Preprint

This is the submitted version of a paper presented at Twentieth International Congress of Parkinson’s Disease and Movement Disorders, Berlin, Germany, June 19-23, 2016.

Citation for the original published paper:

Somayeh, A., Memedi, M., Nyholm, D., Senek, M., Medvedev, A. et al. (2016) Quantification of upper limb motor symptoms of Parkinson's disease using a smartphone. In: Twentieth International Congress of Parkinson's Disease and Movement Disorders

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-51040
Quantification of upper limb motor symptoms of Parkinson’s disease using a smartphone

Somayeh Aghanvesti 1, Mevludin Memedi 1,2, Dag Nyholm 3, Marina Senek 2, Alexander Medvedev 1, Håkan Askmark 2, Sten-Magnus Aquilonius 1, Filip Bergquist 8, Radu Constantinescu 4, Fredrik Ohlsson 5, Jack Spira 6, Sara Lycke 7, and Anders Ericsson 7

1 Computer Engineering, Dalarna University, 2 Informatics, School of Business, Örebro University, 3 Neuroscience, Neurology, Uppsala University, 4 Information Technology, Uppsala University, 5 Dept. of Pharmacology, University of Gothenburg, 6 Dept. of Clinical Neuroscience, University of Gothenburg, 7 Atojo Swedish ICT, 8 Sensidose AB, 9 Cervigo AB

Contact: Saa@du.se

Methods

Participants

Nine-teen patients diagnosed with PD and 22 healthy controls were recruited in a single center, open label, single dose clinical study with a washout period. Simultaneous clinical- and smartphone-based measures were collected up to 15 times following a single levodopa/carbidopa morning dose (50% over normal to induce dyskinesias).

Clinical assessment

Subjects were asked to perform standardized motor tests in accordance with UPDRS and were videotaped. The videos were blindly rated by three movement disorder specialists. The ratings were given based on Treatment Response Scale (TRS) ranging from -3 = “Very Off” to 0 = “On” to +3 = “Very dyskinetic”, three UPDRS motor items (item 23, Finger Taps; item 25, Rapid Alternating Movements of Hands; item 31, Body Bradykinesia and Hypokinesia), and dyskinesia score. Means of the three specialists’ ratings were used for this study.

Smartphone-based data collection

On each test occasion, the subjects performed upper limb motor tests (tapping and spiral drawings), using a smartphone (Figure 1) [7]. The subjects were instructed to perform the tests using an ergonomic pen stylus with the device placed on a table and to be seated in a chair. During tapping tests, the subjects were asked to alternately tap two fields (as shown in the screen of the device) as fast and accurate as possible, using first right hand and then left hand. Each tapping test lasted for 20 seconds. During spiral test, the subjects were instructed to trace a pre-drawn Archimedes spiral as fast and accurate as possible, using the dominant hand. The spiral test was repeated three times per test occasion. The smartphone recorded both position and time-stamps (in milliseconds) of the pen tip.

Data processing and analysis

The raw tapping and spiral data were processed with time series analysis methods, including both time- and frequency-domains methods. Nineteen and 22 spatiotemporal features were extracted from spiral and tapping data, respectively. Features were calculated to represent various kinematic quantities during the motor tests such as acceleration, speed, time delay, and distance. The features from both tapping and spiral data were used in a Principal Component Analysis and 7 principal components (PCs) were retained, which in turn were used as inputs to a Support Vector Machines (SVM) to be mapped to mean clinical ratings. The analysis were performed with a stratified 10-fold cross-validation. Test-retest reliability of the spiral tests were assessed after calculating correlations between the first PCs for the three spiral tests and then calculating the mean of all possible correlations.

Background

PD is a multidimensional and complex disorder affecting motor and non-motor functionalities. Assessments of PD symptoms are usually done by clinical rating scales. One of them is the Unified PD Rating Scale (UPDRS) developed to map motor symptoms to be mapped to mean clinical ratings. The analysis were performed with a stratified +“fold cross-validation. Test’retest reliability of the spiral test had a good test-retest reliability with a coefficient of 0.84, indicating that spiral scores are stable and consistent over time. When assessing the ability of the PCs to distinguish between patients and healthy controls the means of 3 out of 7 PCs (PC1, PC2 and PC4) were different between the two groups (p<0.05). Figure 2 shows clinical and predicted scores for two representative patients.

Results

The correlation coefficients between SVM predictions and mean clinical ratings were as follows: 0.59 for TRS, 0.6 for dyskinesia score, 0.52 for item 23 of UPDRS (finger taps), 0.47 for item 25 of UPDRS (rapid alternating movements of hands), and 0.57 for item 31 of UPDRS (body Bradykinesia and Hypokinesia). The spiral test had a good test-retest reliability with a coefficient of 0.84, indicating that spiral scores are stable and consistent over time. When assessing the ability of the PCs to distinguish between patients and healthy controls the means of 3 out of 7 PCs (PC1, PC2 and PC4) were different between the two groups (p<0.05). Figure 2 shows clinical and predicted scores for two representative patients.

Conclusions

The upper limb motor tests of the smartphone were able to capture important and relevant symptom information of the clinical rating scales. The methods for quantifying the upper limb motor symptoms of PD patients:

Had adequate correlations to clinical ratings
Were able to differentiate between movements of patients and healthy controls, and
(Spiral tests) had good test-retest reliability.

References