Till Örebro universitet

oru.seÖrebro universitets publikationer
Driftstörningar
Just nu har vi driftstörningar på sök-portalerna på grund av hög belastning. Vi arbetar på att lösa problemet, ni kan tillfälligt mötas av ett felmeddelande.
Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Publikationer (10 of 25) Visa alla publikationer
Chan, J. C. .., Pettenuzzo, D., Poon, A. & Zhu, D. (2025). Conditional forecasts in large Bayesian VARs with multiple equality and inequality constraints. Journal of Economic Dynamics and Control, 173, Article ID 105061.
Öppna denna publikation i ny flik eller fönster >>Conditional forecasts in large Bayesian VARs with multiple equality and inequality constraints
2025 (Engelska)Ingår i: Journal of Economic Dynamics and Control, ISSN 0165-1889, E-ISSN 1879-1743, Vol. 173, artikel-id 105061Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Conditional forecasts, i.e. projections of a set of variables of interest on the future paths of some other variables, are used routinely by empirical macroeconomists in a number of applied settings. In spite of this, the existing algorithms used to generate conditional forecasts tend to be very computationally intensive, especially when working with large Vector Autoregressions or when multiple linear equality and inequality constraints are imposed at once. We introduce a novel precision-based sampler that is fast, scales well, and yields conditional forecasts from linear equality and inequality constraints. We show in a simulation study that the proposed method produces forecasts that are identical to those from the existing algorithms but in a fraction of the time. We then illustrate the performance of our method in a large Bayesian Vector Autoregression. Within this setting, we first highlight how we can simultaneously impose a mix of linear equality and inequality constraints on the future trajectories of several key US macro economic indicators over a forecast horizon spanning multiple years. Next, we test the benefits of using inequality constraints in an out-of-sample exercise spanning the period between 1995Q1 and 2022Q3 and find that imposing these constraints on the future path of Real GDP leads to significant improvement in point and density forecasts of the large BVAR model.

Ort, förlag, år, upplaga, sidor
Elsevier, 2025
Nyckelord
Precision-based method, Conditional forecast, Vector autoregression
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-119186 (URN)10.1016/j.jedc.2025.105061 (DOI)001425548400001 ()2-s2.0-85217047177 (Scopus ID)
Tillgänglig från: 2025-02-08 Skapad: 2025-02-08 Senast uppdaterad: 2025-03-04Bibliografiskt granskad
Mitchell, J., Poon, A. & Zhu, D. (2024). Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics. Journal of applied econometrics (Chichester, England), 39(5), 790-812
Öppna denna publikation i ny flik eller fönster >>Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics
2024 (Engelska)Ingår i: Journal of applied econometrics (Chichester, England), ISSN 0883-7252, E-ISSN 1099-1255, Vol. 39, nr 5, s. 790-812Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Quantile regression methods are increasingly used to forecast tail risks and uncertainties in macroeconomic outcomes. This paper reconsiders how to construct predictive densities from quantile regressions. We compare a popular two-step approach that fits a specific parametric density to the quantile forecasts with a nonparametric alternative that lets the “data speak.” Simulation evidence and an application revisiting GDP growth uncertainties in the United States demonstrate the flexibility of the nonparametric approach when constructing density forecasts from both frequentist and Bayesian quantile regressions. They identify its ability to unmask deviations from symmetrical and unimodal densities. The dominant macroeconomic narrative becomes one of the evolution, over the business cycle, of multimodalities rather than asymmetries in the predictive distribution of GDP growth when conditioned on financial conditions.

Ort, förlag, år, upplaga, sidor
John Wiley & Sons, 2024
Nyckelord
density forecasts, financial conditions, quantile regressions
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-113274 (URN)10.1002/jae.3049 (DOI)001204867800001 ()2-s2.0-85190967706 (Scopus ID)
Tillgänglig från: 2024-04-19 Skapad: 2024-04-19 Senast uppdaterad: 2024-11-20Bibliografiskt granskad
Poon, A. & Zhu, D. (2024). Do Recessions and Bear Markets Occur Concurrently across Countries? A Multinomial Logistic Approach. Journal of Financial Econometrics, 22(5), 1482-1502
Öppna denna publikation i ny flik eller fönster >>Do Recessions and Bear Markets Occur Concurrently across Countries? A Multinomial Logistic Approach
2024 (Engelska)Ingår i: Journal of Financial Econometrics, ISSN 1479-8409, E-ISSN 1479-8417, Vol. 22, nr 5, s. 1482-1502Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We introduce a novel multinomial logistic model for detecting and forecasting concurrent recessions and bear markets across multiple countries. Our framework leverages cross-country panel features and provides additional information for robust analysis. Through a comprehensive simulation study, we demonstrate the computational efficiency and accuracy of our model, even when handling multiple binary indicators. Applying our framework to empirical data from the United States, the UK, and Euro Area, we find that the multinomial logistic model produces superior medium-term forecasting of concurrent recession and bear market events across countries compared to multiple independent single logistic models. Additionally, our counterfactual analysis reveals that specific events, such as a recession and bear market in the United States, along with the tightening of financial conditions and a negative interest rate spread in the United States, increase the probability of concurrent and individual recession and bear market occurrences in the UK and Euro Area.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2024
Nyckelord
recession prediction, bear markets, multinomial logistic, cross-country, mixed frequency, Bayesian estimation
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-112744 (URN)10.1093/jjfinec/nbae003 (DOI)001193858100001 ()2-s2.0-85201392180 (Scopus ID)
Tillgänglig från: 2024-03-31 Skapad: 2024-03-31 Senast uppdaterad: 2025-01-30Bibliografiskt granskad
Koop, G., McIntyre, S., Mitchell, J., Poon, A. & Wu, P. (2024). Incorporating short data into large mixed-frequency vector autoregressions for regional nowcasting. Journal of the Royal Statistical Society: Series A (Statistics in Society), 187(2), 477-495
Öppna denna publikation i ny flik eller fönster >>Incorporating short data into large mixed-frequency vector autoregressions for regional nowcasting
Visa övriga...
2024 (Engelska)Ingår i: Journal of the Royal Statistical Society: Series A (Statistics in Society), ISSN 0964-1998, E-ISSN 1467-985X, Vol. 187, nr 2, s. 477-495Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Interest in regional economic issues coupled with advances in administrative data is driving the creation of new regional economic data. Many of these data series could be useful for nowcasting regional economic activity, but they suffer from a short (albeit constantly expanding) time series which makes incorporating them into nowcasting models problematic. Regional nowcasting is already challenging because the release delay on regional data tends to be greater than that at the national level, and 'short' data imply a 'ragged edge' at both the beginning and the end of regional data sets, which adds a further complication. In this paper, via an application to the UK, we investigate various ways of including a wide range of short data into a regional mixed-frequency vector autoregression (MF-VAR) model. These short data include hitherto unexploited regional value-added tax turnover data. We address the problem of the two ragged edges by estimating regional factors using different missing data algorithms that we then incorporate into our MF-VAR model. We find that nowcasts of regional output growth are generally improved when we condition them on the factors, but only when the regional nowcasts are produced before the national (UK-wide) output growth data are published.

Ort, förlag, år, upplaga, sidor
Oxford University Press, 2024
Nyckelord
Bayesian methods, factors, missing data, mixed-frequency data, regional data, vector autoregressions, C32, C53, E37
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-110038 (URN)10.1093/jrsssa/qnad130 (DOI)001105758200001 ()2-s2.0-85190499587 (Scopus ID)
Tillgänglig från: 2023-12-05 Skapad: 2023-12-05 Senast uppdaterad: 2025-01-20Bibliografiskt granskad
Koop, G., McIntyre, S., Mitchell, J. & Poon, A. (2024). Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates. International Journal of Forecasting, 40(2), 626-640
Öppna denna publikation i ny flik eller fönster >>Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates
2024 (Engelska)Ingår i: International Journal of Forecasting, ISSN 0169-2070, E-ISSN 1872-8200, Vol. 40, nr 2, s. 626-640Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Recent decades have seen advances in using econometric methods to produce more timely and higher frequency estimates of economic activity at the national level, enabling better tracking of the economy in real-time. These advances have not generally been replicated at the sub-national level, likely because of the empirical challenges that nowcasting at a regional level presents, notably, the short time series of available data, changes in data frequency over time, and the hierarchical structure of the data. This paper develops a mixed-frequency Bayesian VAR model to address common features of the regional nowcasting context, using an application to regional productivity in the UK. We evaluate the contribution that different features of our model provide to the accuracy of point and density nowcasts, in particular, the role of hierarchical aggregation constraints. We show that these aggregation constraints, imposed in stochastic form, play a crucial role in delivering improved regional nowcasts; they prove more important than adding region-specific predictors when the equivalent national data are known, but not when this aggregate is unknown.

Ort, förlag, år, upplaga, sidor
Elsevier, 2024
Nyckelord
Regional data, Mixed frequency, Nowcasting, Bayesian methods, Real-time data, Vector autoregressions
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-99104 (URN)10.1016/j.ijforecast.2022.04.002 (DOI)001201707500001 ()2-s2.0-85130477954 (Scopus ID)
Anmärkning

This research has been funded by the Office for National Statistics as part of the Economic Statistics Centre of Excel-lence (ESCoE) research program. 

Tillgänglig från: 2022-05-22 Skapad: 2022-05-22 Senast uppdaterad: 2024-04-25Bibliografiskt granskad
Kabundi, A., Poon, A. & Wu, P. (2023). A time-varying Phillips curve with global factors: Are global factors important?. Economic Modelling, 126, Article ID 106423.
Öppna denna publikation i ny flik eller fönster >>A time-varying Phillips curve with global factors: Are global factors important?
2023 (Engelska)Ingår i: Economic Modelling, ISSN 0264-9993, E-ISSN 1873-6122, Vol. 126, artikel-id 106423Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Increased globalization and trade have integrated the world, but whether they are the underlying drivers of the flattening of the Phillips curve slope is not clear. This problem is further complicated since time-varying parameters are empirically important in most applications as the role of global factors may change over time. This paper investigates empirically the role played by global and domestic factors in driving dynamics in inflation using a panel data comprising of 23 advanced (AEs) and 11 emerging market economies (EMEs), from 1995Q1 to 2018Q1. The results indicate the predominance and increasing importance of global factors in explaining inflation dynamics, especially for EMEs. The Phillips curve is flat for both groups, but it is flatter in AEs. The results are consistent with the theoretical view that increased globalization and trade are underlying factors behind the flattening of the Phillips curve.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Trend inflation, Global factors, Non-linear state space model, Multi-country
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-107175 (URN)10.1016/j.econmod.2023.106423 (DOI)001047444900001 ()2-s2.0-85165970490 (Scopus ID)
Anmärkning

Funding agency:

International Monetary Fund

Tillgänglig från: 2023-07-21 Skapad: 2023-07-21 Senast uppdaterad: 2023-09-06Bibliografiskt granskad
Iacopini, M., Poon, A., Rossini, L. & Zhu, D. (2023). Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP. Journal of Economic Dynamics and Control, 157, Article ID 104757.
Öppna denna publikation i ny flik eller fönster >>Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP
2023 (Engelska)Ingår i: Journal of Economic Dynamics and Control, ISSN 0165-1889, E-ISSN 1879-1743, Vol. 157, artikel-id 104757Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Timely characterizations of risks in economic and financial systems play an essential role in both economic policy and private sector decisions. However, the informational content of low-frequency variables and the results from conditional mean models provide only limited evidence to investigate this problem. We propose a novel mixed-frequency quantile vector autoregression (MF-QVAR) model to address this issue. Inspired by the univariate Bayesian quantile regression literature, the multivariate asymmetric Laplace distribution is exploited under the Bayesian framework to form the likelihood. A data augmentation approach coupled with a precision sampler efficiently estimates the missing low-frequency variables at higher frequencies under the state-space representation.

The proposed methods allow us to analyse conditional quantiles for multiple variables of interest and to derive quantile-related risk measures at high frequency, thus enabling timely policy interventions. The main application of the model is to detect the vulnerability in the US economy and then to nowcast conditional quantiles of the US GDP, which is strictly related to the quantification of Value-at-Risk, the Expected Shortfall and distance among percentiles of real GDP nowcasts.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Bayesian inference, Mixed-frequency, Multivariate quantile regression, Nowcasting, VAR
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-109019 (URN)10.1016/j.jedc.2023.104757 (DOI)001105923400001 ()2-s2.0-85173873445 (Scopus ID)
Anmärkning

Luca Rossini acknowledges financial support from the Italian Ministry of University and Research (MUR) under the Department of Excellence 2023-2027 grant agreement “Centre of Excellence in Economics and Data Science” (CEEDS).

Tillgänglig från: 2023-10-17 Skapad: 2023-10-17 Senast uppdaterad: 2023-12-15Bibliografiskt granskad
Beechey, M., Österholm, P. & Poon, A. (2023). Estimating the US trend short-term interest rate. Finance Research Letters, 55(Part A), Article ID 103913.
Öppna denna publikation i ny flik eller fönster >>Estimating the US trend short-term interest rate
2023 (Engelska)Ingår i: Finance Research Letters, ISSN 1544-6123, E-ISSN 1544-6131, Vol. 55, nr Part A, artikel-id 103913Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We estimate the trend short-term interest rate in the United States using an unobserved-components stochastic-volatility model with interest-rate and survey data from 1998Q2 to 2022Q4. Our results indicate that the trend short-term interest rate has drifted down during most of the sample and remains low in a historical perspective, despite the recent sharp increase in the short-term interest rate.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Unobserved components model, Bayesian estimation
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-106468 (URN)10.1016/j.frl.2023.103913 (DOI)001025027900001 ()2-s2.0-85153077258 (Scopus ID)
Forskningsfinansiär
Jan Wallanders och Tom Hedelius stiftelse, B20–0020
Tillgänglig från: 2023-06-21 Skapad: 2023-06-21 Senast uppdaterad: 2023-08-01Bibliografiskt granskad
Gefang, D., Koop, G. & Poon, A. (2023). Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage. International Journal of Forecasting, 39(1), 346-363
Öppna denna publikation i ny flik eller fönster >>Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage
2023 (Engelska)Ingår i: International Journal of Forecasting, ISSN 0169-2070, E-ISSN 1872-8200, Vol. 39, nr 1, s. 346-363Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Many recent papers in macroeconomics have used large vector autoregressions (VARs) involving 100 or more dependent variables. With so many parameters to estimate, Bayesian prior shrinkage is vital to achieve reasonable results. Computational concerns currently limit the range of priors used and render difficult the addition of empirically important features such as stochastic volatility to the large VAR. In this paper, we develop variational Bayesian methods for large VARs that overcome the computational hurdle and allow for Bayesian inference in large VARs with a range of hierarchical shrinkage priors and with time-varying volatilities. We demonstrate the computational feasibility and good forecast performance of our methods in an empirical application involving a large quarterly US macroeconomic data set.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Variational inference, Vector autoregression, Stochastic volatility, Hierarchical prior, Forecasting
Nationell ämneskategori
Ekonomi och näringsliv
Identifikatorer
urn:nbn:se:oru:diva-96330 (URN)10.1016/j.ijforecast.2021.11.012 (DOI)000904903100021 ()2-s2.0-85122512611 (Scopus ID)
Anmärkning

Funding agency:

Office of National Statistics (ONS)

Tillgänglig från: 2022-01-10 Skapad: 2022-01-10 Senast uppdaterad: 2023-01-30Bibliografiskt granskad
Chan, J. C. .., Poon, A. & Zhu, D. (2023). High-dimensional conditionally Gaussian state space models with missing data. Journal of Econometrics, 236(1), Article ID 105468.
Öppna denna publikation i ny flik eller fönster >>High-dimensional conditionally Gaussian state space models with missing data
2023 (Engelska)Ingår i: Journal of Econometrics, ISSN 0304-4076, E-ISSN 1872-6895, Vol. 236, nr 1, artikel-id 105468Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We develop an efficient sampling approach for handling complex missing data patterns and a large number of missing observations in conditionally Gaussian state space models. Two important examples are dynamic factor models with unbalanced datasets and large Bayesian VARs with variables in multiple frequencies. A key observation underlying the proposed approach is that the joint distribution of the missing data conditional on the observed data is Gaussian. Furthermore, the inverse covariance or precision matrix of this conditional distribution is sparse, and this special structure can be exploited to substantially speed up computations. We illustrate the methodology using two empirical applications. The first application combines quarterly, monthly and weekly data using a large Bayesian VAR to produce weekly GDP estimates. In the second application, we extract latent factors from unbalanced datasets involving over a hundred monthly variables via a dynamic factor model with stochastic volatility.

Ort, förlag, år, upplaga, sidor
Elsevier, 2023
Nyckelord
Mixed-frequency, Unbalanced panel, Vector autoregression, Dynamic factor model, Stochastic volatility
Nationell ämneskategori
Nationalekonomi
Identifikatorer
urn:nbn:se:oru:diva-106470 (URN)10.1016/j.jeconom.2023.05.005 (DOI)001032909000001 ()2-s2.0-85161974487 (Scopus ID)
Tillgänglig från: 2023-06-21 Skapad: 2023-06-21 Senast uppdaterad: 2023-08-18Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0003-2587-8779

Sök vidare i DiVA

Visa alla publikationer