Open this publication in new window or tab >>2020 (English)In: SIAM Journal on Matrix Analysis and Applications, ISSN 0895-4798, E-ISSN 1095-7162, Vol. 41, no 3, p. 1033-1058Article in journal (Refereed) Published
Abstract [en]
We determine the generic complete eigenstructures for n x n complex symmetric matrix polynomials of odd grade d and rank at most r. More precisely, we show that the set of n \times n complex symmetric matrix polynomials of odd grade d, i.e., of degree at most d, and rank at most r is the union of the closures of the left perpendicularrd/2right perpendicular + 1 sets of symmetric matrix polynomials having certain, explicitly described, complete eigenstructures. Then we prove that these sets are open in the set of n x n complex symmetric matrix polynomials of odd grade d and rank at most r. In order to prove the previous results, we need to derive necessary and sufficient conditions for the existence of symmetric matrix polynomials with prescribed grade, rank, and complete eigenstructure in the case where all their elementary divisors are different from each other and of degree 1. An important remark on the results of this paper is that the generic eigenstructures identified in this work are completely different from the ones identified in previous works for unstructured and skew-symmetric matrix polynomials with bounded rank and fixed grade larger than 1, because the symmetric ones include eigenvalues while the others not. This difference requires using new techniques.
Place, publisher, year, edition, pages
Society for Industrial and Applied Mathematics, 2020
Keywords
complete eigenstructure, matrix polynomials, symmetry, normal rank, orbits, bundles, genericity, pencils
National Category
Mathematics
Identifiers
urn:nbn:se:oru:diva-86847 (URN)10.1137/19M1294964 (DOI)000576451600004 ()2-s2.0-85090908656 (Scopus ID)
Note
Funding Agencies:
Ministerio de Economia y Competitividad of Spain MTM2015-65798-P
Ministerio de Ciencia, Innovacion y Universidades of Spain MTM2017-90682-REDT PID2019-106362GB-I00
Swedish Foundation for International Cooperation in Research and Higher Education STINT IB2018-7538
2020-10-262020-10-262020-10-26Bibliographically approved