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Towards Visual Mapping in Industrial Environments - A Heterogeneous
Task-specific and Saliency Driven Approach

J. Rafid Siddiqui1, Henrik Andreasson2, Dimiter Driankov3 and Achim J. Lilienthal4

Abstract— The highly percipient nature of human mind
in avoiding sensory overload is a crucial factor which gives
human vision an advantage over machine vision, the latter
has otherwise powerful computational resources at its disposal
given today’s technology. This stresses the need to focus
on methods which extract a concise representation of the
environment inorder to approach a complex problem such
as visual mapping. This article is an attempt of creating a
mapping system, which proposes an architecture that combines
task-specific and saliency driven approaches. The proposed
method is implemented on a warehouse robot. The proposed
solution provide a priority framework which enables an
industrial robot to build a concise visual representation of
the environment. The method is evaluated on data collected
by a RGBD sensor mounted on a fork-lift robot and shows
promise for addressing visual mapping problems in industrial
environments.

I. INTRODUCTION

Although there has been significant advancements in vi-
sual mapping, some basic questions still remain in inquisitive
minds. How can the tremendous amount of visual data
received through sensors be filtered into a concise represen-
tation? How should an autonomous system, for example, a
mobile robot, make use of such representation so that it could
diligently perform the very specialized tasks for which it has
been designed and yet be able to generalize its understanding
in order to handle the dynamic nature of the environment?
The advancement in Convolutional Neural Network (CNN)
exposes some of the limits of human perception. The success
of CNN on huge datasets for image classification tasks
challenges the human vision by exposing its limits on one
hand while leaving many questions in the mind on the other
hand [1], [2]. It indicates that the capacity to recognize
large classes of objects is maybe not the main strength of
human vision. The reason why humans are better in tasks
such as object perception is perhaps due to intelligent use
of resources by building a concise representation of the
environment. It is perhaps the selection criterion used for
quantifying the content of visual input which differentiates
human vision from machine vision.

The process of visual memory in humans is mostly cou-
pled with the quality of the stimuli. As the brain is modulated
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rafid.siddiqui@oru.se

2Henrik Andreasson is associate professor at Örebro University, Sweden.
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by a chemical based reward system, which can be associated
with any stimuli, quantification of such quality becomes
subjective. However, there are some consistent patterns of
stimuli preference due to evolution. Such preferences can be
broadly classified into two major categories: a) task-specific
b) stimuli driven. It is this prioritized stimuli which passes the
strong barrier of human visual filtration framework and get
register as long term memory. The reason for such a stringent
filtration mechanism can be explained from an evolutionary
stand point. While being under constant threat from predators
and requiring robust detection of food sources for survival,
it was essential to be able to limit the sensory information
to the most crucial parts. Task specific object perception
happens when humans change the visual attention towards
certain pre-learned object, which is the subject of most object
detection methods. Stimuli specific object perception occurs
when object draws the visual attention towards itself and is
the subject of most saliency based methods. These strategies
(i.e. task-specific and stimuli driven) combined together can
give a satisfactory answer to the aforementioned questions.

The work reported in this paper is an effort to combine
the aforementioned two domains of perception and generate a
coherent model for visual representation of the environment,
which could be useful for certain practical applications (e.g. a
fork-lift robot operating in a warehouse environment). While
there exists a reoccurring pattern among different warehouses
due to a common infrastructure (e.g. pallets, shelves, etc.),
there is also a large difference among them due to variety
of goods handled in each warehouse. One way of tackling
this duality is to develop a hybrid perception framework. The
major contribution of this paper is twofold: a) a novel visual
mapping architecture is proposed which combines the task-
specific perception with salience perception that builds a 3D
occupancy map in real time b) a novel method for salient
region detection which makes use of global as well as local
saliency cues while incorporating some of the evolutionary
indicators of saliency detection. Modeling of task specific
perception is achieved by training classifiers for the most
important objects in the warehouse environment. The stimuli
driven perception is achieved by computing a saliency mea-
sure for the various segments of the scene (Section II). The
visual map builds and updates the occupancy model of the
environment as well as its visual appearance by combining
task and saliency information (Section III). The results of
the evaluations are presented and discussed in Section V
and related work can be found in Section IV followed by
conclusions in Section VI.



II. PERCEPTUAL FILTRATION

Perceptual filtration is the process of systematic reduction
of sensory input into meaningful abstractions which could
enable the building of a concise visual representation of the
scene. This section describes the process used in order to
extract task specific targets as well as salient objects.

Fig. 1: Perceptual Filtration: Task-specific and Salient Re-
gions.

A. Task Specific Perception

The task specific object perception is a learned behavior
therefore, it can be modeled as supervised learning problem.
In the recent past there has been substantial progress in the
performance of supervised object recognition classifiers. First
prominent break-through of the last decade happened when
Viola and Jones [5] proposed their method based on boosted
classifiers. A more recent development happened when CNN
showed some remarkable results on the image-net benchmark
challenge, which contains millions of real world images of
objects categorized in hundreds of classes [3], [6]. Although
CNN is still state-of-the-art and perhaps the best choice for
huge datasets with hundreds of classes to learn, it is prone
to over-fitting when the training set is small, which is mostly
the case in real-world scenarios. There has been models
proposed that tries to circumvent this problem by reducing
the size of network [4], however, the required size for the
training images remains large.

Along side the progress in CNN based methods, there
has also been substantial improvements in Support Vector
Machine (SVM) based classifiers. Notably, object detection
based on learned deformable object parts has provided a
more generalized interpretation of object representation [7].
The method works by finding the object parts represented by
Histogram of Oriented Gradients (HOG) at multiple scales
and building a constraint graph of the parts. This strategy of
describing objects by its parts comes close to human object
perception and allows rich visual information which can be
exploited in later stages of a visual system [7]. However,
processing time is the major drawback of this technique.

Most object detectors work by extracting a subset of
overlapping candidate windows which are grouped into two
sets; one positive and other negative. These sets are used
to train a binary classifier that predicts to which class a
particular window belongs. The false positives are controlled
by an iterative refinement method where the wrong clas-
sifications are added to the negative set and the model
is updated. While performing the training, only a subset

of windows are taken for computational efficiency, which
badly affects the optimization solution. This problem is
mitigated by optimizing the classifier on all the candidate
windows as in the Maximum Margin Object Detection
(MMOD) method [8], which provides a faster optimization
solution. This substantially reduces the false positive rates
and therefore makes the object detector reliable for real-
time applications such as robotics. Since the application of
this work is targeted for a mobile robot platform operating
in a warehouse environment which need to identify a set of
critical objects for performing its operations, MMOD is used
for task specific object detection. The simplicity of MMOD
for training an unknown object, requiring only few examples,
makes it a good choice for highly demanding applications
such as industrial robots. More specifically, a concise set
of object classes are identified which is needed by a fork-
lift robot to perform its operation. For every given training
image of an object class, HOG features are extracted and a
structured SVM classifier is trained on the features. Given the
learned model, object detection is performed on new images
and the output is forwarded to the mapping system, which
integrates the information into a visual map. An example of
task-specific and saliency perception is shown in Figure 1.

B. Stimuli Driven Perception

Saliency contains an element of subjectivity due to its
dependence on the color cue. This is in contrast to popular
belief that saliency is only an innate property of the object.
Not all salient objects are salient to everybody. However,
there are certain patterns which are common across humans
and which can be modeled. Despite a drastic difference
in the number and distribution of cones cells; Long (L),
Medium(M) and Short (S) across people, a general color
perception exist that remains almost constant (e.g. pure red
is considered as a sign of danger almost over the globe)
[12]. Shiny objects as well as highly distinctive colors or
orientations from the surroundings appear to pop-out. This
observation has been the basis of almost all of the saliency
based object perception methods. The underlying principle
of center-surround maps used in most of the state-of-the-
art methods [9], [10] is grounded in biological evidence
of cells in Lateral Geniculate Nucleus (LGN) which has
similar structure. However, as pointed in [15] most of these
methods suffer from a bias which tends to assume fixation
as a function of an object’s property. While on the contrary
the saccadic eye movement based imaging is on one hand
very different than camera imaging which captures the whole
FOV at once rather than in saccades, and on the other hand
there are usually more than one salient objects in a natural
scene. This is in contrast to single centered object images for
which most these methods perform better. Additionally, the
concept of pixel-level salient object segmentation is different
compared to how humans performs it [15]. If a human fixate
on a salient object, it is not as if the whole FOV gets dark
and it is no longer possible to fixate on other salient objects
at that moment. The saliency methods, especially the ones
which tends to find salient object based on color contrast



tend to ignore the fact that some colors bind more solidly
with long term memory than others [13].

Building upon these observations, a new color cue based
saliency method is proposed which computes saliency by
taking into account local saliency, global saliency and color
precedence. The saliency method is incorporated into a
mapping system using a random fixation strategy which not
only allows the system to become real-time but also helps
to keep the overall map size small.

1) Color Preprocessing: Color representation is a chal-
lenging task, hence the reason of the large amount of
color spaces available. Biologically inspired opponent color
space is grounded in the opponent theory of colors which
compliments the tri-stimulus theory of colors and therefore
it is well suited for saliency related tasks. Although there are
different formulations for converting RGB space to opponent
space the basic framework remains the same. RGB color is
first transformed to an intermediate format (i.e. CIE XYZ),
which then is converted to a biologically inspired color space
denoted LMS space. LMS space is further converted to Red-
Cyan, Blue-Yellow, and White-Black contrasting channels. A
RGB color is transformed to XYZ space and LMS space as
follows:

L
M
S

 =

0.7328 0.4296 −0.162
−0.703 1.6975 0.0061
0.0031 0.0136 0.9834

XY
Z

 (1)

The LMS space is further converted to opponent channels
as follows:

O1
O2
O3
O4

 =


1 −0.5 −0.5 0
−0.5 1 −0.5 0
−0.5 −0.5 1 0
0.33 0.33 0.33 0



L
M
S
1

 (2)

The image encoded in opponent color space is used in global
and local saliency computations. An example of opponent
color space is depicted in Figure 2.

Fig. 2: Visualization of Opponent Space in RGB colors.

2) Global Saliency: Salient objects have least in common,
whereas the background usually have homogeneous texture
spread across the image. The global saliency computation is
based on this assumption. Salient regions are often small-
sized and have high variation while background on the
contrary tends to repeat over large regions. This pattern can

be easily filtered by a low-pass filter. In this work, a Log-
Gabor filter is used. Log-Gabor filters have a significance
as they model the processing done by cells in LGN. A log
Gabor filter can be defined as follows:

G(x) = exp

(
−1
2γ2

(
log
‖x‖
f0

)2
)

(3)

where x = (x, y), f0 and γ are spatial coordinates of filter
in frequency domain, initial frequency and bandwidth of the
filter respectively. The global saliency map is hence given
as:

Sg(Oi) = Oi ∗ G(x) (4)

where Oi represent the image channel in opponent color
space and ∗ is the convolutional operator. Examples of the
global saliency is visualized in Figure 5.

3) Local Saliency: Local saliency is often computed for
individual pixels based on their difference to the colors of
surrounding pixels. The computation of pixel-wise saliency is
not only computationally expensive but it is also counter intu-
itive because regions with similar colors tend to have same
saliency. Therefore, pixels are grouped into homogeneous
regions based on their color using a mean-shift segmentation
[11]. The obtained scene segments form the input to the local
saliency computation. The central idea is that salient objects
have contrasting color with respect to their surrounding. This
phenomenon can be modeled by computing the color contrast
between regions. More specifically, for every scene region i
and neighbor region j the distance in opponent color space
is used to compute saliency as follows:

si =
1

n

n∑
j=1

‖ci − cj‖2 exp

− n∑
j=1

‖ui − uj‖2

2σ2

 (5)

where ci, cj , ui, uj are; color in opponent space of region
i and j, spatial position of the region i and neighbor j
respectively.

As discussed earlier, certain colors contribute more to
saliency, for example, warm colored objects are perceived as
salient more often than objects with cool colors. Therefore a
saliency computation method should also take into account
color precedence. A biological explanation of such behavior
lies in the way cone cells behave under different illumination
conditions. Under lit conditions, a Photopic vision is prac-
ticed by the cells. Which means that under Photopic vision, L
cells gets more preference than S cells and therefore the red
becomes the most dominant color and blue the least dominant
color. This is the reason for the sky being the least salient
region of the scene in day light. Under low light conditions, a
Scotopic vision is practiced by the cone cells which enhances
the output of S cells thus resulting in a reversed preference.
Under medium conditions, colors compete for resources,
which is called Mesotopic vision. Such a preference can be



modeled by measuring color temperature. Color temperature
is the temperature of a black-body radiator at the same hue
as the light source. A measure for color temperature is Color
Correlation Temperature (CCT). In order to embed the color
preference in the system, local saliency map is computed as
follows:

Sl =
n∑

i=1

e−
T (ci)

2

2σ2 siM (6)

where Muv =

{
1 u, v ∈ R
0 otherwise

represents the mask region

which has image coordinates u and v. T (ci) is the CCT
function which computes color temperature. Note that color
temperature is reversed to represent the saliency, because
humans’ perception of warm colors is inversely related to
physical temperature of the color which is highest at blue.

4) Saliency Map: Given the local and global saliency
maps, a joint saliency map is computed by integrating both
maps. A combined saliency map is thus given as:

S = α
∑
i

S2g (Oi) + (1− α)S2l (7)

where α is the weight factor between local and global
saliency.

Salient region extractions along with local and global
saliencies is shown in Figure 5.

5) Fixation Strategy: Human saliency is not only depen-
dent on certain properties of the object but is also affected
by the region which has already been observed. This is
accomplished by saccadic eye movements. There is lack of
consensus in whether this eye movement is solely dependent
on low level features, which tends to generate saliencies, or
if it is an intentional act. Therefore, in this work the fixation
is modeled as a hybrid strategy which combines the strength
of randomness as well as the precision of intentional act. A
number of candidate scene sections are generated where the
image is divided into a set of large overlapping candidate
sub-regions by a sliding window approach. A sample from
the candidate sections is drawn randomly which represents
the focus region. The coherent regions in the focus region
are evaluated for their respective saliency. Regions that have
saliency higher than a threshold are selected as fixated salient
regions and are then used in the next stage where they are
integrated into the visual map. A sample of focus region and
corresponding saliency region extraction steps are shown in
Figure 3.

III. VISUAL MAP

Visual mapping is often tightly coupled with the occu-
pancy of the scene. The representation is typically done
either by accumulating raw sensor data or by maintaining
a grid map estimated from multiple sensor readings, where
each grid cell represents the occupancy status of a region
in the real world. These sensor readings or occupancy cells
are then labeled by finding a pattern which is present in

Fig. 3: Salient Fixation: Focus region, color segmentation,
saliency map and detected salient region respectively.

the neighborhood. Such techniques can suffer from scaling
problem due to redundancy which exist in the real-world
data. The reason for this is because occupancy is usually
unnecessarily tied to visual interpretation of the scene. While
it is important to know the occupancy in the scene for a
robot to plan the pathway to its goal, it is not necessary
for a visual interpretation of the environment (i.e. visual
memorization in terms of key objects/regions in the scene
and associations that exist among them). Furthermore, many
mapping solutions are proposed by keeping a human ob-
server in mind and not the machine for which it is in-fact
proposed. Perhaps humans do not save the information about
peculiar obstructions in the pathway to long term memory.
One counter argument would be that the memorization of
specific spatial details of the environment perhaps simplify
the planning process or enable the generation of plans offline.
However, the pre-build highly constrained plans may not
work due to the dynamic nature of the environment. Humans
make short term node-node loosely coupled dynamic plans
which are not tied to the structural peculiarities. This work
presents a simple strategy which addresses the problem of
visual mapping in a warehouse environment. The proposed
visual map consists of two major components: a) Scene
Occupancy b) Perceptual Regions. A complete architecture
of the proposed method is given in Figure 4. Scene occu-
pancy consists of information about obstructions in the scene
and can be modeled using occupancy mapping. Due to its
simplicity and efficiency an octree [14] representation has
been used in this work. Initially, an empty octree is created.
Each RGB and depth pair from a Kinect Sensor is processed
to create a labeled point-cloud containing task-specific and
salient regions. Using the labeled point-cloud and the robot
pose, the occupancy and labels in the visual map are updated.
A set of new occupied cells are added to the tree for new
unseen regions and already occupied but unassigned nodes
are labeled with the detected task-specific object.

Perceptual regions consist of task-based and stimuli driven
perception along with spatial information. Every perceptual
region is a self-sufficient coherent representation which con-
sists of information about the appearance and position of



Fig. 4: The architecture of the proposed Visual Map

a particular stimuli (i.e. an object in case of task-based
perception and a salient region in case of stimuli-driven
perception). An overview of such an organization is given in
Figure 4. The reason for keeping scene occupancy alongside
the visual interpretation is only for visualization purposes
since the occpuancy map is not required for computing
perceptual regions. A salient region occupies an unknown
label as the robot is unaware of the corresponding name of
the object (or region), however, any salient region could be
transformed into a known one by a semi-supervised step.
This framework also enables independent development of
two subsystems. The complete system has been made highly
modular therefore, each component (i,e. task-based percep-
tion, saliency perception and occupancy) can be improved
independently in order to generate better mapping system.

IV. RELATED WORK

The proposed technique, which attempts to bring multiple
domains of visual interpretation (i.e. 3D metric mapping,
saliency, object detection and abstract scene representation)
closer makes it difficult to point out similar work with
sufficient overlap. Nevertheless, the closest domains of visual
mapping solutions in terms of the underlying motivation and
concept are: scene summarization and semantic mapping
based on object/place associations. Scene summarization
approaches tend to seek an abstract summary of the visited
places by finding spatial properties of objects in the scene.
In [16] an image based semantic summarization approach
is proposed which tries to capture the visual experience
of a robot by clustering images into ordinary and novel
categories. Similarly in [17] an algorithm for selecting the
most important parts of a scene, which are sufficient to
build a representation of the scene is proposed. In [18] a
method for finding novel objects in the scene is proposed
which utilizes the given information about the known objects
including and the map of the environment. In [19] and
[20] topological place associations are taken as basis for
developing an abstract representation of the environment.

V. EXPERIMENTAL RESULTS

The goal of this work has been to build a representation,
a visual map, to assist a warehouse robot which perform
loading and unloading operations. A fork-lift robot operating

in a warehouse of a superstore has been used to collect the
data. The robot has odometry sensors along with various of
vision sensors where data from a Kinect sensor has been used
in this work. The depth images are pre-processed in order to
reduce the effect of noise at object edges as well as at the
reflected parts of the scene. The points which have high depth
variance in the neighborhood (in this work > 0.5m for the
8 closest readings) are removed. A bilateral filter is applied
on the depth images in order to smooth out depth values
while keeping the object boundaries intact. For each RGB
image, task specific perception and stimuli driven percep-
tion is performed and corresponding perceptual regions are
updated. The result of perceptual regions along with depth
is transformed into a point-cloud by projective geometry of
the camera which is used to update the occupancy map. The
performance of the task specific perception is evaluated on
a set of 122 labeled images selected randomly from the
recorded sequences among which two third are used for
training. A set of 100 images with manually labeled salient
regions has been used as ground truth for the evaluation of
stimuli performance. The percentage of correctly identified
salient pixels for each marked region is used as measure for
evaluation. The performance of the task-specific and stimuli
driven detection systems can be seen in the Figure 7. As
mentioned earlier, one of the reason for choosing MMOD
is that it generates lower false alarms. While evaluating the
detection system, it became clear that MMOD indeed had
tendency of generating lower false alarms (i.e. in comparison
to Viola and Jones), as it generated only a couple of false
positives on the 200 images of warehouse environment which
did not contain any of the target objects. After observing
this behavior, we decided to stress test the algorithm by
increasing the number of negative images. Therefore, we
collected a set of 5000 indoor images from the SUN dataset
[21]. The algorithm has been run multiple times and Receiver
Operating Curves (ROC) has been obtained by varying the
margin of the support vector and training the model. A
comparison in terms of ROC curves with Viola-Jones is
depicted in Figure 7. The results verify the claim that MMOD
indeed has fewer false detections than its counterpart. The
reason that ’pillar’ class have slightly more steep curve
than other objects, could be explained by the fact that
negative images used in the experiments (i.e. from the SUN
dataset) were indoor images of various real-world places
which indeed contained pillar or pillar like structures. The
output of the task-specific as well as stimuli driven systems
on the warehouse dataset can be visualized in Figure 6. It
can be observed that the system tends to give preference
to highly salient as well as distinctive objects in the scene
which are indeed the kind of objects which ought to be put
in long-term memory (i.e. the visual map). The system is
tested on recorded sequences and the final map snapshot is
obtained which is visualized in Figure 8. The figure also
presents a 3D model based representation of the perceptual
regions. The runtime analysis of individual components of
the system as well as the total processing time is given in
Figure 9. The saliency and map update components have



Fig. 5: Visualization of Salient Region Extractions. Column 1: original image, Column 2: global saliency, Column 3: local
saliency, Column 4: joint saliency map, Column 5: salient regions

Fig. 6: Visualization of Perceptual Region Detection for Mapping. Row 1: pallets/pillars, Row 2: depositories and Row 3:
salient regions.

large variance, this is due to variations in the segmentation
step which generates arbitrary number of regions which
directly affects the runtime of local saliency and perceptual
region computations. There are two major portions of map
process; perceptual region update and occupancy update. If
occupancy map is turned off the computational resources
for that component could be taken by feature representa-
tion technique which encapsulates the appearances of the

perceptual regions. Currently, mean color of the region and
average HOG are used to memorize the appearance of a
perceptual region. The system is implemented in Robot
Operating System (ROS).

VI. CONCLUSIONS

The real world is often dynamic and contains an abun-
dance of information, most of which is unnecessary to
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Fig. 7: Performance Evaluation: (a) Performance of Task-specific Region Extraction. (b) Performance of Salient Region
Extraction - Blue: Percent overlap of the detected region with ground truth, Red: mean line. (c) ROC curves of MMOD
detector. (d) ROC curves of Viola-Jones detector.

Fig. 8: Visual Map, Top: Occupancy representation (black=’occupied space’, yellow=’pallets’, green=’pallet depositories’,
blue=’pillars’ and all other colors depict salient regions). Middle: detection of salient regions; pallet, pillar and depository
respectively. Bottom: Perceptual regions represented with 3D models, the arrows indicates the position towards the objects
shown in the middle row.
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Fig. 9: Runtime of task-specific, saliency computation and
map update step respectively.

perform a specific type of task. On one hand, the robot
is expected to perform highly specialized repetitive tasks
such as loading/unloading specific objects and on the other
hand, it is also expected that robots seamlessly work in a
dynamic environment and become aware of its surrounding
yet not getting overwhelmed by the amount of sensory data
to be processed every second. Therefore, a robot must have
a general framework for deciding what should be kept in
long-term memory. An attempt towards providing an answer
to this basic yet highly challenging question is performed
in this work. A visual map system is proposed which takes
decision based on task specific and salient nature of a stimuli
and builds a representation of the environment which can be
used not only to simplify the map but also to increase the
effectiveness and generality of the developed robots. A video
presenting the results is available [22].

This work is part of an ongoing research project
”Semantic Robots” funded by KK-Foundation.
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