Till Örebro universitet

oru.seÖrebro universitets publikationer
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 19) Visa alla publikationer
Behrens, J. K., Lange, R. & Mansouri, M. (2019). A Constraint Programming Approach to Simultaneous Task Allocation and Motion Scheduling for Industrial Dual-Arm Manipulation Tasks. In: Howard, A; Althoefer, K; Arai, F; Arrichiello, F; Caputo, B; Castellanos, J; Hauser, K; Isler, V Kim, J; Liu, H; Oh, P; Santos, V; Scaramuzza, D; Ude, A; Voyles, R; Yamane, K; Okamura, A (Ed.), 2019 International Conference on Robotics and Automation (ICRA): . Paper presented at International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 20-24, 2019 (pp. 8705-8711). IEEE
Öppna denna publikation i ny flik eller fönster >>A Constraint Programming Approach to Simultaneous Task Allocation and Motion Scheduling for Industrial Dual-Arm Manipulation Tasks
2019 (Engelska)Ingår i: 2019 International Conference on Robotics and Automation (ICRA) / [ed] Howard, A; Althoefer, K; Arai, F; Arrichiello, F; Caputo, B; Castellanos, J; Hauser, K; Isler, V Kim, J; Liu, H; Oh, P; Santos, V; Scaramuzza, D; Ude, A; Voyles, R; Yamane, K; Okamura, A, IEEE , 2019, s. 8705-8711Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Modern lightweight dual-arm robots bring the physical capabilities to quickly take over tasks at typical industrial workplaces designed for workers. Low setup times - including the instructing/specifying of new tasks - are crucial to stay competitive. We propose a constraint programming approach to simultaneous task allocation and motion scheduling for such industrial manipulation and assembly tasks. Our approach covers the robot as well as connected machines. The key concept are Ordered Visiting Constraints, a descriptive and extensible model to specify such tasks with their spatiotemporal requirements and combinatorial or ordering constraints. Our solver integrates such task models and robot motion models into constraint optimization problems and solves them efficiently using various heuristics to produce makespan-optimized robot programs. For large manipulation tasks with 200 objects, our solver implemented using Google's Operations Research tools requires less than a minute to compute usable plans. The proposed task model is robot-independent and can easily be deployed to other robotic platforms. This portability is validated through several simulation-based experiments.

Ort, förlag, år, upplaga, sidor
IEEE, 2019
Serie
IEEE International Conference on Robotics and Automation ICRA, ISSN 1050-4729, E-ISSN 2577-087X
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
urn:nbn:se:oru:diva-78532 (URN)10.1109/ICRA.2019.8794022 (DOI)000494942306060 ()978-1-5386-6026-3 (ISBN)978-1-5386-6027-0 (ISBN)
Konferens
International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 20-24, 2019
Anmärkning

Funding Agency:

Swedish Knowledge Foundation project "Semantic Robots"

Tillgänglig från: 2019-12-10 Skapad: 2019-12-10 Senast uppdaterad: 2019-12-10Bibliografiskt granskad
Mansouri, M., Lacerda, B., Hawes, N. & Pecora, F. (2019). Multi-Robot Planning Under Uncertain Travel Times and Safety Constraints. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19): . Paper presented at The 28th International Joint Conference on Artificial Intelligence (IJCAI19), August 10-16, Macao, China (pp. 478-484).
Öppna denna publikation i ny flik eller fönster >>Multi-Robot Planning Under Uncertain Travel Times and Safety Constraints
2019 (Engelska)Ingår i: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), 2019, s. 478-484Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We present a novel modelling and planning approach for multi-robot systems under uncertain travel times. The approach uses generalised stochastic Petri nets (GSPNs) to model desired team behaviour, and allows to specify safety constraints and rewards. The GSPN is interpreted as a Markov decision process (MDP) for which we can generate policies that optimise the requirements. This representation is more compact than the equivalent multi-agent MDP, allowing us to scale better. Furthermore, it naturally allows for asynchronous execution of the generated policies across the robots, yielding smoother team behaviour. We also describe how the integration of the GSPN with a lower-level team controller allows for accurate expectations on team performance. We evaluate our approach on an industrial scenario, showing that it outperforms hand-crafted policies used in current practice.

Nyckelord
Multi-agent planning, robot planning, planning with uncertainy
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datalogi
Identifikatorer
urn:nbn:se:oru:diva-75820 (URN)
Konferens
The 28th International Joint Conference on Artificial Intelligence (IJCAI19), August 10-16, Macao, China
Tillgänglig från: 2019-08-18 Skapad: 2019-08-18 Senast uppdaterad: 2020-01-16Bibliografiskt granskad
Pecora, F., Andreasson, H., Mansouri, M. & Petkov, V. (2018). A Loosely-Coupled Approach for Multi-Robot Coordination, Motion Planning and Control, ICAPS. In: Mathijs de Weerdt, Sven Koenig, Gabriele Röger, Matthijs Spaan (Ed.), Proceedings of the International Conference on Automated Planning and Scheduling: . Paper presented at International Conference on Automated Planning and Scheduling (ICAPS 2018), Delft, The Netherland, June 24-29, 2018 (pp. 485-493). Delft, The Netherlands: AAAI Press, 2018-June, Article ID 139850.
Öppna denna publikation i ny flik eller fönster >>A Loosely-Coupled Approach for Multi-Robot Coordination, Motion Planning and Control, ICAPS
2018 (Engelska)Ingår i: Proceedings of the International Conference on Automated Planning and Scheduling / [ed] Mathijs de Weerdt, Sven Koenig, Gabriele Röger, Matthijs Spaan, Delft, The Netherlands: AAAI Press, 2018, Vol. 2018-June, s. 485-493, artikel-id 139850Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Deploying fleets of autonomous robots in real-world applications requires addressing three problems: motion planning, coordination, and control. Application-specific features of the environment and robots often narrow down the possible motion planning and control methods that can be used. This paper proposes a lightweight coordination method that implements a high-level controller for a fleet of potentially heterogeneous robots. Very few assumptions are made on robot controllers, which are required only to be able to accept set point updates and to report their current state. The approach can be used with any motion planning method for computing kinematically-feasible paths. Coordination uses heuristics to update priorities while robots are in motion, and a simple model of robot dynamics to guarantee dynamic feasibility. The approach avoids a priori discretization of the environment or of robot paths, allowing robots to “follow each other” through critical sections. We validate the method formally and experimentally with different motion planners and robot controllers, in simulation and with real robots.

Ort, förlag, år, upplaga, sidor
Delft, The Netherlands: AAAI Press, 2018
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:oru:diva-64721 (URN)000492986200059 ()2-s2.0-85054990876 (Scopus ID)
Konferens
International Conference on Automated Planning and Scheduling (ICAPS 2018), Delft, The Netherland, June 24-29, 2018
Projekt
Semantic RobotsILIAD
Forskningsfinansiär
KK-stiftelsen, 20140033EU, Horisont 2020, 732737Vinnova
Tillgänglig från: 2018-01-31 Skapad: 2018-01-31 Senast uppdaterad: 2023-05-11Bibliografiskt granskad
Chaltiel, S., Bravo, M., Goessens, S., Latteur, P., Mansouri, M. & Ahmad, I. (2018). Dry and Liquid clay mix drone spraying for Bioshotcrete. In: : . Paper presented at Symposium of the International Association for Shell and Spatial Structures (IASS 2018), Boston, USA, July 16-20, 2018.
Öppna denna publikation i ny flik eller fönster >>Dry and Liquid clay mix drone spraying for Bioshotcrete
Visa övriga...
2018 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

“Bioshotcrete” is a new technology being developed by a team of robotic experts, architects, engineers, and drones’ specialists, aiming at using drones in the construction industry to spray natural materials over a temporary light formwork until a self-standing shell is completed. This technique consists in projecting paste-like matter composed of clay mixes following precise and customized deposition sequences over a temporary formwork, incorporating computational techniques in the design and fabrication stages, therefore proposing a more sustainable version of shotcrete. In particular, this paper features experiments using drones for spraying wet and dry ranges of clay mixes over a reusable inflatable formwork with the purpose to build monolithic earthen shells. The featured case studies propose specific protocols to control different deposition sequences, describing the proper formulation of clay mixes, the design and production of customized spraying devices, and fitting options in the drone allowing to vary pressure and other drone spraying parameters. The development of Bioshotcrete using robotic fabrication strategies could help expand and transform existing construction methods and processes to be applied at large scale, therefore incorporating innovative digital fabrication protocols towards a more sustainable building construction realm.

Nyckelord
Shotcrete, drones in construction, earth architecture, digital fabrication, on site fabrication, prefabrication
Nationell ämneskategori
Arkitekturteknik
Identifikatorer
urn:nbn:se:oru:diva-67198 (URN)
Konferens
Symposium of the International Association for Shell and Spatial Structures (IASS 2018), Boston, USA, July 16-20, 2018
Tillgänglig från: 2018-06-09 Skapad: 2018-06-09 Senast uppdaterad: 2018-06-11Bibliografiskt granskad
Salvado, J., Krug, R., Mansouri, M. & Pecora, F. (2018). Motion Planning and Goal Assignment for Robot Fleets Using Trajectory Optimization. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): . Paper presented at 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 1-5, 2018 (pp. 7940-7946). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Motion Planning and Goal Assignment for Robot Fleets Using Trajectory Optimization
2018 (Engelska)Ingår i: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 7940-7946Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

This paper is concerned with automating fleets of autonomous robots. This involves solving a multitude of problems, including goal assignment, motion planning, and coordination, while maximizing some performance criterion. While methods for solving these sub-problems have been studied, they address only a facet of the overall problem, and make strong assumptions on the use-case, on the environment, or on the robots in the fleet. In this paper, we formulate the overall fleet management problem in terms of Optimal Control. We describe a scheme for solving this problem in the particular case of fleets of non-holonomic robots navigating in an environment with obstacles. The method is based on a two-phase approach, whereby the first phase solves for fleet-wide boolean decision variables via Mixed Integer Quadratic Programming, and the second phase solves for real-valued variables to obtain an optimized set of trajectories for the fleet. Examples showcasing the features of the method are illustrated, and the method is validated experimentally.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2018
Serie
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858, E-ISSN 2153-0866
Nyckelord
Multi robot motion planning
Nationell ämneskategori
Elektroteknik och elektronik Datorseende och robotik (autonoma system)
Identifikatorer
urn:nbn:se:oru:diva-71289 (URN)10.1109/IROS.2018.8594118 (DOI)000458872707027 ()2-s2.0-85062969864 (Scopus ID)978-1-5386-8094-0 (ISBN)978-1-5386-8095-7 (ISBN)
Konferens
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 1-5, 2018
Projekt
ILIAD
Forskningsfinansiär
EU, Horisont 2020, 732737VinnovaStiftelsen för strategisk forskning (SSF)
Tillgänglig från: 2019-01-09 Skapad: 2019-01-09 Senast uppdaterad: 2020-04-28Bibliografiskt granskad
Mansouri, M., Lagriffoul, F. & Pecora, F. (2017). Multi Vehicle Routing with Nonholonomic Constraints and Dense Dynamic Obstacles. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): . Paper presented at IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2017), Vancouver, BC, Canada, September 24-28, 2017 (pp. 3522-3529). Institute of Electrical and Electronics Engineers (IEEE)
Öppna denna publikation i ny flik eller fönster >>Multi Vehicle Routing with Nonholonomic Constraints and Dense Dynamic Obstacles
2017 (Engelska)Ingår i: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Institute of Electrical and Electronics Engineers (IEEE), 2017, s. 3522-3529Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

We introduce a variant of the multi-vehicle routing problem which accounts for nonholonomic constraints and dense, dynamic obstacles, called MVRP-DDO. The problem is strongly motivated by an industrial mining application. This paper illustrates how MVRP-DDO relates to other extensions of the vehicle routing problem. We provide an application-independent formulation of MVRP-DDO, as well as a concrete instantiation in a surface mining application. We propose a multi-abstraction search approach to compute an executable plan for the drilling operations of several machines in a very constrained environment. The approach is evaluated in terms of makespan and computation time, both of which are hard industrial requirements.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2017
Serie
Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems, ISSN 2153-0858, E-ISSN 2153-0866
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:oru:diva-63515 (URN)10.1109/IROS.2017.8206195 (DOI)000426978203076 ()2-s2.0-85041951034 (Scopus ID)978-1-5386-2682-5 (ISBN)978-1-5386-2683-2 (ISBN)
Konferens
IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2017), Vancouver, BC, Canada, September 24-28, 2017
Projekt
Semantic Robots
Forskningsfinansiär
KK-stiftelsen, 20140033
Anmärkning

Funding Agency:

Atlas Copco Rock Drills AB

Tillgänglig från: 2017-12-21 Skapad: 2017-12-21 Senast uppdaterad: 2018-06-11Bibliografiskt granskad
Mansouri, M. (2016). A Constraint-Based Approach for Hybrid Reasoning in Robotics. (Doctoral dissertation). Örebro: Örebro university
Öppna denna publikation i ny flik eller fönster >>A Constraint-Based Approach for Hybrid Reasoning in Robotics
2016 (Engelska)Doktorsavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

The quest of AI and Robotics researchers to realize fully AI-driven integrated robotic systems has not yet led to such realizations, in spite of great attainments in both research areas. This thesis claims that one of the major hindrances to these realizations is the lack of attention to what we call “the hybrid reasoning problem”. This is the problem of jointly reasoning about heterogeneous and inter-dependent aspects of the world, expressed in different forms and at different levels of abstraction.

In this thesis, we propose an approach to hybrid reasoning (or integrated reasoning) for robot applications. Our approach constitutes a systematic way of achieving a domain-specific integration of reasoning capabilities. Its underpinning is to jointly reason about the sub-problems of an overall hybrid problem in the combined search space of mutual decisions. Each sub-problem represents one viewpoint, or type of requirement, that is meaningful in the particular application. We propose a Constraint Satisfaction Problem (CSP) formulation of the hybrid reasoning problem. This CSP, called meta-CSP, captures the dependencies between sub-problems. It constitutes a high-level representation of the (hybrid) requirements that define a particular application. We formalize the meta-CSP in a way that is independent of the viewpoints that are relevant in the application, as is the algorithm used for solving the meta-CSP.

In order to verify the applicability of the meta-CSP approach in real-world robot applications, we instantiate it in several different domains, namely, a waiter robot, an automated industrial fleet management application, and a drill pattern planning problem in open-pit mining. These realizations highlight the important features of the approach, namely, modularity, generality, online reasoning and solution adjustment, and the ability to account for domain-specific metric and symbolic knowledge.

Ort, förlag, år, upplaga, sidor
Örebro: Örebro university, 2016. s. 156
Serie
Örebro Studies in Technology, ISSN 1650-8580 ; 69
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:oru:diva-50586 (URN)978-91-7529-145-1 (ISBN)
Disputation
2016-09-30, Örebro universitet, Teknikhuset, Hörsal T, Fakultetsgatan 1, Örebro, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-06-08 Skapad: 2016-06-08 Senast uppdaterad: 2018-06-11Bibliografiskt granskad
Mansouri, M. & Pecora, F. (2016). A robot sets a table: a case for hybrid reasoning with different types of knowledge. Journal of experimental and theoretical artificial intelligence (Print), 28(5), 801-821
Öppna denna publikation i ny flik eller fönster >>A robot sets a table: a case for hybrid reasoning with different types of knowledge
2016 (Engelska)Ingår i: Journal of experimental and theoretical artificial intelligence (Print), ISSN 0952-813X, E-ISSN 1362-3079, Vol. 28, nr 5, s. 801-821Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

An important contribution of AI to Robotics is the model-centred approach, whereby competent robot behaviour stems from automated reasoning in models of the world which can be changed to suit different environments, physical capabilities and tasks. However models need to capture diverse (and often application-dependent) aspects of the robot's environment and capabilities. They must also have good computational properties, as robots need to reason while they act in response to perceived context. In this article, we investigate the use of a meta-CSP-based technique to interleave reasoning in diverse knowledge types. We reify the approach through a robotic waiter case study, for which a particular selection of spatial, temporal, resource and action KR formalisms is made. Using this case study, we discuss general principles pertaining to the selection of appropriate KR formalisms and jointly reasoning about them. The resulting integration is evaluated both formally and experimentally on real and simulated robotic platforms.

Ort, förlag, år, upplaga, sidor
Taylor & Francis, 2016
Nyckelord
Hybrid knowledge representation and reasoning; meta-CSP; online robot planning; spatio-temporal reasoning; metric and qualitative temporal constraints
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:oru:diva-45485 (URN)10.1080/0952813X.2015.1132267 (DOI)000382330400003 ()2-s2.0-84958534822 (Scopus ID)
Projekt
RACE
Anmärkning

Funding Agency;

EC 287752

Tillgänglig från: 2015-08-06 Skapad: 2015-08-06 Senast uppdaterad: 2020-04-28Bibliografiskt granskad
Mansouri, M., Andreasson, H. & Pecora, F. (2016). Hybrid Reasoning for Multi-robot Drill Planning in Open-pit Mines. Acta Polytechnica, 56(1), 47-56
Öppna denna publikation i ny flik eller fönster >>Hybrid Reasoning for Multi-robot Drill Planning in Open-pit Mines
2016 (Engelska)Ingår i: Acta Polytechnica, ISSN 1210-2709, E-ISSN 1805-2363, Vol. 56, nr 1, s. 47-56Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Fleet automation often involves solving several strongly correlated sub-problems, including task allocation, motion planning, and coordination. Solutions need to account for very specific, domaindependent constraints. In addition, several aspects of the overall fleet management problem become known only online. We propose a method for solving the fleet-management problem grounded on a heuristically-guided search in the space of mutually feasible solutions to sub-problems. We focus on a mining application which requires online contingency handling and accommodating many domainspecific constraints. As contingencies occur, efficient reasoning is performed to adjust the plan online for the entire fleet.

Ort, förlag, år, upplaga, sidor
Prague, Czech Republic: Czech Technical University in Prague, 2016
Nyckelord
robot planning, multi-robot coordination, on-line reasoning
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datalogi
Identifikatorer
urn:nbn:se:oru:diva-51018 (URN)10.14311/APP.2016.56.0047 (DOI)000411572200007 ()2-s2.0-84959316752 (Scopus ID)
Tillgänglig från: 2016-06-22 Skapad: 2016-06-22 Senast uppdaterad: 2018-06-11Bibliografiskt granskad
Stock, S., Mansouri, M., Pecora, F. & Hertzberg, J. (2015). Hierarchical Hybrid Planning in a Mobile Service Robot. In: KI 2015: Advances in Artificial Intelligence. Paper presented at 38th German Conference on Artificial Intelligence (AI), Dresden, Germany, September 21-25, 2015 (pp. 309-315). Springer Berlin/Heidelberg
Öppna denna publikation i ny flik eller fönster >>Hierarchical Hybrid Planning in a Mobile Service Robot
2015 (Engelska)Ingår i: KI 2015: Advances in Artificial Intelligence, Springer Berlin/Heidelberg, 2015, s. 309-315Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Planning with diverse knowledge, i.e., hybrid planning, is essential for robotic applications. However, powerful heuristics are needed to reason efficiently in the resulting large search spaces. HTN planning provides a means to reduce the search space; furthermore, meta-CSP search has shown promise in hybrid domains, both wrt. search and online plan adaptation. In this paper we combine the two approaches by implementing HTN-style task decomposition as a meta-constraint in a meta-CSP search, resulting in an HTN planner able to handle very rich domain knowledge. The planner produces partial-order plans and if several goal tasks are given, subtasks can be shared, leading to shorter plans. We demonstrate the straightforward integration of different kinds of knowledge for causal, temporal and resource knowledge as well as knowledge provided by an external path planner. The resulting online planner, CHIMP, is integrated in a plan-based robot control system and is demonstrated to physically guide a PR2 robot.

Ort, förlag, år, upplaga, sidor
Springer Berlin/Heidelberg, 2015
Serie
Lecture Notes in Artificial Intelligence, ISSN 0302-9743 ; 9324
Nyckelord
Robot planning, Hierarchical task networks, Cognitive robotics
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:oru:diva-47771 (URN)10.1007/978-3-319-24489-1_28 (DOI)000367594800031 ()2-s2.0-84951871030 (Scopus ID)978-3-319-24489-1 (ISBN)978-3-319-24488-4 (ISBN)
Konferens
38th German Conference on Artificial Intelligence (AI), Dresden, Germany, September 21-25, 2015
Anmärkning

Note: Deutschen Forschungszentrums für Künstliche Intelligenz (DFKI) & Das Robotics Innovation Center (RIC)

Tillgänglig från: 2016-01-27 Skapad: 2016-01-26 Senast uppdaterad: 2018-07-02Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-4527-7586

Sök vidare i DiVA

Visa alla publikationer