oru.sePublications
Change search
Link to record
Permanent link

Direct link
BETA
Publications (10 of 87) Show all publications
Schönlau, C., Larsson, M., Lam, M. M., Engwall, M., Giesy, J. P., Rochman, C. & Kärrman, A. (2019). Aryl hydrocarbon receptor-mediated potencies in field-deployed plastics vary by type of polymer. Environmental science and pollution research international, 26(9), 9097-9088
Open this publication in new window or tab >>Aryl hydrocarbon receptor-mediated potencies in field-deployed plastics vary by type of polymer
Show others...
2019 (English)In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 26, no 9, p. 9097-9088Article in journal (Refereed) Published
Abstract [en]

Plastic is able to sorb environmental pollutants from ambient water and might act as a vector for these pollutants to marine organisms. The potential toxicological effects of plastic-sorbed pollutants in marine organisms have not been thoroughly assessed. In this study, organic extracts from four types of plastic deployed for 9 or 12 months in San Diego Bay, California, were examined for their potential to activate the aryl hydrocarbon receptor (AhR) pathway by use of the H4IIE-luc assay. Polycyclic aromatic hydrocarbons (PAH), including the 16 priority PAHs, were quantified. The AhR-mediated potency in the deployed plastic samples, calculated as bio-TEQ values, ranged from 2.7 pg/g in polyethylene terephthalate (PET) to 277 pg/g in low-density polyethylene (LDPE). Concentrations of the sum of 24 PAHs in the deployed samples ranged from 4.6 to 1068 ng/g. By use of relative potency factors (REP), a potency balance between the biological effect (bio-TEQs) and the targeted PAHs (chem-TEQs) was calculated to 24-170%. The study reports, for the first time, in vitro AhR-mediated potencies for different deployed plastics, of which LDPE elicited the greatest concentration of bio-TEQs followed by polypropylene (PP), PET, and polyvinylchloride (PVC).

Place, publisher, year, edition, pages
Springer, 2019
Keywords
Ah receptor, H4IIE-luc, In vitro bioassays, Microplastics, PAH
National Category
Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-72376 (URN)10.1007/s11356-019-04281-4 (DOI)000464851100063 ()30715715 (PubMedID)2-s2.0-85061216163 (Scopus ID)
Funder
Swedish Research Council Formas, 223-2014-1064Knowledge Foundation
Available from: 2019-02-11 Created: 2019-02-11 Last updated: 2019-08-14Bibliographically approved
Geng, D., Musse, A. A., Wigh, V., Carlsson, C., Engwall, M., Oresic, M., . . . Hyötyläinen, T. (2019). Effect of perfluorooctanesulfonic acid (PFOS) on the liver lipid metabolism of the developing chicken embryo. Ecotoxicology and Environmental Safety, 170, 691-698
Open this publication in new window or tab >>Effect of perfluorooctanesulfonic acid (PFOS) on the liver lipid metabolism of the developing chicken embryo
Show others...
2019 (English)In: Ecotoxicology and Environmental Safety, ISSN 0147-6513, E-ISSN 1090-2414, Vol. 170, p. 691-698Article in journal (Refereed) Published
Abstract [en]

Perfluorooctanesulfonate (PFOS) is a well-known contaminant in the environment and it has shown to disrupt multiple biological pathways, particularly those related with lipid metabolism. In this study, we have studied the impact of in ovo exposure to PFOS on lipid metabolism in livers in developing chicken embryos using lipidomics for detailed characterization of the liver lipidome. We used an avian model (Gallus gallus domesticus) for in ovo treatment at two levels of PFOS. The lipid profile of the liver of the embryo was investigated by ultra-high performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry and by gas chromatography mass spectrometry. Over 170 lipids were identified, covering phospholipids, ceramides, di- and triacylglycerols, cholesterol esters and fatty acid composition of the lipids. The PFOS exposure caused dose dependent changes in the lipid levels, which included upregulation of specific phospholipids associated with the phosphatidylethanolamine N-methyltransferase (PEMT) pathway, triacylglycerols with low carbon number and double bond count as well as of lipotoxic ceramides and diacylglycerols. Our data suggest that at lower levels of exposure, mitochondrial fatty acid β-oxidation is suppressed while the peroxisomal fatty acid β -oxidation is increased. At higher doses, however, both β -oxidation pathways are upregulated.

Place, publisher, year, edition, pages
Elsevier, 2019
Keywords
Avian model, Lipidomics, Liver metabolism, Mass spectrometry, Perfluorooctanesulfonate
National Category
Pharmaceutical Sciences
Identifiers
urn:nbn:se:oru:diva-71192 (URN)10.1016/j.ecoenv.2018.12.040 (DOI)000456890700083 ()30580163 (PubMedID)2-s2.0-85058940877 (Scopus ID)
Funder
Swedish Research Council, 2016-05176Swedish Research Council FormasKnowledge Foundation
Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2019-03-04Bibliographically approved
Schönlau, C., Larsson, M., Dubocq, F., Rotander, A., Van der Zande, R., Engwall, M. & Kärrman, A. (2019). Effect-Directed Analysis of Ah Receptor-Mediated Potencies in Microplastics Deployed in a Remote Tropical Marine Environment. Frontiers in Environmental Science, 7, Article ID 120.
Open this publication in new window or tab >>Effect-Directed Analysis of Ah Receptor-Mediated Potencies in Microplastics Deployed in a Remote Tropical Marine Environment
Show others...
2019 (English)In: Frontiers in Environmental Science, E-ISSN 2296-665X, Vol. 7, article id 120Article in journal (Refereed) Published
Abstract [en]

To facilitate the study of potential harmful compounds sorbed to microplastics, an effect-directed analysis using the DR CALUX® assay as screening tool for Aryl hydrocarbon receptor (AhR)-active compounds in extracts of marine deployed microplastics and chemical analysis of hydrophobic organic compounds (HOCs) was conducted. Pellets of three plastic polymers [low-density polyethylene (LDPE), high-density polyethylene (HDPE) and high-impact polystyrene (HIPS)] were deployed at Heron Island in the Great Barrier Reef, Australia, for up to 8 months. Detected AhR-mediated potencies (bio-TEQs) of extracted plastic pellets ranged from 15 to 100 pg/g. Contributions of target HOCs to the overall bioactivities were negligible. To identify the major contributors, remaining plastic pellets were used for fractionation with a gas chromatography (GC) fractionation platform featuring parallel mass spectrometric (MS) detection. The bioassay analysis showed two bioactive fractions of each polymer with bio-TEQs ranging from 5.7 to 14 pg/g. High resolution MS was used in order to identify bioactive compounds in the fractions. No AhR agonists could be identified in fractions of HDPE or LDPE. Via a multivariate statistical approach the polystyrene (PS) trimer 1e- Phenyl-4e-(1- phenylethyl)-tetralin was identified in fractions of HIPS and in fractions of the blank polymer of HIPS.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2019
Keywords
polyethylene, polystyrene, PCBs, reporter gene assay, fractionation
National Category
Analytical Chemistry Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-75769 (URN)10.3389/fenvs.2019.00120 (DOI)000478726600002 ()
Funder
Swedish Research Council Formas, 223-2014-1064Knowledge Foundation, 20160019
Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-16Bibliographically approved
Legradi, J. B., Di Paolo, C., Kraak, M. H., van der Geest, H. G., Schymanski, E. L., Williams, A. J., . . . Hollert, H. (2018). An ecotoxicological view on neurotoxicity assessment. Environmental Sciences Europe, 30, Article ID 46.
Open this publication in new window or tab >>An ecotoxicological view on neurotoxicity assessment
Show others...
2018 (English)In: Environmental Sciences Europe, ISSN 2190-4707, E-ISSN 2190-4715, Vol. 30, article id 46Article, review/survey (Refereed) Published
Abstract [en]

The numbers of potential neurotoxicants in the environment are raising and pose a great risk for humans and the environment. Currently neurotoxicity assessment is mostly performed to predict and prevent harm to human populations. Despite all the efforts invested in the last years in developing novel in vitro or in silico test systems, in vivo tests with rodents are still the only accepted test for neurotoxicity risk assessment in Europe. Despite an increasing number of reports of species showing altered behaviour, neurotoxicity assessment for species in the environment is not required and therefore mostly not performed. Considering the increasing numbers of environmental contaminants with potential neurotoxic potential, eco-neurotoxicity should be also considered in risk assessment. In order to do so novel test systems are needed that can cope with species differences within ecosystems. In the field, online-biomonitoring systems using behavioural information could be used to detect neurotoxic effects and effect-directed analyses could be applied to identify the neurotoxicants causing the effect. Additionally, toxic pressure calculations in combination with mixture modelling could use environmental chemical monitoring data to predict adverse effects and prioritize pollutants for laboratory testing. Cheminformatics based on computational toxicological data from in vitro and in vivo studies could help to identify potential neurotoxicants. An array of in vitro assays covering different modes of action could be applied to screen compounds for neurotoxicity. The selection of in vitro assays could be guided by AOPs relevant for eco-neurotoxicity. In order to be able to perform risk assessment for eco-neurotoxicity, methods need to focus on the most sensitive species in an ecosystem. A test battery using species from different trophic levels might be the best approach. To implement eco-neurotoxicity assessment into European risk assessment, cheminformatics and in vitro screening tests could be used as first approach to identify eco-neurotoxic pollutants. In a second step, a small species test battery could be applied to assess the risks of ecosystems.

Place, publisher, year, edition, pages
Springer, 2018
Keywords
Eco-neurotoxicity, Neurotoxicity, EDA, REACH, AOP, Behaviour, Computational toxicity, Ecological, Species
National Category
Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-71139 (URN)10.1186/s12302-018-0173-x (DOI)000453261000001 ()2-s2.0-85058931720 (Scopus ID)
Note

Funding Agencies:

Federal Ministry of Education and Research (BMBF)  

Norman Network  

Dutch Water companies  BTO2018-2023 

SOLUTIONS project (European Union)  603437 

Available from: 2019-01-08 Created: 2019-01-08 Last updated: 2019-01-08Bibliographically approved
Jacobsen, A. V., Nordén, M., Engwall, M. & Scherbak, N. (2018). Effects of perfluorooctane sulfonate on genes controlling hepatic fatty acid metabolism in livers of chicken embryos. Environmental science and pollution research international, 25(23), 23074-23081
Open this publication in new window or tab >>Effects of perfluorooctane sulfonate on genes controlling hepatic fatty acid metabolism in livers of chicken embryos
2018 (English)In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 25, no 23, p. 23074-23081Article in journal (Refereed) Published
Abstract [en]

Per- and polyfluoroalkyl substances (PFAS) are synthetic surfactants with a wide variety of applications; however, due to their stability, they are particularly resistant to degradation and, as such, are classed as persistent organic pollutants. Perfluorooctane sulfonate (PFOS) is one such PFAS that is still detectable in a range of different environmental settings, despite its use now being regulated in numerous countries. Elevated levels of PFOS have been detected in various avian species, and the impact of this on avian health is of interest when determining acceptable levels of PFOS in the environment. Due to its similarities to naturally occurring fatty acids, PFOS has potential to disrupt a range of biological pathways, particularly those associated with lipid metabolism, and this has been shown in various species. In this study, we have investigated how in ovo exposure to environmentally relevant levels of PFOS affects expression of genes involved in lipid metabolism of developing chicken embryos. We have found a broad suppression of transcription of genes involved in fatty acid oxidation and PPAR-mediated transcription with more significant effects apparent at lower doses of PFOS. These results highlight the need for more research investigating the biological impacts of low levels of PFAS to properly inform environmental policy governing their regulation.

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2018
Keywords
Perfluorooctane sulfonate, PFOS, In ovo, Chicken, Beta oxidation, qPCR array
National Category
Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-68542 (URN)10.1007/s11356-018-2358-7 (DOI)000441007000065 ()29860686 (PubMedID)2-s2.0-85047951738 (Scopus ID)
Funder
Magnus Bergvall Foundation
Note

Funding Agencies:

Örebro University

EnForce project - Knowledge Foundation 

Available from: 2018-08-22 Created: 2018-08-22 Last updated: 2018-08-22Bibliographically approved
Beiras, R., Bellas, J., Cachot, J., Cormier, B., Cousin, X., Engwall, M., . . . Vidal-Liñán, L. (2018). Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton. Journal of Hazardous Materials, 360, 452-460
Open this publication in new window or tab >>Ingestion and contact with polyethylene microplastics does not cause acute toxicity on marine zooplankton
Show others...
2018 (English)In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 360, p. 452-460Article in journal (Refereed) Published
Abstract [en]

Toxicity of polyethylene microplastics (PE-MP) of size ranges similar to their natural food to zooplanktonic organisms representative of the main taxa present in marine plankton, including rotifers, copepods, bivalves, echinoderms and fish, was evaluated. Early life stages (ELS) were prioritized as testing models in order to maximize sensitivity. Treatments included particles spiked with benzophenone-3 (BP-3), a hydrophobic organic chemical used in cosmetics with direct input in coastal areas. Despite documented ingestion of both virgin and BP-3 spiked microplastics no acute toxicity was found at loads orders of magnitude above environmentally relevant concentrations on any of the invertebrate models. In fish tests some effects, including premature or reduced hatching, were observed after 12 d exposure at 10 mg L-1 of BP-3 spiked PE-MP. The results obtained do not support environmentally relevant risk of microplastics on marine zooplankton. Similar approaches testing more hydrophobic chemicals with higher acute toxicity are needed before these conclusions could be extended to other organic pollutants common in marine ecosystems. Therefore, the replacement of these polymers in consumer products must be carefully considered.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Benzophenone-3, Embryo-larval bioassays, Marine litter, Marine zooplankton, Polyethylene
National Category
Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-69565 (URN)10.1016/j.jhazmat.2018.07.101 (DOI)000446144600050 ()30142596 (PubMedID)2-s2.0-85051825465 (Scopus ID)
Funder
Swedish Research Council Formas
Note

Funding Agencies:

Spanish Government (MINECO)  PCIN-2015-187-C03-03  CTM2016-77945-C3 

French National Research Agency (Agence National de La Recherche)  ANR-15-JOCE-0002-05 

Galician Government  ED431C 2017/46 

Available from: 2018-10-16 Created: 2018-10-16 Last updated: 2018-10-17Bibliographically approved
Lam, M. M., Bülow, R., Engwall, M., Giesy, J. P. & Larsson, M. (2018). Methylated PACs Are More Potent than Their Parent Compounds: A Study on AhR-mediated Activity, Degradability and Mixture Interactions in the H4IIE-luc Assay. Environmental Toxicology and Chemistry, 37(5), 1409-1419
Open this publication in new window or tab >>Methylated PACs Are More Potent than Their Parent Compounds: A Study on AhR-mediated Activity, Degradability and Mixture Interactions in the H4IIE-luc Assay
Show others...
2018 (English)In: Environmental Toxicology and Chemistry, ISSN 0730-7268, E-ISSN 1552-8618, Vol. 37, no 5, p. 1409-1419Article in journal (Refereed) Published
Abstract [en]

Twenty-six polycyclic aromatic compounds (PACs; including native polycyclic aromatic hydrocarbons [PAHs], hydroxylated PAHs, alkylated and oxygenated PAHs, and [alkylated] heterocyclic compounds) were investigated for their aryl hydrocarbon receptor (AhR)-mediated potencies in the H4IIE-luc bioassay. Potential degradabilities of PACs were investigated by use of various durations of exposure (24, 48, or 72 h), and various mixtures of PACs including PAHs, alkylated and oxygenated PAHs, and heterocyclic compounds were tested for their joint AhR-mediated potency. Additive behaviors of PACs in mixtures were studied by comparing observed mixture potencies with mixture potencies predicted by use of the concentration addition model. Methylated derivatives were more potent than their parent compounds in the H4IIE-luc assay. A time-dependent decrease in relative potency was observed for all AhR-active compounds, which may be indicative of in vitro biotransformation. Monomethylated compounds seemed to be more rapidly transformed than analogous unsubstituted compounds. In addition, the results showed that the predictive power of the concentration addition model increased with the number of compounds, suggesting additivity in multicomponent mixtures. Due to the greater potency of methylated derivatives and their ubiquitous occurrence, there is a need for further research on the toxicity and mixture behavior of these environmentally and toxicologically relevant compounds.

Place, publisher, year, edition, pages
John Wiley & Sons, 2018
Keywords
Polycyclic aromatic compounds, Relative potency factors, In vitro bioassays, Mixture toxicity
National Category
Pharmacology and Toxicology Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-64509 (URN)10.1002/etc.4087 (DOI)000430916000017 ()29334126 (PubMedID)2-s2.0-85044416468 (Scopus ID)
Funder
Knowledge Foundation
Note

Funding Agencies:

KK Foundation (SOILEFFECT)  2013/0157 

KK Foundation (EnForce)  20160019 

Canada Research Chair program  

"High Level Foreign Experts" program - People's Republic of China State Administration of Foreign Experts Affairs  

Einstein Professor Program of the Chinese Academy of Sciences  

Distinguished Visiting Professorship in the School of Biological Sciences of the University of Hong Kong 

Available from: 2018-01-25 Created: 2018-01-25 Last updated: 2018-09-11Bibliographically approved
Lam, M. M., Engwall, M., Denison, M. S. & Larsson, M. (2018). Methylated polycyclic aromatic hydrocarbons and/or their metabolites are important contributors to the overall estrogenic activity of polycyclic aromatic hydrocarbon-contaminated soils. Environmental Toxicology and Chemistry, 37(2), 385-397
Open this publication in new window or tab >>Methylated polycyclic aromatic hydrocarbons and/or their metabolites are important contributors to the overall estrogenic activity of polycyclic aromatic hydrocarbon-contaminated soils
2018 (English)In: Environmental Toxicology and Chemistry, ISSN 0730-7268, E-ISSN 1552-8618, Vol. 37, no 2, p. 385-397Article in journal (Refereed) Published
Abstract [en]

In the present study 42 polycyclic aromatic compounds (PACs) were investigated for their estrogenic potential using the VM7Luc4E2 transactivation assay. Relative potencies were determined for mass-balance analysis. In addition, compounds were tested in combination with the estrogen receptor (ER) antagonist vertical bar C vertical bar 182,780 (vertical bar C vertical bar) and the aryl hydrocarbon receptor antagonist/CYP1A1 inhibitor a-naphthoflavone. Luciferase induction and CYP1A1-dependent ethoxyresorufin-O-deethylase (EROD) activity were measured to assess whether the estrogenic activity was elicited by the compound itself and/or by its metabolites. Relative potencies ranged between 10(-7) and 10(-4). The ability of ICI to decrease luciferase activity stimulated by all compounds indicated that the induction responses were ER-dependent. The aryl hydrocarbon receptor antagonist/CYP1A1 inhibitor a-naphthoflavone decreased luciferase induction and EROD activity by several compounds, including the methylated chrysenes, suggesting that metabolites of these chemicals contributed to ER activation. Several PACs, such as acridine and its derivatives, appear to directly activate the ER. Furthermore, extracts of soils from industrial areas were examined using this bioassay, and estrogenic activity was detected in all soil samples. Mass-balance analysis using a combination of relative potencies and chemical analysis of the samples suggested that polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, such as 1-and 3-methylchrysene, are important contributors to the overall estrogenic activity. However, these results revealed that a considerable proportion of the estrogenic activity in the soil remained unexplained, indicating the presence of other significant estrogenic compounds.

Place, publisher, year, edition, pages
John Wiley & Sons, 2018
Keywords
Estrogen receptor–mediated activity; Relative potency; Metabolite; VM7Luc4E2 transactivation assay; Mass-balance analysis
National Category
Environmental Sciences Earth and Related Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-61710 (URN)10.1002/etc.3958 (DOI)000423425700009 ()28834568 (PubMedID)2-s2.0-85041099349 (Scopus ID)
Funder
Knowledge Foundation, 2013/0157
Available from: 2017-11-13 Created: 2017-11-13 Last updated: 2018-02-12Bibliographically approved
Larsson, M., Lam, M. M., van Hees, P., Giesy, J. P. & Engwall, M. (2018). Occurrence and leachability of polycyclic aromatic compounds in contaminated soils: Chemical and bioanalytical characterization. Science of the Total Environment, 622-623, 1476-1484
Open this publication in new window or tab >>Occurrence and leachability of polycyclic aromatic compounds in contaminated soils: Chemical and bioanalytical characterization
Show others...
2018 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 622-623, p. 1476-1484Article in journal (Refereed) Published
Abstract [en]

An important concern regarding sites contaminated with polycyclic aromatic compounds (PACs) is the risk of groundwater contamination by release of the compounds from soils. The goal of this study was to investigate the occurrence and leachability of 77 PACs including polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic compounds (NSO-PACs) among total aryl hydrocarbon receptor (AhR) agonists in soils from historical contaminated sites. A novel approach combining chemical and bioanalytical methods in combination with characterization of leachability by use of a column leaching test was used. Similar profiles of relative concentrations of PACs were observed in all soils, with parent PAHs accounting for 71 to 90% of total concentrations in soils. Contribution of oxy-PAHs, alkyl-PAHs and N-PACs ranged from 2 to 9%, 3 to 9% and 1 to 14%, respectively. Although the contributions of groups of PACs were small, some compounds were found in similar or greater concentrations than parent PAHs. Leachable fractions of 77 PACs from soils were small and ranged from 0.002 to 0.54%. Polar PACs were shown to be more leachable than parent PAHs. The contribution of analyzed PACS to overall AhR-mediated activities in soils and leachates suggests presence of other AhR agonists in soils, and a potential risk. Only a small fraction of AhR agonists was available in soils, indicating an overestimation of the risk if only total initial concentrations in soils would be considered in risk assessment. The results of the study strongly support that focus on 16US EPA PAHs may result in inadequate assessment of risk and hazard of PACs in complex environmental samples.

Place, publisher, year, edition, pages
Elsevier, 2018
Keywords
Alkyl-PAHs; Oxy-PAHs; NSO-heterocyclic compounds; Ah receptor; H4IIE-luc bioassay; Column leaching test
National Category
Environmental Sciences
Identifiers
urn:nbn:se:oru:diva-64301 (URN)10.1016/j.scitotenv.2017.12.015 (DOI)000426349000143 ()2-s2.0-85038841340 (Scopus ID)
Funder
Knowledge Foundation, 2013/0157
Note

Funding Agencies:

Applicera and Formas  210-2014-87 

Canada Research Chair program  

State Administration of Foreign Experts Affairs  GDT20143200016 

P.R. China  

Chinese Academy of Sciences  

Distinguished Visiting Professorship in the School of Biological Sciences of the University of Hong Kong  

Natural Science and Engineering Research Council of Canada  326415-07 

Western Economic Diversification Canada  6578  6807  000012711 

Canada Foundation for Infrastructure  

Available from: 2018-01-16 Created: 2018-01-16 Last updated: 2018-08-16Bibliographically approved
Nordén, M., Berger, U. & Engwall, M. (2016). Developmental toxicity of PFOS and PFOA in great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and chicken (Gallus gallus domesticus). Environmental science and pollution research international, 23(11), 10855-10862
Open this publication in new window or tab >>Developmental toxicity of PFOS and PFOA in great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and chicken (Gallus gallus domesticus)
2016 (English)In: Environmental science and pollution research international, ISSN 0944-1344, E-ISSN 1614-7499, Vol. 23, no 11, p. 10855-10862Article in journal (Refereed) Published
Abstract [en]

Perfluoroalkyl acids (PFAAs) are found globally in environmental samples and have been studied in various species. In this study, we compare the sensitivity of three avian species to the toxic effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). Eggs of great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and the domestic White Leghorn chicken (Gallus gallus domesticus) were exposed in ovo by injection into the air sac. Effects on embryo survival were observed following exposure to PFOS and PFOA in chicken and herring gull. Chicken was found to be the most sensitive species with 50 % reduced embryo survival at 8.5 μg/g egg for PFOS and 2.5 μg/g egg for PFOA. Cormorant was shown to be the least sensitive species. The difference in sensitivity between chicken and herring gull was a factor of 2.7 for PFOS and 3.5 for PFOA. Between chicken and great cormorant, the sensitivity difference was 2.6 for PFOS and 8.2 for PFOA. Effects on embryo survival were seen at egg injection doses of PFOS close to levels found in environmental samples from wild birds, indicating that PFOS could be having effects in highly exposed populations of birds. This study also shows that there are differences in species sensitivity to PFOS and PFOA that should be taken into consideration in avian wildlife risk assessment.

Place, publisher, year, edition, pages
Heidelberg, Germany: Springer Berlin/Heidelberg, 2016
Keywords
PFOS, PFOA, chicken, herring gull, great cormorant, developmental toxicity
National Category
Biological Sciences Environmental Sciences
Research subject
Enviromental Science
Identifiers
urn:nbn:se:oru:diva-50613 (URN)10.1007/s11356-016-6285-1 (DOI)000377021500049 ()26895726 (PubMedID)2-s2.0-84958749415 (Scopus ID)
Funder
Swedish Research Council Formas
Available from: 2016-06-08 Created: 2016-06-08 Last updated: 2018-07-13Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0001-7338-2079

Search in DiVA

Show all publications