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The Right Direction to Smell:
Efficient Sensor Planning Strategies for Robot Assisted Gas Tomography

Muhammad Asif Arain?, Erik Schaffernicht, Victor Hernandez Bennetts and Achim J. Lilienthal

Abstract— Creating an accurate model of gas emissions is
an important task in monitoring and surveillance applications.
A promising solution for a range of real-world applications
are gas-sensitive mobile robots with spectroscopy-based remote
sensors that are used to create a tomographic reconstruction
of the gas distribution. The quality of these reconstructions
depends crucially on the chosen sensing geometry. In this paper
we address the problem of sensor planning by investigating
sensing geometries that minimize reconstruction errors, and
then formulate an optimization algorithm that chooses sensing
configurations accordingly. The algorithm decouples sensor
planning for single high concentration regions (hotspots) and
subsequently fuses the individual solutions to a global solution
consisting of sensing poses and the shortest path between them.
The proposed algorithm compares favorably to a template
matching technique in a simple simulation and in a real-world
experiment. In the latter, we also compare the proposed sensor
planning strategy to the sensing strategy of a human expert
and find indications that the quality of the reconstructed map
is higher with the proposed algorithm.

I. INTRODUCTION

Fugitive gas emissions are a major concern in many
industrial settings due to their impact on safety, environment
and economics. The first step in monitoring applications is
the detection of gas leaks in the environment, a problem we
addressed in our previous work [1], [2]. After gas sources
have been detected, the next step is to investigate the exact
location and magnitude of the leakage, by building a gas
distribution map. The whole process is visualized in Fig. 1.

Robot assisted gas tomography (RAGT), inspired by com-
puter tomography of gases (CTG), has been introduced
recently as a new method to build gas distribution maps
with robots using remote gas sensors [3]. Unlike CTG, which
collects data using a set of remote sensors placed at fixed lo-
cations, RAGT combines mobile robots with remote sensors
(Fig. 2(a)) to take advantage of the robot’s mobility and thus
allows for flexible sensor placements. The gas sensor we
are using is a tunable diode laser absorption spectroscopy
(TDLAS) sensor. These sensors are highly selective and
sensitive for their target gas, long-term stable, and they
report integral concentration measurements along the line-
of-sight over distances up to 30 m. However, they return
spatially unresolved measurements, which do not show the
distribution of gas along the measurement path (Fig. 2(b)).
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(a) Gas emission (b) Gas leak detection (c) Coarse map
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Fig. 1. Emission monitoring scenario with a mobile robot considered in this
paper. Gas emission (a) is detected executing the sensor planning algorithm
for gas detection, see [2] (b). A coarse gas distribution map is generated
with the robot assisted gas tomography algorithm, see [3] (c), and a hotspot
is identified in the coarse map (d). Next, a sensing geometry is planned using
the sensor planning algorithm for tomography, which is the contribution of
this paper (e). Finally, we obtain a high quality reconstruction using again
the robot assisted gas tomography algorithm in [3] (f).
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Fig. 2. (a) Gasbot robot is equipped with an actuated TDLAS sensor. (b)
TDLAS sensor reports integral concentration of methane along its line-of-
sight (ppm × m).

For a RAGT reconstruction, the area of interest has to be
observed from different viewpoints. The number of measure-
ment locations and the sensor pose is commonly referred to
as the sensing geometry. In CTG, the problem of determining
an effective sensing geometry has been previously addressed
in [4]–[8]. However, the results can not be directly applied
to RAGT in general and the sensing system we use in
particular due to, (1) the evaluation is presented for the
different sensing technologies such as differential optical ab-
sorption spectroscopy (DOAS) and open-path Fourier trans-
form infrared (OP-FTIR) spectrometers that include fixed
mirrors and reflectors resulting in complex optical paths, (2)
options of sensor placements are limited, whereas a robot



can perform sensing actions at many different positions. The
problem of selecting a proper sensing geometry has not
been addressed in the context of robotics yet, previous work
[3] used predefined sensing positions selected by a human
expert. We will discuss the specifics in Sec. II.

Another aspect of a successful measurement strategy is the
minimization of the time required to take all the measure-
ments to build a good map. Minimizing exploration time in
mobile robot olfaction has been explored for gas detection
coverage problems in our previous work [2] and by Atanasov
et.al. [9] who proposed an expectation maximization frame-
work. We are not aware of any previous work that takes
into account sensing geometries. The main contribution of
this work is an optimization algorithm addressing sensor
planning for RAGT considering sensing geometries, which
we describe in Section III.

Section IV describes another important contribution: the
comparison of the proposed algorithm against a heuristic
solution and the strategy of a human expert in simulation
and a real-world scenario using the Gasbot robotic platform
[10].

II. SENSING GEOMETRIES

We consider a robot equipped with an actuated remote
gas sensor that performs the following basic sensing action
(Fig. 3): at pose p, the robot scans a circular sector of
radius r and angle φ by carrying out a sequence of s line
measurements. A sensing configuration ci = (pi, φi, ri) is
thus a sensing action with parameters φi and ri, performed
by the robot at pose pi. The set of sensing configurations
performed by a robot at a given area is called the sensing
geometry.

9
0 φ- θ

r

Fig. 3. A sensing action is the sampling of a circular sector (φ, r) by
emitting s optical beams.

As previously stated, sensing geometries are crucial to
estimate the spatial distribution of the gas concentrations. We
thus carried out an evaluation of different sensing geometries
using an ad-hoc simulation environment, which models the
gas distribution as a summation of spatially distributed
Gaussian plumes of different concentration. Examples of the
gas distributions used are shown in Fig. 4.

To evaluate the effect of the geometries, a set of nc sensing
configurations are placed in concentric circles around the
area of interest. Tomographic reconstruction is carried out us-
ing the least squares approach presented in [11]. As a metric
for the reconstruction quality, the mean squared error (MSE)
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Fig. 4. Simulated 50 × 50 m2 environment models. Dark colors represent
higher concentrations; the gray dotted lines show circles of 7 m, 10 m and
15 m radius where sensing configurations were distributed. One example
configuration, in blue, is placed at the circle of 10 m. (a) shows the model
where high concentration region is located at the center, and (b)-(c) show
the models where the investigated gas dispersion pattern are uneven.

between the reconstruction and the initial concentration was
computed.

In the simulation, geometries of nc = [2, 3, 4] configu-
rations are placed at different positions, always facing the
center of the area of interest. In the case of nc = 2, the angu-
lar displacement between the configurations is incrementally
changed 10◦ counter clockwise for a total of 35 different
geometries. For nc = 3, the configurations are placed
with pair-wise angular displacements of a counter clockwise
incremental step of 10◦, for a total of 1190 geometries. For
nc = 4 the first three configurations corresponding to the best
reconstruction of nc = 3 are fixed. The fourth configuration
is then placed at incremental steps of 10◦. Therefore, a
total of 33 reconstructions are computed. All the geometries
were evaluated using the combination of parameters φ =
[90◦, 180◦], r = 15 m and ∆s = 1◦. Furthermore, each
configuration was investigated with different distances (5 m,
7 m and 15 m) from the area of interest.

We used four environment models: two of them with
high concentration regions located only at the center of
the map, and two with uneven gas dispersion patterns. The
models with the area of interest at the center can be fully
covered with the configurations placed at 7 m and 10 m
distances, while the configurations placed at the distance 15
m might miss parts of the actual gas concentration. This
scheme helps to investigate how the cross angles effect the
reconstruction quality when the configurations are placed at
different distances.

The evaluation, which is partially shown in Fig. 5 suggests
that, for nc = 2 the best reconstruction quality is obtained
when the pairwise angular displacement between sensing
configurations is equal to 90◦ (Fig. 5(a)). For nc = 3, the
reconstruction quality is further improved using a pairwise
angular displacement of 60◦ or 120◦ (Fig. 5(b)). Adding a
fourth configuration does not show a significant improvement
in the reconstruction quality. Therefore, we conclude that for
the reconstruction of a high concentration region nc = 3
with pairwise angular displacement of 60◦ or 120◦ is a
good choice to maximize the reconstruction quality. We will
approximate the (flipped) functions shown in Fig. 5 with
Gaussians (see Eq. 3) and use this function G to express
the expected reconstruction quality (ERQ) for a given set of
sensing configurations.
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Fig. 5. (a) The mean squared error (MSE) between the ground truth and
its reconstruction is shown for the set of 2 configurations (nc = 2). On
the x-axis is the angular displacement between the configurations and on
the y-axis is the MSE. The least reconstruction error and therefore highest
reconstruction quality can be observed for cross angles of 90◦. (b) The
MSE is shown in the color code on the right for the set of 3 configurations
(nc = 3). Along x-axis is the pair-wise angular displacement between
the configurations 1 and 2 (θ1), and along y-axis is the pair-wise angular
displacement between the configurations 1 and 3 (θ2). The results suggest
that the reconstruction quality is best when pair-wise cross angles are 60◦
and 120◦ on a half circle.

III. SENSOR PLANNING

The total exploration time is the sum of the sensing time,
and the traveling time between sensing configurations. We
define the problem on a Cartesian grid map with discrete
candidate sensing configurations. A valid solution is an or-
dered list of k sensing configurations, with its cost expressed
as:

cost(π) =

k−1∑
i=1

tmpi→pi+1
+ tmpk→p1 +

∑
ci∈π

tsci (1)

where tmpi→pi+1
is the time for the movement from pose

pi to pi+1, tmpk→p1 to close the loop and tsci is the sensing
time of configuration ci.

Given the set Π of all valid solutions to a given problem
instance, then optimal solution πopt is the one with minimum
cost and an ERQ above a chosen threshold1 n:

πopt = argmin
πi∈Π

cost(πi) s.t. ERQ ≥ n (2)

Estimating the ERQ for arbitrary large problems is not
possible due to the size of the search space. Therefore, we
split the overall problem into local subproblems (hotspots)
where we can use the results of the previous section to
estimate the ERQ.

A. The xvt-SPP Algorithm

The overall procedure of our approach is shown in Algo-
rithm 1.

The identification of high concentration regions on a map
can be performed either by a human expert or as a result of a
gas detection tour using the algorithm in [1], [2]. In the latter
case, we build a preliminary tomographic reconstruction,
which is very inaccurate due to sensing geometries that

1We are avoiding the formulation of a multi-criteria optimization problem
here by not maximizing the expected reconstruction quality, but considering
it as a constraint instead.

Algorithm 1 xvt-SPP
1: Identify high concentration regions (hotspots);
2: Solve TSP for the hotspots (and start position) to ap-

proximately determine entry and exit directions of the
robot for each hotspot;

3: For each hotspot, find a sensing geometry with maximum
ERQ (Eq. 5) taking into account entry and exit direction;

4: Combine the local sensing configurations by removing
overlapping redundant configurations (Eq. 7);

5: Solve TSP for the configurations and the start position
to find a tour;

6: Execute tour and apply the tomographic reconstruction
algorithm [11] to build GDM;

7: OPTIONAL: Identify high concentration region(s) and
go back to step 2 to refine the GDM;

have almost no overlapping field of views. A hotspot is
defined by the mean position of cells with a concentration
above a threshold within neighborhood d (1.5 m in our
implementation).

We introduce global information into the local subprob-
lems by determining approximate entry and exit directions
of the robot for each subproblem by solving a traveling
salesman problem (TSP) between all hotspots and the robot’s
starting position.

B. Local Solutions

Each hotspot is considered as an individual problem of
reconstruction. For a single high concentration region, pair-
wise cross angles between the beams from different sensing
positions can be defined in a square matrix A of the number
of candidate sensing configurations. The ERQ G for the
cross angles can be approximated with the two overlapping
Gaussian functions of mean 60◦ and 120◦ as:

Gnc=3 =
∑
∀µ∈M

0.5e
−(A−µ)2

2σ2 , σ = 10◦,M = {60◦, 120◦}

(3)
This function integrates the results from the investigation

of different sensing geometries from Sec II into the opti-
mization process.

While the center of the hotspot is used to define the
focus point for the choice of cross angles, it is required
that we also cover all other local cells that reported gas
concentration above the threshold during the gas detection
step. This sensing coverage of the hotspot for the candidate
configurations is defined by a discrete visibility matrix:

V [a, c] =

{
1 if a ∈ vP(c)

0 otherwise
(4)

where vP(c) is a function that generates a list of the
cells visible from configuration c. This concept of sensing
coverage was already used for the sensor planning for gas
detection, hence a more detailed explanation for this part is
available in [1].



The candidate sensing configurations C around each
hotspots are defined on the movement graph within the
sensing range that can cover the hotspot. For the vector C
of candidate configurations, the ERQ for the cross angles is
C ′GC and the sensing coverage is V C.

The distance vector D encodes the travel time from the
reference point to each sensing configuration. This reference
point is used to include information from the global problem
and is chosen as mean of entry and exit direction with a
distance of half the sensing range r/2 from the hotspot, see
Fig. 6.

Entry direction

Exit direction
r
2

di
ci

Reference point

Hotspot

Fig. 6. Example for the reference point system. Sensing configurations
close to this point are preferred.

The problem is then formalized as an optimization prob-
lem in Eq. 5. The objective function (Eq. 5a) integrates
the terms discussed above. Eq. 6 represents the goals of
covering the hotspot thoroughly and minimizing the time to
do so. The parameter β between 0 and 1 (we use β = 0.5)
is the trade-off between those two goals. The first part of
Eq. 5a represents the goal of having an optimal sensing
geometry according to Section II and is balanced against
the exploration time minimization by the parameter α (we
use α = 0.75). Higher values of α correspond to a solution
with a better ERQ of cross angles that will be preferred
instead of the combination of sensing coverage and the
traveling distance. Similarly, between sensing coverage and
the traveling distance, higher β will influence the solution
towards the complete coverage of the positive concentration
cells. The constraint in Eq. 5b limits the number of selected
configurations to n.

maximize
C

αC ′GC + (1− α)C ′U (5a)

subject to
1′C ≤ n (5b)
C ∈ {0, 1} (5c)

U = β(1′V ) + (1− β)(1−D)) (6)

Since, solving the optimization problem in Eq. 5 with
high number of variables is computational demanding, we
considered a limited number of variables (200 or less that
can be solved in less than 4 minutes on standard hardware)
by discarding the sensing configurations furthest away from
the hotspot. Finally, the ERQ of the local solutions is retained
in the vector G.

C. Fusing the Local Solutions

In the simple case, in which hotspots are sufficiently far
apart, we can obtain the global solution by solving the TSP to
connect all the sensing configurations to form a tour. If this is
not the case and the hotspots are close to each other (closer
than two times the sensing range), there is the possibility
that a configuration in the first local solution is very similar
to another configuration from a second local solution. In
this case, we eliminate redundant sensing configurations in
a fusion step.

Nearby configurations are possibly redundant if they allow
to perceive the considered hotspots from the same direction,
which we define as an angular difference smaller then 15◦

of the configurations from the point of view of the hotspot.
All pairs of possibly redundant configurations are sorted

by distance between the configurations, and another opti-
mization problem, formulated in Eq. 7, is solved iteratively.
The objective function in Eq. 7a minimizes the number of
selected configurations and the constraint in Eq. 7b ensures
that the overall loss of expected reconstruction quality of the
fused solution compared to the local solutions is not bigger
than δ.

In each iteration, two possibly redundant sensing con-
figurations are substituted by a single fused configuration.
Candidate positions C for the fused configuration are placed
around both original configurations (within a radius of 1.5
times the sensing range) and evaluated. Eq. 8 has exactly the
same structure as the optimization problem defined in Eq. 5.
The ERQ of the hotspots in Z for each candidate configura-
tion is computed by placing the remaining configurations in
the sensing geometry, where H is the matrix of ERQ values
for the cross angles.

If the number of selected configurations is less than or
equal to one, the redundant configurations are fused and the
list of the pairs is updated for the next iteration.

minimize
C

|C| (7a)

subject to
ZC � g− δ (7b)
C ∈ {0, 1} (7c)

Z = αH + (1− α)(β(1′V ) + (1− β)(1−D)) (8)

where g ∈ G is the local solution’s ERQ.
With the fused list of configurations, the TSP connecting

all the chosen sensing positions is solved. The resulting plan
is then executed by the robot and the measurements are
used to build a gas distribution map using a tomographic
reconstruction algorithm in [11]. The overall procedure can
be repeated in order to update the gas distribution map
continuously.



IV. EXPERIMENTAL EVALUATION

A. The Template Matching

To compare our algorithm with a straightforward and
computationally less expensive method, template matching
is used to place the configurations around each hotspot.
Template matching places three fixed configurations with
pair-wise cross angles of 60◦ and 120◦ based on the results
of Sec. II. The position of the configuration is decided by
casting a ray from the hotspot up to a distance equal to half
the sensing range with the sensor always pointing towards the
hotspot. If any of the three configurations can not be placed
due to obstacles, the template is rotated iteratively with an
increment of 1◦ clockwise and counter clockwise, until a
valid placement is found or a full rotation is completed.

B. Solution Quality Evaluation

We evaluated the proposed xvt-SPP algorithm in two
different scenarios, namely the 120 m × 136 m Freiburg
outdoor map2, and the Örebro University (ORU) dataset as
described in [2]. The ORU dataset contains measurements
from indoor (61.5 m × 20 m) and outdoor (40.5 m × 16.5 m)
locations where gas leaks were emulated using a set of
transparent flasks filled with natural gas3. Details about the
experiments can be found in [2].

In both cases, we compared the solution quality with the
template matching algorithm. For the Freiburg outdoor map,
24 artificial hotspots were randomly placed and xvt-SPP was
used to generate a solution composed of 60 configurations
with 645.50 m total traveling distance. Template matching
on the other hand, produced a solution of 72 configurations
and 714.25 m traveling distance.

The results for 10 different indoor and 5 different outdoor
experiment runs from the ORU dataset are summarized in
Table I. On average, the template matching results require
23% more sensing configurations, compared with xvt-SPP.
Similarly, the travel distance is 11% longer, compared with
the measurement tours computed with xvt-SPP.

C. Real World Experiments

To evaluate the performance of xvt-SPP in a real world gas
distribution mapping problem, we conducted an experiment
with the solution of our algorithm, template matching, and
the strategy of a human expert4 who is experienced in build-
ing gas distribution maps and conducted several experiments.
The experiment was carried out in an indoor environment
(Fig. 7(a)). Similarly to the ORU dataset, 12 transparent
flasks filled with natural gas (90% methane) were placed
at random locations.

All the experiments were performed using a Husky A200
called Gasbot (Fig. 2(a)). The robot is equipped with a
Sewerin RMLD (TDLAS) methane sensor mounted on a

2This is a publicly available map of the University of Freiburg campus,
available at https://www.openslam.org/gmapping.html

3Due to safety regulations, we can not release methane in indoor
environment.

4Dr. Victor Hernandez Bennetts, main author in [10], where RAGT was
first introduced.

TABLE I
COMPARISON BETWEEN xvt-SPP AND TEMPLATE MATCHING

Trials Selected Conf. Traveling Distance (m)
xvt-SPP TM xvt-SPP TM

ORU Indoor 01 20 27 122.00 127.50
02 17 18 111.25 119.00
03 22 27 155.00 164.50
04 23 35 131.25 165.50
05 22 24 172.00 188.75
06 17 18 128.50 138.50
07 14 23 120.25 153.25
08 18 18 134.50 146.75
09 21 24 136.50 152.00
10 29 35 154.25 174.75

ORU Outdoor 01 24 33 139.50 164.00
02 20 24 129.50 134.25
03 20 24 174.00 192.00
04 19 24 105.75 98.00
05 17 18 114.75 111.50

Freiburg Outdoor 60 72 645.50 714.25

pan-tilt unit to adjust the sensing range and field of view. A
3D range sensor (Velodyne HDL-32E) is used for mapping
and localization. Mapping is carried out with the NDT-
Fusion algorithm [12], while NDT-MCL [13] is used for the
localization.

First, an exploration plan for gas detection was generated
using the conv-SPP algorithm in [2]. Then, a coarse gas
distribution map was generated [11] using the integral con-
centration measurements from the dataset (Fig. 7(b)). This
coarse gas distribution map, with the identified hotspots, was
used as an input for the template matching approach, for the
human expert, and for xvt-SPP. The solution with template
matching comprised 27 configurations and a traveling dis-
tance of 168.75 m (Fig. 7(c)), the expert’s strategy was 16
configurations with a 124.5 m traveling distance (Fig. 7(d)),
and the solution from xvt-SPP was 22 configurations and
154.00 m traveling distance (Fig. 7(e)). The corresponding
gas distribution maps are shown in Fig. 8. Although, xvt-
SPP generated a higher number of configurations than the
solution from the human expert, the quality of the map
reconstruction with xvt-SPP is comparatively higher as can
be seen in Fig. 8. Notice the map generated from xvt-SPP
predicts high concentrations near the actual location of the
gas flasks while for the human expert and template matching
high concentrations tend to be spread over the map.

V. CONCLUSIONS

This paper addresses the problem of sensor planning for
robot assisted gas tomography (RAGT). As the first step, we
investigated sensing geometries and identified which combi-
nations of sensing poses provide the highest reconstruction
quality. We found that best results are obtained with a sensing
geometry of 3 configurations with pair-wise 60◦ or 120◦

cross angles. We then included a preference for such local
configurations in an optimization framework that selects the
sensing configurations.

Finding the optimal solution of the problem is not feasible
due to the complexity of the search space and the general
uncertainty of the reconstruction quality estimation. We thus
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013

14

12
11

15

9

8

10

7

6

17

4

3

2

16

5

1

18

27

26

19
20

25

21

22

24

23

(c) Template matching solution

0

15
1416

13

12
11

9

10

8
7

1 2
6

3 5 4

(d) Strategy of a human expert

0
19

20

1817

21

16

15
14 1312

9

11

10

8

22
1

2

3
4

5
6

7

(e) xvt-SPP solution

10
Distance (m)

Min. Max.

Gas concentration (ppm)

Min. Max.

Gas concentration (ppm)

Min. Max.

Gas concentration (ppm)

Min. Max.

Gas concentration (ppm)

Fig. 7. Occupancy grid map of the environment for the experiment (a).
The gas sources are indicated with red dots. Coarse gas distribution map
built based on the data acquired in the gas detection step (b). For better
visualization, the gas concentrations are shown with a nonlinear scale.
All detected potential hotspots are marked with red circles. The sensor
placement solutions for the tomographic reconstruction using the three
strategies are shown in (c), (d), and (e). The selected configurations are
indicated with blue dots (for the position) and arrows (for the orientation).
The numbers indicate the execution sequence with 0 for the start position.

proposed a decoupled approach, the xvt-SPP algorithm. It
first generates sensing geometries for the hotspots indi-
vidually and then combines these local solutions, fusing
redundant sensing configurations. We find that xvt-SPP gen-
erates better quality solutions than simplified, straightforward
approaches (e.g. template matching). It requires a reasonable
computation time in the order of a few minutes only –
depending on the environment size, the number of high
concentration regions (hotspots) and their location.

The approach was evaluated against a template matching
method and a strategy suggested by a human expert. We
first evaluated the solution quality in simulation experiments
and found that xvt-SPP generates sensing geometries with a
fewer configurations and a shorter travel distance, compared
with template matching.

With respect to the experiment in a real world envi-
ronment, we observed that, while the solution of template
matching uses more configurations and the solution proposed
by the expert suggested fewer configurations, the solution
computed with xvt-SPP leads to maps of higher quality,
with high concentrations estimated closer to the actual gas
sources.

The behavior of the algorithm is dependent on the param-
eters α, β, δ and we will investigate in future work how to
select those parameters. We will also further investigate the
function used to estimate the expected reconstruction quality
(ERQ). So far we assume that the environment does not
introduce constraints on the cross angles and we want to
also consider cases where pairwise 60◦ or 120◦ cross angles
are not possible due to obstacles.

Furthermore, we will carry out a quantitative evaluation
of the peak location error in the produced gas distribution
maps. This is possible since we know the exact location of
the gas sources (methane enclosed in bottles). Ground truth
in a scenario with freely evaporating gas sources is, however,
hard to obtain and typically not available in real-world ex-
periments. This is a fundamental problem in mobile robotic
olfaction. We therefore also plan to evaluate the proposed
xvt-SPP approach in complex simulated environments using
a gas dispersion simulation [14].
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