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Abstract

This thesis is concerned with the task of autonomous selection of objects to re-
move (unload) them from a pile in robotic manipulation systems. Applications
such as the automation of logistics processes and service robots require an abil-
ity to autonomously manipulate objects in the environment. A collapse of a pile
of objects due to an inappropriate choice of the object to be removed from the
pile cannot be afforded for an autonomous robotic manipulation system. This
dissertation presents an in-depth analysis of the problem and proposes methods
and algorithms to empower robotic manipulation systems to select a safe object
from a pile elaborately and autonomously.

The contributions presented in this thesis are three-fold. First, a set of al-
gorithms is proposed for extracting a minimal set of high level symbolic rela-
tions, namely, gravitational act and support relations, of physical interactions
between objects composing a pile. The symbolic relations, extracted by a geo-
metrical reasoning method and a static equilibrium analysis can be readily used
by AI paradigms to analyze the stability of a pile and reason about the safest
set of objects to be removed. Considering the problem of undetected objects
and the uncertainty in the estimated poses as they exist in realistic perception
systems, a probabilistic approach is proposed to extract the support relations
and to make a probabilistic decision about the set of safest objects using no-
tions from machine learning and decision theory. Second, an efficient search
based algorithm is proposed in an internal representation to automatically re-
solve the inter-penetrations between the shapes of objects due to errors in the
poses estimated by an existing object detection module. Refining the poses by
resolving the inter-penetrations results in a geometrically consistent model of
the environment, and was found to reduce the overall pose error of the objects.
This dissertation presents the concept of minimum translation search for object
pose refinement and discusses a discrete search paradigm based on the concept
of depth of penetration between two polyhedrons. Third, an application centric
evaluation of ranging sensors for selecting a set of appropriate sensors for the
task of object detection in the design process of a real-world robotics manip-
ulation system is presented. The performance of the proposed algorithms are
tested on data sets generated in simulation and from real-world scenarios.

Keywords: Object Selection; Object Pose Refinement; Gravitational Support
Relation; Inter-penetration Resolving; 3D Ranging Sensor Evaluation.
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Chapter 1
Introduction

In everyday life, working at home or in an industrial environment, people move
things from one place to another. Depending on the complexity of task, an
appropriate selection of objects for manipulation is an essential decision that
people make beforehand and often without explicit thinking. For example, the
preliminary stages of arranging and organizing bookshelves, cupboards and
cabinets require that the stacked objects are unloaded safely. In other words,
people normally choose and remove an object from a shelf such that other
objects stay motionless, and this is to prevent the other objects from falling
down or toppling over. In industry, logistic processes often deal with piles of
objects which may come in random configurations (see Figure 1.1 for a few real-
world examples). Looking at a pile of objects with an arbitrary configuration,
people are usually able to employ their experience and knowledge to select a
set of safe-to-remove candidates from the pile such that removing the selected
objects preserves the stability of the pile. In this thesis, safety is reflected through
selecting an object from a pile such that removing it leads to as little motion as
possible of the other objects in the pile. The ability to select a safe object for
removing from a pile minimizes the risk of a collapse and thus prevents damage
to the objects and the environment.

Introducing robots increased the demand for replacing humans with ma-
chines for performing drudgeries and complex jobs. In order to employ robots
in jobs involving moving objects, apart from appropriate design of a mechanical
body and corresponding controllers, an autonomous robot must also be able to
perceive the surrounding objects, analyze the structure of the environment and
make proper decisions to reduce accidental damage due to manipulation of ob-
jects. An example of a recent demonstration of an advanced humanoid robot
with walking and manual skills is the Atlas robot made by Boston Dynam-
ics (see Figure 1.2). A key requirement for such advanced robots for safe use in
real-world manipulation of objects is the ability to select safe objects for manip-
ulation. For example, a robot such as Atlas needs to be able to autonomously
reason and safely unload the piles of carton boxes shown in Figure 1.1. The
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(a) (b)

Figure 1.1: A few snapshots of configurations of objects inside shipping con-
tainers at unloading sites.

ability of a robot to answer the questions such as: “how many other objects
would fall down if I remove this object?”, “which object does not support any
other object in the pile?” and “which object is the safest candidate to remove
from a pile?” enables the robot to automatically reason about the safest se-
quence of unloading objects from a pile. Robots without the ability to analyze
the complexity of the task and make proper decisions cannot be utilized for
accomplishing tasks autonomously and need to be supervised by humans con-
tinuously.

This thesis work presents a set of contributions towards the development of
autonomous robotic manipulation systems for real-world applications of un-
loading objects from piles. The main focus is on the ability of a robot to use
efficiently the available description of the objects extracted from perception
to select a safe object to be unloaded from a pile. This ability, which will be
discussed further in Chapter 5, is essential for the autonomy as well as the per-
formance of the robotic manipulation system. When the description of poses
of objects is inaccurate, the geometrical shapes may inter-penetrate into each
other representing a model of the environment which is inconsistent with a
rigid body assumption. Inter-penetrations between the shapes of objects have
to be resolved for making proper decisions about the safe-to-remove objects.
This thesis presents algorithms to resolve the inter-penetrations and refine the
poses of object in order to obtain a model of the environment in which there
is no inter-penetration between pairs of objects. This will be discussed in detail
in Chapter 4. One reason for inaccuracy in the poses of objects is the use of
inappropriate visual sensors for the underlying application. In order to study
the effects of appropriate selection of visual sensors on the task of pose estima-
tion of objects, this thesis presents an application-centric evaluation of range
sensors, which will be further discussed in Chapter 3.
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(a) (b)

Figure 1.2: A demonstration of the humanoid robot Atlas made by Boston
Dynamics. (a) The robot grasps a carton box and (b) lifts and places the box
on a shelf. The research question of this thesis is how to empower a robot such
as Atlas with the ability to autonomously reason and safely unload the carton
boxes from stacks or complex piles such as shown in Figure 1.1?

1.1 Motivation

Globalization has increased the volume of transported goods, and as a result
there is a huge demand for the fast and reliable logistics processes. Every day,
thousands of cargo containers are shipped between continents, where a vari-
ety of goods composing a cluttered environment, and often stacked chaotically
need to be unloaded in short time. Although manually unloading goods by hu-
man workers is a tedious, strenuous job imposing serious health risks, it is com-
mon practice to use human workers for removing goods from cargo containers.
Lifting and handling heavy objects is a prohibitively exhausting job which may
result in permanent injuries to the workers and costly damage to goods through
unexpectedly falling objects. Apart from the need of fast unloading of contain-
ers, the lack of manpower to work under unhealthy working conditions com-
bined with strict labor union regulations make human labor a high cost factor
and increase the demand for autonomous unloading machines. The European
Union project titled “Cognitive Robot for Automation of Logistics Processes”,
in which the work of this dissertation was carried out (Chapter 2 describes the
project in more detail), aims at developing an autonomous robotic solution for
the task of unloading goods from cargo containers.

Among a number of engineering and scientific difficulties, a major prob-
lem in automating the task of unloading goods is the autonomy in making a
safe decision about the sequence of objects to unload under noisy data and the
uncertainty in the execution of the unloading actions. Even with advanced ca-
pabilities of grasping and moving an object from a pile to another place, robotic
manipulation systems cannot be afforded to unload goods if the removed ob-
ject cause a collapse of the pile. In order to deploy robots for use in real-world
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environments an autonomous understanding of the structure of the underlying
task is crucial for making proper decisions. A robotic unloading system, in par-
ticular, needs to make a safe decision about the sequence of objects to unload
from a pile.

The idea that goods are usually stacked neatly into cargo container at load-
ing stations may suggest the possibility of using a preprogrammed unloading
plan. However, the long-distance freight transport requires shipping cargo con-
tainers between ship, rail and truck resulting the configuration of goods, to
some degree, random, as some real-world examples can be seen in Figure 1.1.
Even if the pile of goods inside cargo containers preserves the neat initial con-
figuration when reaches to the unloading sites, making decisions based on a
preprogrammed plan for unloading goods may fail due to uncertainty both
in perception of objects and in executing unloading actions. Uncertainty in
the perception may cause errors in grasp planning, obstacle avoidance and
path planning of the robotic manipulator, and failures to execute an unload-
ing action may change the arrangement of the objects. Consequently, when the
arrangement of the objects change the preprogrammed unloading plan is no
longer valid. In addition to the possibility of a change in the arrangement of
objects that are neatly stacked, the piles of objects for which the arrangement is
not known in advance and may have been chaotically stacked need appropriate
algorithms to analyze the stability of the pile and make safe decision about the
next object to unload.

Domestic and service robots [1, 2] can also benefit from the algorithms
predicting the effects of manipulating a selected object on the stability of the
environment to make safer decisions. For example, when asking a service robot
such as a Willow Garage Personal Robot [3] to bring an elderly person a food
box located inside a refrigerator of possibly filled with other objects it will not
be accepted to cause any object to topple over or fall down. If the robot is
able to predict the consequences of manipulating objects on the stability of the
surrounding objects, then it can plan for a safer sequence of actions to perform
a desired task.

1.2 Problem Statement

The specific research problem addressed in this dissertation can be generally
stated as below,

Problem. Given the geometrical shapes and an estimation of the poses of a set
of objects that are part of a pile, determine a sequence of unloading actions
such that removing an object maintains the stability of the pile.

Considering the shapes of commonly-used objects in logistics processes, it
is assumed that the shape of an object can be well approximated with a convex
polyhedron. Nevertheless, most of the algorithms presented in this thesis can be
extended to deal with concave shaped objects by decomposing a concave shape
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Figure 1.3: The pipeline of the robotic unloading system starting from percep-
tion and moving on to making decision about the safest object to unload.

into a set of connected convex polyhedrons. It is explicitly assumed that the pile
is in static equilibrium, that is, the objects composing the pile are motionless. An
estimation of the poses is assumed to be obtained by an existing object detection
and pose estimation module, where, to some extent, there exists uncertainty in
the estimated poses.

It is important to further clarify one condition of the problem statement,
that is, there is no guarantee that the description of all the objects composing a
pile are available for the analysis of the stability of the pile and determining a
safe sequence of unloading actions. The undetected objects could be the result
of occlusion or a failure in the detection process of the existing object detection
module.

1.3 Challenges

A robotic manipulation system to operate autonomously and unload objects
safely has to deal with a number of scientific and engineering challenges. Start-
ing from low-level perception and moving on to complex analysis of the possi-
bly noisy and incomplete data to extract a high-level meaningful interpretation
of the environment represents a multitude of challenges to address. A variety
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of the type of objects, which may come in different size, shape and material
imposes not only difficulties in grasp planning and execution, but also it makes
reliable identification of objects and making safe decisions challenging.

Figure 1.3 shows a conceptual pipeline for an autonomous robotic unload-
ing system starting from perception and moving on to the execution of the
unloading action. The process starts by sensing the environment (i.e., the scene
of objects) using perception sensors. The sensor fusion and pre-processing are
then performed to reduce the noise and prepare the data for high level pro-
cessing. Scene segmentation further prepares the input data for object detection
and pose estimation algorithms. In the next step, the configuration of the set
of detected objects is analyzed for making decision about the safest object to
remove from the scene. Motion and grasping plans are then computed for the
selected object to move it to the desired place without colliding with the other
objects in the environment.

The description of objects such as shapes and poses is normally not avail-
able and has to be extracted from the sensory data, which is inherently un-
certain. For a reliable analysis of the stability of a pile in order to identify
safe-to-remove objects, a fundamental component, similar to the visual system
of human being, is the quality of the detection of objects. Object detection and
pose estimation algorithms, however, represent errors in the estimated descrip-
tion of objects due to occlusion, noisy data and internal failures in algorithms.
Some objects may be inherently invisible due to occlusion or not being in the
field of view of perception sensors. Conversely, false positive objects, which are
non-existing objects that are detected as some type of objects by the object de-
tection algorithm are another challenging issue in the analysis of the stability
of a pile. The uncertainty about the estimated poses of the location of objects
further complicates reasoning about the safe object to unload. A misclassifica-
tion of the type of objects, as an internal failure in object detection algorithms,
represents an incorrect hypotheses about the corresponding geometrical shapes
of the objects. The aforementioned difficulties highlight the importance of an
evaluation of the perception sensors in order to minimize the negative effects
of an inappropriate sensor selection on the task of object detection.

The problem of undetected objects of a pile could play a dominant role
in the stability analysis of the pile. The objects that are located behind other
objects are inherently occluded, thus they cannot be perceived and detected.
Even objects that are not occluded may not be detected by an existing object
detection algorithm. The problem of having access to only a subset of objects
of a pile represents the lack of information in making decision about the safest
object. When facing the lack of information, human beings usually use a heuris-
tic solution, e.g., not being able to see the objects behind the front layer of a
pile, people choose an object which is most probable to be safe according to
their own justification. An algorithmic decision making about the set of safe-
to-remove objects from a pile, in turn, needs to be able to deal with the lack of
information.
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The errors in the estimated poses even for a complete and correct detec-
tion of objects may result in a set of inter-penetrations between the shapes of
adjacent objects, which represent a geometrically inconsistent model of the en-
vironment. The geometrical consistency of the estimated poses is required due
to a rigid body assumption of the real-world, where solid objects are assumed
not to deform or penetrate into each other. A model of the environment that
is inconsistent with a rigid body assumption may cause failures in geometrical
reasoning on the stability of a pile. A partial or complete inter-penetration of
shapes thus needs to be resolved as a preliminary stage of a geometrical reason-
ing.

1.4 Outline

The rest of this thesis is organized as follows.

Chapter 2 presents an overview of the previous related works on the prob-
lems addressed in this thesis, and introduces the EU-funded project ti-
tled “Cognitive Robot for Automation of Logistic Processes” (RobLog)
in which the presented work was carried out.

Chapter 3 is focused on the problem of 3D range sensor evaluation and se-
lection in the design process of a complex robotic system with a specific
attention to the challenging scenarios in the RobLog project. An applica-
tion centric 3D range sensor evaluation is presented and discussed.

Chapter 4 proposes a framework to refine the noisy estimated poses of a set
of objects in order to obtain a geometrically consistent model of the en-
vironment. In this chapter, the depth of penetration between two poly-
topes is utilized to define a reduced search space for resolving the inter-
penetrations between objects due to errors in the initially estimated poses.

Chapter 5 discusses the problem of determining a set of safe-to-remove ob-
jects from a pile under complete and incomplete information. Depending
on the availability of a description of the objects, two major approaches
are proposed. This chapter introduces algorithms to represent and ex-
tract gravitational act and support relations based on notions from ge-
ometry and static equilibrium in classical mechanics. Machine learning
techniques and probabilistic decision making approaches are employed
to address the problem of undetected objects of a pile and the uncertainty
in the input data.

Chapter 6 concludes this thesis with final remarks and suggested directions for
future research work.
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1.5 Contributions

The contributions presented in this thesis work can be summarized as follows:

• An application-centric method for comparative evaluation and selection
of a set of appropriate 3D range sensors in the context of automatic un-
loading goods from cargo containers.

• An object pose refinement framework based on the concept of depth of
penetration between two overlapping polytopes and search algorithms to
obtain geometrical consistent models of the environment.

• Development of a methodology to identify and select a set of safe-to-
remove objects from a pile for integration into fully autonomous robotic
manipulation systems. The method is not tied to any specific robotic ma-
nipulator and neither to a particular object detection algorithm. Thus, the
proposed method can be readily adopted for different designs of robotic
manipulation setups.

• A method for extracting gravitational support relations by automatically
analyzing the stability of a pile of objects with an arbitrary configuration
and possibly under uncertainty and lack of information about the com-
plete set of the objects. Machine learning techniques employed to estimate
the probability of the support relations and notions from decision theory
are used to select the set of safe-to-remove objects.

• An open-source C++ library implementing aforementioned object pose
refinement framework under Robot Operating System (ROS).

• Comprehensive, quantitative evaluation of the proposed methods on data
sets generated in simulation and from real-world scenarios.

1.6 Publications

The contributions of this thesis work have been presented in different peer
reviewed journal articles or conference papers. The major results from this dis-
sertation were published in the following articles:

• R. Mojtahedzadeh, T. Stoyanov, A. Lilienthal. Application based 3D sen-
sor evaluation: A case study in 3D object pose estimation for automated
unloading of containers. In Proc. of 6th European Conference on Mobile
Robots (ECMR), Barcelona, Spain, 2013, pp 313-318.
Part of Chapter 3

• T. Stoyanov, R. Mojtahedzadeh, H. Andreasson, A. Lilienthal. Compara-
tive evaluation of range sensor accuracy for indoor mobile robotics and
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automated logistics applications. Robotics and Autonomous Systems (RAS),
2012, ISSN 0921-8890, Vol. 61, pp 1094-1105.
Part of Chapter 3

• R. Mojtahedzadeh, A. Lilienthal. A Principle of Minimum Translation
Search Approach for Object Pose Refinement. In Proc. of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), 2015,
pp 2897-2903.
Part of Chapter 4

• R. Mojtahedzadeh, A. Bouguerra, A. Lilienthal. Automatic Relational
Scene Representation For Safe Robotic Manipulation Tasks. In Proc. of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013, pp 1335-1340.
Part of Chapter 5

• R. Mojtahedzadeh, A. Bouguerra, E. Schaffernicht, A. Lilienthal. Proba-
bilistic Relational Scene Representation and Decision Making Under In-
complete Information for Robotic Manipulation Tasks. In Proc. of the
IEEE International Conference on Robotics and Automation (ICRA), 2014,
pp 5685-5690.
Part of Chapter 5

• R. Mojtahedzadeh, A. Bouguerra, E. Schaffernicht, A. Lilienthal. Sup-
port Relation Analysis and Decision Making for Safe Robotic Manipula-
tion Tasks. Robotics and Autonomous Systems (RAS), 2015, ISSN 0921-
8890, Vol. 71, pp 99 - 117.
Part of Chapter 5

The following publication is not in the core contribution of this dissertation,
however, it describes the results of the RobLog project and represents the work
I performed during this thesis to autonomously identify safe-to-remove objects.

• T. Stoyanov, N. Vaskevicius, C. Muller, T. Fromm, R. Krug, V. Tincani,
R. Mojtahedzadeh, S. Kunaschk, R. Mortensen Ernits, D. Canelhas, M.
Bonilla, S. Schwertfeger, M. Bonini, H. Halfar, K. Pathak, M. Rohde,
G. Fantoni, A. Bicchi, A. Birk, A. Lilienthal, W. Echelmeyer. No more
heavy lifting: Robotic solutions to the container unloading problem. IEEE
Robotics and Automation Magazine, to appear.





Chapter 2
Background

In many practical applications of robotic manipulation where the objects are
stacked in a pile, it is of great importance to prevent other objects from moving
and possibly falling down by an inappropriate selection of an object to remove
from the pile. The process of automating the task of unloading goods inside
cargo containers is such a real-world application that requires the ability to au-
tonomously select safe-to-remove objects. This chapter reviews literature about
the object selection problem and highlights the need for a principled treatment
of the task of identifying safe-to-remove candidates from realistic configura-
tions of objects.

The problem of algorithmic object selection for robotic manipulation is
mainly investigated in the research for designing “bin-picking” robots. A robotic
bin-picking system requires scene analysis, object detection and pose estima-
tion, grasp planning, and path planning. The parts to be assembled in a pro-
duction line are the main focus of industrial robotic bin-picking systems. In
related work about bin-picking systems it is common to assume configurations
of objects sitting on top of a table or being stacked in a bin. In such cases the
problem of object selection typically addressed with a heuristic to pick up the
topmost objects of a bin.

An appropriate selection of an object from an arbitrary configuration of
goods which are stacked inside a cargo container requires a more complex
analysis than the simple heuristic of always selecting the topmost objects. For
a bin-picking scenario in which the bin is filled with a number of identical
assembly parts it is a plausible strategy to identify and select the topmost object.
In such scenarios it makes no difference which part is chosen to be picked up,
and also motions of other parts due to the pick-up action do not matter. A cargo
container filled with possibly fragile goods it is crucial to predict the effects of
unloading a selected object on the stability of the pile of objects.

The key motivation of the problem addressed in this thesis can be seen in
the scenario of the EU-funded project RobLog, which is summarized below.

11



12 CHAPTER 2. BACKGROUND

(a) Real-world Coffee Sacks Scenario (b) Scientifically Challenging Scenario

Figure 2.1: Two sub-senarios of the RobLog project are illustrated: (a) the real-
world industrial task of unloading coffee sacks neatly stacked inside shipping
containetrs; (b) the scientifically more challenging scenario of a cluttered pile
of objects that could come in random configurations without known models.

2.1 RobLog Project

The work presented in this thesis is motivated by and was carried out in the con-
text of an European Union funded project titled “RobLog - Cognitive Robot
for Automation of Logistics Processes” [4]. The central objective of the RobLog
project was the development of a robotic manipulation system for the task
of unloading goods from cargo containers. A large portion of trading goods
are packaged and shipped in standardized containers. While some of the tasks
along the logistic chain can be performed by machines, manually unloading
goods from containers is a strenuous and costly job presenting a key bottle-
neck in the process. Therefore, safe and reliable automated container unload-
ing machines constitute a commercially and socially important research area.
The ultimate goal of the RobLog project was to develop solutions for the sci-
entific challenges on the road to automated container unloading. With the con-
tribution of this thesis the project successfully demonstrated prototypes of fully
autonomous robotic unloading systems [4].

In order to be economically feasible, the robotic manipulation system must
be very robust, efficient and safe in comparison to manually unloading goods
by human workers. The lack of automation in unloading of containers is mainly
due to the complexity of the task, which must be accomplished under restricted
time demands and requires a high level of software and hardware capabilities. A
further challenge is the high variability of the objects shipped in the containers
in terms of shapes, size, texture and material. The unstructured arrangement
of objects loaded into the cargo containers requires the robot to be able to
deal with unknown configurations of objects. It is not unusual to observe that
several goods might topple over when picking up one object from a cargo con-
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Figure 2.2: Industrial Robotic Platform of the RobLog Project

tainer. A proper choice of the object to unload reduces the risk of accidental
damage to other objects due to toppling over or falling down.

The RobLog scenario requires reliable capabilities to address the problem of
selecting objects to pick from varying, possibly heterogeneous, and potentially
chaotically arranged goods inside cargo containers. The project addressed two
different sub-scenarios, one motivated by a real-world industrial task of un-
loading 70 kg coffee sacks stacked inside cargo containers (see Figure 2.1a),
and another scenario aims at the scientifically more challenging domain of un-
loading containers (see Figure 2.1b). The latter scenario contributes to research
on autonomous manipulation in unstructured environments that piles of ob-
jects may have random configurations, and that there exist objects without
known models. Figure 2.2 depicts the industrial robotic platform developed for
the scientific scenario in the design process of the RobLog project.

In the scenario of unloading coffee sacks, a heuristic approach of always
selecting the topmost sack from the front layer could efficiently be employed
as long as coffee sacks are neatly stacked in layers on top of each other. The
assumption that the objects are neatly stacked considerably simplifies reasoning
on the geometry of the pile and reduces the complexity of the scene analysis.
However, such a simplified strategy of always selecting the topmost object fails
in more complicated configurations where there are complex gravitational sup-
port relations between the objects, and where the problem of undetected objects
is more severe. The work of this thesis is dedicated to develop algorithms and
present methodologies for the problem of selecting safe-to-remove objects in
the more challenging scenario of the RobLog project.

2.2 Related Work

Despite the importance of making a safe decision about the sequence of ob-
jects to remove from a pile for autonomous robotic manipulation, only a few
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(a) Bley et al. [5] (b) Jang et al. [6] (c) Klingbeil et al. [7]

(d) Kenney et al. [8] (e) Agrawal et al. [9] (f) Real-world Containers

Figure 2.3: (a)-(e) depict typical configurations of objects in related works to
bin-picking research. (f) depicts two real-world configurations of carton boxes
inside shipping containers at unloading sites.

papers address this problem. The problem of object selection is occasionally
briefly mentioned within bin-picking literature about object localization. This
section therefore, first, reviews bin-picking literature with a focus on the target
scenarios and the object selection task. Then, the few available related works
that specifically attempt to identify gravitational support relations between ob-
jects of a pile are reviewed, and their limitations are highlighted. Table 2.1
categorizes the related work reviewed in this chapter based on three items, the
scenario, the properties of the objects and the type of analysis to represent an
overview of the differences between this work and the related work.

2.2.1 Bin-Picking

In an early work by Ikeuchi et al. [10] in 1983, a bin-picking system was in-
troduced based on an analysis of the surface normals extracted from a stereo
vision sensor. The main focus of their paper is to address the problem of how to
isolate an object from the background, and how to determine the relative pose
of the object with respect to the camera. One year later in 1984, Horn and
Ikeuchi [11] published their study about manipulation of randomly oriented
parts where they present an object template matching method to autonomously
determine the orientation of parts in a pile.
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Dessimoz et al. [12] propose a fast filtering approach to detect potential
holdsites – a location on an object at which to grasp the part – in images to de-
crease the burden of scene analysis on low computational powered computers
made available in 1980’s. Yang and Kak [13] describe strategies for analyzing
structured-light range maps for determining the identity and pose of the top-
most object in a pile. Al-Hujazi and Sood [14] propose a range image segmenta-
tion method based on region growing technique to determine the best holdsite
position and orientation of objects for bin-picking. Rahardja and Kosaka [15]
present a vision-based bin-picking technique to identify and estimate the pose
of assembly parts by stereo vision data, where in particular the objects are
alternator covers. Berger et al. [16] propose a three steps methodology for bin-
picking where in the first step the robot picks the topmost object from a bin
with a vacuum gripper to drop it in an empty workplace, then the CAD model
of the object is fit to a structured light image of the workplace to determine the
pose, and finally the correct mounting of the part is being ensured. Agrawal
et al. [9] present a bin-picking system with model based 3D pose estimation
and with the ability of picking singulated 3D objects. They evaluate the per-
formance of the system on experimental setups with few objects sitting on a
flat ground and being clearly separated. In a work by Kenney et al. [8], an in-
teractive segmentation of cluttered scene is presented, where objects are sitting
on a tabletop without being completely nor partly supported by each other.
Tabletop scenarios in which objects are either clearly separated or being in a
simple interaction are widely used in literature, to name but a few, in a grasp
planning based on generic object knowledge by Bley et al. [5], a real-time mo-
tion planning for manipulation of objects by Jang et al. [6], an assistive mobile
manipulator implementation for helping people with motor impairments by
Jain and Kemp [17], a grasp selection algorithm by Klingbeil [7], a framework
for push-grasping [18] and a physics-based grasp planning [19] by Dogar et
al. Figure 2.3 shows a few sample configurations of objects used in tabletop
scenario-based research.

Chaotically stacked objects are also considered in the literature. An ap-
proach to interactive singularization of a pile of objects presented by Chang
et al. [21] which in essence gathers information about a cluttered scene by iter-
atively moving hypothetical objects and observing the outcome of taking such
actions. A similar interactive approach for LEGO bricks sorting is presented
by Gupta and Sukhatme [22]. The key problem with the interactive approach
when dealing with real-world goods stacked inside shipping containers is the
fact that it cannot be afforded to risk the possibility of letting objects (e.g., car-
ton boxes of electronic appliances) fall down in order to identify the objects.

In all the studies related to bin-picking, the main research focus is on lo-
calization and manipulation of objects, and the essential hypothesis is that the
topmost object is the best candidate to be selected; a multitude of experiments
are conducted with the objects sitting on a tabletop scenario and clearly sepa-
rated for easy detection and manipulation.
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(a) Sjöö et al. [20] (b) Sjöö et al. [20]

Figure 2.4: Two real-work experimental scenarios of cuboid shaped objects
used in the work by Sjoo et al. [20]. (a) An object labeled as B is leaning
on another object labeled A with a probability of P(ON(A,B)) = 0.25, and
(b) the objects A and B support another object labeled C with probabilities
P(ON(C,A)) = 0.28 and P(ON(C,A)) = 0.30. A major drawback of this ap-
proach is that it is not clear how to choose a threshold to infer logical values of
the ON relations.

2.2.2 Support Relation Analysis

In a closely related work to this thesis by Sjöö et al. [20], gravitational support
of a cuboid shaped object by another is represented as symbolic ON relation
between the objects and modeled to be a function of the minimum of an expo-
nential distance factor and a sigmoid-shape contact factor. A conditional prob-
ability distribution over poses of the supporting object is then computed and
thresholded to imply the logical value of the ON relation. Figure 2.4 shows two
real-world experimental scenarios composed of a few cuboid shaped objects.
The most complex real-world scenario investigated in [20] consists of three
boxes, A, B and C where C is supported by two others (see Figure 2.4b), and
the extracted probabilities for ON(C,A) and ON(C,B) are reported to be both
less than 0.3, while both A and B clearly support C. One major drawback of
this approach is that in a cluttered pile of objects (see real-world examples in
Figure 2.3f) where objects are in complex contact with each other, and conse-
quently there would be a set of ON relations with small probabilities, it is not
clear how to choose a threshold to imply the logical truth of the ON relations.

Figure 2.5 depicts one type of configurations of objects in which the top-
most object is not the best candidate to remove from the pile. In the shown
configuration, object A is on top of other objects but it actually supports object
B which is located under object A. If we take the approach proposed in [20],
the probability that object B is on object A will be close to zero, while it can
be clearly seen that there is a high probability that object A supports object B.
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Figure 2.5: A class of configurations of objects in which the heuristic of always
unloading the topmost object does not result in a safe choice. Object A is on top
of other objects, but if we choose and remove object A from the configuration,
object B will fall down due to fact that object A supports object B.

As it will be discussed further in Section 5.2.3, selecting the topmost objects
to remove from a pile is not a reliable and safe strategy to unload goods from
shipping containers.

In addition to the approach described above, methods to learn support re-
lations have been investigated. Kopicki et al. [23] study the problem of predict-
ing the behavior of rigid objects in the domain of robotic push manipulation,
which is, as discussed above, not applicable for a static configuration of goods
inside shipping containers. Rosman and Ramamoorthy [24] present a method
for learning spatial relationships between objects from the segmented point
clouds. In their work a potential lack of information about the complete set of
objects and physical interactions between objects are not considered. Sjöö and
Jensfelt [25] present a method to learn models for functional spatial relations
from experience where they use physics simulation to learn about configura-
tion of objects. In their experiment a simulated solid square surface is used as
a tabletop on which other simulated objects are stacked on top of each other.
Panda et al. [26] attempt to learn the “object-object interaction” only for three
simple interactions of stacked objects on tabletop scenarios, namely, support
from below, support from side and containment. In the target scenario of this
dissertation, however, objects inside shipping containers could be configured
in a totally random manner, and the configurations are unknown beforehand.
Moreover, it is a requirement to deal with the case of having access to only a
subset of the objects in the configuration.

2.3 Discussion

This chapter presented an overview of the problem of algorithmic object se-
lection for robotic manipulation systems. A review of state-of-the-art literature
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related to the problem of object selection highlighted the type of objects and
scenarios considered in the related work. The European Union funded project,
RobLog, aiming at automating the task of unloading goods from cargo con-
tainers was introduced, where the challenge of algorithmic selection of safe-
to-remove objects for the RobLog scenario is one of the motivations of this
thesis.

The task of object selection is mainly considered within “bin-picking” re-
search and is normally addressed with a simple heuristic of always selecting the
topmost object from a bin. While such a heuristic is plausible for a bin filled
with identical assembly parts, it may not result in a safe choice when dealing
with piles of objects. Configurations of goods stacked inside cargo containers
are one of real-world examples of piles that the unloading strategy of always
selecting the topmost objects may cause the pile to collapse. Real-world piles
such as the RobLog scenario represent a cluttered scene of objects that may
come in random configurations where the objects cannot afford and sustain
tumbling and falling over.

The few available research papers that specifically study and propose proba-
bilistic and learning based methods for identifying the spatial and gravitational
support relations between objects have been reviewed. The single probabilistic
method attempts to estimate a probability of an on-relation between two box-
shaped objects. It is not clear however, how to select a threshold to infer log-
ical on-relation between two objects. The other methods reported on learning
push manipulation, spatial relationships of a segmented point cloud, functional
spatial relations and object-object interaction are not capable of dealing with
uncertainty and the lack of information about the objects composing a pile.
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Chapter 3
3D Range Sensor Selection

The recent developments in range sensing devices introduced relatively low-
cost solutions for dense 3D range measurements. Among different technolo-
gies, the long distance measurement and accuracy of 2D laser range finders
(LRFs) outperforms other competitor devices [27, 28]. Commercially available
compact designs of 3D laser range finders (e.g., Velodyne LiDAR) are pro-
hibitively costly. A popular alternative and cost efficient solution widely used
in the robotics community is to mount a 2D laser range finder on a tilting actu-
ator — known as an actuated LRF (aLRF). Nevertheless, the systematic errors,
low refresh rates and the required mechanical parts for the actuation are the
major limitations of using the aLRFs in robotic systems.

In order to overcome the shortcomings of actuated LRFs, a number of com-
mercially available competing technologies have been recently developed. Pop-
ular and widely used among the robotics groups are time-of-flight (TOF) and
structured light cameras. An inexpensive technology of TOF cameras exploits
the relation between the phase shift of the reflections of a modulated light and
the distance of the surface of the reflections (e.g., SwissRanger SR-4000 and
Fotonic B70). Structured light cameras, on the other hand, estimate distances
similar to stereo vision systems by measuring the disparity of a projected light
pattern on a CCD camera (e.g., the Kinect sensor).

This chapter concerns an application centric evaluation of 3D range sensors
used for selecting appropriate 3D perception technology in the development of
the RobLog project (see Chapter 2). The performance of four carefully selected
3D range sensors, an actuated SICK LMS200 laser range finder, two TOF cam-
eras SwissRanger SR-4000 and Fotonic B70, and a Microsoft Kinect sensor
is evaluated for the task of object detection and pose estimation. A number
of configurations of three commonly-used objects inside shipping containers,
namely, carton boxes, sacks and tires is created for data generation. Two rep-
resentative state of the art object detection approaches are selected as perfor-
mance indicators. It will be demonstrated that sensor characteristics other than
the traditionally evaluated distance accuracy can influence the performance of
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the target application. Therefore, this chapter makes a case for an application-
based evaluation of 3D range sensors — the device with the best performance
with respect to the object detection task is selected for use in the final automated
system.

3.1 An Overview of Range Sensor Evaluation

The current literature on 3D range sensor evaluation abounds with examples
of the characterization of the intrinsic parameters and sensor calibration. Ye
and Borenstein [29] present a characterization study of the SICK LMS200 laser
scanner. They investigate the effect of a number of parameters, such as opera-
tion time, data transfer rate, target surface properties, as well as the incidence
angle on the device sensing performance. Luo and Zhang [30] report the char-
acterization of the laser range finder AccuRange 4000 by Acuity Research. They
study the performance of the ranging device under various operating conditions
including lighting, temperature, and surface color, and orientation. A group of
researchers reported their study on the calibration of the available TOF cam-
eras in literature [31, 32, 33]. The utility of TOF cameras in robotics problems
such as pose estimation [34], 3D mapping [35], 3D shape scanning [36] and
collision avoidance [37] has been also evaluated.

Introducing a low-cost structured light camera, the Kinect sensor by Mi-
crosoft motivated researchers to study the properties and the utility of the sen-
sor in robotics domain. Khoshelham and Elberink [38] study depth accuracy
and resolution, and point density of the Kinect sensor and report a calibration
parameters for the infrared and color cameras of the sensor. Chin et al. [39]
present an investigation of the quality of depth data obtained by the Kinect
sensor. DiFilippo and Jouaneh [40] report the accuracy, repeatability, and res-
olution of the different Kinect models in determining the distance to a planar
target.

Having single-sensor characterization and parameter evaluation, selecting a
set of range sensors for a complex robotic system solely based on a comparison
between the intrinsic properties and in isolation of the target task may result in
an inappropriate choice. Wong et al. [28] evaluated the utility of ten 3D range
sensors in a holistic manner for a real-world industrial application — under-
ground void modeling. They define a set of representative metrics of the target
application (mapping a tunnel) and evaluate the range sensors based on the
obtained metrics. From their experimental results in situ mapping evaluation,
while a class of sensors perform better in obtaining some metrics, they rep-
resent a weaker ability for other metrics. As they concluded, the selection for
the appropriate sensor considers a right balance of performance, mass, features
and cost. In the article [27] that the author is involved we develop a holistic
method for the measurements accuracy evaluation of a set of 3D range sensors
— namely, the Swiss Ranger SR-4000, Fotonic B70 and Microsoft Kinect us-
ing an actuated laser range finder as reference. Observing the results in [27],
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it is not immediately clear which sensor would represent a better performance
for a complex robotic system such as the RobLog project. In the author’s later
work [41], which this chapter is based on, we evaluated the same set of 3D
range sensors for the target application of the RobLog scenario. As the discus-
sion at the end of this chapter concludes, evaluating 3D range sensors based on
an application centric performance reveals the underlying capabilities of differ-
ent sensors in dealing with diverse configurations of the target application.

3.2 Application Centric 3D Range Sensor Evaluation

In order to compare two given 3D range sensors, Si and Sj with sets of prop-
erties pn

i = {pi,1, . . . ,pi,n} and pm
j = {pj,1, . . . ,pj,m} respectively, we define

pc = pn
i ∩ pm

j and call the elements in pc comparable properties. For 3D range
sensors, the properties such as the distance accuracy, the level and type of noise,
field of view, the point cloud density, and the lens distortion can be considered.
Some of the properties (e.g., the distance accuracy) may be found in both sen-
sors (which are the elements in pc) while some other properties (e.g., the lens
distortion) may be specific for one of the sensors. Comparing the sensors based
on the effects of the properties that are not comparable is not trivial. On the
other hand, let’s assume that for the target application (e.g., object pose esti-
mation) it is known that a subset qc of pc contains all the properties that have
a direct effect on the performance of the target application. Preferring a sensor
solely based on comparing the qc properties and in isolation from the target
application is made difficult because, although different properties represent
different aspects of the sensor, there can be correlations between the effects of
the sensor properties on the performance of the target application. Having this
said, selecting a set of 3D range sensors in a holistic manner — when designing
autonomous systems with specific target applications, is suggested.

3.2.1 Performance Indicators

The target application is the detection and pose estimation of the most popular
categories of goods, carton boxes and tires [42], that shipping containers are
typically filled with. As performance indicators, two different approaches to
estimating object poses from 3D sampled points (e.g., point clouds) are used.
The first approach is based on extracting the local features FPFH (Fast Point
Feature Histogram) [43] while the second approach, proposed by Detry and
Piater [44], is based on a probabilistic framework that can achieve object de-
tection by avoiding explicit model-to-scene correspondences.

For the first indicator, FPFH features are initially computed from the iden-
tified interest points of the object templates and the scene. Then the Sample
Consensus Initial Alignment algorithm (SAC-IA, see section IV in [43]) runs
to roughly align the object template to the scene. The final step is to perform
a local optimization using Levenberg-Marquardt (LM) algorithm to minimize
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Figure 3.1: Application Centric 3D Range Sensors Evaluation Block Diagram

the distance between the object template and the scene points. The experimen-
tal results showed that the final step often fails to produce fine-aligned results,
although SAC-IA is able to roughly align the object templates to the scene point
cloud. As an alternative to the final fine-alignment step, a 3D-NDT based reg-
istration [45] was examined that turned out to be more successful than LM
optimization. This pose estimation approach, which is the first performance
indicator, is referred to as FPFH-NDT-PE.

For the second indicator, a local surface normal at each point of the object
template is computed using k-nearest neighbors [46]. Sampling points from
an object’s surface constructs the spatial configuration consisting of the point
coordinates and their local orientations — a surface-point distribution, which
has the highest values around object surfaces. Probabilistic pose inference is
obtained by convolving surface-point distributions of the object template and
the scene resulting in a measure of object pose likelihood over the entire scene.
Pose estimation, is then performed by searching for the maximum likelihood.
The method is capable of learning an initial model from only one view-point of
the object template, i.e., it can also work with partial models. It is demonstrated
that the performance of this probabilistic approach is competitive to the other
state-of-the-art algorithms on public datasets (see Evaluation Section in [47]).
Moreover, this approach is intended for detection and localization of objects
within cluttered scenes such as the objects filled in shipping containers.



3.2. APPLICATION CENTRIC 3D RANGE SENSOR EVALUATION 25

SwissRanger SR-4000
Actuated LRF LMS-200

Fotonic B70
Kinect

Figure 3.2: The picture shows the setup of 3D range sensors for data collection.

3.2.2 Evaluation Methodology

The evaluation process starts with capturing a 3D scan of the target scene by a
set of 3D range sensors. The captured data is then fed to the performance in-
dicators where the object detection and pose estimation algorithms attempt to
find the best match of the given objects templates to the captured data and esti-
mate the poses. The estimated poses of the target objects are then compared to
the ground truth poses of the object instances in the scene. The error in the es-
timated translation is defined to be the Euclidean distance between the ground
truth reference point of the template in the scene and its estimated translation.
For the orientation error, the angle between the ground truth reference frame
in the scene and its estimated rotation is measured. If the translation and ori-
entation errors are both less than user defined thresholds the returned pose is
accepted as a successful estimation. The performance criterion is the success
rate which refers to the number of successful estimations of the target object
divided by the total trials. Figure 3.1 shows the evaluation procedure in block
diagram format.

3.2.3 Data Collection

For collecting data, a set of different arrangements of two selected objects (i.e.,
carton boxes and tires) inside a mock-up container was used to generate sev-
eral data sets (see Figure 3.3). The dimensions and type of the selected carton
box and tire to be detected are 0.59×0.57×0.55 meters and P205/55R1691V
respectively, which are popular packaging dimension and tire size shipped over
European countries. The algorithms of the performance indicators require tem-
plates of the objects. A cuboid and a cylinder approximate the geometric shape
of the templates for the carton box and tire respectively (see Figure 3.4).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.3: Different arrangements of carton boxes and tires inside a mock-
up container used for data collection by four 3D range sensors: an actuated
SICK LMS-200 laser range finder, two time-of-flight cameras: Fotonic B70 and
SissRanger SR-4000, and a Microsoft Kinect structured light camera.

In the experimental setup, an actuated SICK LMS-200 laser range finder,
two time-of-flight cameras: Fotonic B70 and SissRanger SR-4000, and a Mi-
crosoft Kinect structured light camera were selected for the evaluation and
mounted on a rigid portable stand (see Figure 3.2). The height of the sensor
board was set to be approximately equal to the middle height of the mock-up
container. For all the sensors their factory pre-calibrations were used in the ex-
periment. Table 3.1 represents the comparable properties (pc) of the selected
3D range sensors.

For each arrangement, 10 complete scans were captured by the sensors at
six equally spaced distances (0.5 meters) away from the front edge of the mock-
up container starting at 0.5 meters. The mixed measurements in the aLRF data
are filtered out using the method explained in the article [27]. Since the mock-
up container itself is not of interest, i.e., it is assumed that the size and pose
of the container are known, the floor, ceiling and walls of the container in the
captured data were filtered out in a pre-processing step.

For each target object in the arrangements the ground truth pose was ex-
tracted by manual registration of the object’s template to the scene point cloud
using the aLRF data. Each performance indicator sequentially searches for the
instances of the input target object in the scene point cloud and returns a list of
the estimated poses. The estimated poses of the target object are then compared
to the ground truth poses of the instances in the corresponding arrangement.
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Actuated LRF LMS-200
- FOV (h×v): 180◦ × 45◦

- Resolution: 181 × 850 (150k average points per scan)
- Maximum Range: 8m
- Frame Rate: 0.1Hz

The Kinect sensor
- FOV (h×v): 57◦ × 43◦

- Resolution: 640 × 480 (220k average points per scan)
- Maximum Range: 3.5m
- Frame Rate: 30Hz

SwissRanger SR-4000
- FOV (h×v): 43◦ × 34◦

- Resolution: 176 × 144 (25k average points per scan)
- Maximum Range: 5m
- Frame Rate: 35Hz

Fotonic B70
- FOV (h×v): 70◦ × 50◦

- Resolution: 160 × 120 (19k average points per scan)
- Maximum Range: 7m
- Frame Rate: 25Hz

Table 3.1: Set of comparable properties (pc) of the sensors.

3.2.4 Results

For each combination of the sensors, target objects (the box and the tire) and
the performance indicators, the results are presented in bar graphs of the over-
all success rates (in percentage) with respect to the distance of the sensors to the
entrance of the container as explained in the previous sections (see Figure 3.5).
The graphs with total null performance, which occurred in some combinations
consisting of the tire object, are not shown. Observing the performance of the
indicators for detecting the box from the data captured by the sensors, it can be
seen that the indicator SPD-MLPE outperforms FPFH-NDT-PE (Figures 3.5a,
3.5b, 3.5g and 3.5h in comparison with Figures 3.5d, 3.5e, 3.5j and 3.5k re-
spectively). However, when the target object is the tire, the indicator FPFH-
NDT-PE shows a better and more stable performance than SPD-MLPE (Fig-
ures 3.5f and 3.5c in comparison with Figures 3.5l and 3.5i). The success rates
for detecting the tire are considerably lower than that of detecting the box,
though.

Comparing the sensors based on the performance of the indicators, the TOF
camera SwissRanger SR-4000 shows a more consistent performance than other
sensors in detecting the target box regardless of the indicator algorithm (see Fig-
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(a) Tire templates (b) Cuboid templates

Figure 3.4: (a) Two templates extracted from a cylinder shape; (b) Nine tem-
plates extracted from a cubiod shape representing the selected carton box and
tire.

ures 3.5g and 3.5j), although its capability to detect the target tire is limited (see
Figure 3.5i). The other TOF camera, Fotonic B70, shows a null performance
in detecting the target tire while it is capable of being used for detecting the
target box with an overall low and dependent performance on the selected in-
dicator (see Figures 3.5h and 3.5k). The structured light camera Kinect shows
a dependent performance on both the selected indicator and target object type.
While a combination of the Kinect sensor and the indicator SPD-MLPE detects
the target box with a high success rate (see Figure 3.5b), the same combina-
tion shows a null performance in detecting the target tire. The actuated laser
range finder is the only 3D range sensor in this experiment that its data can be
used for detecting both target objects using the selected indicators, although its
performance drops dramatically in detecting the tire object.

The analysis of the results highlights the fact that the selection of 3D range
sensors highly depends on the target application — the object types and the
object detection and pose estimation algorithms in this experiment.

3.3 Discussion

This chapter proposes to evaluate the utility of a set of 3D range sensors based
on their performance in the target application to select the most applicable 3D
range sensors in the design process of a complex robotic system. It is argued
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that the selection of 3D range sensors solely based on the characteristics of the
sensors and in isolation of the target application may result in an inappropriate
selection. For example, in a study of the characteristic of the laser range finder
SICK LMS200 by Ye and Borenstein [29] they examine the effect of target sur-
face properties by three groups of materials — namely, shiny colors, matted
colors and gray levels (see Section 4.3 in [29]). From their experiment of evalu-
ating the range measurement distribution (see Figure 5c in [29]) from white to
black surfaces we can observe slightly more than 0.6% mean error. However,
such characteristic is not adequately informative for us to predict, for instance,
how well the laser range finder would perform for detecting and pose estimating
of the tires in comparison with carton boxes stacked inside shipping containers.
In the results section of this chapter, on the other hand, it can be observed that
the laser range finder performance considerably drops when dealing with tires
in comparison with carton boxes.

In order to evaluate the performance of the 3D range sensors in the target
application, the object detection and pose estimation task in the scenario of
RobLog project was used as performance indicator. The results show that the
dark surfaces with tread patterns, as they can be found on the surface of tires,
significantly absorb infrared light of the TOF camera SwissRanger SR4000.
Such dark surfaces, although not to the same extent, also substantially reduce
the performance of the laser range finder SICK LMS200 and the structured light
camera Kinect sensor. In conclusion, we observe that TOF cameras are not
appropriate choice for detecting objects like tires, Kinect-type sensors do not
perform better, and even laser range finders have difficulties with such objects.

The experiments presented in this chapter also suggest that the performance
of the different 3D range sensing technologies varies greatly over different ob-
ject and surface types. The best overall combined detection rates (in compari-
son with aLRF as reference) were obtained by the most dense range sensor —
namely, the structured light camera Kinect sensor.
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(a) aLRF, SPD-MLPE (b) Kinect, SPD-MLPE (c) aLRF, SPD-MLPE

(d) aLRF, FPFH-NDT-PE (e) Kinect, FPFH-NDT-PE (f) aLRF, FPFH-NDT-PE

(g) sr4000, SPD-MLPE (h) FotonicB70, SPD-MLPE (i) sr4000, SPD-MLPE

(j) sr4000, FPFH-NDT-PE (k) FotonicB70, FPFH-NDT-PE (l) Kinect, FPFH-NDT-PE

Figure 3.5: Success rate bar graphs for each combination of sensor model, ob-
ject type and performance indicator. Horizontal axis is the distance of the cor-
responding sensor to the container, and vertical axis is the average success rate
of all scenarios at each distance step in percentage.



Chapter 4
Object Pose Refinement for
Geometrical Consistency

A complete and accurate estimation of the poses of the objects is of great im-
portance especially for high level reasoning (as it is the main topic of the next
chapter) and motion planning for manipulation of the objects. State-of-the-
art object pose estimation methods (e.g., [48, 49]) represent the uncertainty in
their estimations, which may result in a geometrically inconsistent model of the
environment due to inter-penetrations between pairs of adjacent objects. For
example, a carton box that is partly (or completely) overlapping with the floor
or a wall of a container is not consistent with a rigid body assumption.

This chapter concerns the problem of refining the initially estimated poses
of a set of objects in order to obtain a geometrically consistent (i.e., an inter-
penetration free) model of the environment. A search based methodology is
presented in this chapter to resolve such inter-penetrations between rigid objects
leading to a refinement of the poses. It should be noted that the type of search
presented in this chapter differs from the search for the initial poses that an
object pose estimation algorithm performs. In other words, the ultimate goal is
to refine and not to estimate the initial poses.

A number of approaches have been proposed to estimate the poses of ob-
jects from 2D images [50, 51, 52] and 3D sampled points [53, 54, 48]. The
main focus of the proposed approaches for object pose estimation is to obtain
accurate object poses, while geometrical consistency of the estimated poses has
received less attention. For example, Lim et al. [55] describe a fine pose esti-
mation method to fit 3D models of IKEA furniture to the images. They use a
database of the 3D models and define a multi-criteria score function to find the
best fit for the models in an image. As their results show, the error in the pose of
the fit 3D model may result in an inter-penetration with the environment. For
instance, the fit 3D model of an IKEA bookcase considerably intersects with
the ground floor due to the error in the estimated pose of the bookcase. Such
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geometrically inconsistent situations can be resolved, for example, by a colli-
sion detection algorithm (that is expected to push the bookcase up) resulting in
a higher accuracy of the estimated pose.

The presence of other objects – either fixed (e.g., a wall) or movable – nearby
the target object corresponds to additional geometrical constraints which re-
quires extra analysis. Grundmann et al. [56] present a probabilistic approach,
called Rule Set Joint State Update, to estimate the poses of a set of objects
simultaneously using an approximation for the full joint posterior. They as-
sume independence between prior belief, measurement and prediction models
to approximate the full state. The results of the proposed method, however,
are presented on tabletop scenarios with only one object. Aldoma et. al [57]
describe an approach for verifying 3D models of objects (hypothesis verifying)
in cluttered scenes according to a global optimization paradigm by minimiz-
ing a cost function which encompasses geometrical cues. The ultimate goal of
their method is to select the best set of models and poses from a given pool
of hypotheses subjective to maximize the number of correct recognitions while
minimizing the number of wrong recognitions. Hypothesis verifying may im-
prove the quality of object recognition and pose estimation. However, there
is no guarantee that the verified hypothesis represent an inter-penetration free
configuration of objects. Wong et. al [58] propose collision-free state estima-
tion where they attempt to solve a constrained optimization problem in order
to find a feasible collision-free configuration. They assume that all the objects
are resting stably on a 2D surface (i.e., no object is on top of another object).
In their method, the projections of the objects onto the 2D surface create a set
of boundaries, and the inter-penetrations between the boundaries are resolved
through optimization. However, the method is not applicable for the problems
where goods are usually stacked on top of each other (e.g., shipping containers)
with arbitrary configurations.

Another approach that one may consider is to utilize the collision resolvers
of Physics Engines (e.g. see [59]) to tackle the problem of inter-penetrations be-
tween a set of static objects. However, the collision resolvers of Physics Engines
are based on dynamic collision detection where impulse forces are used to sim-
ulate the trajectories of two objects after their dynamic impact. Such impulse
force based algorithms when initialized with a static configuration of overlap-
ping objects result in a spread of objects far from their initially estimated poses.

The approach presented in this chapter, on the other hand, attempts to re-
solve all the initial inter-penetrations between objects with minimum change in
their initially estimated poses and independently of the corresponding object
recognition and pose estimation algorithm.

In what follows, the computation of the depth of penetration is sketched, in-
cluding a review of the existing methodologies for convex and concave shaped
objects. Then, the algorithm to compute the depth of penetration of convex
polytopes based on the Separating Axis theorem is described. This will be
followed by formal definition of a graph search problem to resolve the inter-
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penetrations between objects. Two selected discrete search algorithms are then
described to be applied to the graph search problem. Next, the results of ap-
plying the approach of this chapter to the data generated in simulation and
from real-world setups are presented. The chapter concludes with a discussion
of the methodology employed to achieve a geometrically consistent model of
the environment.

4.1 Depth of Penetration Computation

The inter-penetration between two overlapping polytopes can be represented
by another polytope that contains the overlapping space. This representation
is a precise description of the inter-penetration space while the computation of
the overlapping polytope, especially in 3-dimensional space is expensive [60].
Although the volume of the overlapping space can be used as a measure for
the amount of inter-penetration between two polytopes, the overlapping space
provides no clue about how to separate two overlapping polytopes.

Another representation of the overlapping space between two polytopes is
an inter-penetration vector such that translating one of polytopes by the vec-
tor will resolve the inter-penetration with the minimum possible translation;
the length of this vector is referred to as depth of penetration (DOP). Zhang
et. al [61] study the generalized depth of penetration where both translation
and rotation are considered. The generalized depth of penetration is the min-
imum length of a trajectory along which moving a polytope will disjoint two
overlapping polytopes. They prove [61, Theorem 1] that for convex polytopes
the general depth of penetration is equal to the translational depth of pene-
tration. A number of algorithms have been proposed for computing the depth
of penetration. A category of algorithms is based on the relation between the
Minkowski sum and DOP of two polytopes [62, 63, 64]. Another approach
to compute DOP is based on the separating axis theorem (SAT) [60], which
is widely used in computer graphics and physics simulations for collision de-
tection. SAT is a corollary of the separating hyperplane theorem [65], which
is an essential theory in convex set analysis. While both approaches, based on
Minkowski sum and SAT can be used for computing the depth of penetra-
tion, SAT is a faster algorithm for polyhedrons that have less features (faces
and edges) [66] such as cuboids and cylinders, where we notice that they are
good geometrical representations for carton boxes and barrels shipped in cargo
containers. This dissertation describes and implements 3-dimensional SAT al-
gorithm to compute the minimum translation vector between two overlapping
convex polyhedrons.

4.1.1 SAT Algorithm

The separating hyperplane theorem states that for two convex sets A and B,
either the two sets are overlapping or there exists at least one separating hyper-
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Algorithm 4.1: Computation of MTV and DOP
Data: Vertices and LSet of two convex polytopes, A and B
Result: MTV and DOP of A and B

1 DOP ← inf;
2 MTV ← �0;
3 for each axis L in LSet do
4 project vertices of A and B on L;
5 compute each projection interval on L;
6 if two intervals intersect then
7 d ← the length of intersection;
8 if d < DOP then
9 DOP ← d;

10 MTV ← DOP · l̂;
11 end
12 else
13 DOP ← 0;
14 return;
15 end
16 end

plane P such that A is on one side of P and B is on the other side. The normal
of a separating hyperplane is called a separating axis for the two convex sets.

For two non-overlapping convex polytopes, A and B, if L is a separating axis
along the unit vector l̂, then the orthogonal projections of A and B on L result
in two non-overlapping intervals (see Fig. 4.1a). In other words, if there exists
at least one axis on which the orthogonal projections of two convex polytopes
have non-overlapping intervals, then the two polytopes are separated.

On the other hand, if A and B are two overlapping convex polytopes, in
order to separate them with minimum translation, it is adequate to compute
the orthogonal projections of A and B on all their fundamental axes, LSet and
select the axis on which the overlapping interval (DOP) is minimum; the vector
along this axis with DOP length is called minimum translation vector (MTV).
In 3-dimensional space, for each pair of convex polyhedrons, A and B, the set
of fundamental axes, LSet contains all the normals of the faces as well as all
possible cross products between the edges of A and the edges of B [60]. In
Fig. 4.1b, the set of fundamental axes for computing overlapping intervals of
two polytopes, A and B is depicted for the 2D case. The procedure of comput-
ing MTV and DOP for two convex polyhedrons is presented in Algorithm 4.1.



4.2. POSE REFINEMENT SEARCH 35

(a) (b)

Figure 4.1: (a) A Separating axis and a separating hyperplane of two non-
overlapping polytopes. (b) A and B are two overlapping convex polytopes. The
set of fundamental separating axes, LSet = {L1, . . . ,L6}, which are along the
normals (e.g., l̂3) of edges of A and B are drawn. The minimum overlapping in-
tervals of the orthogonal projections of A and B on axes in LSet is found on L3.
The minimum translation vector (MTV) and depth of penetration (DOP) are
identified by the overlapping projections on L3. Translating A by MTV (or B by
negative MTV) resolves the inter-penetrations between A and B with minimum
translation.

4.2 Pose Refinement Search

This section describes a discrete search approach in the state space of mini-
mum translations vectors to obtain an inter-penetration free configuration of
a set of convex polytopes. A search in the state space of poses to obtain an
inter-penetrations free configuration of more than two objects is necessary. For
the sake of illustration of the problem, Fig. 4.2 depicts a toy configuration of
three movable polytopes, A, B and C, and one fixed convex polytope, W, in
which A and B are overlapping. It can be seen that translating A by the MTV
introduces a new inter-penetration between A and W, and translating B by the
negative MTV introduces a new inter-penetration between B and C. Hence, a
search into the state space of poses is required to reach an inter-penetration free
configuration, while minimizing the sum of changes in the initial poses of the
polytopes. It is worth mentioning that depending on the initial configuration
of the objects and the structure of the environment, there might be no solution
resulting in an inter-penetration free configuration.



36
CHAPTER 4. OBJECT POSE REFINEMENT FOR GEOMETRICAL

CONSISTENCY

(a) (b) (c) (d)

Figure 4.2: A configuration of three movable objects, A, B and C, and a fixed
object, W. (a) Initial state, s1 with an inter-penetration between A and B which
generates two possible actions, a(s1) = {a1

A,a1
B}. (b) Taking action a1

A trans-
lates A by MTV resulting in a new inter-penetration between A and W. Since
W is fixed, there is only one possible action in s2, a(s2) = {a2

A}, where taking
a2
A goes back to s1, and hence this path in the search will not be expanded

further. (c) Taking action a1
B translates B by negative MTV which results in a

new inter-penetration between B and C. Since C is a movable object, there are
two possible actions in s3, a(s3) = {a3

B,a3
C}. (d) Taking a3

C results in s4 which
is an inter-penetration-free configuration, i.e., a goal state.

4.2.1 Minimum Translations Search Problem

In this section the problem of searching for an inter-penetration free configura-
tion of a set of polytopes is formally defined.

Definition 4.1. A state, s is a configuration of polytopes with a set of poses
denoted by P(s). The initial state, s0 is the given configuration of polytopes
that search progress starts with.

Definition 4.2. A set of possible actions in each state s denoted by A(s) is
defined as below. For each pair of overlapping objects, i.e., ∀DOPij ∈ s such
that DOPij �= 0, two possible actions, ai,aj ∈ A(s) is defined such that

• ai translates i-th object by the MTVij;

• aj translates j-th object by the negative MTVij.

If a static object (e.g., a wall) overlaps with a movable object, only the action
that translates the movable object is considered in the search (see Fig. 4.2).

The structure of the search space is a graph. This implies from the fact that
a state s′ may have been reachable from multiple predecessors (s1, s2, . . . , sn)
by taking different sequence of actions; there may be more than one goal state
(i.e., an inter-penetration free configuration) in the graph.

It is worth mentioning that in the actual implementation of generating ac-
tions, in order to prevent the search from visiting redundant states it is required
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(a) (b)

Figure 4.3: (a) A sample configuration illustrating that Eq. 4.2 is not admissible
in general. (b) The same configuration of objects in (a) with a more realistic as-
sumption of existing a static object where Eq. 4.2 estimates the cost of reaching
a goal state exactly.

to preserve the visited states in memory. For an illustration, see Fig. 4.2 where
back translation of A in s2 results in a redundant state same as s1 which is
already visited.

Although the search for a sequence of the aforementioned actions result-
ing in an inter-penetration free configuration is not tied to specific search algo-
rithms, this dissertation employs A-star and Depth Limited search methods [67]
to demonstrate the utility of the proposed method for object pose refinement.

4.2.2 A-star Search

A-star is a search algorithm guided by the cost function f(s) = g(s) + h(s),
where g(s) is the actual cost to reach the state s from the initial state, s0, h(s)
is a heuristic function that estimates the cost to reach a goal state, sg, from s,
and h(sg) = 0. In order to find a path from the initial state to a goal state with
the minimum cost, A-star algorithm first evaluates the state with minimum f(s)
value. As it is shown in [67], if the heuristic function is admissible, i.e., the
value of h(s) is always lower than or equal to the actual cost of reaching a goal
state from s, A-star algorithm guarantees to find one of possible shortest path
(i.e., the optimum path) from s0 to sg. If for every state s, h(s) is able to exactly
compute the actual cost of reaching a goal state from s, the A-star algorithm
will follow one of the shortest path to a goal state without evaluating other
possibilities, resulting in a very fast search. On the other hand, as the value of
a heuristic function becomes lower than the exact cost, the more possibilities
have to be evaluated, which is making the search slower.
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Algorithm 4.2: Object Pose Refinement Using A* Search
Data:

The Set of Convex Polytope Models of Objects, M = {m1, . . . ,mn}

The Set of Initially Estimated Poses of Objects, P0 = {p0
1, . . . ,p0

n}

Result: A Sequence of Translation Actions, S
1 S ← ∅;
2 SolutionMap ← ∅;
3 OpenSet ← P0;
4 g(P0) ← 0;
5 f(P0) ← Total_DOP(P0,M);
6 while OpenSet is not empty do
7 Pc ← argmin f(P)

P∈OpenSet
;

8 if Total_DOP(Pc,M) = 0 then
9 S ← Construct_Solution(SolutionMap);

10 return S; // a solution found

11 end
12 ActionsSet ← Generate_All_Actions(Pc,M);
13 for each action a in ActionsSet do
14 Pa ← ExecuteAction(a);
15 if g(Pa) is not defined then g(Pa) ← ∞;
16 g ′ ← g(Pc) + DOP(a);
17 if Pa is not in OpenSet then
18 OpenSet.Add(Pa);
19 else if g ′ � g(Pa) then
20 continue;
21 end
22 SolutionMap.Add(〈Pc,a,Pa〉);
23 g(Pa) ← g ′;
24 f(Pa) ← g(Pa) + Total_DOP(Pa,M);
25 end
26 OpenSet.Remove(Pc);
27 end
28 return failure;

In the case of graph search, where a state may be reachable from multiple
predecessors, the optimality of A-star algorithm additionally requires that the
heuristic function is consistent. If h(s) is the heuristic function that estimates
the cost to reach the goal state from s and c(s,a′, s′) is the actual cost of tak-
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ing action a′ ∈ A(s) to go from s to the successor state s′, then the heuristic
function h(.) is said to be consistent if,

h(s) � c(s,a′, s′) + h(s′). (4.1)

It is noted that if a heuristic function is consistent, it is also admissible [67].
However, an inadmissible heuristic function cannot be consistent as the in-
equality 4.1 will not hold if h(.) overestimates the cost to reach a goal state
(i.e., h(s) may be greater than c(s,a′, s′) + h(s′)).

For the graph search problem defined in Section 4.2.1 finding a heuristic
function that for each state exactly computes the cost of reaching a goal state
is not trivial. One difficulty is due to the fact that although a translation of
a polytope along the corresponding MTV resolves one inter-penetration but it
may introduce one or more inter-penetrations with other polytopes, which can-
not be seen before translating a polytope. On the other hand, using a heuristic
function that estimates a lower bound for the cost results in a very slow search.

It should be noticed that what really matters in our search problem is to find
an inter-penetration free configuration (i.e., a goal state) with a minimum total
pose distance between the initial state, s0 and the goal state, sg. Having this
said, in order to accelerate the A-star search in a large state space, a heuristic
function that for some states is able to estimate the exact cost is selected as
below,

h(s) =
∑
i,j

DOPij(s) , i, j = 1, . . . ,N , i �= j. (4.2)

The motivation is the fact that a goal state is a configuration of objects in which
all the inter-penetrations have been resolved, hence, from any state it is more
likely to reach a goal state by translating polytopes along the corresponding
MTVs. However, as mentioned above, Eq. 4.2 is not an admissible heuristic
function since it may overestimate the cost of reaching a goal state. In Fig. 4.3a
if we move C along negative MTVac we reach a goal state, while the sum of
depth of penetrations in this state (which is |MTVbc| + |MTVac| as Eq. 4.2
computes) overestimates the cost to reach a goal state. Nonetheless, from the
experimental results (see Section 4.3) it is observed that in many cases when
the minimum required cost to reach a goal state is equal to all the translation
actions that must be taken to resolve the inter-penetrations, the heuristic func-
tion in Eq. 4.2 can be used with good results. This can be especially seen where
there exists static objects (e.g., walls) that limit the space of moving objects.
Fig. 4.3b shows how existing an additional static object nearby the dynamic
objects in Fig. 4.3a limits their movability where Eq. 4.2 estimates the exact
cost of reaching a goal state.

The pseudo code shown in Algorithm 4.2 presents an implementation of
the A-star search for object pose refinement. The function Total_DOP(P,M)
computes the sum of depth of penetrations in a configuration identified by the
set of shapes, M and the corresponding poses, P according to Eq. 4.2, while the
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function DOP(a) returns the depth of penetration corresponding to the action a,
and the function Generate_All_Actions(P,M) generates all actions according
to Definition 4.2; the function ExecuteAction(a) returns the new set of poses
after the execution of the action a. If a solution is found, the sequence of actions
that the execution of them results in an inter-penetration free configuration,
i.e., a set of poses, Pgoal that satisfy the condition Total_DOP(Pgoal,M) = 0, is
returned by the function Construct_Solution().

The solution that A-star search finds (if there exists any) is a sequence of ac-
tions such that their execution results in a transition from start to goal state
with a minimum total cost of taken actions. Since a goal state is an inter-
penetration free configuration, and the total cost of reaching the goal state in
many cases is minimal, a solution returned by the A-star search algorithm sat-
isfies the two criteria: maximizing geometrical consistency and (sub-optimally)
minimizing the sum of translations required to reach a goal state.

4.2.3 Depth Limited Search

The state space of MTVs can grow exponentially as the successors of states
are expanded. This may limit the number of objects and the inter-penetrations
that the proposed A-star search is capable to deal with in a reasonable time.
In order to accelerate the search in a large state space, Depth Limited Search
(DLS) algorithm is selected.

DLS only explores a branch of the state space and finds suboptimal but geo-
metrically consistent solutions. A suboptimal solution is a sequence of transla-
tion actions that results in an inter-penetration free configuration while the total
cost of taking the actions is not necessarily minimum. On the other hand, as
it is mentioned earlier in Section 4.2, there could be configurations of overlap-
ping objects for which no goal state exists (i.e., there exists no inter-penetration
free configuration). In such cases an unlimited search algorithm may generate
infinitely many intermediate states. DLS overcomes this issue by limiting the
depth of search into the state space.

With similar sub-functions explained for Algorithm 4.2, the pseudo code
shown in Algorithm 4.3 presents a recursive implementation of the depth lim-
ited search for object pose refinement. The user selected input, limit in the al-
gorithm limits the depth of search, where a cutoff message is propagated into
recursive calling of the function RecursiveDLS() in order to execute the next
possible action and explore another branch of search space.

4.2.4 Concave Shaped Objects

The extension of the search process to cover the objects with concave shapes
can be easily conducted by slightly modifying the graph search problem defined
in Section 4.2. The first method is based on the decomposition of a concave
shaped object into a set of connected convex shapes [68], where the idea is to
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Algorithm 4.3: Object Pose Refinement Using Depth Limited Search
Data:

The Set of Convex Polytope Models of Objects, M = {m1, . . . ,mn}

The Set of Initially Estimated Poses of Objects, P0 = {p0
1, . . . ,p0

n}

The Maximum Depth of Search, limit
Result: A Sequence of Translation Actions, S

1 S ← ∅;
2 SolutionMap ← ∅;
3 return RecursiveDLS(P0,M, SolutionMap, limit);
4 Function RecursiveDLS(Pc,M, SolutionMap, limit) is
5 if Total_DOP(Pc,M) = 0 then
6 S ← Construct_Solution(SolutionMap);
7 return S; // a solution found

8 else if limit = 0 then
9 return cutoff ;

10 else
11 cutoff_status ← false;
12 ActionsSet ← Generate_All_Actions(Pc,M);
13 for each action a in ActionsSet do
14 Pa ← ExecuteAction(a);
15 SolutionMap.Add(〈Pc,a,Pa〉);
16 result ← RecursiveDLS(Pa,M, SolutionMap, limit − 1);
17 if result = cutoff then cutoff_status ← true;
18 else if result �= failure then return result;
19 end
20 if cutoff_status = true then return cutoff else return failure;
21 end
22 end

translate the whole shape of a concave object if a translation action applies to
one of convex parts of the concave object. The second method is based on the
computation of the shortest trajectory (i.e., a combination of translations and
rotations) along which transforming one of overlapping objects will resolve
the inter-penetration [61]. Replacing the minimum translation vectors with the
shortest trajectories as the definition of actions will extend the search process
to cover concave shapes.

4.3 Results

This section presents results showing the performance of the object pose re-
finement approach on both simulated and real-world data. Using scenarios
generated in simulation enables us to create a large data set of different con-
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(a) (b)

Figure 4.4: A few samples of simulated configurations with random arrange-
ment of objects inside a shipping container.

figurations of objects with their ground truth poses to capture the statistical
properties of the approach. The real-world configurations are used to verify
the approach on real data.

In order to fairly compare the search algorithms, the total number of visited
nodes for both DLS and A-star search algorithms are limited to 5000, and the
maximum depth for DLS is limited to 1000.

4.3.1 Simulated Configurations

Three categories of shapes of objects commonly used in shipping containers,
i.e., box, cylinder and barrel are selected to generate random configurations in
simulation. A physics engine is used to create a 20′ standard shipping container
with randomly arranging NG ∈ {10, 20, 30, 40, 50} objects inside. For each
number of objects, NG, 40 samples of configurations are generated, and the
number of shapes in each configuration are equally likely drawn from the three
categories with uniform random dimensions. In addition to NG objects, there
exist 6 static objects: left, right, back wall, floor and ceiling of the container as
well as the ground plane that supports all other objects (see Fig. 4.4 for a few
examples).

For each configuration, a Gaussian noise, N(0,σ2) is added to each com-
ponent of the translation vectors and the Euler angles of the objects poses to
generate a set of noisy poses. The noisy poses simulate the error in the estimated
poses by an existing object detection algorithm. In this experiment, a standard
deviations of 0.05 meters and 5 degrees are selected for the translation and the
rotation components respectively.
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(a) Scene1 (b) Scene2 (c) Scene3

(d) Scene1 Ground Truth (e) Scene2 Ground Truth (f) Scene3 Ground Truth

Figure 4.5: (a-c) Three real-world configurations of objects inside a mock-up
shipping container. (d-f) The ground truth of the objects 3D models and poses.

4.3.2 Real-World Configurations

A set of real-world configurations of objects inside a mock-up shipping con-
tainer used for evaluating the approach on real data (see upper row of Fig. 4.5)
A Microsoft Kinect sensor looking at the entrance of the mock-up shipping
container captures a point cloud of the scene. The set of 3D models of the ob-
jects are then registered to the scene point cloud, and the poses are manually
refined for obtaining the ground truth of the poses (see lower row of Fig. 4.5).
In order to examine the approach independent of and not tied-to any particu-
lar object pose estimation algorithm, a set of noisy poses are sampled from the
ground truth of the poses. This means that we can expect the same results if
the noise that comes from the sensing and estimation process is distributed in
the same way. Similar to the generated configurations in simulation, a Gaussian
noise, N(0,σ2) is added to each component of the translation vectors and the
Euler angles of the poses, which may result in a configuration of overlapping
adjacent objects (see Fig. 4.8a for an example). A total of 1000 samples per
each real-world configuration (see upper row of Fig. 4.5) are generated with
a standard deviation of 0.05 meters for the translation noise, and a standard
deviation of 5 degrees for the rotation noise.
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Figure 4.6: Results for the simulated configurations. The average of PER with
respect to (a) the number of objects; (b) the number of initial inter-penetrations
between pairs of objects.

4.3.3 Evaluation

The result of a search by A-star and DLS is considered as a successful search
if a valid solution (i.e., an inter-penetration-free configuration) can be found
with the specified limitation of the number of node visits and search depth. The
success rate is the percentage of successful searches.

In order to evaluate pose accuracy, let us define pose error reduction (PER)
as the difference between the initial pose error (IPE) and the refined pose errors
(RPE)

PER =
IPE − RPE

IPE
× 100% (4.3)

where,

IPE =

NG∑
i=1

||tdi − tgi || (4.4)

RPE =

NG∑
i=1

||tri − tgi || (4.5)

and tgi , tdi and tri are the translation vectors of the i-th object’s ground truth,
detected (i.e., noisy) and refined (i.e., a goal state) poses respectively. A posi-
tive value of PER indicates a reduction in the refined poses with respect to the
initially detected poses.
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Figure 4.7: Results for the simulated configurations. The average of execution
time with respect to (a) the number of objects; (b) the number of initial inter-
penetrations between pairs of objects.

No. Objects 10 20 30 40 50

A* Success Rate 80% 72.5% 35% 25% 2.5%
DLS Success Rate 100% 100% 100% 100% 100%

Table 4.1: The success rate (see Section 4.3.3) of the proposed search algorithms
with respect to the number of objects.

Simulated Configurations

In Fig. 4.6a and Fig. 4.6b, the average of PER for each search method is de-
picted with respect to the number of objects and initial inter-penetrations be-
tween objects respectively. Fig. 4.7a and Fig. 4.7b show the average execution
time for the search methods with respect to the number of objects and the
initial inter-penetrations respectively. It can be seen that both search methods
are approximately equally fast for scenarios with 10 objects. However, as the
complexity of the scenarios increases with an increasing number of objects,
the execution time for A-star rapidly increases, while the depth-limited search
algorithm is able to resolve the inter-penetrations between objects in highly
cluttered scenarios still in a reasonable time (less than 50 seconds on average
for scenarios with 50 objects).

Table 4.1 depicts the success rate of the search algorithms with respect to the
number of objects. While depth-limited search manages to find a goal state for
all the simulated test scenarios, A-star with the proposed approximate heuristic
shows a decreasing performance as the number of objects increases.
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(a) Initial State (b) State 1 (c) State 2

(d) State 3 (e) State 4 (f) Goal State

Figure 4.8: (a) An example of the result of a noisy estimated poses of a pile
of objects inside a shipping container where the inter-penetrations between ad-
jacent objects are highlighted. (b) A goal state, that is, an inter-penetration
free configuration is shown. (c),(e),(f) and (d) depict in order four intermediate
states in the search space.

Real-World Configurations

Fig. 4.8 visualizes a typical path found through a search for an inter-penetration
free configuration of the real-world setup shown in Fig. 4.5a. The initial state,
i.e., a noisy pose estimation of the objects introduces inter-penetrations between
pairs of objects (see Fig. 4.8b). Executing the corresponding translation actions
along the found path results in a goal state (see Fig. 4.8f), where the inter-
penetrations are resolved. A few intermediate states are shown in Fig. 4.8b
through Fig. 4.8e in the order in which they will be reached from the previous
states by the execution of the corresponding action. In Table 4.2 the results
of applying the proposed search methods to the real-world configurations are
summarized. The first observation is that both search methods reduce the aver-
age pose error and result in configurations of objects which are geometrically
consistent. It can be also seen that the proposed approach is computationally in-
expensive (less than 100 mili-seconds) for real-world configurations where the
number of visible objects to the perception module is less than 10. The success
rate of A-Star search, as in simulation, is less than with DLS, which manages to
successfully find inter-penetration-free configurations in all the trials. We also
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Scene 1 Scene 2 Scene 3

A* DLS A* DLS A* DLS

Avg. ExT (ms) 9.53 0.69 45.31 2.86 72.60 4.47
Succ. Rate(%) 96.1 100 95.0 100 91.7 100
Avg. PER (%) 8.6 11.3 8.9 8.0 19.6 18.0
Avg. RPE (m) 0.511 0.496 0.580 0.586 0.500 0.510
Avg. IPE (m) 0.559 0.637 0.622
Avg. IOL (#N) 6 5 6

Table 4.2: The results of applying the proposed search methods on real-world
configurations (see Fig. 4.5). From top to bottom row, the values of average
execution time in milliseconds (Avg. ExT), success rate (Succ. Rate), average
pose error reduction (Avg. PER, see Eq. 4.3), average refined pose error (Avg.
RPE, see Eq. 4.5), average initial pose error (Avg. IPE, see Eq. 4.4), and initial
average number of overlaps (Avg. IOL).

observe that the results obtained for the real-world data is consistent with that
of simulated data.

4.4 Discussion

In this chapter an algorithm was proposed to resolve the inter-penetrations be-
tween a set of convex shaped objects due to errors in the initially estimated
poses. Resolving the inter-penetrations results in a geometrically consistent
model of the environment that a robotic system works in. The target appli-
cation of the framework presented in this chapter is to refine the poses of the
detected objects inside shipping containers in the process of automating the task
of unloading goods. However, the framework can be easily adopted for other
applications such as domestic robotics where robots are dealing with everyday
objects.

The approach is based on the computation of the minimum translation vec-
tors between pairs of overlapping convex objects, where the separating axis
theorem is used for this purpose. A discrete search paradigm in the state space
of the minimum translation vectors is defined to find an inter-penetration free
configuration of objects. The utility of two search methods, A-star and depth
limited search examined for exploring a solution in the state space of mini-
mum translation vectors. Nevertheless, the extension of the approach to cover
concave shaped objects based on either the decomposition into a set of convex
shapes or the direct computation of the shortest resolving penetration trajectory
is discussed.
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The fact that a solution to the problem is solely based on a high level rea-
soning and not tied to any object detection and pose estimation algorithm may
suggest that resolving the inter-penetrations results in less accurate poses. How-
ever, the experimental results show that resolving the inter-penetrations not
only represents a geometrically consistent model of the environments, but also
reduces the total pose error on average.

The approach was tested and verified on data sets generated from real-world
and simulated configurations. From the results we can observe that using the
depth-limited search technique significantly prunes the state space to find a geo-
metrically consistent solution. The results also suggest that a trade-off analysis
between computational resources and the amount of resolved inter-penetrations
with respect to the number of objects is necessary to select a proper search
paradigm.



Chapter 5
Support Relation Analysis and
Decision Making

Considering the real-world task of unloading goods autonomously, two previ-
ous chapters of this dissertation discussed the problems of selecting appropriate
3D range sensors for object pose estimation and refining the estimated poses to
obtain geometrically consistent models. This chapter analyzes the problem of
identifying safe-to-remove objects from a pile and presents algorithms to reason
about the stability of the pile with respect to the configurations of the objects.
In the context of unloading a pile of objects, a candidate object is safe to be
unloaded if the pile remains static by removing the candidate. Expressly, the
ultimate goal is to avoid causing the other objects to move (e.g., fall down) by
removing an object from a pile.

For human beings, using the knowledge acquired through experience and
the senses, it may be trivial to immediately identify which objects are safe to
remove from a pile. But how can we algorithmically implement such cogni-
tive ability into robots? This chapter is an attempt to answer the preceding
question from deterministic to probabilistic manner. In order to autonomously
select safe-to-remove objects, a robotic manipulation system needs two main
abilities. First, it needs to be able to create models to reflect how objects in the
configuration are physically interacting with each other, i.e., to identify which
objects are supporting other objects. Second, it should be able to use the cre-
ated models to make an optimal decision regarding which object is the safest
to remove.

The approach of this chapter incrementally relaxes a set of assumptions on
the input data to address more complicated, real-world scenarios. It is assumed
that an existing object detection algorithm provides the input data for further
analysis. In addition to the uncertainty in the estimated poses, object detection
algorithms may produce false negatives, i.e., a failure in the detection of some
existing objects in the scene. The lack of information about a pile and errors in

49
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Figure 5.1: A static configuration of objects is detected by an existing 3D vi-
sual perception module. (top) All the objects in the configuration are detected
(CSO case), and support relations are extracted by geometrical and static equi-
librium analysis. (bottom) Only a few objects in the configuration are detected
(ICSO case), and support relations between the detected objects are extracted
by probabilistic possible world models.

the detected poses are two important sources of uncertainty that unavoidably
complicate the analysis and decision making about the safe-to-remove objects.
Depending on the available description of the objects, the problem of identi-
fying safe-to-remove objects is divided into two major branches. In the first
approach to answer the question of the previous paragraph, it is assumed that
the shapes and poses of all the objects are known — this is referred to as the
Complete Set of Objects (CSO) case. In the CSO case, a geometrical reasoning
followed by an static equilibrium analysis identify the gravitational support re-
lations between objects. The second approach relaxes the assumptions in the
CSO case and introduces a representative probabilistic framework to address
real-world issue of uncertainty in the data. In case a number of objects com-
posing a pile are not detected, it is referred to as the Incomplete Set of Objects
(ICSO) case. In the ICSO case, machine learning techniques are employed to
estimate the probability of support relations, and the concept of possible world
models is the basis for making an optimum decision about the safe-to-remove
objects. Figure 5.1 illustrates two assumptions on the input data and the corre-
sponding approaches in a block diagram.

This chapter is organized as follows. First, terminology and notation used
throughout this chapter is described in Section 5.1. Section 5.2 explains the
process of extracting gravitational support relations in the CSO case, where a
geometrical reasoning to identify act relations and a static equilibrium anal-
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ysis to extract support relations are discussed. The probabilistic approach to
the ICSO case is described in Section 5.3, where this section details the pro-
cedure of learning support relations and explains the concept of the possible
world models employed for a probabilistic representation of the environment.
Section 5.4 explains a probabilistic decision making approach to identifying
the most probable safe-to-remove objects using the representation discussed in
two previous sections. Section 5.5 presents the results of the two approach on
data generated in simulation and from real-world configuration of objects, and
Section 5.6 concludes this chapter.

5.1 Terminology and Notation

This section defines terminology and the corresponding assumptions together
with Table 5.1 showing the notations consistently used throughout this chapter.
Whenever an assumption additionally made or relaxed it is mentioned inline
with the text.

Definition 5.1. An object is a rigid physical entity with a convex polyhedron
shape.

Definition 5.2. A flat ground is a fixed object with a large cuboid shape on
which other objects can sit, and the gravity force is perpendicular to the flat
ground.

In practice, a flat ground can be, for example, the floor of a shipping con-
tainer, the ledge of a shelf, or a tabletop.

Definition 5.3. The reference frame is a fixed three-dimensional Cartesian co-
ordinate system with xz-plane representing the side of the flat ground facing
up, where the gravity force direction is opposite to that of y-axis.

Definition 5.4. The geometrical attributes of an object are the geometry of the
shape and the pose of the object with respect to the reference frame.

Definition 5.5. A configuration is an environment in which there exists one flat
ground and a set of static objects with an arbitrary arrangement sitting on top
of the flat ground, where the only acting force is gravity.

The term static configuration is interchangeably used instead of configura-
tion in the text whenever it is required to emphasize that objects are motionless.

Definition 5.6. For two objects X and Y in a static configuration, if removing
X from the configuration causes Y to lose its motionless state, the symbolic
support relation between X and Y is defined and denoted by SUPP(X, Y); it is
read as X supports Y.
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Table 5.1: Table of notations, commonly used throughout this chapter.

General Notation
R the set of real numbers
N the set of natural numbers
�a . . .�z column vectors in R

3

�a · �b scalar product of �a and �b
�a × �b vector product of �a and �b
O a set of objects
C a configuration of objects

Geometrical and Mechanical Notation
CPS the contact point-set between two objects
Ps the separating plane between two objects
�F a mechanical force vector in R

3

�τ a mechanical torque vector in R
3

Symbolic Relations
ACT symbolic gravitational act relation
SUPP symbolic gravitational support relation

A support relation is a directional symbolic relationship that can hold
whether two objects are in direct or indirect contact with each other. And
it should be noted that it is possible to have configurations in which both
SUPP(X,Y) and SUPP(Y,X) hold, i.e., there can be a maximum of two possi-
ble support relations between two objects.

5.2 Extracting Support Relations - CSO case

In the CSO case, where all the objects of a pile are assumed to be detected,
a geometrical analysis can identify which object acts on another due to grav-
ity force. Extracting act relations between objects can explain the stability of
simple configurations that objects stacked on top of each other, but it fails to
identify which object supports another in more complex configurations. It may
be intuitive to take notions from classical mechanics, especially statics to ana-
lyze the stability of a pile. However, in the absence of sensing masses and their
distribution over geometrical shapes of objects, and the lack of information
about friction coefficients between the materials of the objects it is not applica-
ble to directly use the techniques of statics. This section presents a qualitative
usage of the static equilibrium concept to extract symbolic support relations
between objects with an assumption on the masses and their distributions.
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Figure 5.2: Illustration of the types of contact point-sets and the corresponding
separating planes, Ps, between two convex polyhedrons in contact. (a) Face-
On-Face; contact is a polygon. (b) Edge-On-Face; contact is a line-segment. (c)
Vertex-On-Face; is a single point. (d) Edge-On-Edge; contact is a single point.

In order to identify act and support relations, the first step is to compute the
possible contact points between each pair of the objects. We note that the object
pose refinement discussed in the previous chapter can be employed to obtain
an inter-penetration free configuration of objects, thus each pair of objects are
either in contact or completely separated. The rest of this section describes the
possible contact points between two objects with convex polyhedron shapes
and how to extract the corresponding act and support relations.

5.2.1 Contact Point-Set Network

Identifying the contact points between objects forms the basis for the further
geometrical and static equilibrium analysis. In a static configuration of objects
where the gravity is the only acting force, the points of action of the weights,
and consequently the corresponding torques between objects are determined by
the contact points and the mass distribution of the objects. Since each object
could be in contact with more than one other object, a network of contact
points represents the topology of contacts between objects.

The contact points are computed based on the available geometrical infor-
mation (shape and pose) of the objects. The geometrical consistency of con-
figurations, as discussed in Chapter 4 suggests that the shapes of two adjacent
objects cannot penetrate into each other. Among six possibilities, four types
of geometrically possible contacts between two adjacent objects are considered
and computed in the following order:

1. Face-On-Face. This type of contact arises when a face of one object and
a face of another object partly or completely coincide. The result is a
polygonal area with at least 3 vertices (see Figure 5.2a).



54 CHAPTER 5. SUPPORT RELATION ANALYSIS AND DECISION MAKING

Algorithm 5.1: Contact Point-Set of Two Objects
Data: Geometrical description of two polyhedra X and Y
Result: CPS(X, Y)

1 CPS(X, Y) ← GeoSetsIntersection(Faces(X), Faces(Y));
2 if CPS(X, Y) �= ∅ then
3 return CPS(X, Y);
4 end
5 CPS(X, Y) ← GeoSetsIntersection(Faces(X), Edges(Y));
6 if CPS(X, Y) �= ∅ then
7 return CPS(X, Y);
8 end
9 CPS(X, Y) ← GeoSetsIntersection(Faces(X), Vertices(Y));

10 if CPS(X, Y) �= ∅ then
11 return CPS(X, Y);
12 end
13 CPS(X, Y) ← GeoSetsIntersection(Edges(X), Edges(Y));
14 return CPS(X, Y);
15 Function GeoSetsIntersection(SetX, SetY) is
16 for each geometrical entity mX in SetX do
17 for each geometrical entity mY in SetY do
18 if mY and mX are in the same plane then
19 return the intersection points of mY and mX;
20 end
21 end
22 end
23 return ∅;
24 end

2. Edge-On-Face. This arises when an edge of one object partly or com-
pletely touches a face of another object. The result is a line segment (see
Figure 5.2b).

3. Vertex-On-Face. This arises when a vertex of one object touches a face of
another object. The result is a single point (see Figure 5.2c).

4. Edge-Cross-Edge. This happens when an edge of one object intersects
with, but is not parallel to an edge of another object (see Figure 5.2d).

The unstable contacts such as “a vertex of one object touches a vertex of an-
other object” are excluded from further analysis due to the assumption that the
objects are static at the perception time.

The steps to compute the contact point-set (CPS) between two convex poly-
hedron shaped objects are shown in Algorithm 5.1, where four types of con-
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Figure 5.3: Extracting the possible ACT relation between two objects X and Y in
contact (Proposition 1).

tact points in order mentioned above are evaluated. The abstract function
GeoSetsIntersection(SetX, SetY) computes and returns the intersection of
two sets of geometrical entities, such as faces, edges and vertices of polyhe-
drons. The computed contact points are used to build a network, CPSN =
(O,Ω) where the set of nodes, O = {o1, . . . ,oN} represents the objects, and the
set of links, Ω = {CPS(oi,oj) : oi,oj ∈ O, i �= j} represents the set of points
at contact between each pair of objects; such graph is called contact point-set
network (CPSN) in this dissertation. We notice that CPS(oi,oj) is an empty set
if oi and oj are not in contact, i.e., there is no link between two objects in the
network if the objects have no contact point.

5.2.2 Geometrical Reasoning

Having CPSN computed, for each pair of objects in contact, the object acting
on another is labeled according to the gravity direction. From Newton’s third
law of motion, we know for two objects X and Y in contact, that if object X
exerts a force on Y, then Y exerts a force, which is equal in magnitude but
opposite in direction on X; calling X “acting object” and Y “reacting object”.

The geometrical reasoning to label acting objects is based on extracting
the separating plane, Ps between two objects. Since shapes are convex sets,
according to hyperplane separation and supporting hyperplane theorems [69],
for each pair of objects in contact there exists a separating plane which divides
3D space into two half-spaces such that each half-space contains only one of
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the objects. The separating plane is identified by the contact point-sets such
that CPS(X, Y) ∈ Ps of X and Y. Figure 5.2 shows separating planes for the
discussed contact types in the previous section.

The separated half-spaces are labeled as positive and negative sides of the
separating plane. Considering the definition of reference frame in Section 5.1, a
half-space is labeled as positive, respectively negative, side, if the y-component
of the separating plane’s normal vector at that side is strictly positive, respec-
tively negative. In the case of a perpendicular separating plane to the flat ground
(i.e., the y-component of the normal vector is zero), the half-spaces are not la-
beled.

In order to identify whether object X acts on another object, Y, the first step
is to ignore all the other objects in contact with X and Y. The acting object is
then determined according to the following proposition.

Proposition 5.1. For two objects X and Y in contact, if their separating plane
is not perpendicular to the flat ground, then the positive side of the separating
plane contains the acting object, and the negative side contains the reacting
object. Such a symbolic relation is presented as ACT(X, Y) which is read as “X
acts on Y”.

Proof. Without loss of generality, let us assume that the positive side of the
separating plane contains X and the negative side contains Y (see Figure 5.3).
If �n(nx,ny,nz) is the normal vector of the separating plane in the positive side
(i.e., ny is strictly positive) and �w(0,−w, 0), w > 0 is the weight of an arbitrary
small piece of Y, it can be shown that none of such pieces of Y can exert force on
X due to their weights. To do this, let us compute the projection of the weight,
�w, on the normal vector �n,

Proj(�w,�n) = (�w · �n)�n = −(wny)�n (5.1)

since w > 0 and ny > 0, �w has no contribution towards the positive side, and
hence no force exertion on X. Similarly, it can be shown that for all weights of
arbitrary small pieces of X, there exists a non-zero force contribution towards
the negative side, i.e., ACT(X, Y).

5.2.3 Static Equilibrium Analysis

Having the ACT relations identified as described in the previous section, one
might suggest that the support relations between objects, and consequently the
safest candidates, can be identified through an analysis of the ACT relations. The
hypothesis behind the analysis of the ACT relations is that for each act relation,
ACT(A,B), there must be one support relation such that SUPP(B,A), i.e, if A acts
on B, then B supports A. This can be translated to the intuitive heuristic rule that
states removing the objects with the highest height is safe. However, there are
many situations where this reasoning fails. In Figure 5.4, through examples, it
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Figure 5.4: Four example configurations where reasoning about the support
relations between objects solely based on the extracted ACT relations fail to
predict the safest object to remove first.

is illustrated that for a set of configurations reasoning solely based on ACT rela-
tions or the height of objects fails to predict the true support relations between
objects. In all the configurations shown in Figure 5.4, object A is the highest
object in the configuration. However, A is not the safest object to be removed
first (A supports B in all the configurations). Figure 5.4a and Figure 5.4b show
two cases in which the highest object, A, supports another object, B, while B

does not act on A (i.e., ¬ACT(B,A)). In Figure 5.4c, A acts on B (i.e., ACT(A,B)),
but B does not support A (i.e., ¬SUPP(B,A)). In Figure 5.4d, the ACT relation
between A and B cannot be identified (the separating plane is perpendicular to
the flat ground); it can be clearly seen, however, that A supports B. To sum-
marize, through the examples in Figure 5.4, three classes of configurations are
illustrated that ACT relations analysis cannot be employed to reason about the
safest object to remove: 1) configurations with bidirectional SUPP relations be-
tween two objects (see Figure 5.4a and Figure 5.4b); 2) configurations in which
there is no bidirectional SUPP relation but the highest object is not the safest
object to remove (see Figure 5.4c), and 3) configurations in which ACT relations
between two objects cannot be identified (see Figure 5.4d).
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At first glance, we may visually ascertain that it is impossible to find any safe
sequence to remove objects from the configurations illustrated in Figure 5.4a
and Figure 5.4b. However, the existence of a sequence of safe-to-remove ob-
jects depends on the number of end effectors that the robotic manipulator is
equipped with. For a manipulation system with two end effectors, for example,
a possible plan to solve the dead-lock in the configurations shown in Figure 5.4a
and Figure 5.4b is to grasp and hold B with one of the end-effectors and remove
A with the second end-effector.

An intuitive alternative possibility to the analysis suggested in this section
would be the use of an existing physics simulator to determine the gravitational
support relations. A physics simulator is a computer algorithm for solving dy-
namic equations of classical mechanics to predict the future motion states of
a group of objects for a small interval of time; it performs the computations
based on discretization of continuous real world quantities [70, 71]. The idea
behind utilizing a physics simulator is to remove objects of a static configura-
tion one at a time in simulation and then check whether what remains main-
tains a stable configuration. A discussion is given below about the reasons that
limit the applicability of the physics simulation for identifying the gravitational
support relations in real-world problems. First we notice that in addition to the
geometrical attributes (shape and pose), a physics simulator needs the physical
quantities (e.g., masses, friction factors, etc.) of all the objects in the scene to
be precisely known, i.e., the accurate input description of the scene is necessary
for physics simulation [72]. In typical robotic systems that the visual percep-
tion is the major source of gathering information about a scene, the physical
quantities such as the friction coefficients and masses of objects cannot be mea-
sured, although the boundary (i.e., minimum and maximum) values for such
quantities might be known. In case of drawing a set of values for the physical
quantities, the result of the simulation is valid only for those specific values.
Having this said, in order to use a physics simulator for identifying the support
relations, one may propose to create a grid of possibilities for the uncertain
values of the physical quantities and then perform physics simulation for each
possible set of values. Such grid based approach has the following issues. First,
it could be extremely time consuming due to the large search space of the grid;
second, an effective sampling of the values is not trivial, and third, it is unclear
how to deduce the existence of a support relation between two objects from all
the outcomes of the simulations.

As a more promising solution this dissertation presents a method to perform
static analysis of a configuration of objects to determine symbolic support rela-
tions under uncertain values of physical quantities such as friction coefficients.
The method employs static equilibrium conditions to anticipate the effect of
removing an object from a configuration. The problem statement and solution
are formally presented as follows.
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(a) Pi
act is at (xi, 0) (b) Pi

act is at (xi,yi)

Figure 5.5: Illustration of the point of action, Pi
act on the i-th separating plane,

Pi
s in case of (a) a line-segment or (b) a polygon is the type of i-th contact

between X and Yi.

Problem 5.1. Given the geometrical attributes of a target object X and a set of
objects O = {Y1, . . . ,YN,Z} in contact with X, determine whether X remains in
static equilibrium by removing Z from O.

Solution. The solution is based on an analysis of static equilibrium conditions
of X after Z is removed from O under uncertainty about the mass of the objects
and their distribution, and unknown values of friction coefficients. From clas-
sical mechanics [73], an object is in static equilibrium if and only if the vector
sum of all external forces is zero, the vector sum of all torques (due to the ex-
ternal forces) about any pivot point is zero, and the linear momentum of the
object is zero. Since X and O are static, the values of their linear momentum are
zero by definition. Formally, X is in static equilibrium if and only if,

�Ftotal =

N∑
i=0

�Fi = 0

�τtotal =

N∑
i=0

�ri ×�Fi = 0

(5.2)

where, �Ftotal is the vector sum of all external forces acting on X, �τtotal is the
vector sum of all torques (due to the external forces) applied on X about the
selected pivot point at centroid of X, N is the number of forces, �Fi is the i-th
force due to contact point between X and Yi, �ri is the moment arm from the
centroid of X to the point of action of �Fi, i = 0 refers to the weight of X.

In order to solve Eq. 5.2, it is a requirement that the mass of the objects
and their distribution are known. However, the only source of gathering infor-
mation about the environment, which is the visual perception cannot measure
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the values of the physical quantities such as the mass of the objects. Moreover,
in three-dimensional space where the objects are not mathematically idealized
points, configurations of objects often represent a statically indeterminate me-
chanical system [74], i.e., a system of equations in which the number of un-
knowns (e.g. forces) is greater than the number of independent equations. The
static equilibrium conditions in Eq. 5.2 are often insufficient to determine the
unknown forces, even if the values of the physical quantities are known.

This section alternatively poses the static equilibrium analysis of a target
object X as a problem of solving a system of nonlinear equality and inequal-
ity equations to overcome the issues mentioned above. The knowledge about
the boundary values of the physical quantities are implemented into inequality
constraints. For example, according to the Coulomb friction model [75] there
is a non-linear inequality relation between the friction force, normal force and
the friction coefficient. On the other hand, since we are interested in abstract-
ing the symbolic support relations between objects, and the fact that the exact
numeric computation of unknown forces is irrelevant for identifying support
relations, it is adequate to find a set of consistent values of unknown variables
to satisfy the system of equations. In other words, the goal is to find a feasible
solution that satisfies a set of predefined constraints even if the configuration
under study is statically indeterminate.

In order to construct the system of equations, we need to identify the un-
known variables in the corresponding equations. Since the certain values of the
mass of the objects as well as the friction coefficients between pairs of objects
are not given, the boundary values add constraints to the system of equations,

mO,min � mO � mO,max ,O ∈ O ∪ {X}

0 < μi � μmax < ∞ , i = 1, . . . ,N
(5.3)

where, mO is an unknown variable referring to the mass of the object O, mO,min

and mO,max are the given boundary values of the mass of objects O, μi is an un-
known variable referring to the friction coefficient between X and Yi, and μmax

is the given maximum value of the friction coefficients. The minimum value
for a friction coefficient is zero by definition, while the maximum value can be
set based on the maximum measured friction coefficient of the commonly-used
materials in the target environment. In the real-world configurations of objects,
where there is no glue, for example, between two objects in contact, the friction
coefficients have to be bounded (μi < ∞).

In the presence of friction, according to Coulomb friction model, resolving
a force vector �Fi into two components, �Fni and �Fti representing respectively
normal and tangential (friction) forces, the following inequality must hold,

‖�Fti‖ � μi‖�Fni ‖ , i = 1, . . . ,N. (5.4)

Computing CPS(X, Yi) and the separating planes Pi
s between X and Yi, (∀ 1 �

i � N) using Algorithm 5.1 discussed in Section 5.2.1, there exist three possi-
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bilities of contact point-sets, namely, a single-point, a line-segment or a poly-
gon. If a line-segment, L (see Figure 5.5a), or a polygon, G (see Figure 5.5b)
is CPS(X, Yi), according to superposition theorem a point in L, respectively
in G, can summarize the effect of all the other points in L, respectively in G,
which is called point of action, Pi

act (see Figure 5.5). Using the superposition
theorem, Pi

act can be identified by searching in the corresponding contact point-
set. In case CPS(X, Yi) is a line-segment, one unknown variable, xi, and in case
CPS(X, Yi) is a polygon, two unknown variables, xi and yi representing the
position of Pi

act are added to the system of equations. The point of action is
required to identify the momentum arm of the corresponding torque.

The direction of the normal and tangential forces acting at the point of
action need to be also modeled. An angle, αi (0 � αi < 2π) with respect
to a chosen fixed axes in Pi

s (see Figure 5.5) is an unknown variable of the
system that parameterizes the direction of the friction force �Fti . The magnitude
of �Fti is another unknown variable of the system, together with αi identify the
i-th friction force. The direction of the normal force, �Fni is along one of two
possible directions of the normal vector of Pi

s, and is determined by the ACT

relation between X and Yi as follows. For each Yi ∈ O, depending on the ACT

relation three possibilities can be considered,

1. X acts on Yi. X exerts force on Yi due to gravity, thus the direction of
the reaction force from Yi, that is, the normal vector of Pi

s with positive
y-component is the direction of �Fni . In this case four unknown variables
‖�Fni ‖, ‖�Fti‖, αi, and μi are defined.

2. Yi acts on X. Yi exerts force on X due to gravity, thus the normal vector
of Pi

s with negative y-component is the direction of �Fni . In this case four
unknown variables ‖�Fni ‖, ‖�Fti‖, αi, and μi are defined.

3. The ACT relation between X and Yi is not identified. In this case the fric-
tion coefficient between X and Yi is ignored since we assume that there
must be a third object, Yj(j �= i), in contact with X and Yi to cancel their
weights for some certain friction coefficient. Thus, only the magnitude of
the normal force ‖�Fni ‖ that Yi may exert on X is defined as an unknown
variable.

At this point we can construct the system of equations based on the discus-
sion in the preceding paragraphs and Eq. 5.2, Eq. 5.3 and Eq. 5.4,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx = 0, Fy = 0, Fz = 0
τx = 0, τy = 0, τz = 0
Pi

act ∈ CPS(X, Yi)
0 � αi � 2π
0 < μi � μmax

‖�Fti‖ � μi‖�Fni ‖

(5.5)
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Algorithm 5.2: The Extraction of the SUPP Relation
Data: Geometrical attributes of O = {X = Y0, Y1, . . . ,YN,Z}
Result: Truth of SUPP(Z,X)

1 VarSet ← ∅ /* the set of unknown variables */;
2 VarSet.Add(m0) /* the mass of X */;
3 ICSet ← ∅ /* the set of inequality constraints */;
4 ICSet.Add(m0,min � m0 � m0,max);
5 �Ftotal ← −m0gŷ /* g: gravity constant, ŷ: unit vector of y-axis */;
6 �τtotal ← �0;
7 for i = 1, . . . ,N do

/* Compute CPS(X, Yi) and Pi
s using Algorithm 5.1 */

/* Identify ACT relation between X and Yi using

Proposition 5.1 */

/* Identify Pi
act based on CPS(X, Yi), see Figures 5.5 */

8 if ACT(X, Yi) or ACT(Yi,X) holds then
9 VarSet.Add(‖�Fni ‖, ‖�Fti‖,αi,μi,mi);

10 ICSet.Add(0 � αi � 2π);
11 ICSet.Add(0 � μi � μmax);
12 ICSet.Add(‖�Fti‖ � μi‖�Fni ‖);
13 ICSet.Add(mi,min � mi � mi,max);
14 if ACT(X, Yi) holds then
15 �Fi = ‖�Fni ‖NormalVectorIn(Pi

s,X) +�Fti ;
16 else
17 �Fi = ‖�Fni ‖NormalVectorIn(Pi

s, Yi) +�Fti ;
18 end
19 else
20 VarSet.Add(‖�Fni ‖,mi);
21 ICSet.Add(mi,min � mi � mi,max);
22 �Fi = ‖�Fni ‖NormalVectorIn(Pi

s,X);
23 end
24 �Ftotal = �Ftotal +�Fi;
25 �τtotal = �τtotal + (Pi

act − CX)×�Fi /* CX is the center of mass of X */;
26 end

/* Solve the system of equations in Eq. 5.5 */

27 if there is no solution then return true else return false;

where Fx, Fy and Fz are x, y, and z components of �Ftotal, τx, τy and τz are
x, y, and z components of �τtotal respectively. Solving the non-linear system of
equalities and inequalities in Eq. 5.5 is the basis of concluding whether the
static equilibrium conditions of object X are met after Z is removed from O.
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Depending on the existence of a solution, that satisfies all the equations, two
possibilities are discussed. First, if there is no solution for the problem, then it
is impossible for X to preserve its static equilibrium state, which means that the
removed object Z supports object X, i.e., we can state that SUPP(Z,X) holds.
Second, if the exist at least one solution, it implies that there exists one possi-
ble set of forces and friction coefficients that can satisfy the static equilibrium
conditions of the target object X under predefined constraints. The implica-
tion, however, is valid as long as the assumptions on the mass distributions
are close to reality. In this case, we assume that the removed object, Z, does
not support X, i.e., ¬SUPP(Z,X) holds. Algorithm 5.2 shows the procedure of
identifying the truth of SUPP(Z,X). It should be noted that depending on the
type of CPS(X, Yi), as discussed above, maximum two unknown variables will
be added to the system to represent the point of action at line 25 of Algo-
rithm 5.2.

5.3 Extracting Support Relations - ICSO case

In the absence of a complete object detection, where some of the objects com-
posing a pile are not detected, the approach described in Section 5.2 is not
applicable to extract support relations between objects. The effects of the un-
detected objects on the statics of the pile cannot be neglected. For example, in
the ICSO case shown in Figure 5.1, due to the undetected objects (i.e., 1,4,5
and 6) identifying all the contact points and ACT relations is not feasible. Thus,
the geometrical reasoning and static equilibrium analysis described in the previ-
ous section cannot be used to deduce the support relations even if the detected
objects are in contact with each other.

This section alternatively presents a probabilistic approach to extracting the
support relations in order to deal with the lack of information and uncertainty.
The available data in the ICSO case are the geometrical attributes of the de-
tected objects plus a point cloud of the scene. It should be noted that the set of
detected objects can be either in contact or far from each other. The possibility
that a detected object, through some undetected objects supports another object
implies that the support relation may indirectly exist between a pair of sepa-
rated objects (see an example of incomplete detection of objects in Figure 5.1).

In the presence of the lack of information, it is of great importance to pro-
vide an uncertainty measure of the deduced support relations. Since the un-
derlying probability distribution of the support relations between objects in
an arbitrary configuration is not known, and it cannot be approximated by
a standard distribution in advance, different machine learning techniques are
employed to approximate the probabilities. A set of classifiers are trained to
estimate the probability of one object X supporting another object Y given fea-
tures extracted from the scene point cloud and the relative position between
pairs of the detected objects.
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In this dissertation the performance of three carefully selected learning
paradigms, namely, Support Vector Machines (SVM) [76], Artificial Neural
Networks (ANN) [77] and Random Forests (RFT) [78] to estimate support
relation probabilities are examined. Since ordinary versions of these classifiers
are employed, for details regarding these standard machine learning techniques
please see the given references. The only extension being presented in this sec-
tion is how the probabilities of the class labels (i.e., support relations) are com-
puted. The probabilities of support relations are then used to create possible
worlds models based on which a probabilistic decision making reasons about
the set of safe-to-remove objects.

5.3.1 Class Probability Estimation

Support Vector Machine SVM in its original formulation can predict only class
labels, l ∈ {−1,+1}, given the input features, F, and a trained model, f(.); class
label probabilities, P(l|F), are not directly computed. A training set, T, includes
instances of features and their known class labels, which we call them features-
labels. We use a sigmoid function to estimate the posterior probability of the
predicted class labels proposed by Platt [79],

P(l = 1|F) =
1

1 + exp(Af(F) + B)
(5.6)

where A and B are estimated by minimizing the following negative log likeli-
hood,

minimize
A,B

−

u∑
i=1

(ti log(pi) + (1 − ti) log(1 − pi))

where pi = P(li = 1|Fi)

ti =

{
N++1
N++2 , if li = +1

1
N−+2 , if li = −1

N+ is the number of li = +1 instances in T

N− is the number of li = −1 instances in T

Artificial Neural Networks In order to predict the class labels we use a multi-
layer perceptron [77] with two real valued outputs (for binary classification),
a hyperbolic tangent sigmoid transfer function for hidden-layers and a loga-
rithmic sigmoid transfer function, logsig, for the output layer. To estimate the
probability of a predicted class label, l, given the corresponding feature vector,
F, we first normalize the two output values of logsig, y+

o and y−
o , to sum to 1,

β(y+
o + y−

o ) = 1 ⇒ β =
1

y+
o + y−

o

(5.7)
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and finally compute the class label probability as,

P(l = 1|F) = 1 − βy−
o (5.8)

Random Forests For a random forest with N decision trees [80], the probability
estimation of the predicted class labels, l, given the input features, F, by i-
th decision tree, Pi(l|F), is computed as the fraction of training data sets of
the class label in the corresponding tree leaf. The posterior probability of a
predicted class label by a random forest is then computed as the average of
Pi(l|F)’s,

P(l|F) =
1
N

N∑
i=1

Pi(l|F) (5.9)

5.3.2 Features Extraction

This section explains the elements of the features vector and the methods to
extract each feature element from the point cloud, P = {p1, . . . ,pN},pi ∈ R

3,
of the given configuration, C, and the geometrical attributes of the detected
objects in C. The first step in feature selection is to include all features that
could possibly carry information about the target class labels, i.e., the support
relations. The point cloud features are included to capture the distribution of
the sampled points around an object which may carry information about the
existence of other undetected objects around it. A set of geometrical features
(e.g., volumes, bounding boxes, heights, Euclidean distances, intersection of ar-
eas projected on surfaces, differences of heights, etc.) as well as the point cloud
features (e.g., distances of the points in P to the centroid and vertices of the
objects) are extracted to have a pool of features. The features described below
are the result of applying mutual information analysis for feature selection [81]
that eliminated redundant and irrelevant features.

Point Cloud Features

In the absence of having access to the complete set of objects in C, the hypothe-
sis is to use the set of sampled points of C to extract features that may improve
the probability estimation of the support relations. The mutual information
analysis revealed that to some extent the distribution of P around an object,
X, carries information about the undetected objects nearby X. A possible type
of feature that captures the distribution of P with respect to a target object is
distance-based activation function (DBAF). DBAF is defined as the normalized
sum of Gaussian functions of squared Euclidean distances between points in P,
and a point of interest, cp in R

3,

f(cp) =
1
N

N∑
k=1

1√
(2πσ)3

exp
(
−
‖cp− pk‖2

2σ2

)
, pk ∈ P (5.10)
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Figure 5.6: Interest points cpi, i = 1, . . . , 6 for a cuboid object with centroid at
C.

where, f(cp) is the DBAF of the point of interest, cp, and σ is a parameter
to weight the significance of closer points in P to cp. The DBAF function bal-
ances the contribution of farther points (which represent larger distances) and
of closer points (which represent smaller distances).

For each detected object X ∈ C, the centroid of X is used to define six distinct
points of interest by translating the components of the centroid, (xc,yc, zc), ±d
units along each axis of the reference frame (see Figure 5.6),

CP =

cp1 cp2 cp3 cp4 cp5 cp6[ ]
xc − d xc + d xc xc xc xc
yc yc yc − d yc + d yc yc

zc zc zc zc zc − d zc + d

(5.11)

where, each column of CP is a point of interest for object X. A complete DBAF
feature vector for X is formally expressed as below,

FDBAF(X) = [f(cp1), . . . , f(cp6)]
T (5.12)

Pairs of Objects Features

In order to capture the relative configuration between two objects, X and Y, the
difference between their axis-aligned bounding boxes as well as the smallest
distance, ds(.), of the centroid of X and Y to the flat ground are extracted. The
axis-aligned bounding box of an object, X, is denoted as,

BBX = [xmin,ymin, zmin, xmax,ymax, zmax]
T (5.13)
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where, min and max subscripts respectively denote the minimum and maximum
of x, y and z components of points in X. For the support relation SUPP(X, Y),
the corresponding feature vector is defined to be the following difference,

FBB(X, Y) = BBX − BBY (5.14)

And for the smallest distances, the following feature vector is defined,

FH(X, Y) = [ds(X),ds(Y)]
T (5.15)

Complete Features Vector

For each pair of detected objects, X and Y in C, two feature vectors are extracted
by combining FH, FBB and FDBAF. The features vector from X’s point of view
(whether X supports Y) is,

F(X, Y) = [FH(X, Y), FBB(X, Y), FDBAF(X), FDBAF(Y)]
T (5.16)

while from Y’s point of view is,

F(Y,X) = [FH(Y,X), FBB(Y,X), FDBAF(Y), FDBAF(X)]
T . (5.17)

A machine learning paradigm uses the features vector F(X, Y) to output the
probability of SUPP(X, Y) being true.

5.3.3 Possible Worlds of Support Relations

A representative model for the probabilistic hypotheses about the support rela-
tions is especially important in the ICSO case, where there exists a set of pos-
sibilities to infer which object supports another. In order to encode hypotheses
about objects supporting each other, the concept of possible worlds from modal
logic is employed.

We define a possible world to be one realization of support relations
between all pairs of detected objects. Formally, let each support relation
SUPP(X, Y) between two different objects, X and Y be modeled by a binary
random variable, Sk such that Sk = 1 if SUPP(X, Y) is true, and Sk = 0 if
SUPP(X, Y) is false. Let Ω = [S1,S2, . . . ,Sη] be a random vector composed of
all the binary random variables. For N detected objects, the number of support
relations (i.e., the number of the binary random variables), η is,

η = 2
(
N

2

)
= N(N− 1) (5.18)

where
(
N
2

)
is a 2-combination of N objects. A possible world is one possible

assignment ω = [s1, s2, . . . , sη] to Ω, where sk ∈ {0, 1},k = 1, . . . ,η. In other
words, one possible world is equivalent to one hypothesis about the ground
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N q = 2N(N−1) q ′ q ′/q (%)
3 64 29 45.3
4 4096 355 8.67
5 1048576 6942 0.66
6 1073741824 209527 0.02

Table 5.2: A comparison of the number of consistent worlds, q ′, and the num-
ber of all possible worlds, q, for different numbers of objects n = 3, 4, 5, 6.

truth of how objects are supporting each other. The number of all possible
assignments of variables sk to Ω is q = 2η.

The possible worlds of the support relations are illustrated as a graph with
nodes and directed links representing the objects and the support relations re-
spectively. In the graph, a directed link from node X to Y denotes SUPP(X, Y)
with the corresponding binary random variable Sk. For example, Figure 5.7a
shows the graph of possible worlds for N = 4 objects, where a total number
of η = 12 directed links (i.e., support relations) represent the set of the binary
random variables in this case.

It should be noted that the probability of a support relation between two
objects is estimated independently of another pair of objects, however, such
probability may not be independent given the support relation of another pair
of objects. Since the underlying conditional probability of support relations is
not known, the joint probability distribution of the random vector Ω is ap-
proximated as,

P(Ω = ωi) = P(S1 = si,1, . . . ,Sη = si,η)

=

η∏
k=1

P(Sk = si,k) (5.19)

where, ωi = [si,1, . . . , si,η] is the i-th possible assignment to Ω, and P(Sk) is
the estimated probability of Sk by a machine learning paradigm.

Consistent Possible Worlds

Since the support relation is transitive, i.e.,

∀X, Y ∈ C, SUPP(X, Y)∧ SUPP(Y,Z) ⇒ SUPP(X,Z) (5.20)

it is required to make sure that a realization of a possible world, ω, with an
assignment of variables is consistent with the transitivity property. For exam-
ple, Fig 5.7b and Fig 5.7c depict graph illustrations of one consistent and one
inconsistent possible worlds for four objects respectively. In Fig 5.7c, the in-
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Figure 5.7: Graph illustration of the random vector Ω for four objects, where
each edge k is labeled with a binary random variable Sk. Solid and dashed edges
denote Sk = 1 and Sk = 0 respectively. (a) A possible world where all Sk = 1.
(b) A possible world where some Sk = 0. This is a consistent world according
to the transitivity constraint. (c) An inconsistent possible world according to
the transitivity constraint.

consistency is due to the fact that SUPP(A,B) and SUPP(B,D) are both true, but
SUPP(A,D) is false.

In order to eliminate such inconsistent worlds, one solution is to employ
the Path Consistency Algorithm [82]. Table 5.2 shows the number of consis-
tent worlds, q ′, in comparison with the number of all possibilities, q, for dif-
ferent numbers of objects, N = 3, 4, 5, 6. It can be observed that discarding
inconsistent worlds significantly reduces the size of the representation.

Elimination of the inconsistent worlds implies that the sum of joint prob-
abilities of the consistent worlds in Eq. 5.19 becomes less than one. Thus, to
represent a true probability distribution over consistent possible worlds, the
corresponding probabilities must be normalized. To distinguish is from all pos-
sibilities, ωc denotes an assignment to a consistent possible world, and i(.)
maps index set of the consistent possible worlds into the original set of possible
worlds. Introducing a constant normalizing factor β, such that the probability
of the j-th consistent world, P(wc

j ), where wc
j = [si(j),1, . . . , si(j),η] becomes

P(wc
j ) = βP(si(j),1, . . . , si(j),η) (5.21)

and, the sum of probabilities becomes one,

q′∑
j=1

P(wc
j ) = 1. (5.22)

We note that if p1, p2 and p3 are the estimated probabilities of SUPP(X,Y),
SUPP(Y,Z) and SUPP(X,Z) respectively, then it is not necessary to have p3 =
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P(wc
j ) A1 . . . An

wc
1 P(wc

1) c11 . . . c1n
...

...
...

. . .
...

wc
q′ P(wc

q′) cq′1 . . . cq′n

Table 5.3: Payoff matrix with actions, Ak, consistent possible worlds, wc
j , their

joint probabilities, P(wc
j ), and the costs of taking actions, cjk.

p1p2. In fact, the underlying structure of the joint probabilities is unknown, and
a machine learning paradigm computes the probability of the support relation
between each pair of objects independently of the other objects.

5.4 Decision Making

This section describes a probabilistic decision making to reason about the set
of safe-to-remove objects as candidates to be unloaded from a pile given the
corresponding representation of the extracted support relations. The decision
making approach selects a safe-to-remove object based on minimizing the risk
of a change in the pose of the other objects in the pile. The approach can be
applied to the both cases – ICSO and CSO, where the CSO case is considered
as a special case in which all support relations are known.

The probabilistic decision making approach employs the expected utility
principle [83] from decision theory where the minimization of expected cost
is adopted in order to make an optimal decision. To do this, a payoff matrix,
with elements as the costs of taking possible actions (i.e., unloading an object)
in each consistent world is created. Table 5.3 shows the payoff matrix structure.
The first and second columns contain the possible assignments and correspond-
ing joint probabilities of each consistent world respectively. In Section 5.3, the
different steps to build a probabilistic world model of support relations between
pairs of detected objects in a given configuration C are outlined. The elements
of the other columns represent the cost, cjk of taking actions Ak (i.e. selecting
an object in C) in j-th consistent possible world. In other words, an element cjk
is the cost of removing the k-th object from C given the j-th consistent possible
world.

Removing the k-th object, Xk ∈ C, from the j-th consistent possible world is
penalized by counting the number of the objects that Xk supports, i.e., the cost
cjk is computed as,

cjk =
∑

Sk=SUPP(Xk,Y)

Sk , Y ∈ C− {Xk} (5.23)
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For example, in Figure 5.7b, the costs of removing A, B, C and D are 3, 2, 0
and 1 respectively.

The optimal action, A∗ (i.e., safest object to remove from C) is the one with
the minimum expected cost (EC),

A∗ = argmin
k

EC(Ak) (5.24)

where EC(Ak) is defined as,

EC(Ak) =

q′∑
j=1

P(ωc
j )cjk (5.25)

In the CSO case it is assumed that there exists only one consistent possible
world (with a joint probability of 1) represented by the extracted support rela-
tions between objects as described in Section 5.2.

It should be mentioned that scaling is a problem of representations based on
possible worlds concept, where the number of possibilities grows exponentially
as the number of objects increases. If there are too many objects detected, and
N is the maximum number of objects that computationally can be handled
in practice, the following heuristic solution can be applied. First, we consider
only N objects which have the highest height with respect to the flat ground,
and then we create the consistent possible worlds for those N objects. The
probabilistic decision maker is then employed to find the best candidate objects
to unload first. The candidate will be unloaded from the configuration, and we
repeat this procedure until all the objects are unloaded.

5.5 Results

This section presents the experimental results of applying the methodology de-
scribed for the CSO and ICSO cases in the preceding sections. The experiments
were carried out on data generated in simulated and from real-world configu-
rations. Simulation facilitates generating a large number of random configura-
tions with direct access to the ground truth data of the geometrical attributes of
the objects. A large number of random configurations is important in analyzing
the statistical behavior of the corresponding approach, while the ground truth
data is required for the learning of the probability distribution of support rela-
tions. The performance of the corresponding approach was then evaluated on
data generated on real-world configurations. A mock-up container was used to
create piles of objects aiming at validating the constructed representation and
examining the probabilistic decision making approach.

5.5.1 Simulated Configurations

For the simulated configurations, a scene generator based on physics simula-
tion was developed. The simulator generates random configurations of polyhe-
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(a) A Cuboid (b) A Cylinder (c) A Barrel

Figure 5.8: Polyhedron shapes representing (a) a carton box as a cuboid, (b) a
cylinder, and (c) a barrel.

dron shaped objects inside a simulated container. The boundary values of the
physical quantities such as the mass of the objects and friction coefficients, in
addition to the collision shape descriptions of the objects are set as minimum-
maximum intervals. The geometrical attributes and physical quantities of the
generated objects are uniformly sampled from the given intervals. A simulated
3D range sensor scans the entrance of the container and produces a set of sam-
pled points P of the scene.

Test configurations generated in simulation contained three types of objects,
namely, carton boxes (CBX), cylinders (CYL) and barrels (BRL). A circle in a
shape is approximated by a convex polygon with 36 equal length edges. A
cuboid represents the shape of a carton box. A cylinder with the approximated
circles represents a cylinder object. Two semi-cones with the approximated cir-
cles construct the shape of a barrel (see Figure 5.8).

The generated configurations in simulation are divided into four categories.
Configurations made of only carton boxes, CCBX (see Figure 5.9a), of only
cylinders, CCYL (see Figure 5.9b), of only barrels, CBRL (see Figure 5.9c), and
of a mix of the three objects, CMIX in which the frequency of the three object
types are equally likely distributed (see Figure 5.9d). For each object category,
U = {CBX, CYL, BRL, MIX}, a total of 40 configurations consisting of n ∈ N

objects were generated, where

N = {n : n = 10r, 1 � r � 10, r ∈ N} (5.26)

The total number of configurations generated in simulation is 1600, which is
the result of multiplying 4 categories of objects, 40 configurations per category,
and 10 different sets of values uniformly drawn from the dimensions of the
shapes of the objects per configuration. The notion Cu

u,i indicates the i-th con-
figuration consisting of n ∈ N objects of type u ∈ U, where i = 1, . . . , 40. The
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(a) Cuboid Shaped Objects (b) Cylinder Shaped Objects

(c) Barrel Shaped Objects (d) Mixed objects

Figure 5.9: A few samples of static configurations generated in simulation: (a)
cuboid shapes; (b) cylindric shapes; (c) barrel shapes, and (d) a mix of cuboid,
cylindric and barrel shape objects.

set of configurations defined above were used as the input data for the method
of extracting support relations in the CSO case (see Section 5.2).

In the ICSO case, the geometrical attributes of only a subset of n ∈ N

objects in Cu
n are available. In order to simulate incomplete object detection, in

which only a subset of objects are detected, we drew randomly a set of objects
from the visible layer of a simulated configuration. A subset of m ∈ N objects
of a simulated configuration, Cu

n, is an incomplete set of objects denoted by Ium,
where m � n,n ∈ N and u ∈ U.

To generate training sets in the ICSO case, for each two objects X and Y in
Ium, both features vectors F(X, Y) and F(Y,X) were generated (see Section 5.3.2)
with their true support relations (i.e., the ground truth of the class labels) auto-
matically extracted from the corresponding Cu

n by the CSO method explained in
Section 5.2. The experiment was conducted on a total of 34706, 48422, 93312
and 56886 feature-labels (training sets) extracted from CCBX

n , CCYL
n , CBRL

n and
CMIX
n respectively.
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Figure 5.10: The vertical axis is the success rate (SRate) of the random forest
classifier, and the horizontal axis is the sampling size (SSize) of pairs of objects
used to train the classifier. The black points are the 5-fold classification success
rate at each sample size. In order to interpolate values, a curve (blue line) is fit
to the points. It can be seen that the success rate is converging as the size of the
samples increases.

In order to justify the amount of samples used in the training sets, it will
be empirically shown that if the number of samples exceeds some threshold,
then a significant increase in the number of the samples (e.g., doubling the size)
has a minor contribution to the performance of the classification. Figure 5.10
depicts the success rate of the random forest classifier in terms of the 5-fold
classification success rate with respect to the number of samples (i.e., feature-
labels extracted for pairs of objects) from CMIX configurations. The success rate
for a classifier is defined as the percentage of the correctly predicted support
relations between the detected objects. As it can be seen from Figure 5.10, by
doubling the number of samples from 45000 to 90000, the success rate only
increases about 1.6%. And a very similar curve to Figure 5.10 for SVM and
ANN classifiers is observed. This behavior is due to the fact that the extracted
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features from an incomplete set of detected objects can only contain partial
information about the target classes (i.e., binary support relations); thus, it is
to be expected that the classification success rate is bounded at a percentage
level below 100% even for a very large size of the training set. On the other
hand, overfitting can occur for very large numbers of samples. Since there is no
additional source of information about a configuration of objects in the ICSO
case, a success rate of 70% is considered to be a good performance for this
classification problem. It is worth mentioning that in the proposed probabilistic
approach the predicted output labels are not directly used, the probability of
the predicted labels are actually employed (see Section 5.3.1).

To generate test sets in the ICSO case, a separate set of M = 500 simulated
configurations was generated similar to that of the training sets. We created
incomplete sets of m = 5 objects, which are supposed to be detected, from
the separately generated configurations. For each Iu5,j, where j = 1, . . . ,M all
possible pairs of feature-labels, η = 20 (see Eq. 5.18 in Section 5.3.3), were
extracted as the corresponding test set (TSet), which is denoted by Tu

j .

5.5.2 Real World Configurations

In order to validate the process of identifying the set of safe-to-remove objects
on real-world data, we used a Microsoft Kinect sensor to scan two setups of
real-world configurations of objects stacked inside a mock-up container, which
are denoted CRW7 and CRW8 (see Figure 5.11a and Figure 5.11d). The Kinect
sensor placed in front of the middle entrance of the mock-up container was
used to capture a point cloud of a configuration. The complete set of detected
objects (i.e., the CSO case) was then created by registering the 3D models of
the objects to the point clouds, and then the poses of the objects were refined
manually (see Figure 5.11b and Figure 5.11e).

For generating the test sets in the ICSO case, a number of subsets of objects,
IRW7
m,j and IRW8

m,j were drawn randomly from the real-world configurations, CRW7

and CRW8, where, m = 3, 4, 5, 6 is the number of objects in the incomplete set
and j is the index of the set. The number of all possible ways of choosing m
objects from n objects is (

n

m

)
=

n!
m!(n−m)!

(5.27)

thus, the index set for IRWn
m,i is i = {1, . . . ,

(
n
m

)
}, where, n = 7, 8 is the number

of all the objects in real-world configurations, CRW7 and CRW8 respectively.
In order to train the selected machine learning paradigms for estimating the

probability of support relations, a training set with similar objects to that of
simulated configurations is required to be generated. Physics simulation was
employed to generate a set of random configurations, CRAND, consisting of ob-
jects with similar shapes of the objects used in the real-world configurations,
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(a) Configuration CRW8 (b) Model fit to CRW8
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Figure 5.11: Real world configurations. In the left column two configurations
made of carton boxes and cylinders inside a mock-up container are shown. In
the middle column the convex polyhedron models of the objects fit to the point
clouds of the scenes captured by the Kinect sensor are shown. In the right col-
umn the extracted support relations between the objects in the configurations
are depicted.

CRW7 and CRW8. The true support relations (i.e., class labels) between pairs of
objects in CRAND were then extracted by using the CSO method; the features
were extracted by the method described in Section 5.3.2. The result is a train-
ing set of feature-labels for two real-world configurations. The three machine
learning paradigms (i.e., SVM, ANN and random forest) were trained on the
generated training set, and then used to estimate the probability of class la-
bels, i.e., the support relations given the unseen feature-labels of the testing sets
extracted from IRW7

m,j and IRW8
m,j .

5.5.3 Results for the CSO Case

This section presents the results of applying the geometrical reasoning, static
equilibrium analysis and decision making on the data generated in simulation
and from real-world configurations explained in the preceding sub-sections. As
a measure of the complexity of the generated configurations, the number and
type of contact point-sets and the number of ACT and SUPP relations between
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objects are reported. Moreover, the corresponding execution times were also
recorded.

Figure 5.12a and Figure 5.12b respectively show the average time taken by
the geometrical reasoning and static equilibrium analysis for the configurations
CMIX
n . We can notice that the geometrical reasoning takes very short time and

increases linearly with the number of objects, while the static equilibrium anal-
ysis requires considerably more time, and increases polynomially with respect
to the number of objects. The longer execution time taken by the static equi-
librium analysis is due to the non-linear solver of the system of equations (see
Section 5.2.3), which has to be called for each object in a configuration. Nev-
ertheless, for realistic scenarios, we expect the number of objects extracted by
an object detection algorithm to be small, and thus, the execution time of the
static equilibrium analysis would still be reasonably fast. On the other hand,
since for each object the static equilibrium analysis is performed independently
of the other objects, it is possible to speed up the process by parallelizing the
computation of the support relations.

Figure 5.12c depicts the average number of contact types with respect to
the number of objects. As expected, the number of single-point contacts which
are the result of less stable configurations (vertex-on-face and edge-cross-edge)
is noticeably lower than the number of line-segments and polygons, which are
the result of edge-on-face and face-on-face contact types.

The average number of extracted ACT and SUPP relations between objects is
shown in Figure 5.12d. The number of support relations increases linearly. The
linear growth is due to the fact that adding one object implies a bounded num-
ber of contacts that can arise in the contact point-set network. For N < 20, the
number of ACT and SUPP relations are close to each other, that is, for roughly
each ACT(X,Y) relation, a corresponding SUPP(Y,X) relation was found. How-
ever, as the number of objects increases, the number of corresponding support
relations diverges from that of ACT relations. This is due to the fact that an
increase in the number of objects stacked in a fixed volume of a container
increases the physical interaction between objects resulting in a more gravita-
tional support dependencies.

The behavior of the execution time, the number of contact types and ACT

and SUPP relations of the other three categories, is similar to those shown in Fig.
5.12 for the MIX category, but with different minimum and maximum values
summarized in Table 5.4. From Table 5.4, we can observe that the minimum
and maximum values for barrel shaped objects are greater than those of the
other two objects categories. One reason is the higher number of faces in the
shape of a barrel object, which is approximated by a polyhedron. The other
reason is the shape of the barrel, which is less stable in a horizontal position.
A similar behavior can be observed for cylinder shaped objects with respect to
cuboid shaped objects.

The proposed geometrical and static equilibrium analysis (i.e., the method
employed for the CSO case) was applied to the created 3D models (see Fig-
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(a) Geometrical Reasoning Time (b) Static Equilibrium Analysis Time

(c) Contact Types (d) Relations

Figure 5.12: Complexity analysis of the proposed relational scene representa-
tion for simulated configurations. The horizontal axes are the number of objects
in the configurations. In (a) and (b) the vertical axes depict the execution time
of geometrical reasoning and static equilibrium analysis respectively. In (c) and
(d) the vertical axes are the average of the number of contact types and relations
respectively.

ure 5.11b and Figure 5.11e) of the two real-world configurations. The set of
extracted support relations is represented as a graph in which each node indi-
cates an object, and each directed link between two nodes indicates the exis-
tence of the support relation between the two objects. Figure 5.11c and Fig-
ure 5.11f show the result of extracting the support relations between objects
in the two real-world configurations, CRW8 and CRW7 respectively. Looking at
the two real-world configurations and the corresponding graphs of the support
relations between objects, one can intuitively confirm the correctness of the ex-
tracted support relations. However, a further test was carried out in order to
verify that the hypothesis of the support relations between objects representing
by each graph is correct. Given a graph, each candidate object was unloaded
manually from the real-world configurations to find out whether the unloaded
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CBX CYL BRL

min max min max min max

SUP(#N) 10 223 21 474 35 760

ACT(#N) 10 183 20 392 33 642

CON(#N) 12 287 10 580 44 881

GET(Sec) .001 0.04 0.05 1.59 0.41 12.89

SET(Sec) 0.01 7.74 0.05 23.67 0.12 48.27

SGL(#N) 0 76 0 93 0 103

LSG(#N) 2 113 5 199 8 282

PLY(#N) 10 97 22 287 36 494

Table 5.4: The results for three categories of objects, {CBX, CYL, BRL}, given as
minimum and maximum values for the same number of objects in Figure 5.12.
SUP(#N), ACT(#N) and CON(#N) stand for the number of support, act and
contact relations respectively (see Fig.5.12d). GET(Sec) and SET(Sec) stand for
geometrical reasoning and static analysis execution time, respectively (see Fig-
ure 5.12a and Figure 5.12b). SGL(#N), LSG(#N) and PLY(#N) stand for the
number of single-point, line-segment and polygon contact types respectively
(see Figure 5.12c).

objects have any effect on the motion state of the other objects. In order to
select the candidate objects, we can look at the corresponding graph of support
relations and selected objects that do not support any other object. The result
of performing the procedure of manual unloading of objects on two real-world
configurations confirmed the correctness of the extracted support relations. For
example, box B5 and cylinder C1 in CRW7 (B5 and C1 are the candidates because
there is no directed link of SUPP relation from their nodes to any other nodes)
were unloaded manually, and it was observed that the rest of the objects in the
configuration CRW7 preserved their motionless state.

Using the graph of support relations for each configuration (Figure 5.11c
and Figure 5.11f), the costs of removing the objects in each configuration are
summarized in Table 5.5. The best first choices (i.e., actions with the minimum
possible costs) are {B5,C1} and {B1,B4,C1} for CRW7 and CRW8 configurations,
respectively.

5.5.4 Results for ICSO Case

The results of creating a probabilistic representation of support relations and
the subsequent decision making process on data generated in simulation and
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Objects Set

Cost CRW8 CRW7

0 {B1,B4,C1} {B5,C1}

1 {B2,B5,B6,C2} {B1,B2,B6}

2 ∅ {B3,C2}

3 {B3} ∅

Table 5.5: The result of applying the proposed decision making to real-world
configurations CRW7 and CRW8. The objects with equal computed cost are col-
lected in the same sets for each configuration.

from real-world configurations are presented in this section. In order to com-
pare the performance of the decision making to other possibilities, two heuristic
decision makers are introduced that are supposed to provide a baseline decision
performance. First, a random decision maker (Random DM) that uniformly se-
lects an object, and the second is a heuristic decision maker (Heuristic DM)
that selects the object with the highest center of mass to be removed in the
corresponding test set.

The following describes the implementation of the approach for the ICSO
case. The LibSVM [84] with radial basis function kernel was employed for Sup-
port Vector Machines, and a Matlab implementation was used for both Artifi-
cial Neural Networks and Random Forests (TreeBagger). For SVM and ANN,
70% of the training set was used for training and 30% for validation. For each
category of objects, a 5-fold cross validation was performed to obtain the best
values for the SVM parameters [76]. Measuring the classification success rate
of ANN, a network with three hidden-layers of 15 neurons was empirically
selected, and a Random Forest with 200 decision trees for each category of
objects was trained. Figure 5.13 depicts the classification error rate of the three
trained classifiers for four objects categories, U = {CBX, CYL, BRL, MIX} in
a Receiver Operating Characteristic (ROC) space [85]. The ideal classification
on ROC space is located at the point (0, 1) – zero false positive rate (FPR)
and 100% true positive rate (TPR). It can be seen that while SVM and ANN
show a similar classification performance, the RFT classifier performs best for
all categories of objects.



5.5. RESULTS 81

Figure 5.13: An illustration of the classification performance of the three
trained classifiers, RFT, SVM and ANN for four categories of objects,
{CBX, CYL, BRL, MIX} in ROC space. The horizontal and vertical axis rep-
resent the false positive rate (FPR) and the true positive rate respectively. The
closest point to coordinate (0, 1) is the RFT classifier for configurations of car-
ton boxes.

Evaluation Criteria

The performance of the decision makers was measured by computing the mean
squared error (MSE) of the cost of removing the object selected by the corre-
sponding decision maker for all test configurations, Tu

j ,

MSE(cost) =
1
N

N∑
j=1

(DMCj − MPCj)
2 (5.28)

where, MPCj is the minimum possible cost of selecting the optimum action for
Ium,j, DMCj is the cost of the action selected by a decision maker, and N is the
total number of Ium,j.

The performance is represented with respect to three criteria. The first cri-
terion is the average entropy of the estimated probabilities of the predicted
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support relations by the corresponding machine learning paradigm for a given
Ium,j with η support relations,

AEIj =
1
η

η∑
k=1

(−pk log(pk) − p ′
k log(p ′

k)) (5.29)

where pk = P(Sk = 1) and p ′
k = P(Sk = 0). The idea behind using this criterion

is to show how the performance varies as the uncertainty in the classifications
changes. It is expected that with higher average entropies, we observe a decrease
in the performance of the decision makers. The second criterion is the balanced
error rate (BER) defined as,

BER =
1
2

(
NW(L1)
N(L1)

+
NW(L2)
N(L2)

)
(5.30)

where, NW(L1) and NW(L2) are the number of L1 and L2 class instances pre-
dicted wrongly, and N(L1) and N(L1) are the number of total L1 and L2 class
instances. The third criterion is the success rate of a machine learning paradigm,
which is the percentage of the class instances predicted correctly.

Configurations Generated in Simulation

For each category of objects, Figure 5.17, Figure 5.18 and Figure 5.19 show the
performance of the probabilistic decision maker (e.g., SVM DM) comparing to
Random DM and Heuristic DM with respect to each classifier’s success rate,
balanced error rate, and average entropy. The histogram of the percentage of
test configurations Ium,j that fall into each bin of a criterion is depicted at the
bottom of each graph.

There are two fundamental observations from the results. First, the perfor-
mance of the probabilistic decision makers outperform both Random DM and
Heuristic DM, and second, the Random Forest DM was found to be clearly
better than ANN DM and SVM DM. It can be seen that the performance of
the probabilistic decision makers improves (i.e., MSE of the cost decreases) as
the success rate of the classifier increases (see the third columns of Figure 5.17,
Figure 5.18 and Figure 5.19). As expected, a similar behavior can be seen with
the balanced error rate (see middle columns of Figure 5.17, Figure 5.18 and
Figure 5.19).

In Figure 5.17, a majority of test configurations have the average entropy
between 0.4 and 0.7, and for these we observe an approximately constant per-
formance. When the average entropy increases from 0.7 upwards the perfor-
mance of the decision maker decreases, as higher average entropies reflect the
difficulty of classifying support relations in the corresponding configurations.
We can see that the average entropies of the estimated class probabilities by
ANN are very close to 1 (see the first column of Figure 5.19) which explains
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Figure 5.14: An illustration of the proposed decision making performance for
the two real world configurations, CRW7 and CRW8, compared to the perfor-
mance of both the random and the heuristic decision maker. The vertical axes
represent the mean squared error of cost defined in Eq. 5.28. The three bins
on the left side of the horizontal axes represent decision makers based on RFT,
SVM and ANN classifiers while the right side bin represents the random deci-
sion maker.

the poor performance of the proposed decision maker when using the output
probabilities of the ANN. As the average entropy approaches the maximum
of entropy, 1, the probabilities of possible worlds are closer to each other, i.e.,
different possible worlds become more equally likely, and therefore taking a
decision is less and less informed about the true support relations.

Real World Configurations

The performance of the probabilistic decision makers on the real-world data
of CRW7 and CRW8 configurations is presented in Figure 5.14 showing the com-
puted MSE(cost) (see Eq. 5.28) of the probabilistic, random and heuristic de-
cision makers. Similar to the configurations generated in simulation, it can be
seen that the decision making based on the probability estimation of the sup-
port relations outperforms both the random and heuristic decision makers. We
also notice that the performance of decision making based on the ANN classi-
fier is comparable to that of RFT classifier, unlike the behavior we observed in
the simulated configurations.
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Figure 5.15: The sequence of the selected objects by the probabilistic decision
maker is shown for a real-world scenario of the RobLog project. Starting from
top left and following the arrows, the selected object at each step is highlighted
by a bold boundary line around the object.

RobLog Scenarios

The probabilistic decision making about the safest object to remove from a pile
was employed for the unloading scenarios of the RobLog project successfully.
Figure 5.15 shows the sequence of the selected objects for a sample configura-
tion of objects in the RobLog scenario (see Section 2.1 for an explanation of the
scenarios of the RobLog project). In the scenario there exist deformable objects
such as teddy bear dolls and sacks, where the corresponding object detection
module estimates the shape of such deformable objects as rigid superquadrics
(see Figure 5.16) imposing more uncertainty in the input data to the decision
making algorithm. For example, the experiments show that a teddy bear doll is
usually detected as two objects, where two superquadrics are fit to the head and
body of a teddy bear representing a more ambiguous scenario. However, ob-
serving the sequence of the selected objects in the real-world test configurations
created for the RobLog project shows a reliable performance of the probabilis-
tic decision making presented in this chapter. For example, we can observe that
unloading the sequence of the selected objects in the order shown in Figure 5.15
preserves the stability of the configuration, and we can intuitively verify that the
sequence of the selected objects is safe.

The analysis of the estimated probabilities of the support relations in the
scenario shown in Figure 5.15, verifies the procedure of the probabilistic deci-
sion making approach. For example, observing the second selection, the reason
that the decision maker selected the teddy bear, Bear, standing behind the wash-
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(a) Teddy Bear Doll (b) Sack

Figure 5.16: Superquadrics shape estimation for deformable objects. (a) The
shape of a teddy bear doll is estimated with two superquadrics representing the
head and the body. (b) The shape of a sack object is estimated by superquadrics.

ing liquid bottle, Bottle, is the probability of SUPP(Bottle,Bear) (Bear leans
on Bottle) is higher than SUPP(Bear,Bottle) (Bottle leans on Bear).

5.6 Discussion

This chapter presented a novel approach to analyze and represent static con-
figurations of piles of objects under two conditions, having access to complete
and incomplete set of objects in the configurations. The proposed approach is
mainly aimed to be employed in the process of automating the task of unload-
ing goods from shipping containers, however, the methodology is applicable to
a wide range of similar applications (e.g., safely picking up an object from a
shelf by a domestic robot).

In case of having access to the complete set of objects, a method to automat-
ically extracting a symbolic relational representation that uses a minimal set of
relations to capture possible physical interactions between objects is described.
Such a relational representation can be readily used by high-level AI reasoning
paradigms to predict the effects of removing objects in contact with each other.

When some objects in a configuration are possibly not detected, a prob-
abilistic world model of the support relations was introduced based on ma-
chine learning techniques. The performance of three type of classifiers, Ran-
dom Forests (of decision trees), Support Vector Machines (SVM) and Artificial
Neural Networks (ANN) in the estimation of the probability of the support re-
lations were examined. The probabilistic world models are then used to make
an optimal decision on the safest object to be removed from a configuration
based on minimizing the cost of taking unloading actions.
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The presented methods were evaluated with the data generated in simula-
tion and from real-world configurations of objects. The results show that the
performance of the proposed probabilistic decision maker in combination with
the output of the classifiers outperforms randomly selecting an object to re-
move from a pile, and it also shows better results than using a heuristic rule of
always removing the topmost object. It is also observed that using the output
of Random Forests classifier improves the performance of the probabilistic de-
cision maker most. The abundance of diverse training data available through
the simulator leads to the conjecture that an ensemble learning system is more
reliably able to exploit the structure in the data (see, for example, the discus-
sion of the advantages of ensemble methods in [86]). Considering the presented
results, the probabilistic method for making decisions about the safest object
to be removed from a pile in the ICSO case is well motivated. The results also
constitute a step forward in terms of bringing cognitive reasoning abilities to
the area of robotic manipulation for autonomous object selection.
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Figure 5.17: The performance of the proposed RFT decision maker (RFT DM),
the random decision maker (Random DM) and the heuristic decision maker
(Heuristic DM) are depicted versus RFT classifier’s average entropy, balanced
error rate and success rate from the left to right columns respectively. Vertical
axes are MSE(cost) as defined in Section 5.5.4. The category of objects from
top to bottom row are: (first row) carton boxes; (second row) cylinders; (third
row) barrels; (fourth row) mix of objects. The histograms at the bottom of each
graph shows the percentage of test sets (TSets) in the corresponding bin. The
lower MSE(cost) especially at higher bins shows better performance.
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Figure 5.18: The performance of the proposed SVM decision maker (SVM
DM), the random decision maker (Random DM) and the heuristic decision
maker (Heuristic DM) are depicted versus SVM classifier’s average entropy,
balanced error rate and success rate from the left to right columns respectively.
Vertical axes are MSE(cost) as defined in Section 5.5.4. The category of objects
from top to bottom row are: (first row) carton boxes; (second row) cylinders;
(third row) barrels; (fourth row) mix of objects. The histograms at the bottom
of each graph shows the percentage of test sets (TSets) in the corresponding
bin. The lower MSE(cost) especially at higher bins shows better performance.
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Figure 5.19: The performance of the proposed ANN decision maker (ANN
DM), the random decision maker (Random DM) and the heuristic decision
maker (Heuristic DM) are depicted versus ANN classifier’s average entropy,
balanced error rate and success rate from the left to right columns respectively.
Vertical axes are MSE(cost) as defined in Section 5.5.4. The category of objects
from top to bottom row are: (first row) carton boxes; (second row) cylinders;
(third row) barrels; (fourth row) mix of objects. The histograms at the bottom
of each graph shows the percentage of test sets (TSets) in the corresponding
bin. The lower MSE(cost) especially at higher bins shows better performance.





Chapter 6
Conclusion and Future Work

This dissertation focused on the essential task of object selection by au-
tonomous robotic manipulation systems to reduce the probability of damage
to the objects stacked in a pile. Starting from 3D perception and the evaluation
of the sensors technologies, reaching geometrical consistency in the detected
poses of objects, this thesis attempted to analyze the stability of a pile under an
incomplete detection of objects and uncertainty in the data. The contribution
presented in this thesis work were developed in the scope of a EU-FP7 project,
which successfully demonstrated a robotic manipulation system for automating
the logistics process of unloading goods from shipping containers. This chapter
presents a summary of the main contributions of the thesis and an analysis of
their significance. Open questions are then discussed together with directions
for future work.

6.1 Major Contributions

This section highlights the three most important achievements of this work with
a description of the corresponding challenges.

The first contribution in this dissertation is an in-depth analysis of the prob-
lem of autonomous safe selection of objects from a pile in order to either re-
move a single object or unload all the objects from the pile. Depending on the
available data, two cases were considered: having access to a complete set of
objects (CSO) and to an incomplete set of objects (ICSO). In the CSO case it is
assumed that all the objects composing a pile are detectable while in the ISCO
case only a subset of objects are assumed to be detected.

For the case that shapes and poses of the objects are available, geometrical
reasoning following by a static equilibrium analysis were introduced to extract
a minimal set of symbolic relations, namely, ACT and SUPPORT relations rep-
resenting how the objects in a pile are in physical interactions. Such symbolic
ACT and SUPPORT relations can be readily used by a high-level AI reason-
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ing module to analyze the stability of a pile and reason about the safest set of
objects to unload from the pile.

An alternative probabilistic approach to extracting support relations was
discussed to tackle the problem of undetected objects of a pile due to occlusion
or a failure in the corresponding object detection algorithms, in addition to the
problem of uncertainty in the estimated poses. The probabilistic approach es-
timates the probability of the support relations between pairs of the detected
objects using machine learning techniques by extracting features from the rel-
ative position of the two objects and the point cloud of the pile. An extensive
experimental evaluation of the presented approach to identify the set of safe-
to-remove objects was conducted on data generated in simulation and from
real-world configurations of objects. It was also demonstrated that the object
selection algorithms presented in this dissertation can be employed in practical
applications such as the RobLog project successfully.

The second major contribution is an efficient search based algorithm that
refines the poses of a set of objects detected by an existing object detection
module. The algorithm resolves the inter-penetrations between the shapes due
to errors in the estimated poses using high-level reasoning in order to obtain a
geometrically consistent model of the environment. In this work, the concept
of minimum translation search for object pose refinement was introduced. A
discrete search paradigm based on the concept of depth of penetration between
two polyhedrons was explored to overcome the practical problem of an exhaus-
tive search in the full state space of the poses to find a geometrically consistent
solution. The performance of the object pose refinement algorithm was exam-
ined on data sets generated in simulation and from real-world configurations
of objects, empirically showing that the presented algorithm not only resolves
the inter-penetrations but it also reduces the overall pose error on average. Also
provided is an open-source C++ implementation of the introduced algorithm.

Last but not least, an application based evaluation of 3D range sensors is
presented in this thesis in order to select a set of appropriate sensors consider-
ing the task of object detection in the design process of the RobLog project. Is
was demonstrated that selecting 3D range sensors solely based on comparing
their intrinsic properties and in isolation of the target application may result
in an inappropriate choice. As performance indicators, two state-of-the-art ob-
ject detection and pose estimation algorithms with two major categories of
objects commonly used in shipping containers, namely, carton boxes and tires
were selected for experimental trials. With the proposed evaluation approach
it was shown that in the design process of a robotic system that is required to
autonomously detect objects, the applicability of 3D range sensors, regardless
of their intrinsic parameters, significantly depends on the types of objects and
the object detection algorithms. Based on this evaluation the Kinect sensor for
short range scanning and an actuated laser range finder (SICK LMS-200) for
scanning longer distances deep inside cargo containers were selected for the
RobLog project.
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6.2 Limitations

This section discusses the limitations in some of the developed methods of this
dissertation. It is important to take into account the limitations discussed in
this section in the integration process of the presented methods into complex
robotic systems.

In Chapter 5, depending on the available data of a complete set of objects
(CSO) or an incomplete set of objects (ICSO), two different approaches to ex-
tract gravitational support relations between a set of objects of a pile were
discussed. The presented algorithms have the following limitations to be con-
sidered. First, the shapes of objects are assumed to be convex polyhedrons, and
the experimental results are presented under the convexity assumption for the
shapes. The probabilistic approach, however, is not restricted to convex shaped
objects, since the probability distributions of the support relations between ob-
jects of concave shapes can be learned through machine learning techniques.
Second, for the both cases, CSO and ICSO, it is assumed that the objects are
rigid and not deformable. However, the presented results of identifying safe-
to-remove objects for the practical setups of the RobLog project shows the
applicability of the probabilistic approach to deal with the deformable objects
when the shapes are represented by superquadrics models. The third limitation
to note is the assumption that the geometrical attributes of all the objects are
available in the CSO case. Such an assumption limits the applicability of the
approach to the configurations consisting of few detectable objects where the
errors in the detected poses are In addition, using the approach presented for
the CSO case enables us to automatically label the true support relations for a
large training dataset, which is generated in simulation, to be used in the prob-
abilistic approach. As the last limitation we notice that in order to obtain a
reliable machine learning model of the support relations of a target configura-
tion, we need to create a training dataset of the same configurations of objects
as the target application. The experiments, however, showed that the usage of a
physics simulation to generate random configurations of the target environment
is an appropriate solution together with employing the approach to automatic
labeling of the support relations discussed for the CSO case.

The object pose refinement algorithm, proposed in Chapter 4, has also sev-
eral limitations, that should be taken into account. Using different methods
of searching the state space of depth of penetrations, the proposed algorithm
attempts to resolve all the inter-penetrations between the shapes of objects in
order to obtain a geometrically consistent model of the environment. While
the ultimate goal of the presented algorithm is to obtain an inter-penetration
free configuration of the objects, for the reasons discussed in Section 4.1, the
rotation part of the poses was not considered in the search process, which is
a direction for further evaluation as future work. Applicable to the discussion
in the preceding paragraph, the shapes of objects are assumed to be known,
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for example, having a descriptive database of the shapes. Another limitation of
the pose refinement algorithm is the assumption that the shapes of the detected
objects are classified correctly by the corresponding object detection module. It
should be noticed that for the experimental results of the proposed object pose
refinement algorithm, it is assumed that all the objects of a configuration are
detected, but such assumption is not necessary considering the underlying ob-
jective which is to resolve the inter-penetrations due to the errors in the initially
estimated poses, and not to re-estimate the poses.

6.3 Future Research Directions

Considering the limitations discussed in the previous section, several improve-
ments and further investigations of the algorithms proposed in this dissertation
are readily identifiable. Relaxing the rigid body assumption made on the ob-
jects is an interesting and important direction for further study of the possible
extension to the proposed algorithms for both safe object selection and object
pose refinement. An appropriate model development for the deformable objects
to be used with the aforementioned algorithms implicitly relaxes the convexity
assumption on the shapes of the objects. One possible approach for working
with deformable objects would be to employ a polygon mesh representation of
the surface of the deformable object and model it as a skeleton of a soft ob-
ject. Here, the idea would be to divide the skeleton of a soft object into groups
of connected polygons labeled based on whether a group is in contact with
another object. An extension to the static equilibrium analysis for the labeled
regions could identify the stability of the soft object. Assuming that the idea of
the soft object based analysis has been already developed, a comparative eval-
uation is required to contrast the performance of that idea with estimating the
deformable objects with superquadrics models (e.g., the approach employed for
the RobLog scenario).

Another important direction for future work is the investigation of the pos-
sibility to integrate visual clues such as a point cloud of the scene into the search
based algorithms for the object pose refinement presented in Chapter 4. Here,
an idea is to define a metric function such as the sum of distances of the closest
points to the surfaces of the shapes as a measure for the quality of a solution
found as an inter-penetration free configuration of objects. Using such metric
function, the rotation component of the poses could be part of an optimization
problem in an attempt to fine tune the poses while maintaining the geometrical
consistency condition.

Finally, considering the search based object pose refinement approach, given
a database of the shapes it would be interesting to cast the problem of misclas-
sification of the shapes as, accordingly, object shape hypothesis refinement as-
suming that the estimated poses are nearly correct. Here, the idea comes from
the fact that if the poses are correct, then inter-penetrations between pairs of
objects are due to misclassification of the estimated shapes. Similar to the pre-
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sented object pose refinement approach, a discrete search into the state space of
the shapes would resolve the possible inter-penetrations resulting in a geomet-
rically consistent model of the environment, and has the potential to reduce the
misclassification error of the estimated shapes. Much like mentioned in above
paragraph, investigating the possibility of using the visual clues to improve the
number of correctly classified of the shapes is another interesting direction of
research.
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