the lower bounds in the
temporal envelope 7. The maximum transition time At 4,
determines the upper bounds. We impose a minimum speed
Umin = € > 0: this allows vehicles to move arbitrarily slow,
a condition which is needed to ensure schedulability of joint
motions [Pecora et al., 2012].

3.4 Spatio-temporal Coordination
Meta-Constraint

A coordination meta-constraint refines the envelopes
{EM ... £} of all vehicles so as to eliminate trajecto-
ries which lead to collisions or deadlocks (see example in
Figure 1(d)). These may occur because vehicles share the
same floor space, hence rendering it necessary to impose that

trajectory envelopes do not overlap in both time and space.
Meta-variables of this meta-constraint are pairs of polyhedra
represented by quadruple (.S ,iz), Sf,jl), T,gz), T)), of vehicle ¢
and j respectively, that overlap both spatially and temporally,
ie.,

S A SU) £ A 3)

T N TP # 0. @

The meta-value of a meta-variable is a set of four constraints:
{s{DpCys), s {DCY s, 5)

T {before} TV, TY) {before} T4 } (6)

Adding one of the above constraints to the task network re-
solves the flaw by removing either conditions (3) or condi-
tion (4). For example if the meta-CSP search selects a tem-
poral constraint among (6) for resolving a flaw, and this turns
out to be inconsistent with other temporal constraints in the
task network, then backtracking may lead it to select a spatial
resolver among (5).

When temporal constraints are added to the task network,
their metric semantics are added to the underlying STP, that

is, the inequalities {s,(f) > e%), eg) < s%)}. Temporal con-
straint propagation updates the start and end points of the

temporal variables (T,S’), TT(,f)), which in turn delays one of
the vehicles. This approach is the Earliest Start Time Ap-
proach precedence-constraint posting algorithm [Pecora et
al., 2012] for vehicle coordination.

If a spatial constraint S ,gi) {DC }Sf,z) is chosen as a resolver

for a flaw, S,(j) is translated along the penetration vector, thus
eliminating spatial intersection (see Section 2.1). If two tra-
jectories cross each other, we exclude meta-values (5), re-
stricting flaw resolution to temporal coordination. We say
that two trajectories cross each other if their linear interpola-
tions cross each other.

This meta-constraint employs a variable-ordering that
gives preference to pairs of polyhedra which have bigger
intersecting areas. The value-ordering heuristic prefers se-
quencing choices that maximize temporal flexibility [Cesta et
al., 2002].

In summary, meta-CSP search branches over choices
(meta-values) for solving flaws (meta-variables) pertaining
to all three meta-constraints. It terminates when there is no
more flaw in the task network to be resolved. In the next
Section, we will explain how the trajectory extractor selects a
trajectory from the trajectory envelopes in the task network.
The trajectory extractor operates after meta-CSP search ter-
minates, hence the extracted trajectory is guaranteed to be
feasible. The whole system is on-line and meta-CSP search
is called at a frequency of 1Hz to check for new flaws.

4 Trajectory Extractor

The task network obtained from the meta-CSP search con-
tains trajectory envelopes that are consistent with temporal
and spatial constraints and are deadlock and collision-free.
Now, trajectories that are traversable by the robots have to be

extracted from the envelopes. The trajectory extractor gener-
ates highly accurate, smooth and drivable trajectories which
respect the dynamic and kinematic constraints of the vehi-
cles [Andreasson et al., 2015]. This is done through an opti-
mization process in which the objective function is to mini-
mize the total distance traveled and the total amount of turn-
ing applied on the steering wheel. The objective function
is subject to a set of constraints, including those that consti-
tute the trajectory envelopes. This guarantees that trajectories
conform to the kinematic constraints of the vehicle as well as
to constraints on the vehicle controls. In addition, there are
also constraints that force the initial and end states generated
by the trajectory extractor be exactly equal to the actual state
of the vehicle and given goal poses. The trajectory extractor
is an on-line process and the key to its efficiency is to start the
search from a cost-optimal and obstacle free path. We employ
for this purpose the path that was generated as a starting point
for computing spatial envelopes (see Section 3.3).

5 Discussion

We perform several test runs in a simulated industrial pro-
duction site (using Gazebo) using simulated forklifts. Each
test run opens up interesting issues, which we discuss in the
remainder of this section.

Preliminary experiment. The first scenario is a show-case
for the use of spatio-temporal coordination where new spa-
tial constraints are imposed as meta-values to the common
constraint network and result in avoiding future collisions of
vehicles. Figure 2 shows snapshots of the system. The task
allocation meta-constraint identifies two upcoming targets as
meta-variables and assigns vehicles to the targets as the meta-
values (a). The motion planning meta-constraint identifies
two tasks whose trajectory envelopes are empty as meta-
variables. The meta-values are trajectory envelopes shown in
(b). The spatio-temporal coordination meta-constraint identi-
fies a pair of polyhedra in which conditions (3) and (4) hold
(see Figure 2(b) for the temporally and spatially overlapped
polyhedra). The meta-value is a spatial constraint DC whose
imposition between these two conflicting polyhedra moves
one of them to the right, thus removing condition (3), which
resolves the collision flaw (c). The trajectory extractor ex-
tracts a trajectory for each vehicle which adheres to the con-
straints that are present in the task network (see red lines in
Figure 2(c)). The vehicle controllers follow the extracted tra-
jectories within the limits of the envelopes, and the execution
interface updates the status of the task network as vehicles
proceed (d).

The second scenario is a show-case for the spatio-temporal
coordination of two vehicles (see Figure 3(a) and 3(b)). Fig-
ure 3(a) shows a situation where both robots are assigned
to the targets such that their trajectory envelopes cross each
other. The spatio-temporal meta-constraint identities pairs
of overlapping polyhedra in space and time. Conditions (3)
and (4) constitute a flaw. The resolvers are the two alterna-
tive ‘before’ constraints whose imposition between conflict-
ing polyhedra would remove the condition (4). As a conse-
quence of the chosen ‘before’ constraint, robot2 is delayed

Figure 2: An example of spatio-temporal coordination, where a DC constraint is added as a resolver to solve the spatio-temporal

flaw.

until robotl passes the conflicting areas. Figure 3(b) shows
the moment in which robot2 starts moving toward its goal
pose after robot1 is no longer in the conflicting areas.

Figure 3: Examples of spatio-temporal coordination.

Scalability and Flexible Representation. Figure 3(c) de-
picts a situation where two robots have to drive through a
long corridor in order to reach their goal poses. The trajec-
tory envelopes of robotl and robot2 are shown in the figure.
As explained in Section 2.1, each \S; is a convex hull of a set
of smaller polyhedra {c},...,c"}. The size of this set is de-
fined by the RDP algorithm which depends on the changing
point of the initial trajectory, and can be different for each
S;. The aggregation of smaller polyhedra to a big polyhedron
entails trajectory envelopes with fewer temporal variables 7 .
This facilitates temporal constraint propagation, which in turn
positively affects scalability.

Similarly to the second scenario, one robot has to wait
for another one as a consequence of the temporal constraints
posted by the spatio-temporal coordination. The important
issue here is that robotl waits for robot2 in order to leave
the intersecting polyhedra. However, the intersecting polyhe-
dra cover almost the entire corridor. This is not a desirable
situation since many industrial applications are interested in
decreasing waiting time. This problem can be easily solved
by increasing the size of trajectory envelopes, i.e., decreasing

the parameter € used in the RDP algorithm. Increasing the
size of trajectory envelopes affects scalability. The temporal
CSP continuously updates the temporal bounds over the tra-
jectory envelopes, and increasing the number of its variables
slows down temporal propagation.

The trade-off between trajectory envelope size and scala-
bility suggests employing a flexible representation, i.e., main-
taining trajectory envelopes at different levels of granular-
ity, and selecting an appropriate level based on the types
of resolvers. For example, we can employ convex hulls of
fewer small polyhedra ¢! to create S; when the coordination
meta-constraint chooses DC constraints to resolve flaws; con-
versely, we can increase granularity when it chooses to per-
form temporal flaw resolution.

Traffic Rules. Figure 3(c) points to another important issue
to be discussed. A narrow wall in the corridor was added in
the physical setup of the factory to facilitate lane management
for human drivers. When deploying autonomous vehicles and
automated fleet management solutions, one could avoid the
realization of such physical infrastructure by exploiting spa-
tial constraints to model lane management requirements and
other symbolic traffic rules. For example, the long corridor
can be divided into two polyhedra with opposite orientation.
Each polyhedron represents a lane with a desired direction
(i.e., a lane polyhedron). A meta-constraint can be added that
is responsible for lane management. In this meta-constraint,
the meta-variables are trajectory envelopes which spatially in-
tersect a lane polyhedron, and the difference in their orienta-
tions is higher than a threshold. In other words, a flaw is a
pair of polyhedra, one being a lane polyhedron and the other
a polyhedron in the trajectory envelope of a vehicle, whose
orientation bounds are in opposite directions. A meta-value
for such a flaw would be a spatial constraint enforcing the tra-
jectory envelope be in the lane polyhedron next to it (i.e., the
correct lane). Notice that the trajectory extractor then extracts
the drivable trajectory that adheres to the updated trajectory
envelopes; all other meta-constraints, as well as the search al-
gorithm, also remain identical. Hence no further change to
the algorithm or representation is required to account for lane
specifications.

5.1 Related work on Hybrid Reasoning

Hybrid reasoning in Al started with systems based on Kryp-
ton [Brachman et al., 1985]. Subsequently Description Logic
(DL) and its extensions earned the reputation of being hybrid.
These KR formalisms initially included various forms of
qualitative reasoning. Nowadays, hybrid reasoning is mainly
about combining qualitative and metric reasoning. For ex-
ample, combining task planing (a form of qualitative reason-
ing) with motion planning (a form of metric reasoning) is
considered as a hybrid reasoning problem, and is an active
research topic. In robotics, approaches to hybrid reasoning
are mainly focused on how to include a general high-level
reasoner (e.g., a classical task planner) with specialized rea-
soners (e.g., motion planner). Kaelbling and Lozano-Pérez
[2011] and Garrett et al. [2014] give an overview on different
approaches of combining task and motion planning. Our ap-
proach falls in the category of hybrid reasoning in a robotic
domain, specifically because we employ various types of rea-
soning at metric and qualitative levels, and because our shared
constraint-based representation contains various semantics of
the system, which enables us to interleave high-level as well
as specialized reasoners.

In our work, the meta-CSP includes a meta-constraint
responsible for the coordination of multiple vehicles in a
centralized fashion. Distributed motion coordination using
polynomial-time distributed algorithms (only at the metric
level) is used to guarantee safe navigation [Bekris et al.,
2012]. As opposed to entirely metric reasoning, Saribatur et
al. [2014] employ ASP as a high level representation and rea-
soning schema augmented with external calls to specialized
metric reasoners for the coordination of teams of heteroge-
neous robots. The latter work is interesting for us, as it uses
ASP as a convenient way to encode high-level specifications.
Including an ASP program in a meta-constraint, thus using an
ASP solver within a meta-CSP search, is one of our ongoing
directions of work.

Cirillo et al. [2014a] uses the same technique for motion
planing and trajectory extractor as ours. We augment the co-
ordination techniques used in this paper with the spatial re-
solver, and also include task allocation as a part of integrated
reasoning algorithm.

6 Conclusion and Ongoing Work

We have presented a fleet management system which adheres
to several key requirements. Our approach is grounded on
a common constraint-based representation which is shared
among various reasoners. This common representation in-
cludes both metric and qualitative knowledge enabling rea-
soning at both levels. The constraints capture heterogeneous
requirements of a wide category of industrial domains. The
core algorithm is meta-CSP search which interleaves reason-
ing to achieve a feasible solution with respect to all require-
ments. The focus of our ongoing work is to evaluate whether
the tight integration of different modules through the meta-
CSP approach outperforms existing fleet management sys-
tems [Cirillo et al., 2014a]. Future work will also include de-
veloping specific applications of the approach in underground

and surface mining applications, intralogistics and construc-
tion site management.

Acknowledgments. This work is supported by the Swedish
Knowledge Foundation (KKS) project “Semantic Robots”.

References

J.E. Allen. Towards a general theory of action and time. Artif.
Intell., 23(2):123-154, 1984.

H. Andreasson, J. Saarinen, M. Cirillo, T. Stoyanov, and
A. Lilienthal. Fast, continious state path smoothing to
improve navigation accuracy. In IEEE Conference on
Robotics and Automation (ICRA), 2015.

K. E. Bekris, D. K. Grady, M. Moll, and L. E. Kavraki. Safe
distributed motion coordination for second-order systems
with different planning cycles. [Int. Journal of Robotics
Research (IJRR), 31(2), 2012.

Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-
tion. Cambridge University Press, New York, NY, USA,
2004.

Ronald J. Brachman, Victoria Pigman, Gilbert Hector, and
J. Levesque. An essential hybrid reasoning system: knowl-
edge and symbol level accounts of krypton. In In Proceed-
ings of the 9th International Joint Conference on Artificial
Intelligence, pages 532-539. Morgan Kaufmann, 1985.

A. Cesta, A. Oddi, and S. F. Smith. A constraint-based
method for project scheduling with time windows. Jour-
nal of Heuristics, 8(1):109-136, January 2002.

Marcello Cirillo, Federico Pecora, Henrik Andreasson,
Tansel Uras, and Sven Koenig. Integrated motion plan-
ning and coordination for industrial vehicles. In Int. Conf.
on Automated Planning and Scheduling (ICAPS), 2014.

Marcello Cirillo, Tansel Uras, and Sven Koenig. A lattice-
based approach to multi-robot motion planning for non-
holonomic vehicles. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2014.

R. Dechter, 1. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49(1-3):61-95, 1991.

D. Douglas and T. Peucker. Algorithms for the reduction of
the number of points required to represent a digitized line
or its caricature. The Canadian Cartographer, pages 112—
122, 1973.

Robert W. Floyd. Algorithm 97: Shortest path. Communica-
tion of the ACM, 5:345-348, June 1962.

Caelan Reed Garrett, Tomas Lozano-Pérez, and Leslie Pack
Kaelbling. Ffrob: An efficient heuristic for task and motion
planning. In International Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2014.

Leslie Pack Kaelbling and Toméas Lozano-Pérez. Hierarchical
planning in the now. In IEEE Conference on Robotics and
Automation (ICRA), 2011.

Joshua Marshall, Timothy Barfoot, and Johan Larsson. Au-
tonomous underground tramming for center-articulated ve-
hicles. Journal of Field Robotics, 25(6-7):400—421, 2008.

F. Pecora, M. Cirillo, and D. Dimitrov. On mission-dependent
coordination of multiple vehicles under spatial and tempo-
ral constraints. In Proc. of the IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems (IROS), 2012.

S. Qin and T. Badgwell. A survey of industrial model pre-
dictive control technology. Control Engineering Practice,
11:733-764, 2003.

Z. Saribatur, E. Erdem, and V. Patoglu. Cognitive factories
with multiple teams of heterogeneous robots: Hybrid rea-
soning for optimal feasible global plans. In IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2014.

