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Abstract

Rafael Mosberger (2016): Vision-based Human Detection from Mobile
Machinery in Industrial Environments. Orebro Studies in Technology 68.

The problem addressed in this thesis is the detection, localisation and track-
ing of human workers from mobile industrial machinery using a customised
vision system developed at Orebro University. Coined the RefleX Vision
System, its hardware configuration and computer vision algorithms were
specifically designed for real-world industrial scenarios where workers are
required to wear protective high-visibility garments with retro-reflective
markers. The demand for robust industry-purpose human sensing methods
originates from the fact that many industrial environments represent work
spaces that are shared between humans and mobile machinery. Typical ex-
amples of such environments include construction sites, surface and under-
ground mines, storage yards and warehouses. Here, accidents involving
mobile equipment and human workers frequently result in serious injuries
and fatalities. Robust sensor-based detection of humans in the surrounding
of mobile equipment is therefore an active research topic and represents a
crucial requirement for safe vehicle operation and accident prevention in
increasingly automated production sites. Addressing the described safety
issue, this thesis presents a collection of papers which introduce, analyse and
evaluate a novel vision-based method for detecting humans equipped with
protective high-visibility garments in the neighbourhood of manned or un-
manned industrial vehicles. The thesis provides a comprehensive discussion
of the numerous aspects regarding the design of the hardware and the com-
puter vision algorithms that constitute the vision system. An active near-
infrared camera setup that is customised for the robust perception of retro-
reflective markers builds the basis for the sensing method. Using its specific
input, a set of computer vision and machine learning algorithms then per-
form extraction, analysis, classification and localisation of the observed
reflective patterns, and eventually detection and tracking of workers with
protective garments. Multiple real-world challenges, which existing methods
frequently struggle to cope with, are discussed throughout the thesis, includ-
ing varying ambient lighting conditions and human body pose variation. The
presented work has been carried out with a strong focus on industrial ap-
plicability, and therefore includes an extensive experimental evaluation in a
number of different real-world indoor and outdoor work environments.

Keywords: Industrial Safety, Mobile Machinery, Human Detection, Com-
puter Vision, Machine Learning, Infrared Vision, High-visibility Clothing,
Reflective Markers

Rafael Mosberger, School of Science and Technology
Orebro University, SE-701 82 Orebro, Sweden, rafael.mosberger@oru.se
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So much for the formalities. Now, as my colleague and friend Todor re-
cently pointed out to me, the acknowledgements section is likely to be the only
part of this PhD thesis that most among you who will get hold of this book will
ever actually read. I consider that reason enough to give it a personal touch
by adding a pinch of hopefully entertaining information. Also, this is the sec-
tion where I feel entirely comfortable with applying modifications at will after
handing in the manuscript for revision by my supervisors.

After having spent several years in a robotics lab, I can now confidently say
that I have learned a lot. Many things appear in a clearer light than they used
to in the beginning. However, there are still questions within the robotics com-
munity that leave me completely puzzled at times, and to which I probably will
never find an answer. For example: What on earth is this ridiculous obsession
with Star Wars movies!? I simply do not get it. Or, an equally persistent issue:
Who the bloody heck is Sheldon!?

On a completely different topic, did you know I have a couch in my office?
I know some of you do, not all for the same reason, though. Anyway, if you
do not have a couch in your office, you most likely have one at home. And if
you further happen to be a researcher you have probably found yourself in the
situation that, on a rainy Sunday afternoon, you planned to read an important
research paper. Surely, after reading a paragraph or two while sitting on a chair,
you thought it was more comfortable to read the rest of the paper lying on the
couch. I bet that was the last thing you were consciously thinking for quite a
while that day and you finally ended up reading the paper in your office the
day after. As a conclusion, I really think sofas were not designed for reading
research papers on them. They are simply too comfortable.

By the way, have you ever tried to quickly type the word acknowledgements
on your keyboard and managed to get it right? Me neither. It’s virtually impos-
sible! It is an irritating word, deliberately and maliciously designed to annoy
everybody who attempts to use it. Even if I type it slowly, I start with some-
thing like acknolegements, correct it to acknoledgements, then try acknowl-
egments before figuring that acknowledgements somehow looks most familiar
but without being entirely sure if it is correct. So I look it up again.

With this said, I wish you all the best for whatever you are up to today!
If you think that the topic I have been working with for writing this thesis
is interesting, you may want to glance through the book! There are a lot of
illustrative figures that show what my work is about and you don’t need to be
an engineer to understand them! If, instead, you think that the topic is boring
and you really don’t know what to do right now, you can browse to page 57
and try to find something that does not belong in the pictures.
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Chapter 1
Introduction

The problem addressed in this thesis is vision-based detection and tracking of
human workers from manned or unmanned mobile industrial machinery. The
proposed novel approach uses the reflective properties of conventional pro-
tective workwear as the key feature to achieve robust detection performance
in harsh industrial conditions. Its application aims at increasing occupational
health and safety in a broad range of industrial environments.

Work environments in industrial sectors such as logistics, construction or
mining are frequently organised as shared workspaces which have no physi-
cal separation between pedestrian routes and vehicle operation areas. In many
scenarios humans must carry out tasks in close proximity to machines and ve-
hicles, or directly interact with them. This exposes human workers to a number
of constant safety risks such as getting struck or rolled over by a moving vehicle
or getting caught between vehicles and stationary objects. Due to the significant
dimensions and mass of common industrial machinery, such accidents often re-
sult in serious injuries and death.

To minimise the number of accidents involving human workers and mo-
bile machinery, the industry has seen an increasing trend towards using intel-
ligent sensor technology that monitors the surroundings of a vehicle and pro-
vides information about the presence and location of objects and persons. The
availability of such sensory information is important for a multitude of ap-
plications. It can provide the input to advanced driver assistance systems for
human-driven vehicles, and is even indispensable when building autonomous
machinery. Here, the robotic vehicle is entirely dependent on such sensory in-
put for safe path planning and collision avoidance. Regarding the technologies
in use, cameras are among the most widely used sensors, due to both the rich
scene information they provide as well as their low cost.

This thesis focuses on a novel vision-based approach for human detection
from mobile machinery, such as but not limited to forklifts, loaders, dump
trucks or mining vehicles. The method was specifically designed for appli-
cations in industrial environments where human workers are equipped with
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protective clothing with retro-reflective markers. The proposed vision system,
coined RefleX Vision System, consists of a customised active camera setup and
a set of computer vision algorithms that in combination detect and locate retro-
reflective markers and use this capability to specifically track human workers
over time. A particular challenge in that process is that the sensor system might
also frequently encounter other reflective objects than the workers’ safety gar-
ments. This makes a closer analysis and classification of the observed reflective
patterns necessary for robust system performance.

Strong focus has been given to the industrial applicability of the proposed
approach. The thesis therefore discusses the specific challenges and require-
ments of a human detection system for industrial applications in construction,
logistics or mining, and presents methods for coping with these challenges. A
thorough experimental evaluation has been carried out on a series of video
sequences that were acquired in real-world industrial indoor and outdoor en-
vironments. A selection of environments in which the system has been tested is
shown in Figure 1.1.

This thesis is a collection of five scientific articles. It offers a summary and
synthesis of the work carried out over the course of several years of research
within the field of human workforce detection for the industrial sector. Building
on a common core concept, several variations of the RefleX vision system have
been presented in the articles. This thesis reviews the underlying sensors, models
and algorithms, offers a comparison of the proposed system configurations, and
discusses their respective advantages and limitations.

1.1 Motivation

The underlying research is important for multiple reasons. A great deal of re-
search studied pedestrian detection for road traffic scenes which has led to the
deployment of advanced driver assistance systems that are now wide-spread
among new generations of cars. At the same time, the industry of mobile ma-
chinery has not yet seen the same progress. As it will be discussed in Chapter 2,
little research has focused on the specific requirements of human detection mod-
ules for industrial applications. While some commercial systems with human
detection capabilities are available on the market, their performance is far from
satisfactory.

Furthermore, wearing protective high-visibility clothing with retro-reflective
markers is either a legal requirement or mandatory by employer’s regulations in
many countries. The initial idea of safety garments with reflectors was to ensure
that human drivers see people when they are illuminated with a light source on
the vehicle. This effect can also be exploited by a sensor, however to the best of
the authors’ knowledge this idea has not yet been investigated. It is therefore an
important research contribution to the field of vision-based human detection to
determine the extent to which reflective safety garments can support the human
detection task.
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Figure 1.1: Examples of industrial environments in which the proposed vision system
has been tested on different machinery: (top) wheel loader and dump truck in a gravel
pit, (middle) forklift in an outdoor storage yard, and (bottom) load-haul-dump truck in
an underground mine (Image: Atlas Copco).
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1.2 Problem Statement

The overall problem addressed by the work underlying this thesis is how to
increase and ensure the safety of human workforce around mobile industrial
equipment with a novel low-cost sensor system that exploits the domain-specific
conditions of industrial work environments. Particular focus is placed on the
industrial applicability of the approach, by addressing the specific challenges
and requirements imposed by the industry sector. The proposed solution is re-
quired to be an on-board system, implying that it is to be physically located on
the vehicle, and perform robust human detection, localisation and tracking.

A further requirement is robustness to a wide range of lighting conditions
typically met in industrial environments, ranging from broad daylight with di-
rect sun exposure to nighttime conditions with little or no ambient illumination.
Therefore, if not stated differently within specific parts of the work, no assump-
tions are made regarding the prevailing lighting and illumination conditions the
vehicle finds itself in. The method further has to be applicable to indoor and
outdoor environments without re-adjusting parameters. In view of the poten-
tial operation on rough and uneven terrain, we make no assumptions on the
planarity of the ground the vehicle is moving on, which stands in contrast to
the case of road traffic scenarios.

Given the targeted application area, we make the following assumptions.
All human workers in the surrounding of the host vehicle are equipped with
protective high-visibility work clothing with several retro-reflective markers.
Garments worn by industrial workers may include conventional high-visibility
workwear such as vests, jackets or trousers. Furthermore, it can be assumed
that there exists a line of sight between the sensor and at least one of the retro-
reflective markers on the garment of a worker to be detected.

For defining the precise entities of information the system is supposed to
extract, we employ the taxonomy proposed in [71] and list the following four
spatio-temporal properties of interest:

m Presence: Is there a person present?
m Count: How many persons are present?
m Location: Where are the persons located with respect to the sensor?

m Track: How does a person’s location change over time?

It is important to mention that the list explicitly excludes the fifth and last
property defined in [71], which is the identity of a person. The objective of the
underlying research is increasing occupational safety at industrial work sites,
so it is considered essential that a person in the neighbourhood of a vehicle is
detected, localised and tracked. However, knowing the identity of the person is
not considered necessary in a safety context.
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1.3 Contributions

The research that underlies this thesis addresses the vision-based detection of
human workers from mobile machinery operating in real-world industrial work
environments. To the best of the authors’ knowledge, the work presents the first
human detection approach that exploits the reflective properties of conven-
tional protective workwear in order to facilitate the detection task and make
the resulting system more robust and computationally efficient. The specific
contributions of this thesis are:

Design of a customised low-cost hardware setup aimed at perceiving
retro-reflective markers. The thesis proposes a tailored infrared vision
system with spectral filtering and active illumination that allows for a
distinctive separation of retro-reflective markers from the image back-
ground, and thereby a significant complexity reduction of the subsequent
image processing chain (PAPER I, PAPER II).

Design of an algorithm that robustly extracts reflective markers from suc-
cessive pairs of infrared images, acquired with and without active illumi-
nation. The approach builds on the input from the specialised infrared
camera and specifically copes with challenging lighting conditions such
as direct sun exposure (PAPER I, PAPER II).

Implementation of a supervised learning based classification algorithm for
distinguishing safety garments from other reflective objects, as well as a
regression algorithm that estimates the distance between the camera and
an observed reflective garment from monocular vision input (PAPER I).

Implementation of an algorithm for tracking multiple industrial work-
ers in 3D space. The algorithm assigns observed reflectors to individually
tracked persons by a applying a measurement model taking the uncer-
tainty of the distance estimates into account (PAPER II, PAPER III).

Design and implementation of an algorithm for learning and inference
of a human appearance model which fuses multiple spectral bands by
incorporating features from NIR and RGB images (PAPER V). The model
learns the spatial distribution of image patches of particular appearance
with respect to a defined object centre.

Collection of a set of video sequences! acquired by the hardware con-
figuration deployed in this work (PAPEr I-PaPER V). The sequences are
recorded in a range of indoor and outdoor environments, contain both
NIR and RGB image data, and show persons with reflective garments in
a variety of body poses. No such data sets were found publicly available.

!Parts of the data set are publicly available under www.mrolab.eu/datasets.html, while portions
that are subject to corporate privacy regulations are only available upon request.
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1.4 Thesis Outline

The remaining chapters of this thesis are structured as follows:

Chapter 2: Background and Related Work

The chapter gives an overview of sensors and methods commonly used in hu-
man detection from mobile vehicles. It is shown how the problem of pedestrian
detection has been addressed within the context of road traffic safety, and the
similarities to and differences from human detection from industrial machinery.

Chapter 3: Sensors

This chapter introduces the sensor modalities comprising the RefleX vision sys-
tem, namely NIR and RGB vision. Particular focus is given to the customised
configuration of an active NIR camera for sensing retro-reflective markers,
which lays the foundation for the efficient human detection approach presented
in this thesis.

Chapter 4: Models and Methods

The chapter introduces the underlying models and methods that form the build-
ing blocks for the design of several variations of the RefleX vision system as
presented in Chapter 5. The discussion includes the robust extraction, descrip-
tion and classification of reflective interest regions as well as the representation
and learning of a single or multi-spectral human appearance model.

Chapter 5: Systems and Applications

The chapter revisits the different variations of the RefleX vision system pro-
posed throughout the scientific articles, and compares advantages and draw-
backs of the different versions. Monocular versus stereoscopic vision as well
as the fusion of multiple spectral bands using NIR in combination with RGB
vision are discussed. Furthermore, the chapter gives an insight into applications
of the sensor technology other than human detection.

Chapter 6: Conclusion and Future Work

The chapter summarises the contributions and achievements made with the
proposed vision system. It further discusses the limitations of the presented
approach and gives an outlook on potential future research directions.



Chapter 2
Background and Related Work

Occupational safety ranks among the key areas of activity defined in the social
policy of the European Union (EU) and considerable efforts have been taken in
recent years to increase safety standards at work sites. The European project
ESAW (European Statistics on Accidents at Work) was launched in 1990 with
the aim of collecting union-wide statistical data on work-related accidents, in-
cluding their causes and circumstances. Despite a significant decreasing trend
in accidents at work in the EU, occupational safety is far from being achieved
and remains a primary concern. According to Eurostat, the statistical office of
the European Union, 5 million employees suffer serious work-related accidents
each year, while around 5000 occupational fatalities are reported in Europe
on a yearly basis. In its report Causes and circumstances of accidents at work
in the European Union' the Furopean Commission presents an assessment of
the statistical data with regard to the specific occupation and the activity of
victims with the aim to develop more appropriate prevention policies. The in-
vestigation revealed that incidents involving human workers getting struck by
or colliding with an object in motion account for 35% of all fatal and 18.1%
of all non-fatal work related accidents.

In a comparison of accident rates in the EU-15 countries between 1995 and
20035, construction followed by agriculture and transportation are singled out
as the three sectors with the highest risk of accidents. A particularly high oc-
currence, when compared to the other sectors, is registered for fatal accidents.
Eurostat further reveals that within the construction sector, every third fatal
accident at work involves mobile equipment. Such accidents include persons
falling from vehicles, persons getting struck by objects falling from vehicles,
death or injury through overturning vehicles, or persons getting struck or run
over by the vehicle.

"European Commission, DG Employment, Social Affairs and Inclusion. Causes and circum-
stances of accidents at work in the European Union. Office of Official Publications of the European
Communities, Luxembourg, 2009.
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According to a report from the European Agency for Safety and Health at
Work?, the most common cause for occupational fatalities involving vehicles
on construction sites are workers being struck or rolled over by mobile equip-
ment. The main reasons for these incidents include poor visibility, inadequate
brakes, and untrained drivers. A particular increase in the likelihood for vehi-
cle accidents is observed in the presence of difficult weather conditions, during
operation on rough and uneven grounds, and in crowded workplaces where
employees work under time pressure.

Similar observations can be made with regard to other sectors in which
mobile equipment is heavily utilised, including warehouse facilities, storage
yards, manufacturing sites or surface and underground mines. A broad range
of mobile machinery is employed in these sectors that constantly expose hu-
man workers to a considerable safety risk. The outlined figures regarding oc-
cupational accidents clearly illustrate the need for further accident prevention
methods. Advanced technological solutions in the form of intelligent sensor
systems can thereby play an important role for the implementation of higher
safety standards.

There is also an increasing trend towards deploying autonomous mobile
machinery for different industrial applications. Examples include the automa-
tion of modern warehouse facilities with automated guided vehicles (AGVs) [60,
66], the use of robotic machinery in the construction industry [74, 69], or the
deployment of autonomous mining vehicles [23]. Here, robust object and hu-
man detection modules are crucial to guarantee the safety of workers around
the autonomous equipment. In contrast to the market of driver assistance sys-
tems, full autonomy signifies the complete absence of any human being in the
control loop that could potentially compensate for a missed detection by the
sensor system.

The category of accidents that is addressed with the sensor system discussed
in this thesis are human workers that are getting struck or rolled over by in-
dustrial vehicles. The purpose of the proposed system is the acquisition of in-
formation regarding the presence and location of human workers in a defined
neighbourhood of an industrial vehicle. The acquired information may then be
used by vehicle manufacturers to design advanced driver assistance systems for
human operated vehicles, or navigation and collision avoidance modules for
autonomous machinery. The underlying work is a contribution that in com-
bination with other technical measures allows for deployment of new vehicle
safety technology and finally contribute to increased industrial safety and re-
duced accident rates.

2EU-OSHA: European Agency for Safety and Health at Work, E-fact 2: Preventing Vehicle Acci-
dents in Construction, Office for Official Publications of the European Communities, Luxembourg,
2004
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2.1 High-visibility Clothing in Industry

High-visibility clothing is a type of personal protective equipment and com-
prises any variety of garments with an easily distinguishable, often fluorescent
colour and a certain coverage of highly retro-reflective material. The main ob-
jective of the garments is to increase the conspicuity of the wearer, or in other
words, to make the wearer more easily discernible from any background. Fre-
quent users of high-visibility clothing include road and railroad workers, police
officers, firefighters, emergency services, airport personnel, construction work-
ers, and in general human workforce that is frequently engaged in dark areas or
in the neighbourhood of moving vehicles. According to the European standards
for high-visibility clothing EN 471 and the later EN ISO 20471, an employer
is obliged to provide any high-visibility clothing needed for a respective work
activity free of charge to any employees who may be exposed to significant risks
to their personal safety. In road traffic, high-visibility garments are occasionally
used by cyclists and runners, but rather rarely by pedestrians.

The retro-reflective material that covers parts of the high-visibility garments
is designed to reflect light backwards in the direction of its source with a min-
imum of scattering. The principal purpose of this behaviour is to reflect the
light emitted by a light source on a vehicle, such as the headlights of a truck,
and thereby enhance the visibility of the wearer of the reflective garment in
nighttime or low-light conditions.

The principal novelty of the method presented in this thesis consists in the
exploitation of the retro-reflective properties of high-visibility garments for the
purpose of robustly detecting human workers from mobile industrial machin-
ery. Even though the primary intention behind equipping industrial workwear
with reflective markers was to increase the visibility of workers in night-time
conditions, it is demonstrated that the approach offers a convenient way of
detecting human workforce with an infrared imaging device in both day and
night time applications.

2.2 Sensor Modalities for Human Detection

Human detection is a broad area of research where numerous sensor modalities
have been employed to address the problem in various contexts and applica-
tions. A comprehensive review of the different technologies is therefore beyond
the scope of this thesis and the reader is referred to the extensive survey by
Teixeira et al. [71]. This section instead focuses on a compact discussion of
the sensor technologies that have been predominantly employed in literature
when addressing the problem of human detection from mobile platforms, that
is, when not only the observed target but also the observing sensor might be
in motion. Table 2.1 presents a structured overview of the different families of
sensor technologies and gives a selection of recent related work.
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Sensor Technology Categories Related Work

1.) Range Finders

Lidar active, Gidel et al. [41], Kidono et al. [50],
uninstrumented | Sato et al. [67], Haselich et al. [44]

Radar active, Ritter et al. [64], Chang et al. [22],
uninstrumented | Heuel et al. [46], Heuer et al. [47]

Sonar active, Moebus et al. [58],
uninstrumented | Blumrosen et al. [9]

2.) Cameras

Visible Spectrum (VS) passive, Dalal et al. [26], Montabone et al. [59],
uninstrumented | Yan et al. [76], Milanés et al. [56]

Near-infrared (NIR) active, Andreone et al. [4], Broggi et al. [15],
uninstrumented | Ge et al. [39], Luo et al. [55]

Thermal Infrared (TIR) | passive, Suard et al. [70], Bertozzi et al. [7],
uninstrumented | Fernandez et al. [34], Besbes et al. [8]

3.) Device-to-Device Ranging

Radio Frequency (RF) active, Ruff et al. [65], Rasshofer et al. [63],
instrumented Koch et al. [51], Fackelmeier et al. [32]

Magnetic Field active, Schiffbauer [68], Carr et al. [21],
instrumented Jobes et al. [49], Teizer et al. [72]

Table 2.1: Main families of sensor technologies employed for human sensing from mo-
bile platforms, with a selection of recent literature describing respective single-modality
approaches.

For a categorisation of the sensing approaches, the taxonomy suggested
in [71] is adopted. Human detection methods may be classified into instru-
mented and uninstrumented solutions. While the former class requires each
person to carry a device on them, the latter does not depend on any wearable
technical equipment. Sensors are further grouped into an active and a passive
category. Passive sensing involves sensing signals that are available in the en-
vironment, while active sensing implies that signals are emitted before their
responses are measured. Finally, a subdivision into single-modality and sensor
fusion approaches has been suggested.

A popular family of active sensors that was studied in the scope of human
detection are different versions of range finders. Depending on the medium
they use, they are subdivided into sonar (ultrasound), lidar (visible or infrared
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light) and radar (radio waves). A major advantage of range finders is that they,
as their name indicates, directly deliver range measurements without any ad-
ditional computational effort. Range is thereby most commonly obtained by
measuring the timing or energy of the response signal. In multi-transmitter con-
figurations, the precision of range measurements can be increased through tech-
niques such as triangulation. While the obtained range measurements are pre-
cise in open space, a considerable noise component is added in cluttered indoor
environments as a result of multi-path and scattering effects [71]. This makes
robust detection of people based on shape information alone still a challenging
task and range finders are therefore frequently employed in combination with
vision systems

The most broadly used family of sensors are various types of cameras. In lit-
erature, they are divided into several groups according to the spectral range they
are sensitive to, namely visible light spectrum (VS, 0.4-0.7pm), near-infrared
(NIR, 0.75-1.4um), and thermal infrared (TIR, 8—15pm) imagers. Visible light
imaging especially represents a mature and low-cost technology, allowing for
the acquisition of high-resolution data with rich information about the environ-
ment. However, extracting the relevant portion of information from an image
is often a complex endeavour that can require computationally expensive com-
puter vision and image processing methods. A further difficulty is that the image
content is highly affected by several uncontrollable factors including lighting,
illumination and weather conditions.

TIR and active NIR vision systems have been widely studied, especially for
operation under low light and night time conditions. It is observed that these
sensors offer a lower sensitivity to ambient lighting but also to varying tex-
tures, colours, and shadows when compared to visible light cameras [8]. Ther-
mal cameras offer the advantage that humans appear in the image as distinct
isolated high intensity regions, given that the background has a significantly
lower and uniform temperature distribution. However, it is observed that the
clothing has a strong influence on the observed thermal structure of a human,
and especially thick and highly isolating winter garments can hinder success-
ful detection. Furthermore, no scientific work has systematically addressed the
problem of detecting humans with a thermal camera under the frequent pres-
ence of heat-emitting objects such as machinery and various electrical facilities
that disturb the thermal profile of a human.

Instrumented human sensing approaches, where persons are equipped with
wearable devices, are frequently described under the term device-to-device rang-
ing. The core idea is that a wearable device announces its presence by transmit-
ting a signal to a receiver located on a vehicle. The principle has been frequently
used for tracking items and supplies in industrial scenarios and is often referred
to as proximity detection. Such systems achieve close to perfect detection per-
formance, and can directly deliver the number of people if the wearable tags
contain a unique identifier, as it is the case in radio frequency identification
(RFID). However, localisation of detected people is not straight-forward and
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remains an active research topic. Furthermore, the entire personnel of a work
environment needs to be equipped with active devices whose maintenance can
prove cumbersome.

With respect to the adopted sensor taxonomy, the approach proposed in this
thesis can be classified as active and semi-instrumented. The method is clearly
active because of the emitted infrared signal. It can be interpreted as uninstru-
mented because it does not require persons to wear any powered device, or
as instrumented because of the requirement that workers wear high-visibility
clothing with retro-reflective markers. Nevertheless, the European policy for
occupational safety requires employers to provide personnel around vehicles
with high-visibility clothing, and the garments can therefore not be seen as part
of the sensor solution, but rather as a part of the environmental preconditions
in which the sensor system is placed.

2.3 Pedestrian Detection in Road Traffic Scenes

Advanced driver assistance systems (ADASs) and in particular their sub-category
pedestrian protection systems (PPSs) have become active and widely studied
research areas in the context of road traffic safety. The major purpose of a
PPS is the on-board detection of both static and moving pedestrians in order
to provide the driver of a vehicle with situational information and if neces-
sary perform evasive braking or steering actions in order to avoid accidents.
Although this definition does not specifically exclude vehicles operating at in-
dustrial workplaces, the vast majority of research carried out in the field has
heavily focused on pedestrian detection in urban traffic scenes.

Considerable advances in the research of PPSs have resulted in the devel-
opment of the first generations of commercially available pedestrian detection
systems. Mobileye? offered the first vision-based pedestrian protection system
to automotive manufacturers to allow them to integrate collision warning and
auto braking systems into their cars. Today, several car manufacturers already
offer pedestrian detection warning systems while others plan to integrate them
into their vehicles in the near future.

Several comprehensive surveys document the research on pedestrian detec-
tion for advanced driver assistance in road traffic scenes. In a broad survey on
pedestrian detection methods, Gandhi et al. [37] review approaches with dif-
ferent types of active and passive sensors and discuss ways for collision risk
assessment. Enzweiler et al. [31] survey work on vision-based pedestrian de-
tection, focusing on monocular camera systems, and suggest approaches for
the methodological analysis and experimental evaluation of systems. Geron-
imo et al. [40] give an overview on how to incorporate pedestrian detectors
into full pedestrian protection systems. The authors offer a review of the state-
of-the-art sensors, suggest a general module-based system architecture for PPSs,

3http://www.mobileye.com
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and discuss different approaches for the individual modules defined in the archi-
tecture. Dollar et al. [29] perform an extensive evaluation of 16 state-of-the-art
pedestrian detection methods focusing on individual monocular images instead
of video input.

Two assumptions are commonly made in pedestrian detection that restrict
the search space of the problem at hand. People are assumed to be on foot,
hence the term pedestrian. Furthermore, vehicles are assumed to move on flat
road. The first assumption is manifested by limiting certain geometrical vari-
ables of pedestrians such as their height and aspect ratio in the image. The flat-
road assumption on the other hand is often incorporated in the form of spatial
constraints prescribing that pedestrians have to stand on a ground plane. To
allow for small deviations from this assumption, the flat-road constraint can
be relaxed with a certain tolerance on the pitch angle [38]. More advanced ap-
proaches further try to continuously estimate the 3D camera pose in order to
take road slope variability and the vehicle dynamics into account [61].

Dollar et al. [29] name several directions within the field of pedestrian de-
tection that need further research to cope with more challenging scenarios.
These include the detection of pedestrians at smaller scales and under partial
occlusion, the use of motion features, and more extensive studies on temporal
information integration. Furthermore, the authors suggest utilizing extended
context information from road traffic scenes to replace the often employed sim-
ple ground plane assumption.

2.4 Human Detection in Industrial Environments

Pedestrian detection from cars in road traffic scenes and industrial purpose
human detection from mobile machinery share many similarities. Both aim at
robustly detecting humans for the sake of preventing potential collisions that
might entail injuries and fatalities. Both applications require to discriminate
humans from static objects, as the prevention of collisions with humans is given
the highest importance. At the same time there exist a number of significant
differences between the two areas which should be taken into account when
designing intelligent sensor solutions for the industrial sector.

In the context of road traffic safety and advanced driver assistance, research
explicitly focuses on pedestrian detection. A pedestrian is by definition a person
travelling on foot. Human detection instead, as the term says, refers to detect-
ing people regardless of body position. When comparing image material from
industrial sites and road traffic scenes, a clearly higher body pose variation is
observed for industrial workers than for pedestrians in urban scenes. This dif-
ference is due to the fact that pedestrians mainly stand or walk, while working
in an industrial environment may involve a broad range of work tasks that
frequently require bending over, squatting, kneeling, or, albeit less frequently,
lying on the floor. The assumption that humans are always on foot and more
or less upright standing is not valid in an industrial context and a direct appli-
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cation of pedestrian detectors is therefore not recommended if safety is to be
ensured on a broad basis.

Similarly problematic is to maintain the flat-floor assumption and restrict
detections to be located directly above ground level. Even if a vehicle actually is
moving on flat ground, such as a forklift in a warehouse, it is still not advisable
to spatially constrain detections to be located directly on the ground level. A
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Figure 2.1: Example frames from the INRTA [26] and the Caltech [28] pedestrian detec-
tion datasets, showing humans on foot in typical road traffic scenarios.

Figure 2.2: Example frames from the proprietary data sets recorded in the scope of this
work. The images were acquired from mobile machinery in various industrial environ-
ments and show person occurrences under strongly varying lighting conditions.



2.4. HUMAN DETECTION IN INDUSTRIAL ENVIRONMENTS 15

worker who is climbing up a ladder to pick an object from a shelf should be
equally well detected as somebody standing on the floor. Moreover, there exist
a number of industrial sites in areas such as construction and mining where a
flat floor assumption becomes invalid because vehicles are operating in rough
terrain between mounds and cavities.

A further difference concerns the degree to which the environment can be
controlled. In road traffic, the appearance of pedestrians is strongly influenced
by their clothing and cannot be controlled. Large data sets have been estab-
lished, such as the Caltech Pedestrian Dataset [28], which allow vision systems
to learn the large variability in pedestrian appearance. In contrast, industrial
work sites are more controlled environments where the employer can impose
rules regarding work clothing and equipment. This implies that instrumented
detection approaches can be employed that require workers to be equipped
with wearable devices as part of a safety solution. In certain industrial environ-
ments such as warehouses or manufacturing sites, employers further have the
possibility to install static cameras in addition to on-board safety systems.

Figures 2.1 and 2.2 partially illustrate the described differences between
industrial sites and road traffic scenes, and show several challenging example
images contained in the data sets acquired and evaluated in the scope of this
thesis. A further factor to be taken into account, which is not visualised in the
figures, are the motion patterns of cars and industrial machines. Cars regularly
move forwards and most proposed sensor systems are therefore forward facing
and observing a relatively narrow cone. In contrast, industry purpose vehicles
are often involved in loading and unloading scenarios which includes frequent
acceleration and braking, sharp turns and reversing. Blind spots and risk zones
for accidents are heavily dependent on the vehicle layout but generally include
frontal, lateral and rear areas.

Building an industrial purpose human detection system is therefore a com-
plex task. In addition to coping with the described challenges, it has to be
mechanically robust and withstand harsh industrial conditions such as vibra-
tions, shocks, and in the case of outdoor operation, the exposure to a range of
weather conditions. Table 2.2 presents an overview of research contributions
that addressed the specific field of human detection from mobile industrial ma-
chinery and that feature an evaluation in industrial work environments. Simi-
larly to the case of road traffic applications, vision sensors represent the most
popular family of sensing devices. Even though the authors specifically address
industrial environments, the majority do not specifically make use of any par-
ticular features in the appearance of industrial workers. Two exceptions to this
observation can be named, however. Park et al. [62] learn specific colour his-
tograms that incorporate the fluorescent colours of high-visibility vests, while
Yang et al. [19] perform detection of underground coal miners by means of de-
tecting their helmets which were found to have a more distinctive appearance
than the worker’s clothing.
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Year | Authors Sensors Approach

2001 | Ruff et al. [65] RF Sensing Collision avoidance system for haulage
equipment in surface/underground mines

2002 | Schiffbauer [68] MF Sensing | Proximity warning system for surface and
underground mining applications

2010 | Teizer et al. [73] RF Sensing Proximity alert system that warns both

Heimonen et al. [45]

Stereoscopic

vehicle operators and workers

Modular framework for fusion of several

VIS Vision pedestrian detector responses
Carr et al. [21] MF Sensing | Worker proximity detection for mobile
underground mining equipment
2011 | Dickens et al. [27] TIR Vision 4+ | Human detection using TIR vision and
TOF Vision localisition using TOF vision
Yang et al. [19] VIS Vision Detection of miners in underground coal
mines by detecting their helmets
2012 | Park et al. [62] VIS Vision Detection of construction workers

Yang et al. [77]

Stereoscopic

wearing fluorescent safety vests

Omni-directional human detection for a

VIS Vision robot tractor
2013 | Bui et al. [16] VIS Vision Human detection in fish-eye images with
enhance distortion handling
Borges et al. [11] VIS Vision Worker detection and collision prediction
using on- and off-board cameras
2014 | Bddecker etal. [10] | VIS Vision Construction worker and equipment
detection using optical flow
Bui et al. [18, 17] VIS Vision + | Multi-sensor construction worker
Lidar detection using deformable part models
2015 | Costea et al. [25] VIS Vision Omni-directional stereo vision for
obstacle detection in warehouses
Miseikis et al. [57] | VIS Vision Off and on-board camera fusion for
worker detection in industrial scenarios
Teizer et al. [72] MF Sensing | Proximity alert system that warns both

vehicle operators and workers

Table 2.2: Related work in human detection for mobile industrial machinery.
VIS: Visible Spectrum, TIR: Thermal Infrared, TOF: Time-of-flight,
RF: Radio Frequency, MF: Magnetic Field
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Approaches which perform information fusion from on- and off-board cam-
eras [11, 57] were shown to yield robust performance over longer evaluation
periods. An improvement results from the fact that the scene is observed from
different angles using multiple cameras with communication capabilities. Such
methods offer the advantage that they can detect humans which are not neces-
sarily in the line of sight of the sensor system on-board the vehicle. However,
the necessity of installing static cameras and establishing a central communi-
cation system makes their application more cumbersome than pure on-board
solutions. Furthermore, as the static cameras maintain a background model of
the scene, the system runs the risk of classifying workers as background objects
if they are standing still for extended periods of time [11].

Even though some authors investigated vision-based human detection in in-
dustrial scenarios, none of the referenced works addresses the particular chal-
lenge of detecting non-upright humans. Furthermore, the authors commonly
avoid exposing their test systems to the most challenging conditions, such as
scenarios with heavy under- or over-illumination. It is therefore difficult to as-
sess the extent to which the proposed methods would cope with challenging
real-world conditions.

Several authors also proposed sensor fusion approaches which aim at com-
bining the advantages of different sensor modalities [27, 18, 17]. A popular
approach is to perform initial detection on camera data and use the range mea-
surements from sensors such as lidar [18, 17] or time-of-flight cameras [27]
to localise detected persons in space. The authors show that a performance
increase can be yielded if sensors with complementary characteristics are com-
bined. However, from a commercial point-of-view it is of high interest to limit
the number of sensor modalities and with it the manufacturing cost of a sensor
system.

In summary, it can be concluded that the operation of mobile machinery at
industrial work sites still exposes human workers to a considerable safety risk,
and that improving safe working conditions is a major concern of the industry.
Relatively little research has been carried out with focus on investigating the use
of sensor systems that can contribute to increased safety levels. The material
presented in this thesis is therefore an important contribution to the field of
industrial safety, because it analyses and highlights an important problem and
proposes a novel and low-cost sensor system to address it.






Chapter 3
Sensors

This chapter describes multiple variations of a customised camera-based sen-
sor unit for the specific task of detecting human workers wearing protective
garments with retro-reflective markers. The proposed hardware configurations
address a concrete safety requirement in the industrial sector, namely moni-
toring the neighbourhood of heavy mobile machinery with intelligent sensor
systems and detecting the presence and location of human workers entering a
defined risk zone. For broad industrial applicability, sensor systems have to be
suitable for indoor and outdoor use as well as day and night time operation.
This requires a high robustness towards illumination conditions that can range
from over-exposure to bright sunlight to poorly illuminated or even completely
dark working areas.

All sensor setups presented in this chapter are composed of imaging sen-
sors, optical components such as filters and lenses, and electronic circuitry for
active illumination of the observed scene. Their purpose is the acquisition of
images from mobile industrial machinery which capture and depict the charac-
teristic key features of the appearance of industrial workers, in particular the
reflectivity and fluorescent colours of their protective garments.

Different variations of camera-based sensor devices have been studied in
the scope of this research. All setups feature at least one near-infrared (NIR)
camera, customised as detailed in Section 3.1, that is dedicated to the acquisi-
tion of monochrome images in which retro-reflective markers appear as distinct
high-intensity regions of interest. More established hardware pieces were fur-
ther equipped with RGB camera which senses complementary appearance in-
formation such as colour and texture. Figure 3.1 depicts the different hardware
devices assembled in the process and used during the experimental evaluation.
The monocular NIR camera in Figure 3.1a has been employed for the work
presented in PAPER I and PAPER 11, and for parts of PAPER IV. The multi-camera
rig shown in Figure 3.1c was used for PAPER III, PAPER IV and PAPER V. Further
testing and evaluation as discussed in Chapter 5 has been carried out on the ba-
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d)

Figure 3.1: The figure shows the different camera configurations designed for the un-
derlying research: (a) Monocular NIR camera used in PAPER I, 1T and TV, (b) its omnidi-
rectional variant, (¢) the multi-camera rig with two NIR and one RGB camera used in
PapER TTI-V, and (d) its more robust and industrialised version.

sis of the omni-directional NIR camera device according to Figure 3.1b and an
industrialised version of the RGB and NIR camera module (Figure 3.1d).
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3.1 Near-infrared (NIR) Sensing

The human detection approach presented in this thesis uses the retro-reflective
markers attached to industrial workwear as the key feature to trigger the de-
tection pipeline discussed in the two subsequent chapters. This requires robust
and efficient detection and extraction of the reflectors from the acquired im-
age material. Consequently, it is essential to separate reflective interest regions
from the non-reflective image background on an early sensory level, and thus
decrease the complexity of the subsequent image processing methods.

The desired separation is achieved using a combination of monochrome
image sensor, optical band-bass filter, and active light source. The interplay
between these three principal components pursues two goals regarding the ac-
quired images: 1) depict retro-reflective markers as bright as possible, and 2)
depict everything else as dark as possible. Figure 3.2 shows the schematic setup
of the proposed sensor while Figure 3.3 describes the spectral characteristics of
its individual components.

The role of the band-pass filter is to suppress the influence of any secondary
light source to the extent possible, and make objects with low reflectivity appear
dark in the image. On the other hand, short pulse-wise illumination from an
NIR light source takes the role of saturating the retro-reflective markers in the
acquired images. The key parameters in the design of the proposed device are:

m Filter Bandwidth. Ideally, the filter suppresses all incoming light that was
not emitted by the sensors’ own light source. This can be achieved by
using a narrow filter band which coincides as much as possible with the
spectral emission curve of the light source. A filter band with fullwidth at
half maximum (FWHM) of 10 nm has proven effective for this purpose.

m Centre Wavelength. Especially under the influence of sunlight during out-
door operation, the centre wavelength of both the illumination unit and
the bandpass filter are preferably matching a negative peak in the radi-
ation spectrum of the sun. As illustrated in Figure 3.3, several negative
peaks can be distinguished in the spectrum, due to atmospheric gas ab-
sorption. A centre wavelength of 940 nm has proven appropriate to limit
the effect of background illumination as illustrated in Figure 3.5 (middle)
and further discussed in Chapter 4.

m [llumination Intensity. The intensity of the light source has to be strong
enough to achieve a clear separation of the retro-reflective markers from
the background in the acquired images. The parameter depends on the
exposure time and the desired sensor range, as the amount of reflected
light decreases quadratically with increasing distance from the sensor.

m Exposure Time. Images are acquired using a relatively short exposure
time. This avoids motion blur and in combination with the optical band-
pass filter suppresses to a large extent the illumination of objects that
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are not highly reflective. A value between 1 ms and 3 ms has been found
appropriate to cover a detection range up to 20 m distance.

m Light Source Location. It is crucial that the light source is located as close
as possible to the lens. This is due to the fact that retro-reflective mark-
ers only reflect light back in the direction of its source with a minimum
of scattering. As illustrated in Figure 3.1, a ring of infrared LEDs has
therefore been placed closely around the lens.

Ideally, if no secondary light source coincides with the filter band in use, the
acquired images resemble the example given in Figure 3.4 (middle) in case no
active illumination is used, and Figure 3.4 (bottom) if the scene is illuminated
with a flash pulse from the sensors’ own light source. Contrastingly, Figure 3.5
(middle and bottom) show the characteristic appearance of the acquired images
under the presence of a secondary light source that contains wavelenghts that
are transmitted by the filter. The combined use of images taken with and with-
out active illumination for robust extraction of reflective interest regions will
be discussed in Chapter 4.

It is important to state that a similar sensor could be built using a visible
light image sensor. However, infrared sensing is strongly motivated for two rea-
sons. First, the emitted NIR light pulses will not be detectable for the human eye
and thus not disturb the human workforce. Second, the solar radiation power
is lower in the infrared domain than in the visible light domain. The problem
of background illumination through secondary light sources as illustrated in
Figure 3.5 (middle) and further discussed in Chapter 4 is therefore significantly
reduced.

3.2 \Visible-light RGB Sensing

While active NIR vision has been used to capture the characteristic reflectivity
of protective garments, the additional use of an RGB camera has proven use-
ful for several reasons. Most notably, the RGB offers a highly complementary
source of information compared to the customised NIR sensor described in the
previous section. Instead of focusing on reflectivity, the RGB camera captures
the scene in its entirety, and its images offer a much richer source of informa-
tion comprising structure and colour. In particular, the RGB data allows the
observation of the typical colours of the worker’s safety garments and the char-
acteristic human silhouette distinguishing them from the image background.
Furthermore, the additional RGB input was of great practical help throughout
the research presented here. It was heavily used for data interpretation, an-
notation and labelling, as well as during the experimental evaluation and the
visualisation of the results. The principal drawback of using RGB input is that
the input image strongly varies with the illumination conditions.
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Figure 3.2: The figure shows the schematic structure of the NIR sensor designed to
acquire images that discriminate objects with high reflectivity from objects with low re-
flectivity. Sunlight (yellow) as well as light from other secondary light sources is filtered
to a high extent by the optical bandpass filter (green), leading to a dark image back-
ground. The NIR light emitted by the sensor’s own light source (red) corresponds to
wavelengths transmitted by the filter, leading to reflectors being depicted white in the
image.
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Figure 3.3: The figure shows the relative spectral characteristics of the the bandpass filter
(green) and the LEDs used for active illumination (red). The yellow curve represents the
solar irradiation spectrum at sea level (Source: ASTM [35]). The operation wavelength
of 940nm is chosen to exploit the negative peak in the sun spectrum. Especially in
outdoor applications, this allows us to considerably reduce the undesired background
illumination.
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Figure 3.4: Image acquisition in absence of secondary NIR light sources: RGB image
(top) and corresponding NIR images taken without (centre) and with (bottom) active
illumination. The bottom picture shows a distinct separation between highly reflective
markers and the image background, offering sufficient information for the extraction of
reflective markers. The centre picture instead does not contain any relevant information.
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Figure 3.5: Image acquisition under the presence of a strong secondary NIR light source
(the sun): RGB image (top) and corresponding NIR images taken without (centre) and
with (bottom) active illumination. In contrast to Figure 3.4, the bottom picture alone
does not provide sufficient information for differentiating between bright areas that
reflected the emitted NIR flash pulse and areas that were illuminated by the secondary
light source or show the light source itself. Therefore, the centre picture serves as a
reference for the background illumination. Note: the bright white spot on the right
hand side of the NIR images is a lens artefact caused by the strong backlight.






Chapter 4
Models and Methods

This chapter offers an overview and summary of the principal models and al-
gorithms developed for the purpose of detecting industrial workers with the
sensor configuration discussed in the previous chapter. The text further pro-
vides references to the different scientific articles where the respective parts of
the models and methods are detailed and analysed in more depth. Models and
algorithms are the result of a specific design process that takes into account the
particular nature of the sensor data acquired with the infrared imaging device
discussed in Section 3.1.

The chapter contains three main sections. Section 4.1 covers the extraction
of retro-reflective markers from a stream of infrared images and discusses the
challenges posed by additional infrared light sources in the environment. Sec-
tion 4.2 then summarises the methods employed for analysing the reflective
regions extracted from an image and for computing further entities such as
class probabilities or depth estimates. Finally, Section 4.3 discusses a particular
human appearance model for industrial workers equipped with protective gar-
ments. The discussion addresses the incorporation of several distinctive features
of the highly characteristic work clothing in terms of reflectivity and colour into
a multi-spectral appearance model that fuses NIR and RGB data.

4.1 Reflector Extraction

This section resumes the proposed approach for identifying regions that depict
retro-reflective markers in images acquired with the NIR camera configuration
described in Section 3.1. It is assumed that the observing sensor unit is mounted
on an industrial vehicle and potentially in motion. It is further assumed that
the environment in which the sensor system is placed might contain other sec-
ondary NIR light emitting sources than the camera’s own infrared flash unit.
The extraction procedure takes a pair of monochrome NIR images as input,
both taken by a single NIR camera unit in short succession and with a short ex-
posure time (1-3 ms). One of the two images, I,,¢ (nf: no flash), is taken without
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active illumination and serves as a reference image for the momentary ambient
illumination caused by other NIR light emitting sources in the environment.
The second image, Iy (f: flash), is then taken with active illumination and reg-
isters the response from retro-reflective markers in the scenery. An example of
such an image pair under the presence of a strong NIR emitting light source
(e.g. the sun) is illustrated in Figure 3.5 (centre and bottom figure). Using the
two input images I,,s and I, the extraction of reflectors is achieved in two sub-
sequent steps, a candidate generation and a verification step. The algorithm is
discussed with some variations in PAPER I, PApER Il and Parer III.

Due to the active NIR illumination during image acquisition, retro-reflective
markers appear as high-intensity blob-like regions in image Ir. The candidate
generation step therefore aims at locating these high-intensity regions in image
If. To this end, two different methods have been used over the course of the
work. In PAPER I and PaPER II, a circular blob detector, the Center Surround
Extrema (CenSurE) feature detector [1] was employed, resulting in a set of
circular blob features with respective centre coordinates and a scale measure. In
ParEr 111, this procedure was replaced by local adaptive thresholding followed
by the extraction of connected components from the resulting binary image.
The latter approach comes with the advantage that reflectors are extracted as
coherent units instead of a loose set of feature points, which makes it possible
to compute additional variables regarding size and geometry of a reflector.

Under the presence of other NIR light sources, the candidates extracted
from If are not directly guaranteed to represent reflective items. In fact, the im-
age regions might depict a secondary NIR light source itself, or regions that are
brightly illuminated by such a light source. In both cases however, the respec-
tive image regions will have similar appearance when compared in I, and I,
assuming that the secondary light source is not drastically changing intensity in
the short time window between the acquisition of the two images. In contrast,
truly reflective items will appear significantly brighter in image I, as it is de-
picted in Figure 3.5. In a verification step, the detected candidate regions in Iy
are therefore compared with the corresponding regions in I,r. Due to camera
motion or changes in the scene, the exact image coordinates of the interest re-
gions can differ by small amounts between the two input images. The algorithm
proposed in PAPER T and PAPER II therefore aims at relating the respective image
regions using the Lucas-Kanade feature tracking method [12] before measuring
the intensity difference within a close neighborhood of the candidate regions
and rejecting candidates with low difference.

4.2 Reflector Classification

An analysis of various video sequences acquired in different industrial envi-
ronments revealed that the retro-reflective markers on the protective garments
are not the only items with highly reflective properties. Typical examples of
other reflective objects include windows, mirrors, cat’s eye reflectors on vehi-
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cles, and different types of reflective signage attached to the walls or floor. In
consequence, it has to be assumed that the set of reflectors, as extracted by
the procedure outlined in the previous section, contains items which do not
belong to the class of interest. Specifically detecting humans with reflective gar-
ments therefore requires the approach to discriminate between different types
of reflectors. A simple separation in terms of size or geometry of reflectors has
thereby proven unsuccessful. The task is therefore formulated as a two-class
classification problem and approached with supervised machine learning meth-
ods. To do so, a large amount of training samples are collected depicting either
a retro-reflective marker on a safety garment, or another arbitrary reflective
item observed in a range of different industrial environments. Each training
sample is assigned a label designating to which of the two classes it belongs.
Particular focus has to be given to covering a large variety of body positions
in the acquisition of the training samples, as the observed reflective patterns of
a garment as observed in the NIR images vary with the body position and the
angle from which a person is observed.

Reflector classification is not performed on the raw NIR image data but on
local image feature descriptors extracted from the neighborhood of the previ-
ously detected reflective regions. Depending on the choice, a feature descriptor
can thereby represent a vector of either numeric (e.g. SIFT [54], SURF [6]) or
binary (e.g. BRIEF [20], BRISK [53], FREAK [2]) variables. Local image fea-
ture descriptors lead to a considerable dimensionality reduction with respect to
the raw image data and aim to encode the most distinctive information from
an image region in less variables.

Two of the most popular classifiers described in literature were initially con-
sidered for solving the classification problem, namely support vector machines
(SVMs) [24] and random forests [14]. Experiments conducted in the scope of
PAPER I and PAPER II indicated that random forests outperform SVMs for the
problem at hand, that is, the appearance based classification of reflectors on
the basis of the NIR image data. Furthermore, random forests provide a con-
venient basis for building the particular human appearance model that will be
discussed in Section 4.3.2, and were therefore the preferred choice of learning
algorithm for the remainder of the work.

4.2.1 Randomised Classification and Regression Forests

Randomised decision forests |48, 3] are a machine learning method for building
classification and regression models from an ensemble of decision trees that are
trained using randomised feature selection. They have been shown to success-
fully counteract the problem of training data overfitting that is frequently ob-
served with conventional decision trees. The principle was further enhanced by
the technique of bootstrap aggregating [13], where each classifier of an ensem-
ble is trained on a different subset of the training data, and was subsequently
trademarked under the name of random forests [14].
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During the supervised learning stage, a separate bootstrap sample for every
tree is taken from the labelled training data, using sampling with replacement.
Each tree is then trained independently on its own bootstrap sample in a re-
cursive manner, starting from the root node. At each node, the set of training
samples are split into two subsets by submitting each sample to a binary test.
The binary tests evaluate a function of one or several elements of the feature
vectors and compare it to a threshold. Depending on the test result, a sample
is then propagated to either of the two subnodes. A large number of randomly
generated tests is evaluated at each node, and the test which leads to the highest
information gain in the two subnodes is selected and added to the tree model.
The same procedure is then applied to the respective subnodes, and data split-
ting continues until either a specified depth is reached or until a node contains
only one training sample. The leaf nodes finally store a distribution over the an-
notated categorical (classification) or numerical (regression) entity of interest.

Inference is performed by propagating a test sample down the tree of the
learned random forest and applying the feature tests selected during the training
phase. The procedure thereby aggregates the posterior distributions over the
entity of interest stored in the final leaf nodes. This aggregation of votes from
multiple independent decision trees happens through majority voting in the case
of a classification problem, or by prediction of the mean value in a regression
problem. As it will be discussed in Chapter 5, random forests have been used
throughout PAPER I to PAPER IV for binary classification of reflector families as
well as for the estimation of depth from monocular NIR input in PAPER I and
Paper 1II.

4.3 Human Appearance Model

The previous two sections presented methods for the extraction, analysis and
classification of reflective markers observed in images acquired with the cus-
tomised infrared camera described in Section 3.1. This section focuses on two
additional topics, namely the relation between a set of observed reflectors and
individual person occurrences and the fusion of NIR data with traditional RGB
images in order to build a more distinctive human appearance model, incorpo-
rating both the reflectivity and the characteristic colour of protective garments.

As defined in the introduction, it is part of the problem statement to not only
detect whether or not a person is present in the field of view of the camera,
but also to infer the number of humans and their individual locations with
respect to the sensor. Extracting these entities from pure NIR data becomes
more complex as multiple persons are located close to each other, and as the
number of retro-reflective markers on one person increases. The problem is well
illustrated by the example in Figure 4.1, where workers are equipped with both
protective jackets and trousers that in total feature 14 retro-reflective markers
of different size and shape. In addition, several retro-reflective cones are placed
in the same scene. The depicted scenario poses several challenging tasks. First,
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Figure 4.1: The figure illustrates the challenging problem of associating reflectors in the
NIR data to individual person occurrences. While the three persons are easily distin-
guished in the RGB image (left), extracting the number of persons and their location
from the corresponding NIR data (right) is significantly more challenging.

the question arises which of the reflectors in the NIR data actually originate
from a protective garment. Then the portion of reflectors that is believed to do
s0, needs to be associated with specific persons in the image and the locations
of these persons need to be derived by incorporating the evidence provided by
the entire set of the reflectors.

To address these problems in a unified approach, a human appearance
model building on the popular Hough forest method [36] is proposed. The
model learns the characteristic spatial distribution of local image feature patches
around a defined reference point on the human body. By doing so, the model
establishes a relation between the specific appearance of local features and the
spatial location where these features typically appear with respect to a defined
reference point on a person. During the detection stage, a generalised Hough
voting procedure then collects the evidence provided by the entirety of observed
image features and locates the defined reference points of individual person oc-
currences in the image.

The approach was first evaluated on the basis of pure NIR data in combina-
tion with the standard implementation of Hough forests which processes single
channel images. From the point of view of practical applicability this comes
with the advantage that the entire processing chain remains independent from
ambient lighting conditions. However, in applications where good illumination
conditions can be assumed, the additional information provided by an RGB
camera in terms of colour, texture and structure can contribute to building a
stronger, more distinctive appearance model. An extended version of Hough
forests, coined multi-band Hough forests, therefore introduces a convenient
way of fusing information from NIR and RGB images in the same model. The
method was proposed in PAPER V and is summarised in Section 4.3.2 of this
thesis.
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4.3.1 Hough Forests

Hough forests [36] are random forests enhanced with the ability of perform-
ing a generalised Hough transform [5]. Building on the concept of the implicit
shape model [52], they represent a codebook of local prototypic image patches
with given relative location from a predefined reference point on the object,
usually the object centre. Thereby, the approach stands in strong contrast to
the family of holistic models (e.g. [26]) that are frequently used in pedestrian
detection and which model an object as a single entity. In order to cover the
large variety of body positions and articulations observed in certain industrial
scenarios, a holistic approach would require analysing the images simultane-
ously with a multitude of different templates. A more appropriate approach
represents the family of deformable part models (DPMs) [33], which detect in-
dividual connected parts of the human body and by design handle high degrees
of articulation much better. However, they are computationally expensive and
involve considerable body part annotation efforts as part of the model learn-
ing process. Hough forests, with their representation of local image feature
patches, have been shown to successfully handle larger degrees of body articu-
lations [78, 42] while they are at the same time more computationally efficient
than DPMs. Similar to DPMs, they are further able to detect and locate object
instances even under partial occlusion.

During the supervised learning stage, a Hough forest learns a mapping from
local image feature patches to a probability distribution over a defined param-
eter space. Here, this parameter space consists of the likelihood of an image
patch to depict a part of the object class, and for training samples of the fore-
ground class, the two-dimensional location of the patch with respect to a de-
fined reference point of the object class. To build a Hough forest, an ensemble
of randomised decision trees are trained recursively on a large collection of im-
age feature patches. The patches are sampled from both training images of the
given object class and images depicting various background scenes. Each patch
is further labelled accordingly. Patches representing the object class also store
an offset vector indicating the location of the training patch with respect to an
annotated object reference point. Given the labelled training data, building a
Hough forest largely follows the randomised procedure known from conven-
tional random forests. However, splitting a set of training samples at a given
node now pursues two different objectives. A split attempts to create an in-
formation gain either by reducing the uncertainty in the class membership of
patches, or by reducing the variance of their offset vectors.

During the detection stage, local feature patches are extracted from the in-
put images and propagated down every tree of the forest. Compared to conven-
tional random forests, the model now performs classification and regression at
the same time. In fact, the stored leaf-node distributions not only allow the
model to assign foreground probabilities to the analysed images regions but
also to perform a generalised Hough transform and estimate the location of
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the reference point of hypothesised objects. By the dense sliding window based
sampling of feature patches from previously defined regions of interest in the
test image, the method thereby aggregates evidence from the observation of a
large amount of local features in a unified voting scheme.

4.3.2 Multi-band Hough Forests

The concept of multi-band Hough forests has been introduced in PAPER V.
Multi-band Hough forests combine the advantages of local feature based mod-
els, such as Hough forests, with the ability to conveniently fuse information
from multiple spectral bands in a unified model. They represent an extended
concept of Hough forests, adapted to the case where an appearance model is
to be learned from multiple images showing the same object at identical reso-
lution, but sensed within different spectral bands. Similar to standard Hough
forests, the patches in a multi-band Hough forest incorporate various stacked
feature channels which are calculated from the raw input data. However, the
feature stack now represents a collection of channels computed from either of
the input images.

In the framework of this thesis, the concept of multi-band Hough forests has
been evaluated by fusing NIR and RGB input images. The motivation comes
from the fact that key features that provide evidence for the presence of a per-
son wearing protective garments are to be found in both types of images. While
NIR images depict distinctive high-intensity image regions wherever a retro-
reflective marker appears on a garment, RGB images provide complementary
distinctive cues including colour, structure and texture which are not captured
in the infrared band. Depending on the location from where features are ex-
tracted, one or the other channel might contain more discriminative informa-
tion, as illustrated in Figure 4.2. Imposing rules for when to best exploit fea-
tures from either spectral band is therefore difficult, as the answer is location-
dependent and differs for individual types of protective garments with varying
reflective patterns. The core idea is therefore to fuse multiple spectral chan-
nels in the scheme of Hough forest feature patches and exploit the randomised
feature selection mechanism of Hough forests to find the most discriminative
features for splitting a given set of patches at each node in the decision trees.

Figure 4.2 shows two examples of feature patches sampled from images
depicting a person equipped with protective jacket and trousers. One patch
is extracted from an image region in the neighbourhood of a retro-reflective
marker, while the other patch is sampled from a non-reflective region. The fig-
ure illustrates that while the NIR data contains highly discriminative appear-
ance information if the patch depicts a reflector, the complementary RGB input
is clearly the richer source of information in regions that depict non-reflective
structures.
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Figure 4.2: The figure illustrates the concept of multi-band feature patches which build
the basis for learning multi-band Hough forests. Square patches (outlined red) are sam-
pled from corresponding regions in the RGB and NIR training images. Each patch is
resized to a reference scale and stores a set of stacked feature channels that are com-
puted from either RGB or NIR image data. Each feature patch further holds an offset
vector indicating the location where the patch has been extracted from with respect to
an annotated reference point (blue star).

4.3.3 Model Learning

The learning procedure of a multi-band Hough forest model starts with the ac-
quisition of a large set of training images, captured simultaneously in the RGB
and NIR spectrum. As illustrated in Figure 4.3, the training material covers a
large variety of different body positions and articulations in order to account
for the broad range of work tasks potentially carried out by industrial workers.
The figure shows several exemplary body positions with corresponding RGB
and NIR snapshots. The training data is then annotated with a reference point,
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which was defined as the point passing through the centre of the torso and ly-
ing between the two horizontal reflectors of the safety jacket (see Figure 4.4a).
Furthermore, a bounding box delimiting the extent of the person in the image
is annotated. The image background is masked in the RGB data in order to
avoid the particular background scene of the training environment to be incor-
porated into the appearance model. This results in the advantage that training
images can be conveniently acquired in a controlled environment with a back-
ground scene different from the ones encountered in industrial scenarios where
the model is applied later.

Reflectors are then extracted from the NIR training images according to the
procedure discussed in Section 4.1. Subsequently, the reflectors observed in the
NIR data have to be related to the corresponding regions in the RGB image.
However, due to the fact that the cameras observe the scene from slightly dif-
ferent perspectives, there exists a difference in the location of corresponding
regions in the RGB and NIR images. This difference, referred to as the binocu-
lar disparity, is inversely proportional to the depth of an object depicted in an
image. Provided that the camera setup is in frontal parallel configuration, dis-
parity exists only in one dimension. To account for it, either a range sensor can
be employed and disparity is computed from range measurements, or disparity
is directly computed from stereo NIR data acquired by a camera configuration
such as the versions presented in Figure 3.1¢c or 3.1d.

The training images are subsequently rescaled to a reference size. Various
feature channels are computed both from the RGB images and the NIR images.
Features channels may include amongst others image derivatives of different
order, channels from different colour spaces such as RGB or LUV, or histogram
of oriented gradient (HoG) features. Multi-spectral feature patches are then
extracted from various locations on the human silhouette. As depicted in Fig-
ure 4.2, the patches consists of a set of feature channels extracted from the
region delimited by a rectangular sampling window. Furthermore, each patch
stores a two-dimensional offset vector designating the location from where the
training patch was extracted with respect to the annotated reference point. All
patches sampled from the human silhouette are finally given a class label mark-
ing them as foreground patches and added to the set of training patches.

A complementary set of feature patches is then sampled from a collec-
tion of background scenes depicting numerous characteristic industrial indoor
and outdoor environments. Here, it is of particular importance to also include
frames that depict various instances of frequently encountered reflective items,
so that the model can learn to discriminate the appearance of these types of re-
flectors from the reflective markers on the workers’ garments. The patches sam-
pled from these background scenes are marked with a respective background
class label before being added to the collection of training patches.

Building the multi-band Hough forest from the set of extracted feature
patches finally follows the approach known from conventional Hough forests.
By means of the supervised data splitting procedure during which a large set
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Figure 4.3: The figure shows examples of a rich set of training images acquired for
learning a multi-band human appearance model from RGB and NIR data. The training
samples are specifically selected to cover a wide variety of different body positions.
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(d) (e)

Figure 4.4: The figure illustrates the sampling procedure that extracts corresponding
feature patches from RGB and NIR images during the multi-band Hough forest learning
stage: (a-b) training image annotations in terms of bounding box and object reference
point (blue star), (c—d) square training patches sampled from corresponding NIR and
RGB image regions within the human silhouette, and (e) the additional pixel-wise body-
part annotations shown to improve detection performance if used for supervision during
the training procedure of the Hough forests.

of potential candidate splits are evaluated and compared, the Hough forest
structures the patches step by step and reduces the uncertainty in terms of fore-
ground/background class as well as the variance of offset vectors at each node,
as proposed in [36]. However, it has been shown in the context of PAPER V that
the detector performance can be increased by introducing an additional third
supervision criterion which is based on ground-truth pixel-wise body part an-
notations. Exploiting these additional annotations, the training procedure has
been extended in order to not only reduce class and offset uncertainty, but alter-
nately also attempt to regroup patches with similar body part labels while the
data is structured in the tree. In the framework of PAPER V, this approach was
evaluated on persons wearing reflective vests only. A specific automated pipeline
for the efficient extraction of such body part labels was proposed, which in-
volved equipping the persons that appeared in the training frames not only
with a reflective vest but additionally with trousers and sweaters that featured
individually coloured parts. By doing so, an automated ground-truth image seg-
mentation according to various body parts could be applied before the train-
ing stage in order to extract the necessary pixel-wise annotations. However,
the approach is not generally applicable for other types of protective clothing,
especially not to the case where workers are equipped with both upper- and
lower-body garments as shown in Figure 4.3. In this case, pixel-wise body part
labels need to be annotated manually.
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4.3.4 Model Inference

After the learning stage is concluded, the learned appearance model is applied
to perform human detection on unseen image material. Again, this requires
that reflective markers have been previously extracted from the raw NIR input
according to the method described in Section 4.1. Successful model inference
further requires that per-reflector depth estimates have been obtained.

The detected reflective markers in the input images are then processed one
by one. Figure 4.5 visualises the generalised Hough voting procedure for one
particular reflector extracted from the input images. It starts with the genera-
tion of a square region of interest (ROI) in the NIR image, covering a wider but
still locally confined area in the neighbourhood of the reflector under consider-
ation. Region correspondence is established between the NIR and RGB images
by computing the respective ROI disparity from the available depth of the re-
flector. The ROIs are then rescaled to the reference size adopted during training
before the feature channels are computed from each type of image data. A slid-
ing window with dimensions corresponding to the training session then densely
scans the ROI to extract local feature patches.

The extracted patches are propagated down the learned Hough forest un-
til ending up in a leaf node within each tree. The distributions stored in the
respective leaf nodes are exploited to perform a generalised Hough transform.
Probabilistic votes for the presence of an object at a specific location are ac-
cumulated in a three-dimensional Hough space, consisting of a stacked set of
two-dimensional Hough images. Each layer of the stack thereby corresponds
to a scale. Into which of the scale layers a vote is cast, is inferred from the
per-reflector depth estimate. The location where a vote is cast within the given
layer is inferred from the offset vector of a matched training sample. Finally, the
probabilistic weight with which a vote is cast is inferred from the class distribu-
tion stored in the respective leaf node. Using a three-dimensional voting space
allows the Hough transform to discriminate individual object occurrences not
only in the image space but also the scale space. This is especially helpful in sit-
uations where humans appear close to each other in the image space but appear
at different distances, as in the example shown in Figure 4.1.

Once all reflectors of a frame have been processed and all votes have been
cast, each layer of the Hough space is smoothed with a two-dimensional Gaus-
sian kernel adapted in size to match each scale layer. Object hypotheses, com-
prising the 2D location of the reference point in the image plane, the character-
istic scale and a voting score, are subsequently extracted from the 3-dimensional
Hough space using non-maxima suppression.



4.3. HUMAN APPEARANCE MODEL

Feature
Channels

Feature Patch

Multi-band Hough Forest

i \=’ Matched - 1
i Training Patches ' . /
l |

Generalised Hough Transform

Hough Voting Space

Figure 4.5: The figure illustrates the generalised Hough voting procedure triggered by
the presence of one particular example reflector (marked green in the NIR image). The
reflector generates a region of interest (ROIL, blue), which is scaled to a reference size.
Feature channels are computed from RGB and NIR data within the defined ROT before
feature patches are densely sampled by a sliding window (red). The features patches
are propagated down the learned multi-band Hough forest, and the class and offset
vector distribution in the resulting leaf nodes are used to perform a probabilistic Hough
transform in a three-dimensional Hough voting space. Subsequent Gaussian smoothing

and non-maxima suppression serve to isolate the locations of the individual persons.
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Backprojection and Bounding Boxes Estimation

Apart from detecting object occurrences and estimating the position of their
reference points in the image, it is desirable to produce a bounding rectangle,
usually referred to as the bounding box, that delimits the image region in which
the object appears. Given the fact that humans can occur at various distances
and that no prior assumption is made in terms of body position, defining an
accurate bounding box involves estimating three entities:

m Scale: How large should the area of the bounding box be, e.g. what is the
number of pixels covered by it?

m Aspect Ratio: What is the ratio of the width to the height of the rectangle?
This entity is dependent on the body position. Many pedestrian detectors
fix it to a value of around 0.4, corresponding to an upright person.

m Centre Position: Where should the bounding box be centred? Depending
on the choice of reference point during data annotation (cf. Figure 4.4a),
the box centre does not necessarily coincide with the reference point.

The scale of the bounding box can directly be estimated by using the average
area of all annotations in the training data (in a normalised reference scale)
and rescaling it to the scale corresponding to the layer in the Hough space
where an object has been extracted from. To estimate the remaining entities,
two additional voting steps are carried out after performing a feature patch
selection process referred to as backprojection.

Backprojection involves densely scanning the ROIs around the defined re-
flectors a second time, extract feature patches in identical manner as in the first
pass, and propagating them through the Hough forest a second time. This again
leads to the same matches of training patches, however, during this second pass
only the portion of patches is retained which cast a vote into the neighbour-
hood of a detected object. Here, the neighbourhood is defined by the size of
the Gaussian kernel previously applied to smooth the individual layers in the
Hough space. For each local maximum extracted from the Hough space, this
results in a set of feature patches that support the detected object. This subset
of feature patches is then used to cast additional votes for the aspect ratio of
the associated bounding box as well as its centre location with respect to the
reference point of the object.

Figure 4.6 and 4.7 illustrate the output from this final bounding box esti-
mation stage and show how the algorithm manages to produce bounding boxes
with an aspect ratio adapted to the observed body position. It is to be noted that
the estimation of the bounding box centre was not part of the work presented
in PAPER V and has been investigated later. In PAPER V bounding boxes were
centred around the reference point. A visual inspection reveals that bounding
boxes are more accurately estimated if their centre location is individually esti-
mated, however the influence of the additional procedure on the detection rates
has not been investigated.
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Figure 4.6: The figure illustrates the output obtained after applying the generalised
Hough transform, backprojection and bounding box estimation. The top figure shows
the input scene with three person occurrences, together with the detected object refer-
ence points (blue), corresponding to local maxima in the Hough space, estimated bound-
ing box centres (red), and the final bounding boxes (green). The bottom figure visualises
the Hough voting space, integrated over all the scale layers. The extracted local maxima
(blue) and the reflector contours (red) are overlayed. The aspect ratios and centre posi-
tions of the respective bounding boxes are estimated according to the voting procedure
illustrated in Figure 4.7.
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Figure 4.7: The figure illustrates the bounding box estimation process for the three de-
tected persons shown in Figure 4.6. The subset of feature patches that, after backprojec-
tion, were found to have contributed to the detection of a person, are selected to vote for
the aspect ratio of the respective bounding box (top) and its centre position with respect
to the object reference point (bottom). A one-dimensional histogram with logarithmic
binning is used for the aspect ratio, while voting for the bounding box centre position is
done inside a two-dimensional histogram in scale-normalised pixel coordinates.



Chapter 5
Systems and Applications

This chapter presents an overview and discussion of the different variations
and configurations of vision systems implemented in the course of PAPER V-
ParEr V. All systems are built on the basis of the sensors, models and algo-
rithms described in Chapter 3 and 4. Even though the underlying sensing ap-
proach offers generic perception of arbitrary retro-reflective markers, the sys-
tems discussed in Section 5.1 focus on the task of detecting and localising indus-
trial workers with high-visibility garments. All the system configurations have
been evaluated on image sequences recorded in real-world industrial settings
with the aim of demonstrating the practical relevance of the approach. Among
the studied configurations feature monocular and stereoscopic setups relying
on pure NIR vision (Section 5.1.1 and 5.1.2) as well as a setup with one RGB
and two NIR cameras which fuses multiple spectral bands in a unified detection
scheme (Section 5.1.3).

An alternative interesting application of the underlying research is illus-
trated in Section 5.2.1, where NIR stereo vision input was used for tracking
the 3D pose of small-scale vehicles fitted with multiple retro-reflective markers.
The example shows that the combination of proposed sensors and algorithms
offer a more generic flexible toolbox for building computer vision systems with
a range of interesting applications. Potential use cases include scenarios where
a sensor system is required to robustly perceive retro-reflective markers under
possibly difficult lighting conditions. Positioning systems on autonomous vehi-
cles that are based on reflective beacons placed in the environment are a good
example. Here, an active NIR vision sensor as presented in Chapter 3 can be a
cost-effective alternative to a lidar based ranging device. Furthermore, the high
resolution of the acquired sensor data allows for a more detailed analysis of
the shape and geometry of reflectors than it is possible with common lidar sys-
tems. The proposed NIR sensing scheme is therefore particularly suitable if an
application requires a specific analysis of reflector geometry.

43
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| 1. Image Acquisition |

Raw Image Sets
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Figure 5.1: The figure illustrates a general detection pipeline that all three proposed
variations of vision systems are based upon.

5.1 Human Detection and Tracking

Within the scope of this thesis, the principal application of the sensors, models
and algorithms proposed in Chapter 3 and 4 has been the detection and track-
ing of humans with retro-reflective workwear. In the course of the research,
this problem was studied on the basis of three different hardware configura-
tions with varying number and type of cameras. The study included monocular
and stereoscopic NIR-only systems, as well as a setup with two NIR and one
RGB camera that exploits several spectral bands in a more comprehensive sens-
ing approach. Each configuration entails specific design choices and adaptions
on the algorithmic level to make optimal use of the sensor data at hand. This
section summarises and compares the multiple system implementations and dis-
cusses their respective advantages and limitations.
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Figure 5.1 presents a generic system pipeline, which all three proposed sys-
tem variations, by and large, are built upon. For each time frame, the process-
ing chain departs from the synchronised acquisition of a set of multiple images,
where the exact number of images depends on the hardware setup under con-
sideration. Raw input images are undistorted to account for geometric lens dis-
tortions. Furthermore, in the case of multiple cameras, the images are rectified
by projecting them on a common image plane, which reduces the correspon-
dence problem arising when relating image regions from different cameras to a
search in only one dimension.

Subsequent processing steps involve the extraction of image regions that
depict reflective markers by relating images taken with and without active il-
lumination, as described in Section 4.1. No assumption is made at this stage
regarding the object family a given reflector originates from. Reflector extrac-
tion is followed by a depth estimation procedure which localises reflectors in
a 3D space relative to the camera. This step involves either machine learning
based depth regression in the case of monocular NIR, or more traditional com-
putation of per-reflector disparity maps in the case of stereoscopic NIR vision.

Regions of interest (ROIs) covering a certain neighbourhood around the
extracted reflective markers are then generated and features are computed in-
dividually within each ROIL The area covered by an ROI thereby depends on
whether features are extracted from NIR data only, or, whether complemen-
tary information is sampled from the additional RGB input. On the basis of
the computed features, a learned appearance model of industrial workers is
applied. This step involves classification of local features in order to identify
image regions that effectively depict a human worker, and discard ROIs gener-
ated through the presence of other reflective items in the environment. Further-
more, if a model of the spatial distribution of image features within the class
of interest has been learned, such as a Hough forest, the model is applied for
regressing the position of the reference point of individual person occurrences
in the image space by means of a generalised Hough transform.

A final tracking layer then establishes and maintains temporal correspon-
dences over a series of frames and recursively estimates the state of detected
workers in terms of their 3D location and velocity relative to the camera unit.

5.1.1 Monocular NIR Vision

Monocular vision systems have gained high popularity in the field of pedestrian
detection for road traffic scenarios [31]. Single-camera modules are compact
and can therefore be seamlessly integrated in automotive applications. They
further come at a lower cost than their multi-camera counterparts, consume
less power, and involve less calibration effort.

Detection of industrial workers wearing high-visibility vests using an active
monocular NIR vision device has been the major topic of the work presented in
PaPER I and PaPER II. While the focus of PAPER I concentrates on the estimation
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of depth from monocular NIR image features, PAPER II describes a complete
and low-cost single-camera system performing detection, classification, locali-
sation and tracking of workers with retro-reflective vests. Figure 3.1a depicts
the compact single-camera module deployed for the experimental evaluation.
Equipped with an optical bandbass filter and 8 high-power infrared LEDs, the
imaging device costs a mere 500€ and was shown to successfully perceive re-
flective markers up to 10 metres distance.

Figure 5.2 illustrates the temporal cycles of acquiring and processing the
monocular image stream. Pairs of images are registered at a frequency of T;',
where a first image 1,7, taken without NIR flash, serves as a reference image
for the background illumination by ambient NIR light sources. A second image
I7 is registered under active NIR illumination. The exposure time Ty is kept
short (1-3 ms) to minimise the perceived amount of light emitted by potential
other NIR light sources. On the other hand, the exposure window has to be
long enough to saturate the reflectors in image Ir and allow for their clear dis-
crimination from the background. The time delay T, between the acquisition
of I,,s and Iy is kept as short as possible in order to minimise viewpoint changes
under camera motion. The image pair is then processed together and enters the
detection pipeline.

With respect to Figure 5.1, the system presented in PAPER II represents a sim-
plified version of the outlined scheme. In fact, step 5 (classification and model
inference) only involves an appearance model that acts on a per-reflector level.
A binary random forest classifier models the appearance of reflector families
to be detected or discarded, while a random forest regressor learns the rela-
tion between specific reflector appearance and depth. No spatial distribution of
the reflectors with respect to the human silhouette is learned. This simplified
approach is only feasible if the retro-reflective markers on the garments under
consideration are concentrated in one spot. The condition holds true for the
typical sleeveless vests that are most frequently used in industry and feature
two horizontal reflective stripes around the torso. The mapping from a set of
observed reflectors to a set of individual persons is then handled by assigning
reflectors to bounding boxes of individual tracked persons as described below.

Learning Depth from Appearance

One of the major challenges in the monocular sensing approach lies in the
localisation of detected persons in 3D space and in thereby obtaining a no-
tion of depth. In road traffic scenarios and other applications where a vehicle
is consistently moving on even ground, monocular depth estimation is often
performed by relying on spatial information about the ground plane and geo-
metrical constraints that force detections to be located directly on the ground,
such as in [75]. Another method observes several consecutive frames and ob-
tains depth via structure from motion cues, such as in [30]. Due to the nature
of the available sensor data, both approaches are not suitable for addressing
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Figure 5.2: Temporal image acquisition and processing cycle for the monocular NIR
vision system. Images are alternately taken with and without active illumination. Once
an image pair is acquired, an image pair is processed together.

the problem at hand. As stated in Section 1.2, it is a fundamental requirement
that the proposed solution is applicable to outdoor environments with poten-
tially rough and uneven terrain. Trying to estimate a ground-plane and spatially
constraining detections to according image regions is therefore not advisable.
Persons located on terrain elevations or in cavities would easily be missed. In
addition, the input images from the customised infrared camera lack any scene
structure apart from the sparse set of reflective markers and therefore do not
permit extraction of information about a ground-plan or scene structure.

Instead, it was shown in PAPER I and PAPER II that approximate depth esti-
mates for individual reflective markers can be obtained by supervised learning
from monocular NIR image data. To do so, a random forest regressor is trained
on the same local appearance features that also serve for the discrimination of
different families of reflective markers or objects. However, in contrast to the
random forest classifier, the leaf-nodes of the decision trees no longer store a
class distribution but the average depth estimate computed from the annotated
training samples in a leaf-node. These entities are later used during detection to
vote for the most probable object distance when a reflective pattern is observed.
The machine learning based approach has been shown to estimate depth with
an accuracy ranging between one to two decimetres at 2.5 metres and half a
metre at 10 metres distance.

While monocular camera systems enjoy many advantages over multi-sensor
configurations, the method comes with the distinct drawback of requiring a
considerable amount of training samples labelled with ground-truth depth mea-
surements. In PAPER I and PAPER II, this procedure was substantially simplified
by acquiring the training material from a static sensor unit in an uncluttered en-
vironment and on even ground, so that the ground-truth locations of persons
were conveniently extracted using a two-dimensional lidar in combination with
simple statistical background subtraction methods.



48 CHAPTER 5. SYSTEMS AND APPLICATIONS

Tracking

A tracking layer that takes individual reflectors as input, initialises tracking
targets, and maintains their state over multiple frames has been discussed in
Paper 11 for the case of a single person and in Paper III and Parer IV for
multiple persons. The tracker by design incorporates all the detected reflectors
together with their classification scores and distance estimates. By doing so, all
the reflective items are being kept track of, regardless of the type of object they
represent. This offers the advantage that a decision on whether an object is a
person or not can be taken after integrating several classification scores over a
series of frame and thus base the decision on more evidence.

The tracking layer is implemented using a particle filter based on the stan-
dard sequential importance resampling algorithm [43]. The particle filter per-
forms recursive Bayesian estimation of a 6-dimensional state variable consisting
of the 3-dimensional location and velocity of a tracked target. Two important
entities that need to be defined in the particle filter are the state transition (or
motion) model and the measurement model. The measurement model defines
the probability of making a certain observation given a state. In the particular
case of the proposed monocular system, where depth is inferred from learning,
the measurement model needs to take into account that the accuracy of position
estimates for individual reflectors is significantly lower in the depth dimension
than in the lateral (horizontal and vertical) dimension.

Defining an appropriate model for the motion of the tracked targets is dif-
ficult in the underlying case. Both the camera and the observed targets may
or may not be in motion. No information is assumed available with regard to
the vehicle motion and inferring such information from visual odometry is no
option here given the type of NIR images produced by the camera. A common
solution in such cases it to use a constant velocity model in combination with
a relatively large process noise that accounts for unmodelled velocity changes.

5.1.2 Stereoscopic NIR Vision

As described in the previous section, monocular depth estimation by means of
supervised learning requires a large amount of annotated training samples. In
particular, if the algorithm must simultaneously handle several types of protec-
tive garments with different reflective patterns, the acquisition and annotation
of these training samples can prove cumbersome. Therefore, if the compactness
and the manufacturing cost of the camera module are not the primary factors,
it is advisable to opt for stereoscopic NIR input. In this configuration, depth
estimates are obtained by computing a disparity map from the input images
of two NIR cameras. As detailed in PAPER III and PaPER 1V, disparity is not
densely computed over the entire image but efficiently restricted to local areas
where a reflective marker indicates the potential presence of a person. The 3D
locations of reflectors are then inferred by triangulation from the disparities.
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Figure 5.3: Temporal image acquisition and processing cycle for the stereoscopic NIR
vision system. Camera NIR1 alternately takes images with and without active illumina-
tion which permits identifying reflective interest regions. The images captured by camera
NIR2 then serve as complementary input for depth estimation through triangulation.

For the work in PAPER III and PAPER IV, the camera module was therefore
enhanced by adding a second NIR camera of identical type. The respective unit
is depicted in Figure 3.1c. Figure 5.3 illustrates the temporal acquisition and
processing cycle adapted to the stereoscopic configuration. As in the monocular
case, one camera (NIR1) continuously acquires pairs of images without and
with active illumination (I s and T;;). In addition, a second camera (NTR2)
acquires images under active illumination (I, ), synchronised with image I; 1.
The image triplets then build a set of input images for the detection pipeline
described in detail in PapER TIT and PapPER TV. Images I; ¢ and I, s are thereby
related to identify reflective markers in the image, while images I;  and I, are
related for computing a local disparity map in the neighbourhood of reflective
interest regions and estimating the depth of each reflector.

For a comparison between monocular and stereoscopic depth estimation,
Figure 5.4 quantifies the estimation error for both methods on a per-reflector
basis. It is evident from the plot that the monocular, learning based approach
neither yields the same accuracy nor the same precision as conventional trian-
gulation from stereo images. While the error for monocular depth estimation is
in the range of several decimetres, stereo-based estimation provides depth at an
accuracy which is nearly an order of magnitude higher. In both cases, the mea-
surements become less accurate and less precise for increasing distances from
the sensor module.

At the tracking stage, the same approach can be adopted that was described
in the context of the monocular system. To do so, the measurement model of
the particle filter is adapted to take into account that the uncertainty in the
depth dimension is lower in the underlying stereoscopic case with respect to
the previously discussed case of monocular depth estimation.
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Figure 5.4: The figure quantifies the depth estimation error on a per-reflector level in the
form of box plots. The first column depicts the error in estimating depth via triangula-
tion from stereo NIR images, while the remaining columns indicate the error for depth
estimation from random forest regression in combination with different popular image
feature descriptors. The plots indicate that stereo triangulation yields accuracy and pre-
cision which are around an order of magnitude higher than the ones obtained with the
monocular learning based approach.

5.1.3 Combined NIR and RGB Vision

A key advantage of the two previous NIR-only systems is their robustness to-
wards various lighting scenarios. In fact, low-light conditions have no negative
effect whatsoever on detector performance due to the active sensing principle,
while the effect of glare is highly reduced by the optical narrow-band filter of
the NIR sensor. Furthermore, focusing the computational efforts on spatially
limited reflective interest regions proves much more efficient than a full image
analysis as it is done in many vision applications.

However, by solely analysing the appearance of retro-reflective markers in
the NIR data, the system is not exploiting the potential lying in other feature
cues that can be helpful for discriminating reflectors of different families and
detecting and locating individual persons in an image. If lighting conditions
can be assumed within reasonable bounds, an additional visible-light camera
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Figure 5.5: Temporal image acquisition and processing cycle for the combined stereo
NIR and RGB vision system. Camera NIR1 serves the purpose of extracting reflective in-
terest regions, while the additional input from camera NIR2 permits to localise reflectors
in 3D space using triangulation. Image features are finally sampled from corresponding
regions in the NIR and RGB cameras in order to apply the learned multi-band Hough
forest appearance model and identify individual person occurrences in the images.

can provide a valuable complementary source of information for the task at
hand. Protective high-visibility clothing is most often fabricated fully or par-
tially from material with bright fluorescent colours. Sensing the characteristic
colour properties of the garments with help of an RGB camera can therefore
further help to discriminate the object class form the background. Furthermore,
gradient patterns related to the human silhouette can be observed in RGB or
grayscale images. Such features are entirely filtered out from the data provided
by the customised NIR setup which depicts reflective markers exclusively.

PaPER V therefore investigated the fusion of NIR and RGB data in a multi-
spectral appearance model according to the multi-band Hough forest discussed
in Section 4.3.2. The respective camera module (see Figure 3.1¢) features a
stereo NIR camera with a baseline of 20cm and an RGB camera located in
the centre. Figure 5.5 shows the temporal acquisition and processing cycles
adapted for the NIR+RGB sensing scheme. A significantly longer exposure time
is needed for acquiring the additional RGB images. It has thereby proven con-
venient to use a camera with automatic exposure control to ensure that the
acquired images are not perturbed by small changes in lighting.

The algorithm proposed in PAPER V is able to detect industrial workers
and localise their respective centre points in the image space by performing a
generalised Hough transform. In addition, no fixed bounding box aspect ratio
is assumed but the entity is estimated during an additional voting step. The
approach thereby accounts for the fact that persons in industrial working sce-
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Figure 5.6: Distribution of person annotations in the test sequences of PAPER V with
respect to the bounding box aspect ratio.

narios cannot simply be assumed upright, which adds another dimension to
the search space if meaningful bounding box detections are to be produced.
Obtaining an estimate of the bounding box aspect ratio can also help inferring
information regarding the body position of a detected person. Figure 5.6 there-
fore illustrates the relationship between bounding box aspect ratio and body
position and shows the distribution of person annotations in the real-world
test sequences evaluated in of PAPER V.

Figure 5.7 shows two of the main results obtained from the scientific evalua-
tion of the approach. The curves illustrate first and foremost that performance
on upright pedestrians is significantly higher than on non-upright person oc-
currences. This observation is in full accordance with conclusions drawn from
many other experiments conducted in the field of vision-based human detec-
tion, where body articulation and a high degree of body pose variability are of-
ten named as particularly challenging problems. Figure 5.7 (top) further shows
that the proposed fusion of RGB and NIR images improves detector perfor-
mance compared to the sole use of NIR data. However, the difference is shown
to be modest. In fact, using precision and recall at the equal error rate (EER) as
a comparison measure, NIR+RGB vision outperforms pure NIR vision by only
3%. Figure 5.7 (bottom) finally indicates that the proposed additional supervi-
sion criterion based on pixel-wise body part labels, introduced in the training
procedure of the Hough forest, leads to a further consistent improvement in
precision and recall at the equal error rate in the range of approximately 4%.

Nevertheless, it cannot be generally concluded that the benefit from the
multi-band sensing approach is minor. The extent to which the additional RGB
vision benefits the detection task depends on the type of garments in use. It is
illustrated in Figure 5.8 that in the the specific work environment in which the
experimental evaluation took place, the working personnel is equipped with
reflective vests as the sole item of high-visibility clothing. In contrast, arms and
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legs are most often covered by dark clothing which in front of an also frequently
dark background fails to provide significant contrast and gradient information.
The additional evidence for the presence of a human, gained from sampling
features patches from regions in the RGB image that depict these body parts, is
therefore rather limited. However, if the personnel is equipped with garments
such as in Figure 4.1, the amount of additional information contained in the
RGB images is more significant and a higher benefit can be expected.

Tracking

At the tracking stage, a particular challenge that is generally encountered is
the association of in-frame detections with individual targets that are currently
being tracked. The human appearance model discussed in Section 4.3 which
spatially connects local image feature patches to a defined reference point of
the object class, significantly facilitates this data association issue. In fact, while
an association between observed reflectors and tracked targets was previously
handled on the tracking level, the procedure has been moved back to the de-
tection stage by adopting the Hough forest detector. In higher-level terms, the
Hough forest maps the evidence observed inside the scanned regions of inter-
est to the two-dimensional locations where the reference point of the detected
object is believed to be located. While both the observed reflectors in the NIR
image as well as the various parts of the articulated human body observed in
the RGB space may be moving significantly over a series of frames, the reference
point locations produced by the Hough forest offer a much more stable indica-
tion of where the detected object is located in the image. As a result, detections
are less ambiguously associated with a tracked target. While PApeEr V purely
focused on the detection stage, it was later shown that a tracking layer can be
implemented using a simple Kalman filter that continuously incorporates the
in-frame detections provided by the Hough forest detector.

5.1.4 The Role of the Protective Garments

The type of protective garments worn by workers plays a significant role for
the performance at certain stages in the detection pipeline. The largest part
of experimental evaluation has been carried out in work environments where
the personnel is equipped with simple sleeveless yellow vests that feature two
horizontal retro-reflective stripes around the torso. This type of garment has
shown to be the most frequent choice in many of the addressed industrial en-
vironments. However, the experiments in PAPER V have shown that the correct
estimation of the bounding box aspect ratio is difficult, especially if arms and
legs are covered by black clothes and the background is dark. In fact, most
missed detections were correctly localised by the multi-band Hough forest, but
an erroneous estimation of the bounding box aspect ratio prevented a success-
ful matching of detected and annotated bounding boxes.
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Figure 5.7: The figures show detector performance in the form of precision-recall curves
obtained during the evaluation of the combined NIR and RGB vision system presented
in PAPER V. Solid lines show overall performance, dashed lines performance on upright,
and dotted lines performance on non-upright person occurrences.
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Figure 5.8: The figure shows several examples from the image sequences evaluated in
the course of PAPER V. The fact that most workers are wearing reflective vests and black
trousers, leads to only a slight improvement in detector performance if additional RGB
features are used during detection.

Further experiments not included in PAPER -V have shown that the estima-
tion of the bounding box aspect ratio as the final step of a generalised Hough
voting procedure provides significantly better results if a person is equipped
with both upper- and lower-body garments, such as in Figure 4.3. In this case,
it is easily observed that the individual feature channels computed from both
NIR and RGB images contain a much higher amount of distinctive information
than if a simple vest is worn on top of black clothing.

5.2 Alternative Applications

The presented vision system lends itself exceptionally well for the the task ad-
dressed in this thesis, namely the detection of industrial workers equipped with
retro-reflective garments. For this purpose, an NIR sensitive camera was specif-
ically enhanced with the aim of facilitating the perception of reflective mark-
ers and reducing the complexity of the required image processing methods.
The resulting camera configuration is therefore suitable for a broader range of
applications where a system needs to be able to sense and localise reflective
markers that are deliberately placed in a working environment. Such scenarios
may include, among others, on-board mapping and localisation tasks from au-
tonomous vehicles, but also on- or off-board localisation and pose estimation
of vehicles for fleet management and vehicle coordination in logistics scenarios.
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5.2.1 Vehicle Pose Tracking

The NIR stereo vision input delivered by the camera module in Figure 3.1d
has been successfully exploited for estimating the 3D pose of several smaller-
sized indoor vehicles. The term pose hereby refers to an object’s position and
orientation in a given coordinate system. For estimating pose from NIR im-
ages, a vehicle is fitted with multiple retro-reflective markers on the outer sides.
The pattern of the reflectors is chosen such that the vehicle pose can be unam-
biguously inferred from reflector geometry only. The pose tracking algorithm is
further provided with a simple vehicle model defining the three-dimensional po-
sition and orientation of each retro-reflective marker with respect to a defined
reference point on the vehicle.

Pose estimation then starts with the extraction and analysis of retro-reflective
markers from stereoscopic NIR images, by the same means as described in
Chapter 4. Binary reflector classification based on BRIEF [20] image feature
descriptors has shown to successfully discriminate reflectors on vehicles and re-
flectors on the personnel’s safety garments. To infer the vehicle pose, a particle
filter is employed that maintains a large set of hypothesised 4-dimensional vehi-
cle poses that are continuously evaluated and updated with incoming measure-
ments. The state space is restricted to four degrees of freedom by assuming that
the observing camera remains static and that the observed vehicle is moving
on a planar surface. A measurement model then computes the expected visible
reflector pattern for each hypothesised pose in the particle filter and compares
the result with the set of actually observed reflectors extracted from the NIR
images. Simple nearest-neighbour matching of expected and observed sets of
reflectors finally allows the system to efficiently compute particle weights as the
sum of absolute differences between matched reflector pairs. Two examples of
estimated 3D vehicle poses are shown in Figure 5.9. The approach has been
tested on relatively simple vehicle layouts, and more research is necessary to
study its applicability to larger and potentially articulated vehicles.
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Figure 5.9: The figure shows examples of the output of a vehicle pose tracker (top) and
a combined vehicle and person tracking system (bottom). In both cases, detection is
entirely based on processing stereo NIR images and vehicle pose is inferred by matching
observed reflective patterns with a simple vehicle model.






Chapter 6
Conclusion and Future Work

This thesis investigated a novel method for detecting human workforce from
mobile industrial machinery with an active NIR vision system and optional
complementary RGB input. A collection of algorithms that handle the extrac-
tion of reflective markers from infrared images, their description and classifica-
tion as well as their association with individual person occurrences were pro-
posed throughout multiple scientific articles. In this thesis, the underlying sen-
sors, methods and algorithms were summarised and compared. Furthermore,
the advantages and limitations of three concrete system implementations have
been discussed, covering monocular and stereoscopic infrared-only configura-
tions as well as a multi-spectrum approach fusing NIR and RGB information
in a combined appearance model.

Targeting industrial environments where protective garments are a de facto
standard, it was shown that building a detection pipeline around a reflector
sensing scheme offers an efficient approach as computational resources are con-
centrated on processing spatially limited interest regions in the image. Due to
the narrow NIR filter band which excludes the vast amount of ambient light-
ing, the method was shown to be robust to a wide range of illumination and
lighting conditions. The approach was first evaluated on the basis of pure NIR
vision input. There, a particular challenge was the fact that the protective cloth-
ing of workers is not the only family of reflective items commonly observed at
industrial work sites. A closer analysis and discrimination of different groups
of reflectors observed in the NIR images was therefore necessary to delimit the
number of false positives under the presence of reflective items. To exploit ad-
ditional feature cues from RGB images in the detection process, the method
was extended and the learning of a unified human appearance model based
on multi-band Hough forests was suggested. Based on local NIR-RGB feature
patches connected in a star-shaped model, it represents a convenient way of fus-
ing multiple spectral bands without the need for explicitly defining feature se-
lection criteria. The task of evaluating the most discriminative feature channels
for structuring a given set of feature patches is rather left to the randomised fea-
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ture selection mechanism of the Hough forest framework. Furthermore, Hough
forests handle considerable amounts of body articulation without the need for
computationally expensive models.

Keeping a strong focus on industrial applicability, the approach has been
consistently evaluated on video sequences recorded from several different types
of industrial vehicles and in multiple realistic work environments. The image
material features a broad range of indoor and outdoor scenarios with strongly
varying and partly very challenging lighting conditions. Person occurrences in-
clude both upright standing and walking persons as well as various workers
carrying out tasks in challenging non-upright positions that typically pose a
significant challenge in vision-based human detection. Due to the particular
nature of the acquired sensor data as well as the authenticity of the depicted
scenes, the recorded and evaluated data sets are unique and no similar data sets
have been made publicly available by other authors in the research field. For
reasons of confidentiality, the acquired data sets cannot be made fully public
but are available on individual request.

Like every sensor technology, the proposed method also has a number of
limitations. Most notably, it is emphasised that the suggested vision system is
not suitable for environments where it cannot be assumed with high certainty
that the persons are equipped with reflective high-visibility clothing. The obvi-
ous reason is that the entire sensing approach by design requires people to wear
garments with retro-reflective markers. In the vast majority of harsh work en-
vironments, employers impose strict safety regulations regarding the protective
equipment employees are required to wear in order to access a work site. How-
ever, there still exist considerable geographical differences in the consistency of
and adherence to work place safety policies, which could in certain industrial
sectors hinder a full reliance on the proposed sensor technology. Even though
an extension of the method for fusing information from RGB and NIR data was
presented, the detection cue is still triggered only after successful perception of
at least one reflective marker. As a result, the vision system will entirely fail to
detect the presence of a person without protective clothing, if not combined
with complementary detection methods.

Future research will involve identifying and investigating further applica-
tion scenarios where the robust perception of retro-reflective markers under
potentially varying lighting conditions is a crucial requirement or facilitates
the achievement of a task. An exemplary candidate domain is the increasing
automation in construction and logistics, where a new market for autonomous
vehicles and machinery is gradually developing. Intelligent vehicle coordination
and fleet management therefore become important tasks which require that dif-
ferent vehicles are aware of each other’s presence. The vehicle pose estimation
scheme outlined in Section 5.2.1, that makes use of stereoscopic NIR vision
and specific patterns of retro-reflective markers fitted to a target vehicle, can
represent a promising step to in that direction.
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