oru.sePublications

Please wait ... |

Link to record
http://oru.diva-portal.org/smash/person.jsf?pid=authority-person:63920 $(function(){PrimeFaces.cw("InputTextarea","widget_formSmash_upper_j_idt122_recordDirectLink",{id:"formSmash:upper:j_idt122:recordDirectLink",widgetVar:"widget_formSmash_upper_j_idt122_recordDirectLink",autoResize:true});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt122_j_idt124",{id:"formSmash:upper:j_idt122:j_idt124",widgetVar:"widget_formSmash_upper_j_idt122_j_idt124",target:"formSmash:upper:j_idt122:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Permanent link

Direct link

Kågström, Bo

Open this publication in new window or tab >>Canonical structure transitions of system pencils### Dmytryshyn, Andrii

### Johansson, Stefan

### Kågström, Bo

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_some",{id:"formSmash:j_idt184:0:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_otherAuthors",{id:"formSmash:j_idt184:0:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_otherAuthors",multiple:true}); 2017 (English)In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 38, no 4, p. 1249-1267Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

linear system, generalized state-space system, system pencil, matrix pencil, orbit, bundle, perturbation, versal deformation, stratification
##### National Category

Computer Sciences Mathematical Analysis
##### Research subject

business data processing
##### Identifiers

urn:nbn:se:oru:diva-74889 (URN)10.1137/16M1097857 (DOI)000418665600009 ()2-s2.0-85022337450 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt359",{id:"formSmash:j_idt184:0:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt365",{id:"formSmash:j_idt184:0:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_0_j_idt188_j_idt371",{id:"formSmash:j_idt184:0:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_0_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research Council, E0485301eSSENCE - An eScience Collaboration
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-09-20Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

We investigate the changes of the canonical structure information under small perturbations for a system pencil associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformations. The results allow us to track possible changes of important linear system characteristics under small perturbations.

Open this publication in new window or tab >>Canonical structure transitions of system pencils### Dmytryshyn, Andrii

### Johansson, Stefan

### Kågström, Bo

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_some",{id:"formSmash:j_idt184:1:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_otherAuthors",{id:"formSmash:j_idt184:1:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_otherAuthors",multiple:true}); 2015 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet, 2015. p. 26
##### Series

UMINF, ISSN 0348-0542 ; 5
##### Keywords

Linear system, descriptor system, state-space system, system pencil, matrix pencil, orbit, bundle, perturbation, versal deformation, stratification
##### National Category

Mathematics Computer and Information Sciences Electrical Engineering, Electronic Engineering, Information Engineering Civil Engineering
##### Identifiers

urn:nbn:se:oru:diva-74888 (URN)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt359",{id:"formSmash:j_idt184:1:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt365",{id:"formSmash:j_idt184:1:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_1_j_idt188_j_idt371",{id:"formSmash:j_idt184:1:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_1_j_idt188_j_idt371",multiple:true});
#####

##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, E048530
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-08-06Bibliographically approved

Dept. Computing Science, Umeå University, Umeå, Sweden.

Dept. Computing Science, Umeå University, Umeå, Sweden.

Dept. Computing Science, Umeå University, Umeå, Sweden.

We investigate the changes under small perturbations of the canonical structure information for a system pencil (A B C D) − s (E 0 0 0), det(E) ≠ 0, associated with a (generalized) linear time-invariant state-space system. The equivalence class of the pencil is taken with respect to feedback-injection equivalence transformation. The results allow to track possible changes under small perturbations of important linear system characteristics.

Open this publication in new window or tab >>Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence### Dmytryshyn, Andrii

### Futorny, Vyacheslav

### Kågström, Bo

### Klimenko, Lena

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_some",{id:"formSmash:j_idt184:2:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_some",multiple:true}); ### Sergeichuk, Vladimir

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_otherAuthors",{id:"formSmash:j_idt184:2:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_otherAuthors",multiple:true}); Show others...PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt184_2_j_idt188_j_idt202",{id:"formSmash:j_idt184:2:j_idt188:j_idt202",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt202",onLabel:"Hide others...",offLabel:"Show others..."}); 2015 (English)In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 469, p. 305-334Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2015
##### Keywords

Bundle, Closure graph, Congruence canonical form, Congruence class, Perturbation
##### National Category

Mathematical Analysis
##### Research subject

Mathematics; business data processing
##### Identifiers

urn:nbn:se:oru:diva-74885 (URN)10.1016/j.laa.2014.11.004 (DOI)000348883600014 ()2-s2.0-84919935890 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt359",{id:"formSmash:j_idt184:2:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt365",{id:"formSmash:j_idt184:2:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_2_j_idt188_j_idt371",{id:"formSmash:j_idt184:2:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_2_j_idt188_j_idt371",multiple:true});
#####

##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, A0581501
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-09-20Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Mathematics, University of São Paulo, São Paulo, Brazil.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kiev, Ukraine.

Institute of Mathematics, Kiev, Ukraine.

We construct the Hasse diagrams G_{2} and G_{3} for the closure ordering on the sets of congruence classes of 2 × 2 and 3 × 3 complex matrices. In other words, we construct two directed graphs whose vertices are 2 × 2 or, respectively, 3 × 3 canonical matrices under congruence, and there is a directed path from A to B if and only if A can be transformed by an arbitrarily small perturbation to a matrix that is congruent to B. A bundle of matrices under congruence is defined as a set of square matrices A for which the pencils A + λA^{T} belong to the same bundle under strict equivalence. In support of this definition, we show that all matrices in a congruence bundle of 2 × 2 or 3 × 3 matrices have the same properties with respect to perturbations. We construct the Hasse diagrams G_{2} ^{B} and G_{3} ^{B} for the closure ordering on the sets of congruence bundles of 2 × 2 and, respectively, 3 × 3 matrices. We find the isometry groups of 2 × 2 and 3 × 3 congruence canonical matrices.

Open this publication in new window or tab >>Coupled Sylvester-type Matrix Equations and Block Diagonalization### Dmytryshyn, Andrii

### Kågström, Bo

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_some",{id:"formSmash:j_idt184:3:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_otherAuthors",{id:"formSmash:j_idt184:3:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_otherAuthors",multiple:true}); 2015 (English)In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 36, no 2, p. 580-593Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Society for Industrial and Applied Mathematics, 2015
##### Keywords

matrix equation, Sylvester equation, Stein equation, Roth's theorem, consistency, block diagonalization
##### National Category

Computer Sciences Mathematical Analysis
##### Identifiers

urn:nbn:se:oru:diva-74892 (URN)10.1137/151005907 (DOI)000357407800011 ()2-s2.0-84936772205 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt359",{id:"formSmash:j_idt184:3:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt365",{id:"formSmash:j_idt184:3:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_3_j_idt188_j_idt371",{id:"formSmash:j_idt184:3:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_3_j_idt188_j_idt371",multiple:true});
#####

Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-09-20Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

We prove Roth-type theorems for systems of matrix equations including an arbitrary mix of Sylvester and $\star$-Sylvester equations, in which the transpose or conjugate transpose of the unknown matrices also appear. In full generality, we derive consistency conditions by proving that such a system has a solution if and only if the associated set of $2 \times 2$ block matrix representations of the equations are block diagonalizable by (linked) equivalence transformations. Various applications leading to several particular cases have already been investigated in the literature, some recently and some long ago. Solvability of these cases follow immediately from our general consistency theory. We also show how to apply our main result to systems of Stein-type matrix equations.

Open this publication in new window or tab >>Geometry of spaces for matrix polynomial Fiedler linearizations### Dmytryshyn, Andrii

### Johansson, Stefan

### Kågström, Bo

### Van Dooren, Paul

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_some",{id:"formSmash:j_idt184:4:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_otherAuthors",{id:"formSmash:j_idt184:4:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_otherAuthors",multiple:true}); 2015 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet, 2015. p. 28
##### Series

UMINF, ISSN 0348-0542 ; 15/17
##### National Category

Mathematics Computer and Information Sciences
##### Identifiers

urn:nbn:se:oru:diva-74891 (URN)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt359",{id:"formSmash:j_idt184:4:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt365",{id:"formSmash:j_idt184:4:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_4_j_idt188_j_idt371",{id:"formSmash:j_idt184:4:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_4_j_idt188_j_idt371",multiple:true});
#####

##### Funder

Swedish Research Council, E0485301eSSENCE - An eScience Collaboration
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-08-06Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Universite catholique de Louvain, Belgium.

We study how small perturbations of matrix polynomials may change their elementary divisors and minimal indices by constructing the closure hierarchy graphs (stratifications) of orbits and bundles of matrix polynomial Fiedler linearizations. We show that the stratifica-tion graphs do not depend on the choice of Fiedler linearization which means that all the spaces of the matrix polynomial Fiedler lineariza-tions have the same geometry (topology). The results are illustrated by examples using the software tool StratiGraph.

Open this publication in new window or tab >>Orbit closure hierarchies of skew-symmetric matrix pencils### Dmytryshyn, Andrii

### Kågström, Bo

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_some",{id:"formSmash:j_idt184:5:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_otherAuthors",{id:"formSmash:j_idt184:5:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_otherAuthors",multiple:true}); 2014 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå universitet, 2014. p. 18
##### Series

UMINF, ISSN 0348-0542 ; 14/02
##### Keywords

Skew-symmetric matrix pencil, stratification, canonical structure information, orbits
##### National Category

Computer Sciences Computational Mathematics
##### Identifiers

urn:nbn:se:oru:diva-74894 (URN)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt359",{id:"formSmash:j_idt184:5:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt365",{id:"formSmash:j_idt184:5:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_5_j_idt188_j_idt371",{id:"formSmash:j_idt184:5:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_5_j_idt188_j_idt371",multiple:true});
#####

Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-08-06Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another skew-symmetric matrix pencil. This theory relies on our main theorem stating that a skew-symmetric matrix pencil A-λB can be approximated by pencils strictly equivalent to a skew-symmetric matrix pencil C-λD if and only if A-λB can be approximated by pencils congruent to C-λD.

Open this publication in new window or tab >>Orbit closure hierarchies of skew-symmetric matrix pencils### Dmytryshyn, Andrii

### Kågström, Bo

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_some",{id:"formSmash:j_idt184:6:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_otherAuthors",{id:"formSmash:j_idt184:6:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 35, no 4, p. 1429-1443Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Society for Industrial and Applied Mathematics, 2014
##### Keywords

skew-symmetric matrix pencil, stratification, canonical structure information, orbit, bundle
##### National Category

Computer Sciences
##### Identifiers

urn:nbn:se:oru:diva-74893 (URN)10.1137/140956841 (DOI)000346843200010 ()2-s2.0-84919931822 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt359",{id:"formSmash:j_idt184:6:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt365",{id:"formSmash:j_idt184:6:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_6_j_idt188_j_idt371",{id:"formSmash:j_idt184:6:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_6_j_idt188_j_idt371",multiple:true});
#####

##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, A0581501
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-09-20Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

We study how small perturbations of a skew-symmetric matrix pencil may change its canonical form under congruence. This problem is also known as the stratification problem of skew-symmetric matrix pencil orbits and bundles. In other words, we investigate when the closure of the congruence orbit (or bundle) of a skew-symmetric matrix pencil contains the congruence orbit (or bundle) of another skew-symmetric matrix pencil. The developed theory relies on our main theorem stating that a skew-symmetric matrix pencil A - lambda B can be approximated by pencils strictly equivalent to a skew-symmetric matrix pencil C - lambda D if and only if A - lambda B can be approximated by pencils congruent to C - lambda D.

Open this publication in new window or tab >>Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations### Dmytryshyn, Andrii

### Kågström, Bo

### Sergeichuk, Vladimir V.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_some",{id:"formSmash:j_idt184:7:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_otherAuthors",{id:"formSmash:j_idt184:7:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_otherAuthors",multiple:true}); 2014 (English)In: The Electronic Journal of Linear Algebra, ISSN 1537-9582, E-ISSN 1081-3810, Vol. 27, p. 1-18Article in journal (Refereed) Published
##### Abstract [en]

##### Keywords

Pair of symmetric matrices, Matrix equations, Orbits, Codimension
##### National Category

Algebra and Logic
##### Identifiers

urn:nbn:se:oru:diva-74896 (URN)10.13001/1081-3810.1602 (DOI)000331236500001 ()2-s2.0-84894423199 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt359",{id:"formSmash:j_idt184:7:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt365",{id:"formSmash:j_idt184:7:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_7_j_idt188_j_idt371",{id:"formSmash:j_idt184:7:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_7_j_idt188_j_idt371",multiple:true});
#####

##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, A0581501
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-09-20Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Ukrainian Acad Sci, Kiev, Ukraine.

The set of all solutions to the homogeneous system of matrix equations (X-T A + AX, X-T B + BX) = (0, 0), where (A, B) is a pair of symmetric matrices of the same size, is characterized. In addition, the codimension of the orbit of (A, B) under congruence is calculated. This paper is a natural continuation of the article [A. Dmytryshyn, B. Kagstrom, and V. V. Sergeichuk. Skew-symmetric matrix pencils: Codimension counts and the solution of a pair of matrix equations. Linear Algebra Appl., 438:3375-3396, 2013.], where the corresponding problems for skew-symmetric matrix pencils are solved. The new results will be useful in the development of the stratification theory for orbits of symmetric matrix pencils.

Open this publication in new window or tab >>Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab### Dmytryshyn, Andrii

### Johansson, Stefan

### Kågström, Bo

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_some",{id:"formSmash:j_idt184:8:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_otherAuthors",{id:"formSmash:j_idt184:8:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_otherAuthors",multiple:true}); 2013 (English)Report (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Umeå: Umeå Universitet, 2013. p. 41
##### Series

UMINF, ISSN 0348-0542 ; 13/18
##### Keywords

Congruence; *congruence; Symmetric matrix pencils; Skew-symmetric matrix pencils; Orbits; Codimension; MATLAB
##### National Category

Computer Sciences Computational Mathematics
##### Research subject

Numerical Analysis; Computer Science
##### Identifiers

urn:nbn:se:oru:diva-74890 (URN)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt359",{id:"formSmash:j_idt184:8:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt365",{id:"formSmash:j_idt184:8:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_8_j_idt188_j_idt371",{id:"formSmash:j_idt184:8:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_8_j_idt188_j_idt371",multiple:true});
#####

Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-08-06Bibliographically approved

Department of Computing Science and HPC2N, Umeå. University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå. University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå. University, Umeå, Sweden.

Matlab functions to work with the canonical structures for congru-ence and *congruence of matrices, and for congruence of symmetricand skew-symmetric matrix pencils are presented. A user can providethe canonical structure objects or create (random) matrix examplesetups with a desired canonical information, and compute the codi-mensions of the corresponding orbits: if the structural information(the canonical form) of a matrix or a matrix pencil is known it isused for the codimension computations, otherwise they are computednumerically. Some auxiliary functions are provided too. All thesefunctions extend the Matrix Canonical Structure Toolbox.

Open this publication in new window or tab >>Skew-symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations### Dmytryshyn, Andrii

### Kågström, Bo

### Sergeichuk, Vladimir V.

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_some",{id:"formSmash:j_idt184:9:j_idt188:some",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_otherAuthors",{id:"formSmash:j_idt184:9:j_idt188:otherAuthors",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_otherAuthors",multiple:true}); 2013 (English)In: Linear Algebra and its Applications, ISSN 0024-3795, E-ISSN 1873-1856, Vol. 438, no 8, p. 3375-3396Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Elsevier, 2013
##### Keywords

Pair of skew-symmetric matrices, Matrix equations, Orbits, Codimension
##### National Category

Algebra and Logic
##### Identifiers

urn:nbn:se:oru:diva-74895 (URN)10.1016/j.laa.2012.11.025 (DOI)000316521500015 ()2-s2.0-84875429601 (Scopus ID)
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt359",{id:"formSmash:j_idt184:9:j_idt188:j_idt359",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt359",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt365",{id:"formSmash:j_idt184:9:j_idt188:j_idt365",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt365",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt184_9_j_idt188_j_idt371",{id:"formSmash:j_idt184:9:j_idt188:j_idt371",widgetVar:"widget_formSmash_j_idt184_9_j_idt188_j_idt371",multiple:true});
#####

##### Funder

eSSENCE - An eScience CollaborationSwedish Research Council, A0581501
Available from: 2019-06-28 Created: 2019-06-28 Last updated: 2019-09-20Bibliographically approved

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Department of Computing Science and HPC2N, Umeå University, Umeå, Sweden.

Institute of Mathematics, Kiev, Ukraine.

The homogeneous system of matrix equations (X(T)A + AX, (XB)-B-T + BX) = (0, 0), where (A, B) is a pair of skew-symmetric matrices of the same size is considered: we establish the general solution and calculate the codimension of the orbit of (A, B) under congruence. These results will be useful in the development of the stratification theory for orbits of skew-symmetric matrix pencils.