oru.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Albitar, Houssam
Publications (7 of 7) Show all publications
Dandan, K., Albitar, H., Ananiev, A. & Kalaykov, I. (2016). Confined Spaces: Cleaning Techniques and Robot-based Surface Cleaning. American Scientific Research Journal for Engineering, Technology and Science, 22(1), 210-230
Open this publication in new window or tab >>Confined Spaces: Cleaning Techniques and Robot-based Surface Cleaning
2016 (English)In: American Scientific Research Journal for Engineering, Technology and Science, ISSN 2313-4402, Vol. 22, no 1, p. 210-230Article in journal (Refereed) Published
Abstract [en]

The requirements of the working and safety norms demonstrate significant need of increased efficiency and improved working conditions in cleaning confined spaces. This paper presents an overview of the existing technologies and solutions for cleaning large confined spaces. A special attention is directed for cleaning interior surface of confined spaces used mainly for storing bulk materials or liquids, such as silos. The cleaning technologies for confined space depend on several aspects as the build-up material, the surface material, the ambient conditions. Four cleaning techniques are presented in this paper. The mechanisms and robots related to the studied problem are surveyed and evaluated from the viewpoint of their capability to clean interior surfaces. The dominating majority of the existing cleaning equipment is constructed to serve cleaning the entire volume of the respective confined space (silo), but not for cleaning the interior surface.

Place, publisher, year, edition, pages
Amman, Jordan: Global Society of Scientific Research and Researchers, 2016
Keywords
Confined space, silo, surface cleaning, cleaning technologies, cleaning robots
National Category
Computer Sciences
Identifiers
urn:nbn:se:oru:diva-51443 (URN)
Available from: 2016-07-27 Created: 2016-07-27 Last updated: 2018-09-11Bibliographically approved
Albitar, H., Dandan, K., Ananiev, A. & Kalaykov, I. (2016). Underwater Robotics: Surface Cleaning Technics, Adhesion and Locomotion Systems. International Journal of Advanced Robotic Systems, 13, Article ID 7.
Open this publication in new window or tab >>Underwater Robotics: Surface Cleaning Technics, Adhesion and Locomotion Systems
2016 (English)In: International Journal of Advanced Robotic Systems, ISSN 1729-8806, E-ISSN 1729-8814, Vol. 13, article id 7Article in journal (Refereed) Published
Abstract [en]

Underwater robots are being developed for various applications ranging from inspection to maintenance and cleaning of submerged surfaces and constructions. These platforms should be able to travel on these surfaces. Furthermore, these platforms should adapt and reconfigure for underwater environment conditions and should be autonomous. Regarding the adhesion to the surface, they should produce a proper attaching force using a light-weight technics. Taking these facts into consideration, this paper presents a survey of different technologies used for underwater cleaning and the available underwater robotics solutions for the locomotion and the adhesion to surfaces.

Place, publisher, year, edition, pages
INTECH, 2016
Keywords
Underwater Robot, Underwater Cleaning, Bio-fouling, Adhesion, Locomotion
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:oru:diva-47813 (URN)10.5772/62060 (DOI)000368630700001 ()2-s2.0-85002271299 (Scopus ID)
Available from: 2016-01-28 Created: 2016-01-28 Last updated: 2018-01-10Bibliographically approved
Albitar, H., Dandan, K., Ananiev, A. & Kalaykov, I. (2015). Layered mission control architecture and strategy for crawling underwater cleaning robot. International Journal of Mechatronics and Automation, 5(2/3), 114-124
Open this publication in new window or tab >>Layered mission control architecture and strategy for crawling underwater cleaning robot
2015 (English)In: International Journal of Mechatronics and Automation, ISSN 2045-1059, Vol. 5, no 2/3, p. 114-124Article in journal (Refereed) Published
Abstract [en]

This paper presents the mechanical design and the control system architecture of anunderwater robot, developed for bio-fouling cleaning surfaces. The robotic system presented herehas been designed to improve the productivity, reduce the environmental impacts, and excludethe hazards for the operators. The control system has a layered structure which is distributed intotwo blocks: cleaning robot, and on-board base station connected with power and control cablesand a water hose, to facilitate different modes of operations and to increase the system reliability.A low level control has been implemented on the robotic platform. The onboard station designedto be in different layers of the control system: manual, semiautonomous and autonomous modes.A scaled prototype has been implemented and tested to prove the concept, and to make certainthat the mechanical design and the chosen control system are perfectly suited to the mainfunctions of the robotic system.

Place, publisher, year, edition, pages
InderScience Publishers, 2015
Keywords
underwater robots, layered control system, crawling robots, bio-fouling cleaning
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:oru:diva-49753 (URN)10.1504/IJMA.2015.075957 (DOI)2-s2.0-84973596360 (Scopus ID)
Available from: 2016-04-11 Created: 2016-04-11 Last updated: 2018-01-10Bibliographically approved
Dandan, K., Albitar, H., Ananiev, A. & Kalaykov, I. (2015). Motion Control of Siro: The Silo Cleaning Robot. International Journal of Advanced Robotic Systems, 12, Article ID 184.
Open this publication in new window or tab >>Motion Control of Siro: The Silo Cleaning Robot
2015 (English)In: International Journal of Advanced Robotic Systems, ISSN 1729-8806, E-ISSN 1729-8814, Vol. 12, article id 184Article in journal (Refereed) Published
Abstract [en]

Both the principle of operation and the motion-control system of a suspended robot for surface cleaning in silos are presented in this paper. The mechanical design is a reasonable compromise between basically contradictory factors in the design: the small entrance and the large surface of the confined space, and the suspension and the stabilization of the robot. The design consists of three main parts: a support unit, the cleaning robot and a cleaning mechanism. The latter two parts enter the silo in a folded form and, thereafter, the robot’s arms are spread in order to achieve stability during the cleaning process. The vertical movement of the robot is achieved via sequential crawling motions.

The control system is divided into two separate subsystems, the robot’s control subsystem and a support-unit control subsystem, in order to facilitate different operational modes. The robot has three principle motion-control tasks: positioning the robot inside the silo, holding a vertical position during the cleaning process and a crawling movement.

A scaled prototype of the robot has been implemented and tested to prove the concept, in order to make certain that the mechanical design suits the main functions of the robotic system, to realize the robot’s design in an industrial version and to test it in a realistic environment.

Place, publisher, year, edition, pages
InTech, 2015
Keywords
Suspended Robot, Silo Cleaning, Motion-control System, Control Algorithm
National Category
Computer and Information Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:oru:diva-47132 (URN)10.5772/61812 (DOI)000366622700002 ()
Available from: 2015-12-18 Created: 2015-12-18 Last updated: 2019-02-15Bibliographically approved
Albitar, H., Ananiev, A. & Kalaykov, I. (2014). In-water surface cleaning robot: concept, locomotion and stability. International Journal of Mechatronics and Automation, 4(2), 104-115
Open this publication in new window or tab >>In-water surface cleaning robot: concept, locomotion and stability
2014 (English)In: International Journal of Mechatronics and Automation, ISSN 2045-1067, Vol. 4, no 2, p. 104-115Article in journal (Refereed) Published
Abstract [en]

This paper introduces a new concept of flexible crawling mechanism in the design ofindustrial in-water cleaning robot, which is evaluated from the viewpoint of work and operationon an underwater surface. It enables the scanning and cleaning process performed by water jets,while keeping stable robot position on the surface by its capacity to bear and compensate the jetreactions. Such robotic platform can be used for cleaning and maintenance of various underwatersurfaces, including moving ships in the open sea. The designed robot implements its motions bycontraction and expansion of legged mechanism using standard motors and suction cupstechnology. In this study we focus at the conditions for achieving enough adhesion for keepingcontinuous contact between the robot and the surface and robot stability in different situations forthe basic locomotions.

Place, publisher, year, edition, pages
IEEE, 2014
Keywords
underwater robot, crawling robot, underwater surface cleaning
National Category
Computer Sciences
Identifiers
urn:nbn:se:oru:diva-35987 (URN)10.1504/IJMA.2014.062338 (DOI)2-s2.0-84904859302 (Scopus ID)
Available from: 2014-08-19 Created: 2014-08-19 Last updated: 2019-08-30Bibliographically approved
Albitar, H., Ananiev, A. & Kalaykov, I. (2014). Stability study of underwater crawling robot on non-horizontal surface. In: Mobile Service Robotics: Clawar 2014: 17th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines: Poznan, Poland 21 - 23 July 2014. Paper presented at Clawar 2014: 17th International Conference on Climbing and Walking Robots CLAWAR, Poznan, Poland, 21 - 23 July, 2014 (pp. 511-519). Singapore: World Scientific
Open this publication in new window or tab >>Stability study of underwater crawling robot on non-horizontal surface
2014 (English)In: Mobile Service Robotics: Clawar 2014: 17th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines: Poznan, Poland 21 - 23 July 2014, Singapore: World Scientific, 2014, p. 511-519Conference paper, Published paper (Refereed)
Abstract [en]

This paper introduces a study of a concept of exible crawling mechanism todesign an industrial underwater cleaning robot, which is evaluated from theviewpoint of the capability to work underwater, scanning the desired surface,and bearing the reactions. This can be used as a robotic application in under-water surface cleaning and maintenance. In this study we focused on realizingthe adhesion on the surface in stationary and in motion, bearing reactions,enabling the needed locomotion types for scanning, and achieving the stabilityin dierent situations on the surface.

Place, publisher, year, edition, pages
Singapore: World Scientific, 2014
Keywords
Crawling robot, underwater, locomotion, stability
National Category
Computer Sciences
Identifiers
urn:nbn:se:oru:diva-35985 (URN)000342693100061 ()2-s2.0-85007347787 (Scopus ID)978-981-4623-34-6 (ISBN)
Conference
Clawar 2014: 17th International Conference on Climbing and Walking Robots CLAWAR, Poznan, Poland, 21 - 23 July, 2014
Available from: 2014-08-19 Created: 2014-08-19 Last updated: 2018-01-11Bibliographically approved
Albitar, H., Ananiev, A. & Kalaykov, I. (2013). New concept of in-water surface cleaning robot. In: Mechatronics and Automation (ICMA), 2013 IEEE International Conference onDate 4-7 Aug. 2013: . Paper presented at 2013 IEEE International Conference on Mechatronics and Automation (ICMA), 4-7 aug. 2013, Takamatsu, Japan (pp. 1582-1587). IEEE conference proceedings
Open this publication in new window or tab >>New concept of in-water surface cleaning robot
2013 (English)In: Mechatronics and Automation (ICMA), 2013 IEEE International Conference onDate 4-7 Aug. 2013, IEEE conference proceedings, 2013, p. 1582-1587Conference paper, Published paper (Refereed)
Abstract [en]

This paper introduces a new concept of flexible crawling mechanism to design an industrial underwater cleaning robot, which is evaluated from the viewpoint of the capability to work underwater, scanning the desired surface, and bearing the reactions. This can be used as a robotic application in underwater surface cleaning and maintenance. We designed a robot that realizes the motion by contraction and extraction using DC-motors and vacuum technology. In this study we first focused on realizing the adhesion, bearing reactions, and achieving a stable locomotion on the surface.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2013
Keywords
climbing robot; inspection
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:oru:diva-30340 (URN)10.1109/ICMA.2013.6618150 (DOI)000335375900267 ()2-s2.0-84887901379 (Scopus ID)978-1-4673-5557-5 (ISBN)
Conference
2013 IEEE International Conference on Mechatronics and Automation (ICMA), 4-7 aug. 2013, Takamatsu, Japan
Available from: 2013-08-27 Created: 2013-08-27 Last updated: 2018-01-11Bibliographically approved
Organisations

Search in DiVA

Show all publications